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CHARACTERIZATION OF SMOOTHNESS
OF MULTIVARIATE REFINABLE FUNCTIONS

IN SOBOLEV SPACES

RONG-QING JIA

Abstract. Wavelets are generated from refinable functions by using multi-
resolution analysis. In this paper we investigate the smoothness properties
of multivariate refinable functions in Sobolev spaces. We characterize the
optimal smoothness of a multivariate refinable function in terms of the spectral
radius of the corresponding transition operator restricted to a suitable finite
dimensional invariant subspace. Several examples are provided to illustrate
the general theory.

1. Introduction

We are concerned with functional equations of the form

φ =
∑
α∈Zs

a(α)φ(M · −α),(1.1)

where φ is the unknown function defined on the s-dimensional Euclidean space Rs,
a is a finitely supported sequence on Zs, and M is an s×s integer matrix such that
limn→∞ M−n = 0. The equation (1.1) is called a refinement equation, and the
matrix M is called a dilation matrix. Correspondingly, the sequence a is called
the refinement mask. Any function satisfying a refinement equation is called a
refinable function.

Wavelets are generated from refinable functions. In [18], Jia and Micchelli dis-
cussed how to construct multivariate wavelets from refinable functions associated
with a general dilation matrix. The approximation and smoothness properties of
wavelets are determined by the corresponding refinable functions.

Our goal is to characterize the smoothness of a refinable function strictly in terms
of the refinement mask. This information is important for our study of multivariate
wavelets.

Before proceeding further, we introduce some notation. For j = 1, . . . , s, let ej

be the jth coordinate unit vector in Rs. The norm in Rs is defined by

|y| := |y1|+ · · ·+ |ys|, y = (y1, · · · , ys) ∈ Rs.
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The distance between two points x and y in Rs is defined by dist (x, y) := |x − y|.
Let E be a subset of Rs. The distance from x to E is given by

dist (x, E) := inf{dist (x, y) : y ∈ E}.
Let N0 denote the set of nonnegative integers. An element µ = (µ1, . . . , µs) ∈ Ns

0

is called a multi-index. The length of µ is |µ| := µ1 + · · ·+µs, and the factorial of µ
is µ! := µ1! · · ·µs!. For j = 1, . . . , s, Dj denotes the partial derivative with respect
to the jth coordinate. For µ = (µ1, . . . , µs) ∈ Ns

0, Dµ is the differential operator
Dµ1

1 · · ·Dµs
s . Moreover, pµ denotes the monomial given by

pµ(x) := xµ1
1 · · ·xµs

s , x = (x1, . . . , xs) ∈ Rs.

The total degree of pµ is |µ|. For a nonnegative integer k, we denote by Πk the
linear span of {pµ : |µ| ≤ k}.

We denote by `(Zs) the linear space of all (complex-valued) sequences on Zs,
and by `0(Zs) the linear space of all finitely supported sequences on Zs. The
difference operator ∇j on `(Zs) is defined by ∇ja := a− a(· − ej), a ∈ `(Zs). For
µ = (µ1, . . . , µs) ∈ Ns

0, ∇µ is the difference operator ∇µ1
1 · · · ∇µs

s . We use δ to
denote the sequence on Zs given by δ(0) = 1 and δ(β) = 0 for all β ∈ Zs \ {0}. For
b ∈ `(Zs) and c ∈ `0(Zs), the (discrete) convolution of b with c is defined by

b∗c(α) :=
∑
β∈Zs

b(α− β)c(β), α ∈ Zs.

In particular, b∗δ = b for b ∈ `(Zs).
The symbol of an element b ∈ `0(Zs) is the Laurent polynomial b̃(z) given by

b̃(z) :=
∑
α∈Zs

b(α)zα, z ∈ (C \ {0})s.

The complex conjugate of a complex number z is denoted by z. For z = (z1, . . . , zs)
in Cs we write z for (z1, . . . , zs). Let Ts denote the s-torus

{(z1, . . . , zs) ∈ Cs : |z1| = · · · = |zs| = 1}.
Then z = z−1 for z ∈ Ts. Consequently, if b ∈ `0(Zs) is real-valued, then we have
b̃(z) = b̃(z−1) for z ∈ Ts.

For 1 ≤ p ≤ ∞, by `p(Zs) we denote the Banach space of all sequences b on Zs

such that ‖b‖p < ∞, where

‖b‖p :=
( ∑

α∈Zs

|b(α)|p
)1/p

for 1 ≤ p < ∞,

and ‖b‖∞ is the supremum of b on Zs.
For 1 ≤ p ≤ ∞, by Lp(Rs) we denote the Banach space of all (complex-valued)

measurable functions f on Rs such that ‖f‖p < ∞, where

‖f‖p :=
(∫

Rs

|f(x)|p dx

)1/p

for 1 ≤ p < ∞,

and ‖f‖∞ is the essential supremum of f on Rs.
The Fourier transform of a function f ∈ L1(Rs) is defined to be

f̂(ξ) :=
∫

Rs

f(x)e−ix·ξ dx, ξ ∈ Rs,
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where x · ξ denotes the inner product of two vectors x and ξ in Rs. The domain of
the Fourier transform can be naturally extended to include compactly supported
distributions.

If a satisfies ∑
α∈Zs

a(α) = m := | detM |,(1.2)

then it is known that there exists a unique compactly supported distribution φ

satisfying the refinement equation (1.1) subject to the condition φ̂(0) = 1. This
distribution is said to be the normalized solution of the refinement equation
(1.1). This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in [2,
Chap. 5] for the case in which the dilation matrix is 2 times the s×s identity matrix
I. The same proof applies to the general refinement equation (1.1). Throughout
this paper we assume that (1.2) is satisfied.

For ν ≥ 0, we denote by W ν
2 (Rs) the Sobolev space of all functions f ∈ L2(Rs)

such that ∫
Rs

∣∣f̂(ξ)
∣∣2(1 + |ξ|ν)2

dξ < ∞.

The critical exponent of a function f ∈ L2(Rs) (see [25]) is defined by

ν(f) := sup
{
ν : f ∈ W ν

2 (Rs)
}
.

Sobolev spaces are related to Lipschitz spaces, which are defined on the basis of
the modulus of smoothness. For y ∈ Rs, the shift operator τy is given by

τyf := f(· − y),

and the difference operator ∇y is given by

∇yf := f − f(· − y),

where f is a function defined on Rs. The modulus of continuity of a function f
in Lp(Rs) is defined by

ω(f, h)p := sup
|y|≤h

∥∥∇yf
∥∥

p
, h ≥ 0.

Let k be a positive integer. The kth modulus of smoothness of f ∈ Lp(Rs) is
defined by

ωk(f, h)p := sup
|y|≤h

∥∥∇k
yf

∥∥
p
, h ≥ 0.

Thus, ω1(f, ·)p = ω(f, ·)p is the modulus of continuity.
For 1 ≤ p ≤ ∞ and 0 < ν ≤ 1, the Lipschitz space Lip(ν, Lp(Rs)) consists of all

functions f ∈ Lp(Rs) for which

ω(f, h)p ≤ C hν ∀h > 0,

where C is a positive constant independent of h. For ν > 0 we write ν = r + η,
where r is an integer and 0 < η ≤ 1. The Lipschitz space Lip(ν, Lp(Rs)) consists
of those functions f ∈ Lp(Rs) for which Dµf ∈ Lip(η, Lp(Rs)) for all multi-indices
µ with |µ| = r. For ν > 0, let k be an integer greater than ν. The generalized
Lipschitz space Lip∗(ν, Lp(Rs)) consists of those functions f ∈ Lp(Rs) for which

ωk(f, h)p ≤ C hν ∀h > 0,
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where C is a positive constant independent of h. If ν > 0 is not an integer, then

Lip(ν, Lp(Rs)) = Lip∗(ν, Lp(Rs)), 1 ≤ p ≤ ∞.

See [6, Chap. 2] for a discussion on Lipschitz spaces.
It is well known that, for ν > ε > 0, the inclusion relations

Lip(ν, L2(Rs)) ⊆ Lip∗(ν, L2(Rs)) ⊆ Lip(ν − ε, L2(Rs))

and

W ν
2 (Rs) ⊆ Lip(ν, L2(Rs)) ⊆ W ν−ε

2 (Rs)

hold true. See [23, Chap. V] for these facts. Therefore we have

ν(f) = sup{ν : f ∈ Lip(ν, L2(Rs))} = sup{ν : f ∈ Lip∗(ν, L2(Rs))}.
The concept of stability plays an important role in the study of the smoothness

properties of refinable functions. Let φ be a compactly supported function in Lp(Rs)
(1 ≤ p ≤ ∞). We say that the shifts of φ are stable if there are two positive
constants C1 and C2 such that

C1‖λ‖p ≤
∥∥∥∥ ∑

α∈Zs

λ(α)φ(· − α)
∥∥∥∥

p

≤ C2‖λ‖p ∀ λ ∈ `0(Zs).(1.3)

It was proved by Jia and Micchelli in [17] that a compactly supported function
φ ∈ Lp(Rs) satisfies the Lp-stability condition in (1.3) if and only if, for any ξ ∈ Rs,
there exists an element β ∈ Zs such that

φ̂(ξ + 2πβ) 6= 0.

If a compactly supported distribution φ satisfies this condition, then we still say that
the shifts of φ are stable. In the binary case (s = 1 and M = (2)), Jia and Wang [19]
gave a characterization for stability of a refinable function in terms of the refinement
mask. Their results were extended by Zhou [27] to the case where the scaling factor
m is an arbitrary integer greater than 1. In the case s > 1 and M = 2I, Hogan
[11] gave a characterization of stability for a class of refinable functions in terms of
the mask. When M is a general dilation matrix and the normalized solution φ of
(1.1) lies in L2(Rs), Lawton, Lee, and Shen [20] characterized stability of the shifts
of φ in terms of eigenvalues and eigenvectors of a certain linear operator associated
with the refinement mask.

Let us review the binary case where s = 1 and M = (2). Denote by φ the
normalized solution of the refinement equation with mask a. Under the condition
that ã(eiξ) 6= 0 for all ξ ∈ (−π, π), Eirola in [7] established a formula for the critical
exponent of φ. His results were improved by Villemoes in [25]. In this case, even the
requirement for stability of φ can be relaxed (see [25] and [13]). Recently, Cohen
and Daubechies [4] studied the regularity of refinable functions for the case where
the refinement mask is not necessarily finitely supported.

The results in both [7] and [25] rely on factorization of the symbol of the mask.
In the multivariate case, however, the symbol of the refinement mask is often irre-
ducible. For example, let s = 2, M = 2I, and a the mask given by its symbol

ã(z) := z2
1 + z2 + z1z2 + z1z

2
2 .

Then ã(z) is irreducible (see [16]). But the refinable function φ associated with a
lies in L2(R2) and has stable shifts. In Section 4 we will show

ν(φ) = 1− log4 3.
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Because of the difficulty mentioned above, the existent literature did not pro-
vide decisive results for the smoothness analysis of multivariate refinable functions.
Some special cases were studied by several authors, including Cohen and Daubechies
[3], Villemoes [26], Goodman, Micchelli, and Ward [8], Dahlke, Dahmen, and Latour
[5], and Riemenschneider and Shen [21].

The purpose of this paper is to provide a conclusive characterization for the
smoothness of a multivariate refinable function in terms of the refinement mask
and the dilation matrix. This goal will be achieved by employing my previous work
[13]–[16] and my joint work with Han [10].

Our methods apply to isotropic dilation matrices. Let M be an s×s matrix with
its entries in C. We say that M is isotropic if M is similar to a diagonal matrix
diag {λ1, . . . , λs} with |λ1| = · · · = |λs|. For example, for a, b ∈ R, the matrix[

a −b
b a

]
is isotropic.

For a compactly supported distribution φ on Rs and a sequence b ∈ `(Zs), the
semi-convolution of φ with b is defined by

φ∗′b :=
∑

α∈Zs

φ(· − α)b(α).

Let S(φ) denote the linear space {φ∗′b : b ∈ `(Zs)}. We call S(φ) the shift-
invariant space generated by φ.

Section 3 is devoted to a study of the subdivision and transition operators as-
sociated with the refinement equation (1.1). Let a be an element in `0(Zs) and let
M be a dilation matrix. The subdivision operator Sa is the linear operator on
`(Zs) defined by

Sau(α) :=
∑
β∈Zs

a(α −Mβ)u(β), α ∈ Zs,(1.4)

where u ∈ `(Zs). The transition operator Ta is the linear operator on `0(Zs)
defined by

Tav(α) :=
∑
β∈Zs

a(Mα− β)v(β), α ∈ Zs,(1.5)

where v ∈ `0(Zs).
In Section 2 we will establish the following results. Let M be an isotropic dilation

matrix with m = | detM |. Let ν > 0 and let k be a positive integer. If the
normalized solution φ of (1.1) lies in L2(Rs), and if there exists a constant C > 0
such that ∥∥∇k

j Sn
a δ

∥∥
2
≤ C m(1/2−ν/s)n ∀n ∈ N and j = 1, . . . , s,(1.6)

then φ belongs to Lip∗(ν, L2(Rs)). Conversely, if φ lies in Lip∗(ν, L2(Rs)), and if
the shifts of φ are stable, then (1.6) holds true for k > ν. Note that Han and
Jia [10] have already given a characterization for a refinable function to belong to
Lp(Rs), provided it has stable shifts.

In order to apply the preceding results, the integer k should be chosen appropri-
ately. In Section 4, we will demonstrate that k should be chosen to be the largest
integer such that S(φ) contains Πk−1. This choice of k is related to the approxima-
tion order provided by S(φ). Moreover, if the shifts of φ are stable, then k can be
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easily determined by checking the order of the so-called sum rules satisfied by the
refinement mask (see [15] and [16]).

It turns out that the critical exponent of the normalized solution of (1.1) can be
computed by finding the spectral radius of the corresponding transition operator
restricted on a suitable invariant subspace. For an integer k ≥ 0, let

Vk :=
{

v ∈ `0(Zs) :
∑
α∈Zs

p(α)v(α) = 0 ∀ p ∈ Πk

}
.

Choose k to be the largest integer such that S(φ) ⊃ Πk−1. If the shifts of φ are
stable, then Vk−1 is an invariant subspace of Ta. Moreover, let b := a∗a∗, where a∗

is the sequence given by a∗(α) = a(−α), α ∈ Zs. Then V2k−1 is invariant under Tb.
Let ρ be the spectral radius of Tb|V2k−1 . In Section 4, we will establish the following
formula for the critical exponent of φ:

ν(φ) = (1− logm ρ)s/2.(1.7)

Finally, in Section 5, we will provide several examples to illustrate the general
theory. In particular, one example shows that (1.7) may fail to hold if the stability
condition is not satisfied.

In a forthcoming paper we will give a comprehensive study of the smoothness of
multivariate refinable functions in Besov spaces.

2. Characterization of smoothness

In this section we give a characterization for the smoothness of a refinable func-
tion in terms of the refinement mask. Our characterization is based on the following
theorem.

Theorem 2.1. Let ν > 0 and let k be a positive integer. Let M be an isotropic
dilation matrix with m = | detM |. If φ ∈ Lip∗(ν, L2(Rs)) and k > ν, then there
exists a constant C > 0 such that∥∥∇k

M−nej
φ
∥∥

2
≤ C (m−ν/s)n ∀n ∈ N and j = 1, . . . , s.(2.1)

Conversely, if a function φ ∈ L2(Rs) satisfies the conditions in (2.1), then φ belongs
to Lip∗(ν, L2(Rs)).

The proof of this theorem is elementary but technical. Thus, we postpone its
proof to the end of this section.

Given an element a ∈ `0(Zs) and a dilation matrix M , let Sa be the subdivision
operator given by (1.4). If φ satisfies the refinement equation (1.1), then

φ =
∑
α∈Zs

Sn
a δ(α)φ(Mn · −α).(2.2)
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This can be verified by induction on n. When n = 1, (2.2) is just the refinement
equation (1.1). Suppose n > 1 and (2.2) is valid for n− 1. Then

φ =
∑
β∈Zs

Sn−1
a δ(β)φ(Mn−1 · −β)

=
∑
β∈Zs

Sn−1
a δ(β)

∑
α∈Zs

a(α)φ(Mn · −Mβ − α)

=
∑
α∈Zs

[ ∑
β∈Zs

a(α−Mβ)Sn−1
a δ(β)

]
φ(Mn · −α)

=
∑
α∈Zs

Sn
a δ(α)φ(Mn · −α).

This completes the induction procedure.
The following theorem gives a characterization of the smoothness of a refinable

function.

Theorem 2.2. Let M be an isotropic dilation matrix with m = | detM |. Let φ be
the normalized solution of the refinement equation

φ =
∑
α∈Zs

a(α)φ(M · −α),

where a ∈ `0(Zs) with
∑

α∈Zs a(α) = m. Let ν > 0 and let k be a positive integer.
If φ ∈ L2(Rs), and if there exists a constant C > 0 such that∥∥∇k

j Sn
a δ

∥∥
2
≤ C m(1/2−ν/s)n ∀n ∈ N and j = 1, . . . , s,(2.3)

then φ ∈ Lip∗(ν, L2(Rs)). Conversely, if φ ∈ Lip∗(ν, L2(Rs)), and if the shifts of φ
are stable, then (2.3) holds true for k > ν.

Proof. The proof is based on Theorem 2.1. Suppose the mask a satisfies (2.3). It
follows from (2.2) that

∇k
M−nej

φ =
∑
α∈Zs

∇k
j Sn

a δ(α)φ(Mn · −α).(2.4)

Since φ ∈ L2(Rs) is compactly supported, there exists a positive constant C1 inde-
pendent of n and j such that∥∥∇k

M−nej
φ
∥∥

2
≤ C1m

−n/2
∥∥∇k

j Sn
a δ

∥∥
2
.

This in connection with (2.3) tells us that (2.1) holds true. Thus, by Theorem 2.1,
φ belongs to Lip∗(ν, L2(Rs)).

Conversely, suppose the shifts of φ are stable. It follows from (2.4) that

m−n/2
∥∥∇k

j Sn
a δ

∥∥
2
≤ C2

∥∥∇k
M−nej

φ
∥∥

2
,(2.5)

where C2 is a constant independent of n and j. If φ ∈ Lip∗(ν, L2(Rs)), then (2.1) is
valid for k > ν, by Theorem 2.1. Therefore, (2.3) follows from (2.1) and (2.5).

The proof of Theorem 2.1 is based on the following two lemmas.

Lemma 2.3. Suppose v1, . . . , vk are vectors in Rs, and t1, . . . , tk are positive real
numbers such that t1 · · · tk = 1. Then for every f ∈ L2(Rs),∥∥∇v1 · · ·∇vk

f
∥∥2

2
≤ 1

k

k∑
j=1

t2j
∥∥∇k

vj
f
∥∥2

2
.
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Proof. We observe that, for v ∈ Rs,

(∇vf )̂ (ξ) =
(
1− e−iv·ξ)f̂(ξ), ξ ∈ Rs.

Thus, by Parseval’s identity we get∥∥∇v1 · · ·∇vk
f
∥∥2

2
= (2π)−s

∫
Rs

[ k∏
j=1

∣∣1− e−ivj ·ξ∣∣2]|f̂(ξ)|2 dξ.

It is well known that the geometric mean does not exceed the arithmetic mean;
hence t1 · · · tk = 1 implies that

k∏
j=1

∣∣1− e−ivj ·ξ∣∣2 =
[ k∏

j=1

(
t2j

∣∣1− e−ivj ·ξ∣∣2k
)]1/k

≤ 1
k

k∑
j=1

t2j
∣∣1− e−ivj ·ξ∣∣2k

.

Consequently, we obtain

∥∥∇v1 · · ·∇vk
f
∥∥2

2
≤ 1

k

k∑
j=1

t2j (2π)−s

∫
Rs

∣∣1− e−ivj ·ξ∣∣2k|f̂(ξ)|2 dξ =
1
k

k∑
j=1

t2j
∥∥∇k

vj
f
∥∥2

2
,

as desired.

Lemma 2.4. Let M be an isotropic matrix with spectral radius σ 6= 0. For any
vector norm ‖ · ‖ on Rs, there exist two positive constants C1 and C2 such that the
inequalities

C1σ
n‖v‖ ≤ ‖Mnv‖ ≤ C2σ

n‖v‖
hold true for every integer n and every vector v ∈ Rs.

Proof. Since M is isotropic, M is similar to a diagonal matrix diag{λ1, . . . , λs}
with |λ1| = · · · = |λs| = σ. Hence, we can find a basis {v1, . . . , vs} for Cs such
that Mvj = λjvj . Recall that two norms on a finite dimensional linear space are
equivalent. Hence there exist two positive constants C1 and C2 such that

C1

s∑
j=1

|aj | ≤ ‖v‖ ≤ C2

s∑
j=1

|aj | for v =
s∑

j=1

ajvj .

But for v =
∑s

j=1 ajvj we have Mnv =
∑s

j=1 ajλ
n
j vj . It follows that

‖Mnv‖ ≤ C2

s∑
j=1

|ajλ
n
j | = C2σ

n
s∑

j=1

|aj | ≤ C2C
−1
1 σn‖v‖

and

‖Mnv‖ ≥ C1

s∑
j=1

|ajλ
n
j | = C1σ

n
s∑

j=1

|aj | ≥ C1C
−1
2 σn‖v‖.

This completes the proof of the lemma.

Proof of Theorem 2.1. Since M is isotropic, its spectral radius is σ := m1/s. If
k > ν and φ ∈ Lip∗(ν, L2(Rs)), then there exists a constant C1 > 0 such that∥∥∇k

M−nej
φ
∥∥

2
≤ C1|M−nej|ν ∀n ∈ N and j = 1, . . . , s.

By Lemma 2.4, there exists a constant C2 > 0 such that

|M−nej|ν ≤ C2(σ−n)ν ∀n ∈ N and j = 1, . . . , s.
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Therefore, it follows that∥∥∇k
M−nej

φ
∥∥

2
≤ C1C2(m−ν/s)n ∀n ∈ N and j = 1, . . . , s.

This verifies (2.1).
Conversely, suppose (2.1) is true for a function φ ∈ L2(Rs). We wish to prove φ ∈

Lip∗(ν, L2(Rs)). Let y be a nonzero vector in Rs. We choose αj ∈ Zs (j = 1, 2, . . . )
inductively as follows. Choose α1 ∈ Zs such that |My − α1| = dist(My, Zs).
Suppose α1, . . . , αj have been chosen. Let yj := M jy − (M j−1α1 + · · ·+ αj) and
choose αj+1 ∈ Zs such that |Myj − αj+1| = dist(Myj , Zs). By our choice of αj

(j = 1, 2, . . . ) we have |yj| ≤ 1, and hence |αj+1| ≤ |Myj |+ 1 for j = 1, 2, . . . . Let
N := sup{|Mu| : |u| ≤ 1}. Then N < ∞ and |αj+1| ≤ N +1 for j = 1, 2, . . . . Since
limn→∞ M−n = 0, the vector y has the following representation:

y =
∞∑

j=1

M−jαj .(2.6)

Let n be the smallest positive integer such that αn 6= 0. Then there exists some r,
1 ≤ r ≤ n, such that |M ry| ≥ 1/2, for otherwise we would have α1 = · · · = αn = 0
by our choice of αj , j = 1, 2 . . . . By Lemma 2.4, there exists a constant C1 > 0
such that |M jv| ≤ C1σ

j |v| for all v ∈ Rs and all j = 1, 2, . . . . Consequently,

1/2 ≤ |M ry| ≤ C1σ
r|y| ≤ C1σ

n|y|.
In other words,

σ−n ≤ 2C1|y|.(2.7)

Write vj for M−jαj , j = 1, 2, . . . . Since α1 = · · · = αn−1 = 0, (2.6) implies that

∇yφ =
∞∑

j=n

Qjφ,

where Qj := τuj∇vj with un := 0 and uj :=
∑j

`=n+1 v`−1 for j > n. It follows that∥∥∇k
yφ

∥∥
2
≤

∑
(j1,... ,jk)∈Nk

n

∥∥Qj1 · · ·Qjk
φ
∥∥

2
,

where Nn denotes the set {n, n + 1, . . . }. Note that∥∥Qj1 · · ·Qjk
φ
∥∥

2
=

∥∥∇vj1
· · · ∇vjk

φ
∥∥

2
.

For r = 1, . . . , k, let

tr := σ−ν(−jr+(j1+···+jk)/k).(2.8)

Clearly, t1 · · · tk = 1. By Lemma 2.3 we have∥∥∇vj1
. . .∇vjk

φ
∥∥2

2
≤ 1

k

k∑
r=1

t2r
∥∥∇k

vjr
φ
∥∥2

2
.(2.9)

But vj = M−jαj for αj ∈ Zs with |αj | ≤ N + 1. By Lemma 2.3 it follows from
(2.1) that ∥∥∇k

vj
φ
∥∥

2
≤ C2 σ−νj ,

where C2 is a constant independent of j. This together with (2.8) and (2.9) yields∥∥∇vj1
. . .∇vjk

φ
∥∥2

2
≤ C2

2σ−2ν(j1+···+jk)/k.
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To summarize, we have proved that∥∥∇k
yφ

∥∥
2
≤ C2

∑
(j1,... ,jk)∈Nk

n

σ−ν(j1+···+jk)/k.(2.10)

The sum on the right-hand side of (2.10) can be computed as follows:∑
(j1,... ,jk)∈Nk

n

σ−ν(j1+···+jk)/k =
( ∞∑

j=n

σ−νj/k

)k

= σ−νn
/
(1 − σ−ν/k)k.

Thus, there exists a positive constant C3 independent of y such that∥∥∇k
yφ

∥∥
2
≤ C3σ

−νn.

By (2.7) we have σ−n ≤ 2C1|y|; hence there exists a constant C > 0 such that∥∥∇k
yφ

∥∥
2
≤ C |y|ν ∀ y ∈ Rs.

This shows φ ∈ Lip∗(ν, L2(Rs)), as desired.

3. Spectral radius

Theorem 2.2 gives a characterization for the smoothness of a refinable function
φ in terms of the refinement mask a. In order to calculate the critical exponent of
φ efficiently, we need to compute the limit

lim
n→∞

∥∥∇k
j Sn

a δ‖1/n
2

for j = 1, . . . , s. This problem has been solved by Han and Jia in [10]. But the
results in [10] rely on the joint spectral radius of certain linear operators on a finite
dimensional linear space. In the present setting, only the smoothness in the L2-
norm is concerned. So we can give a self-contained exposition of this topic without
using the joint spectral radius.

The support of a distribution φ on Rs is denoted by suppφ. For an element
b ∈ `0(Zs), its support is defined by

supp b := {α ∈ Zs : b(α) 6= 0}.
For a bounded subset Ω of Rs, we denote by `(Ω) the linear subspace of `0(Zs)
consisting of all sequences supported on Ω ∩ Zs.

For β ∈ Zs, we denote by δβ the sequence on Zs given by

δβ(α) =

{
1 if α = β,
0 if α ∈ Zs \ {β}.

The shift operator τβ on `(Zs) is defined by

τβu = u(· − β), u ∈ `(Zs).

An element v ∈ `0(Zs) induces the Laurent polynomial ṽ(z) =
∑

α∈Zs v(α)zα,
which in turn induces the difference operator

ṽ(τ) =
∑

α∈Zs

v(α)τα.

For a given element a ∈ `0(Zs) and a dilation matrix M , let Ta be the transition
operator given by (1.5). The following lemma gives some information about the
spectral properties of the transition operator Ta.
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Lemma 3.1. Suppose that a is an element of `0(Zs) and M is a dilation matrix.
Let H := supp a and

Ω :=
∞∑

n=1

M−nH :=
{ ∞∑

n=1

M−nhn : hn ∈ H ∀n ∈ N
}

.(3.1)

Then Ω has the following properties:
(a) supp φ ⊆ Ω,
(b) `(Ω) is invariant under the transition operator Ta, and
(c) for any v ∈ `0(Zs), there exists some integer r such that T r

a v ∈ `(Ω).

Proof. To prove (a) we deduce from (1.1) that x ∈ supp φ implies Mx−α ∈ supp φ
for some α ∈ supp a = H . Hence x ∈ M−1supp φ + M−1H . In other words,

supp φ ⊆ M−1H + M−1supp φ.

Iterating the above relation n times, we get

supp φ ⊆ M−1H + · · ·+ M−nH + M−nsupp φ.

Since limn→∞ M−n = 0, it follows that

supp φ ⊆
∞∑

n=1

M−nH = Ω.

In order to verify (b) we pick an element v ∈ `(Ω) and observe that Tav(α) 6= 0
implies that a(Mα− β) 6= 0 for some β ∈ supp v. Hence

supp (Tav) ⊆ M−1H + M−1Ω = Ω.

This shows that `(Ω) is invariant under Ta.
Finally, for an element v ∈ `0(Zs), we have

supp (Tav) ⊆ M−1H + M−1supp v.

Iterating the above relation n times, we obtain

supp (T n
a v) ⊆ M−1H + · · ·+ M−nH + M−nsupp v.

Note that Ω is a compact set, and so d := dist (Ω, Zs \ Ω) is positive. Since
limn→∞ M−n = 0, there exists a positive integer r such that dist (α, Ω) < d for
all α ∈ supp (T r

a v). For this r, we have α ∈ Ω for all α ∈ supp (T r
a v). Hence

T r
av ∈ `(Ω).

Let us draw several useful consequences from Lemma 3.1. If v ∈ `0(Zs) is an
eigenvector of Ta corresponding to an eigenvalue σ, then σrv = T r

a v ∈ `(Ω) for
sufficiently large r. Hence σ 6= 0 implies v ∈ `(Ω), and v /∈ `(Ω) implies σ = 0.
This shows that Ta only has finitely many nonzero eigenvalues. Moreover, any
eigenvector of Ta corresponding to a nonzero eigenvalue is supported in Ω. For an
invariant subspace V of Ta we define the spectral radius of Ta|V by

ρ(Ta|V ) := ρ(Ta|`(Ω)∩V ).

In particular, ρ(Ta) := ρ(Ta|`(Ω)). Note that the subdivision operator Sa and the
transition operator Ta have the same nonzero eigenvalues (see [16]).

If U is a finite subset of `0(Zs), then the minimal invariant subspace of Ta

generated by U is finite dimensional. To see this, let E :=
⋃

u∈U supp u, G :=
ME∪H ∪{0}, and K :=

⋃∞
n=1 M−nG. Then `(K) is a finite dimensional invariant

subspace of Ta containing U .
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Lemma 3.2. Let a and v be two elements of `0(Zs). Then for n = 1, 2, . . . ,

T n
a v(α) = ṽ(τ)Sn

a δ(Mnα) ∀α ∈ Zs.(3.2)

Consequently,

‖T n
a v‖∞ ≤ ‖ṽ(τ)Sn

a δ‖∞.(3.3)

Proof. The proof proceeds by induction on n. For n = 1 and α ∈ Zs we have

Tav(α) =
∑
β∈Zs

a(Mα− β)v(β) =
∑
β∈Zs

v(β)Saδ(Mα− β) = ṽ(τ)Saδ(Mα).

This verifies (3.2) for n = 1. Suppose n > 1 and (3.2) is valid for n − 1. Then for
α ∈ Zs we have

T n
a v(α) = T n−1

a (Tav)(α)

=
∑
γ∈Zs

(Tav)(γ)Sn−1
a δ(Mn−1α− γ)

=
∑
γ∈Zs

∑
β∈Zs

a(Mγ − β)v(β)Sn−1
a δ(Mn−1α− γ)

=
∑
β∈Zs

v(β)
∑
γ∈Zs

a(Mnα−Mγ − β)Sn−1
a δ(γ)

=
∑
β∈Zs

v(β)Sn
a δ(Mnα− β)

= ṽ(τ)Sn
a δ(Mnα).

This completes the induction procedure.

Theorem 3.3. Let M be an s × s dilation matrix. For a ∈ `0(Zs), let b := a∗a∗,
where a∗(α) = a(−α) for α ∈ Zs. Then for v ∈ `0(Zs),

lim
n→∞ ‖ṽ(τ)Sn

a δ‖1/n
2 =

√
ρ(Tb|W )

where W is the minimal Tb-invariant subspace generated by w := v∗v∗.
Proof. For n = 1, 2, . . . , write an for Sn

a δ and bn for Sn
b δ. Note that the symbol of

ṽ(τ)an is ṽ(z)ãn(z), and the symbol of w̃(τ)bn is w̃(z)b̃n(z). Moreover, for z ∈ Ts

we have w̃(z)b̃n(z) = |ṽ(z)ãn(z)|2. By the Parseval identity we obtain

‖ṽ(τ)an‖2
2 =

1
(2π)s

∫
[0,2π)s

∣∣ṽ(eiξ)ãn(eiξ)
∣∣2 dξ =

1
(2π)s

∫
[0,2π)s

w̃(eiξ)b̃n(eiξ) dξ.

Since w̃(eiξ)b̃n(eiξ) ≥ 0 for all ξ ∈ Rs, it follows that

w̃(τ)bn(0) ≤ ‖w̃(τ)bn‖∞ ≤ 1
(2π)s

∫
[0,2π)s

w̃(eiξ)b̃n(eiξ) dξ = w̃(τ)bn(0).

This in connection with (3.3) yields

w̃(τ)bn(0) = T n
b w(0) ≤ ‖T n

b w‖∞ ≤ ‖w̃(τ)bn‖∞ = w̃(τ)bn(0).

Since W is the minimal Tb-invariant subspace generated by w, we obtain

ρ(Tb|W ) = lim
n→∞ ‖T n

b w‖1/n
∞ = lim

n→∞
[
w̃(τ)bn(0)

]1/n = lim
n→∞

∥∥ṽ(τ)an

∥∥2/n

2
,

as desired.
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We remark that Goodman, Micchelli, and Ward in [8] established a result similar
to Theorem 3.3 for the special case v = δ.

For j = 1, . . . , s, let ∆j denote the difference operator on `0(Zs) given by

∆ju := 2u− u(· − ej)− u(·+ ej), u ∈ `0(Zs).

Theorem 3.4. Suppose that the normalized solution φ of the refinement equation
(1.1) lies in L2(Rs). Let b := a∗a∗ and, for a positive integer k, let

ρ := max
{
ρ(Tb|Wj ) : j = 1, . . . , s

}
,

where Wj is the minimal Tb-invariant subspace generated by ∆k
j δ. Then

ν(φ) ≥ ν := (1− logm ρ)s/2.

Moreover, if k > ν, and if the shifts of φ are stable, then ν(φ) = ν.

Proof. We observe that ρ = m1−2ν/s and (∇jδ)∗(∇jδ)∗ = ∆jδ. Write ρj for
ρ(Tb|Wj ), j = 1, . . . , s. By Theorem 3.3, we have

lim
n→∞

∥∥∇k
j Sn

a δ
∥∥1/n

2
= ρ

1/2
j ≤ ρ1/2 = m1/2−ν/s.

Thus, for any given ε > 0, there exists a constant C > 0 such that∥∥∇k
j Sn

a δ
∥∥

2
≤ C m(1/2−(ν−ε)/s)n ∀n ∈ N and j = 1, . . . , s.

By Theorem 2.2, φ belongs to Lip∗(ν − ε, L2(Rs)). Since ε > 0 can be arbitrary,
we conclude that ν(φ) ≥ ν.

Now suppose that k > ν and φ has stable shifts. If ν(φ) > ν, then there exists
some ε > 0 such that k > ν + ε and φ ∈ Lip∗(ν + ε, L2(Rs)). By Theorem 2.2,
there exists a constant C > 0 such that∥∥∇k

j Sn
a δ

∥∥
2
≤ C m(1/2−(ν+ε)/s)n ∀n ∈ N and j = 1, . . . , s.

By Theorem 3.3, it follows that

ρ = max
j=1,... ,s

{ρj} = max
j=1,... ,s

{
lim

n→∞
∥∥∇k

j Sn
a δ

∥∥2/n

2

}
≤ m1−2(ν+ε)/s.

On the other hand, ν = (1 − logm ρ)s/2 implies ρ = m1−2ν/s. This contradiction
shows that ν(φ) = ν.

4. Invariant subspaces

In order to use Theorem 3.4 to calculate the critical exponent of a refinable
function φ, it is important to choose an appropriate k. Let ρ and ν be given as in
Theorem 3.4. If k is chosen so small that k = ν, then ν might not be the optimal
smoothness.

This problem is related to the approximation order provided by S(φ), the shift-
invariant space generated by φ. The reader is referred to [15] for a recent survey
on approximation by shift-invariant spaces.

Let S := S(φ)∩Lp(Rs). For h > 0, let Sh := {g(·/h) : g ∈ S}. For a real number
κ ≥ 0, we say that S(φ) provides approximation order κ if for each sufficiently
smooth function f in Lp(Rs), there exists a constant C > 0 such that

inf
g∈Sh

‖f − g‖p ≤ C hκ ∀h > 0.
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Let 1 ≤ p ≤ ∞, let k be a positive integer, and φ a compactly supported function in
Lp(Rs) with φ̂(0) 6= 0. It was proved by Jia [12] that S(φ) provides approximation
order k if and only if S(φ) contains Πk−1.

Smooth refinable functions provide good approximation orders. This fact was
observed by Cavaretta, Dahmen, and Micchelli in [2]. Their work was extended by
Ron [22] to multiple refinable functions. The following theorem, established by Jia
in [16], deals with refinable functions associated with isotropic dilation matrices.

Theorem 4.1. Suppose M is an s × s isotropic dilation matrix, and a is an ele-
ment in `0(Zs) satisfying (1.2). Let φ be the normalized solution of the refinement
equation (1.1).

If φ ∈ W k
2 (Rs), then Πk ⊂ S(φ) and S(φ) provides approximation order k + 1.

Now it is clear how to choose an appropriate k in Theorem 3.4. We should choose
k to be the largest integer such that S(φ) contains Πk−1. Indeed, if k is chosen in
such a way, then ν(φ) ≤ k, by Theorem 4.1. Let ρ and ν be given as in Theorem
3.4. Then ν ≤ ν(φ) ≤ k; hence ν(φ) = ν, provided the shifts of φ are stable.

The approximation order provided by a refinable function φ can be easily deter-
mined by checking the order of the so-called sum rules satisfied by the refinement
mask. For an s× s dilation matrix M , let Γ be a complete set of representatives of
the distinct cosets of Zs/MZs. Let k be a positive integer. An element a ∈ `0(Zs)
is said to satisfy the sum rules of order k if, for all p ∈ Πk−1,∑

β∈Zs

a(Mβ) p(Mβ) =
∑
β∈Zs

a(Mβ + γ) p(Mβ + γ) ∀ γ ∈ Γ.

The following results were established in [16].

Theorem 4.2. Let φ be the normalized solution of the refinement equation (1.1)
with the dilation matrix M and the mask a. If the refinement mask a satisfies the
sum rules of order k, then S(φ) contains Πk−1. Conversely, if S(φ) contains Πk−1,
and if the shifts of φ are stable, then a satisfies the sum rules of order k.

Note that the dilation matrix in the above theorem is not necessarily isotropic.
A sequence u on Zs is called a polynomial sequence if there exists a polynomial

p such that u(α) = p(α) for all α ∈ Zs. The degree of u is the same as the degree
of p. For a nonnegative integer k, let Pk be the linear space of all polynomial
sequences of degree at most k, and let

Vk :=
{

v ∈ `0(Zs) :
∑
α∈Zs

p(α)v(α) = 0 ∀ p ∈ Πk

}
.

We observe that Vk is shift-invariant, that is, v ∈ Vk implies v(·−α) ∈ Vk for every
α ∈ Zs.

Theorem 4.3. For an element a ∈ `0(Zs) and a dilation matrix M , the sequence a
satisfies the sum rules of order k if and only if Vk−1 is invariant under the transition
operator Ta. Moreover, Vk−1 is the linear span of the sequences ∇µδ(·−α), |µ| = k,
α ∈ Zs.

Proof. The first statement was proved in [16]. Let us prove the second statement.
Each element u ∈ `(Zs) defines the linear functional on `0(Zs) as follows:

〈u, v〉 :=
∑

α∈Zs

u(α)v(α), v ∈ `0(Zs).
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It is easily seen that `(Zs) is the algebraic dual of `0(Zs). Let W be the linear
span of the sequences ∇µδ(· − α), |µ| = k, α ∈ Zs. Evidently, Vk−1 contains
W . If W 6= Vk−1, then we pick an element v ∈ Vk−1 \ W . Since `(Zs) is the
algebraic dual of `0(Zs), there exists an element u ∈ `(Zs) such that u ∈ W⊥

and 〈u, v〉 6= 0. But u ∈ W⊥ implies that ∇µu(α) = 0 for all |µ| = k and α ∈ Zs.
Consequently, u ∈ Pk−1, and hence 〈u, v〉 = 0. This contradiction shows W = Vk−1,
as desired.

We are in a position to establish the following characterization of the smoothness
of a refinable function in terms of the refinement mask.

Theorem 4.4. Let φ be the normalized solution of the refinement equation (1.1)
with the dilation matrix M and the mask a. Suppose that the dilation matrix M is
isotropic. Let b := a∗a∗, where a∗ is the sequence given by a∗(α) = a(−α), α ∈ Zs.
If k is the largest integer such that S(φ) contains Πk−1, then V2k−1 is an invariant
subspace of Tb. Moreover, if the shifts of φ are stable, then

ν(φ) = (1− logm ρ) s/2,

where ρ is the spectral radius of the linear operator Tb|V2k−1 .

Proof. Let

f := φ∗φ∗,
where φ∗ is the distribution given by φ∗ := φ(− ·). Then we have f̂(ξ) = |φ̂(ξ)|2 for
ξ ∈ Rs. Moreover, f satisfies the following refinement equation:

f =
∑
α∈Zs

c(α)f(M · −α),(4.1)

where c := b/m = a∗a∗/m.
Since the shifts of φ are stable, we see that, for any ξ ∈ Rs, there exists some

β ∈ Zs such that φ̂(ξ + 2βπ) 6= 0; hence f̂(ξ + 2βπ) 6= 0. This shows that the
shifts of f are stable. Moreover, S(φ) ⊃ Πk−1 implies that Dµφ̂(2βπ) = 0 for all µ
with |µ| ≤ k − 1 and all β ∈ Zs \ {0} (see [16]). By using the Leibniz formula for
differentiation, we can easily deduce that Dµf̂(2βπ) = 0 for all µ with |µ| ≤ 2k− 1
and all β ∈ Zs \ {0}. Therefore S(f) ⊃ Π2k−1. Thus, by Theorems 4.2 and 4.3,
V2k−1 is invariant under Tb.

For j = 1, . . . , s, let Wj be the minimal invariant subspace of Tb generated
by ∆k

j δ. Observe that ∆k
j δ ∈ V2k−1. Since V2k−1 is invariant under Tb, we have

Wj ⊆ V2k−1. Thus, ρ(Tb|Wj ) ≤ ρ for j = 1, . . . , s. By Theorem 3.4 we conclude
that ν(φ) ≥ (1− logm ρ)s/2.

It remains to prove ν(φ) ≤ (1− logm ρ)s/2. For this purpose, we assume that φ
lies in W ν

2 (Rs) for some ν > 0. Then ν < k by Theorem 4.1. Also,∫
Rs

|f̂(ξ)||ξ|2ν dξ =
∫

Rs

|φ̂(ξ)|2|ξ|2ν dξ < ∞.(4.2)

Let µ = (µ1, . . . , µs) be a multi-index with |µ| = 2k. Let n be a positive integer.
For j = 1, . . . , s, write vj for M−nej. We have(∇µ1

v1
· · · ∇µs

vs
f
)̂

(ξ) = f̂(ξ)
s∏

j=1

(
1− e−ivj ·ξ)µj

, ξ ∈ Rs.
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Choose θ := ν/k. Then 0 < θ < 1. We observe that∣∣1− eit| = |2 sin (t/2)| ≤ 2|t|θ ∀ t ∈ R.

Hence ∣∣∣∣ s∏
j=1

(
1− e−ivj ·ξ)µj

∣∣∣∣ ≤ 22k
s∏

j=1

|vj · ξ|θµj , ξ ∈ Rs.

By Lemma 2.4 we have

|vj · ξ| = |M−nej · ξ| ≤ |M−nej ||ξ| ≤ C1σ
−n|ξ|, ξ ∈ Rs,

where C1 > 0 is a constant independent of n and σ = m1/s is the spectral radius
of M . Combining the above estimates together, we see that there exists a constant
C2 > 0 such that

∥∥∇µ1
v1
· · ·∇µs

vs
f
∥∥
∞ ≤

∫
Rs

∣∣(∇µ1
v1
· · ·∇µs

vs
f )̂ (ξ)

∣∣ dξ ≤ C2σ
−n2ν

∫
Rs

|f̂(ξ)||ξ|2ν dξ.

(4.3)

It follows from (4.1) that

f =
∑
α∈Zs

Sn
c δ(α) f(Mn · −α).

Applying the difference operator ∇µ1
v1
· · · ∇µs

vs
to both sides of this equation, we

obtain

∇µ1
v1
· · · ∇µs

vs
f =

∑
α∈Zs

∇µSn
c δ(α)f(Mn · −α).

Since the shifts of f are stable, there exists a constant C3 > 0 such that∥∥∇µSn
c δ

∥∥
∞ ≤ C3

∥∥∇µ1
v1
· · ·∇µs

vs
f
∥∥
∞ ∀n = 1, 2, . . . .

This together with (4.2) and (4.3) tells us that there exists a constant C > 0 such
that ∥∥∇µSn

c δ
∥∥
∞ ≤ Cσ−n2ν ∀n = 1, 2, . . . .

By Lemma 3.2 we have

T n
c (∇µδβ)(α) = τβ∇µSn

c δ(Mnα) ∀α, β ∈ Zs.

It follows that∥∥T n
c ∇µδβ

∥∥
∞ ≤ ∥∥∇µSn

c δ
∥∥
∞ ≤ Cσ−n2ν ∀n = 1, 2, . . . .

By Theorem 4.3, V2k−1 is spanned by∇µδβ , |µ| = 2k and β ∈ Zs; hence we conclude
that

ρ(Tc|V2k−1 ) = max
|µ|=2k

{
lim

n→∞
∥∥∇µSn

c δ
∥∥1/n

∞

}
≤ σ−2ν = m−2ν/s.

But ρ(Tc|V2k−1) = ρ(Tb|V2k−1 )/m = ρ/m. Therefore, ρ/m ≤ m−2ν/s, which implies
that ν ≤ (1 − logm ρ) s/2. This shows ν(φ) ≤ (1− logm ρ) s/2, as desired.
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5. Examples

In this section we give several examples to illustrate the general theory. Our first
two examples are concerned with self-similar tilings (see [9]).

Example 5.1. Let s = 2 and M = 2I, where I is the 2 × 2 identity matrix. Let
φ be the normalized solution of the refinement equation φ =

∑
α∈Z2 a(α)φ(2 · −α),

where a is the sequence on Z2 given by its symbol

ã(z) := z2
1 + z2 + z1z2 + z1z

2
2 , z = (z1, z2) ∈ (C \ {0})2.

Then

ν(φ) = 1− log4 3.

Proof. Let b := a∗a∗. Then the symbol of b is

b̃(z) =4 + z1 + z−1
1 + z2 + z−1

2 + z1z2 + z−1
1 z−1

2 + z1z
−1
2 + z−1

1 z2

+ z1z
−2
2 + z−1

1 z2
2 + z2

1z−1
2 + z−2

1 z2.

Let Tb be the transition operator associated with b. Set

v1 := −δ−e1 + 2δ − δe1 ,

v2 := −δ−e2 + 2δ − δe2 ,

v3 := −δ−e1−e2 + 2δ − δe1+e2 ,

v4 := −δ−e1+e2 + 2δ − δe1−e2 .

Then the Tb-invariant subspace W generated by v1 and v2 is the linear span of v1,
v2, v3, and v4. Moreover,

Tb


v1

v2

v3

v4

 =


1 1 0 1
1 1 0 1
1 1 1 0
1 1 0 1



v1

v2

v3

v4

 .

The eigenvalues of the above matrix are 0, 0, 1, and 3. Hence ρ := ρ(Tb|W ) = 3.
Since ρ(Tb|W )/4 < 1, the subdivision scheme associated with the mask a converges
in the L2-norm and φ lies in L2(R2) (see [10]). Hence the shifts of φ are orthonormal
(see [9]). Therefore, by Theorem 3.4 we obtain

ν(φ) = (1− logm ρ)s/2 = 1− log4 3.

Note that the symbol ã(z) is irreducible (see [16]).

Example 5.2. Let φ be the normalized solution of the refinement equation

φ = φ(M ·) + φ(M · −e1),

where

M =
[
1 −1
1 1

]
.

Then the critical exponent of φ is

ν(φ) = 1− log2 λ ≈ 0.2382,

where λ is the real root of the cubic polynomial x3 − x2 − 2.
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Proof. Note that M is isotropic. It is known that φ lies in L2(R2) and has or-
thonormal shifts (see [9]). In this case, the mask a is given by a(0, 0) = a(1, 0) = 1
and a(α) = 0 for α ∈ Z2 \ {(0, 0), (1, 0)}. Let b = a ∗ a∗. Then b(0, 0) = 2,
b(−1, 0) = b(1, 0) = 1 and b(α) = 0 otherwise. Set

v1 := −δ−e1 + 2δ − δe1 , v2 := −δ−e2 + 2δ − δe2 , v3 := −δ−e1+e2 + 2δ − δe1−e2 .

Then the Tb-invariant subspace generated by v1 and v2 is the linear span of v1, v2

and v3. Moreover,

Tb

v1

v2

v3

 =

0 0 1
1 1 0
0 2 0

v1

v2

v3

 .

The characteristic polynomial of the above matrix is λ3 − λ2 − 2. It has one real
zero λ1 ≈ 1.6956 and two complex zeros λ2,3 ≈ −0.3478 ± 1.0289i. We have
ρ(Tb|W ) = λ1. Therefore

ν(φ) = 1− log2(λ1) ≈ 0.2382.

Example 5.3. Let φ be the normalized solution of the refinement equation

φ =
∑

α∈Z2

a(α)φ(M · −α),

where

M =
[
1 −1
1 1

]
and the mask a ∈ `0(Z2) is given by

a(α) =

{
1/2 for α ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},
0 otherwise.

Then the critical exponent of φ is

ν(φ) = 5/2.

Proof. Let f be the function given by its Fourier transform

f̂(ξ1, ξ2) := g(ξ1) g(ξ2) g(ξ1 + ξ2) g(−ξ1 + ξ2), (ξ1, ξ2) ∈ R2,

where g is the function on R given by ξ 7→ (1− e−iξ)/(iξ), ξ ∈ R. The function f is
a box spline, known as the Zwart-Powell element (see [1, p. 181]). It was observed
by Villemoes [24] that φ = f(·+ 2e2). Therefore, ν(φ) = ν(f) = 5/2.

Let us find b := a ∗ a∗. It is easily seen that

(
b(α1, α2)

)
−1≤α1,α2≤1

=
1
4

1 2 1
2 4 2
1 2 1

 ,

and b(α) = 0 for α ∈ Z2 \ [−1, 1]2. Let V be the minimal invariant subspace of Tb

generated by ∆3
1δ and ∆3

2δ. By computation we obtain ρ(Tb|V ) = 1/2. Theorem 3.4
tells us that

ν(φ) ≥ 1− log2

(
ρ(Tb|V )

)
= 2,
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which does not give the optimal smoothness of φ, because the shifts of φ are not
stable.

However, the optimal smoothness of φ can be recovered by the following consid-
eration. Set

u1 : = ∇e1∇e1+e2∇e1−e2δ, u2 := ∇e1∇e2∇e1−e2δ,

u3 : = ∇e2∇e1+e2∇e1−e2δ, u4 := ∇e1∇e2∇e1+e2δ,

and vj := uj∗u∗j , j = 1, 2, 3, 4. Let W be the linear span of vj , j = 1, 2, 3, 4. We
have

Tb


v1

v2

v3

v4

 =


0 1/2 0 0
0 0 1/4 0
0 0 0 1/2

1/4 0 0 0



v1

v2

v3

v4

 .

Thus, W is an invariant subspace of Tb. The characteristic polynomial of the above
4× 4 matrix is λ4 − 1/64. Hence ρ(Tb|W ) =

√
2/4. From the discussion in Section

2 we can derive that

ν(φ) ≥ 1− log2

(
ρ(Tb|W )

)
= 5/2,

as desired.

Example 5.4. Let s = 2 and M = 2I, where I is the 2× 2 identity matrix. Let a
be the sequence on Z2 given by its symbol

ã(z) := (1 + z1)(1 + z2)(1 + z1z2)
[
1 + t + (1− t)z1 + (1− t)z2 + (1 + t)z1z2

]
/8,

where t is a real number. Let φt be the normalized solution of the refinement
equation with the mask a corresponding to the parameter t. Then

ν(φt) =

{
4− log4 σt for t ∈ R \ {0,−1},
5/2 for t = 0 or t = −1,

where σt = 10 + 4t + 2t2 +
√

36− 48t + 56t2 + 144t3 + 68t4.

Proof. For t = −1, 0, or 1, φt is a box spline. For our purpose, we only need box
splines of the following type. For nonnegative integers j, k, p, q, let Bj,k,p,q be the
box spline given by its Fourier transform:

B̂j,k,p,q(ξ1, ξ2) := gj(ξ1) gk(ξ2) gp(ξ1 + ξ2) gq(−ξ1 + ξ2), (ξ1, ξ2) ∈ R2,

where g is the function on R given by ξ 7→ (1 − e−iξ)/(iξ), ξ ∈ R. We can easily
verify that φ0 = B2,2,1,0, φ1 = B1,1,2,0, and φ−1 = B1,1,1,1(· − e1). Note that the
shifts of Bj,k,p,0 are always stable. But the shifts of the box spline B1,1,1,1 are not
stable. Moreover, ν(φ0) = ν(φ−1) = 5/2 and ν(φ1) = 3/2. See [1] for these facts.
We will prove that the shifts of φt are stable for t 6= −1 at the end of this section.

In order to calculate the critical exponent of φt, we need to find

lim
n→∞

∥∥∇2
ej

Sn
a δ

∥∥2/n

2
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for j = 1, 2. For this purpose, we set

ρ1 := lim
n→∞

∥∥∇e2∇e1+e2S
n
a δ

∥∥2/n

2
,

ρ2 := lim
n→∞

∥∥∇e1∇e1+e2S
n
a δ

∥∥2/n

2
,

ρ3 := lim
n→∞

∥∥∇e1∇e2S
n
a δ

∥∥2/n

2
.

Let ρ := max{ρ1, ρ2, ρ3}. It is easily seen that

max
j=1,2

{
lim

n→∞
∥∥∇2

ej
Sn

a δ
∥∥2/n

2

}
= ρ.

To facilitate the computation of ρj , j = 1, 2, 3, we introduce the sequence c given
by its symbol

c̃(z) = (1 + t) + (1− t)z1 + (1− t)z2 + (1 + t)z1z2.

Furthermore, let aj (j = 1, 2, 3) be the sequences given by

ã1(z) = (1 + z1)c̃(z)/8, ã2(z) = (1 + z2)c̃(z)/8, and ã3(z) = (1 + z1z2)c̃(z)/8.

We claim that, for j = 1, 2, 3,

ρj = lim
n→∞

∥∥Sn
aj

δ
∥∥2/n

2
.(5.1)

Indeed, by [13, Theorem 3.3], there exist two positive constants C1 and C2 such
that

C1

∥∥Sn
a1

δ
∥∥

2
≤ ∥∥∇e2∇e1+e2S

n
a δ

∥∥
2
≤ C2

∥∥Sn
a1

δ
∥∥

2

for all n = 1, 2, . . . . This verifies (5.1) for j = 1. The cases j = 2 and j = 3 can be
proved in the same way.

Now we are in a position to compute ρj , j = 1, 2, 3. For this purpose, let
bj := aj∗a∗j , j = 1, 2, 3. Then the nonzero entries of b1 are given by the matrix

1
64

1− 2t + t2 4− 4t 6− 2t2 4 + 4t 1 + 2t + t2

2− 2t2 8 12 + 4t2 8 2− 2t2

1 + 2t + t2 4 + 4t 6− 2t2 4− 4t 1− 2t + t2

 ,

where 12 + 4t2 is the entry at the origin. Set

v1 := δ−e1 + δe1 , v2 := δ−e2 + δe2 , v3 := δ−e1−e2 + δe1+e2 .

Then

Tb1

[
δ
v1

]
=

1
64

[
12 + 4t2 2− 2t2

16 8

] [
δ
v1

]
.

Hence the minimal Tb1 -invariant subspace generated by δ is the linear span of δ
and v1. By Theorem 3.3 we obtain

ρ1 = ρ(Tb1 |W ) = max{16, 4 + 4t2}/64.

By symmetry we also have

ρ2 = max{16, 4 + 4t2}/64.
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The nonzero entries of b3 is given by the matrix

1
64


0 0 1− 2t + t2 2− 2t2 1 + 2t + t2

0 2− 4t + 2t2 6− 6t2 6 + 4t + 6t2 2− 2t2

1− 2t + t2 6− 6t2 10 + 4t + 10t2 6− 6t2 1− 2t + t2

2− 2t2 6 + 4t + 6t2 6− 6t2 2− 4t + 2t2 0
1 + 2t + t2 2− 2t2 1− 2t + t2 0 0

 ,

where 10 + 4t + 10t2 is the entry at the origin. By computation we obtain

Tb3


δ
v1

v2

v3

 =
1
64


10 + 4t + 10t2 1− 2t + t2 1− 2t + t2 1 + 2t + t2

12− 12t2 6− 6t2 2− 2t2 2− 2t2

12− 12t2 2− 2t2 6− 6t2 2− 2t2

12 + 8t + 12t2 2− 4t + 2t2 2− 4t + 2t2 6 + 4t + 6t2




δ
v1

v2

v3

 .

The eigenvalues of the above matrix are 4(1 + t2)/64, 4(1− t2)/64, and[
10 + 4t + 2t2 ±

√
36− 48t + 56t2 + 144t3 + 68t4

]
/64.

It can be easily verified that

ρ3 = σt/64,

where

σt := 10 + 4t + 2t2 +
√

36− 48t + 56t2 + 144t3 + 68t4 .

Since ρ3 ≥ ρ1 = ρ2, we obtain

ρ = σt/64.

By using the results in [10] we can prove that φt lies in L2(R2) if and only if
σt < 256. Note that σt ≥ 16 with equality if and only if t = 0 or −1. Thus, for
t 6= 0, ρ > 1/4 and 1 − log4 ρ < 2. Therefore, by Theorem 3.4, we conclude that
the critical exponent of φt is

ν(φt) = 4− log4 σt for t ∈ R \ {0,−1}.
When t = −1, we have σ−1 = 16 and 4− log4 σ−1 = 2. But ν(φ−1) = 5/2. In this
case, Theorem 3.4 is not applicable, because the shifts of φ−1 are not stable. When
t = 1, we have σ1 = 32 and 4 − log4 σ1 = 3/2. This agrees with the fact that the
critical exponent of the box spline B1,1,2,0 is 3/2.

It remains to prove that the shifts of φt are stable for t 6= −1. For simplicity we
write φ for φt. We observe that

φ̂(ξ) = H(ξ/2)φ̂(ξ/2), ξ = (ξ1, ξ2) ∈ R2,(5.2)

where

H(ξ) =
[
1 + t + (1− t)e−iξ1 + (1− t)e−iξ2 + (1 + t)e−i(ξ1+ξ2)

]
G(ξ)

with

G(ξ) := (1 + e−iξ1)(1 + e−iξ2)(1 + e−i(ξ1+ξ2))/32, ξ = (ξ1, ξ2) ∈ R2.

Let

N(φ) :=
{
ξ ∈ R2 : φ̂(ξ + 2βπ) = 0 ∀β ∈ Z2

}
.
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The shifts of φ are stable if and only if N(φ) is the empty set. We claim that
(0, ξ2) /∈ N(φ) for any ξ2 ∈ R. Indeed,

H(0, ξ2) = (1 + e−iξ2)3/8, ξ2 ∈ R.

It follows that

φ̂(0, ξ2) =
[(

1− e−iξ2)
/
(iξ2)

]3

, ξ2 ∈ R.

Hence (0, ξ2) /∈ N(φ). The same argument tells us that (ξ1, 0) /∈ N(φ) for any
ξ1 ∈ R. Furthermore, we have

H(ξ,−ξ) = (1 + e−iξ)(1 + eiξ)
[
2 + 2t + (1− t)e−iξ + (1− t)eiξ

]
/16, ξ ∈ R.

Consider the function ξ 7→ φ̂(ξ,−ξ), ξ ∈ R. We have

φ̂(ξ,−ξ) =
∞∏

j=1

H(ξ/2j,−ξ/2j), ξ ∈ R.

By using [19, Theorem 1] we can easily prove that this function does not have
2π-periodic zeros, provided t 6= −1. Hence (ξ,−ξ) /∈ N(φ) for any ξ ∈ R. Thus,
ξ1 + ξ2 = 2π implies (ξ1, ξ2) /∈ N(φ).

Let K(φ) := N(φ)∩[0, 2π)2. We have proved that (ξ1, ξ2) ∈ K(φ) implies ξ1 6= 0,
ξ2 6= 0, and ξ1 + ξ2 6= 2π. We claim that

(ξ1, ξ2) ∈ K(φ) =⇒ (ξ1/2, ξ2/2) ∈ K(φ) or (ξ1/2, ξ2/2 + π) ∈ K(φ).(5.3)

Indeed, if (ξ1/2, ξ2/2) /∈ K(φ) and (ξ1/2, ξ2/2+π) /∈ K(φ), then there exist integers
α1, α2, β1, β2 such that

φ̂(ξ1/2 + 2α1π, ξ2/2 + 2α2π) 6= 0 and φ̂(ξ1/2 + 2β1π, ξ2/2 + 2β2π + π) 6= 0.

But φ̂(ξ1 +4α1π, ξ2 +4α2π) = 0 and φ̂(ξ1 +4β1π, ξ2 +4β2π +2π) = 0. Taking (5.2)
into account, we deduce that H(ξ1/2, ξ2/2) = 0 and H(ξ1/2, ξ2/2 + π) = 0. Hence

1 + t + (1− t)e−iξ1/2 + (1− t)e−iξ2/2 + (1 + t)e−i(ξ1+ξ2)/2 = 0

and

1 + t + (1− t)e−iξ1/2 − (1− t)e−iξ2/2 − (1 + t)e−i(ξ1+ξ2)/2 = 0.

It follows that (1 + t) + (1 − t)e−iξ1/2 = 0, which is impossible for ξ1 ∈ [0, 2π) and
t ∈ R. Thus, (5.3) has been verified.

Suppose (ξ1, ξ2) ∈ K(φ). By (5.3) we can find a sequence ξ(n) = (ξ(n)
1 , ξ

(n)
2 ) ∈

K(φ), n = 1, 2, . . . , such that ξ
(1)
1 = ξ1, ξ

(1)
2 = ξ2, and ξ

(n+1)
1 = ξ

(n)
1 /2, ξ

(n+1)
2 =

ξ
(n)
2 /2 or ξ

(n)
2 /2+π. Thus, limn→∞ ξ

(n)
1 = 0. Also, (ξ(n)

2 )n=1,2,... has a subsequence
which converges to some ω ∈ [0, 2π]. It follows that (0, ω) ∈ N(φ), which is a
contradiction.

We conclude that the shifts of φt are stable if and only if t 6= −1.

Acknowledgement

I am grateful to Dr. Villemoes for his comments on Example 5.3.



SMOOTHNESS OF REFINABLE FUNCTIONS 4111

References
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