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ABSTRACT

Accurate astrophysical polarimetry requires a proper characterization of the polarization properties of the telescope and instrumenta-
tion employed to obtain the observations. Determining the telescope and instrument Muller matrix is becoming increasingly difficult
with the increase in aperture size, precision requirements and instrument complexity of new and upcoming projects. We have carried
out a detailed multi-wavelength characterization of the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento
Peak as a case study and explore various possibilites for the determination of its polarimetric properties. We show that the telescope
model proposed in this paper is more suitable than that in previous work in that it describes better the wavelength dependence of
aluminum-coated mirrors. We explore the adequacy of the degrees of freedom allowed by the model using a novel mathematical for-
malism. Finally, we investigate the use of polarimeter calibration data taken at different times of the day to characterize the telescope
and find that very valuable information on the telescope properties can be obtained in this manner. The results are also consistent
with the entrance window polarizer measurements. This general method opens interesting possibilities for the calibration of future
large-aperture telescopes and precision polarimetric instrumentation.
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1. Introduction

The observation of polarization in astrophysical objects allows
us to measure magnetic fields in their environment or to learn
about the physical conditions reigning in the regions where light
is scattered into our line of sight. However, polarimetry is a very
challenging technique because the signals to measure are typ-
ically very weak (<1% of the observed intensity) and because
the telescope and instrumentation employed introduce spurious
polarization.

Most polarimeters have calibration optics to determine po-
larimetric properties downstream from their mounting point.
Other calibration techniques include using polarized and unpo-
larized standard stars, lamps or daytime sky sources. Using a
range of techniques, it is possible to remove the instrumental
contamination from the observed signals but there are several
difficulties. Calibration source brightness, instrument sensitiv-
ity, ability to track targets and source availability all limit cal-
ibration techniques. Ideally, one would like to have calibration
polarizers before the entire optical train covering the full aper-
ture. This would illuminate the optics with a beam identical to
that of the science observations but with controlled polarimetric
properties. Unfortunately, this is impractical in most situations.
Solar telescopes typically include high-incidence angle reflec-
tions and time-dependent optical configurations. For instance,
the 4 m Advanced Technology Solar Telescope (ATST, Keller
et al. 2002) has off-axis reflections and requires very precise
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polarimetric calibrations. Many night time polarimeters are us-
ing Nasmyth or coudé locations. Other instrument designs such
as the Spectro-Polarimetric High contrast Exoplanet REsearch
(SPHERE) on the 8 m VLT are also pursuing complex op-
tical pathways with stringent calibration requirements simi-
lar to ATST (cf. Roelfsema et al. 2010). Accurate calibration
of instrument polarization with large telescopes requires new
solutions.

Currently, only the Dunn Solar Telescope at the National
Solar Observatory/Sacramento Peak Observatory (Sunspot, NM,
USA), the German VTT at the Observatorio del Teide on the
island of Tenerife and the Swedish Solar Telescope at the
Observatorio del Roque de los Muchachos on the island of
La Palma (both operated by the Instituto de Astrofisica de
Canarias, Spain) have the capability for full-aperture calibration
(Skumanich et al. 1997; Beck et al. 2005; Selbing 2005). Even
in these three cases the operation of the telescope calibration de-
vices is far from routine and it takes considerable effort and a
full day (sometimes more) of continued observation.

The largest solar telescopes currently under operation do not
exceed 1 m of aperture but the soon-to-be commissioned Gregor
has 1.5 m (Volkmer et al. 2007) and plans already exist for the
construction of two 4 m telescopes: the ATST and the European
Solar Telescope (EST, Collados et al. 2010). With such large
apertures, full telescope calibrations become extremelly chal-
lenging from a technical standpoint.
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An additional problem is that the configuration of the tele-
scope is not fixed. It has some degrees of freedom, e.g. to be
able to point at different coordinates on the sky. When the tele-
scope moves, the angles among some of the many mirrors and
optical elements along the light path also change.

In night-time telescopes, the Nasmyth platform has been cal-
ibrated in several studies using a simple single fold mirror model
such as Giro et al. (2003), Witzel et al. (2011), Joos et al.
(2008). In the case of solar observations there is typically a con-
tinuous variation of at least two mirrors as one tracks the appar-
ent motion of the Sun on the sky. More complex optical trains are
also used for polarimetry in night-time settings (cf. Harrington
& Kuhn 2008).

In these instruments, it does not suffice to derive the Muller
matrix at a given time. We need to know how it depends on the
telescope configuration. In this manner, since we know the spe-
cific configuration at the time of each observation, we can use
the correct Muller matrix to calculate the parasitic instrumental
polarization induced and remove it from the data.

As calibration precision requirements become more strin-
gent, more model variables are typically extracted from ever
larger calibration data sets. These variables can include mir-
ror coating properties, oxide layer thickness and optical proper-
ties, window birefringence, polarimeter optical misalignments,
retarder chromatic effects and other optical imperfections.
Complex models are susceptible to parameter degeneracy and
the degrees of freedom should be kept to a minimum. We imple-
ment here a general mathematical formalism that allows a model
of telescope polarization to be tested for degeneracies among
model parameters.

We shall follow here a similar nomenclature to that of
Skumanich et al. (1997) and Socas-Navarro et al. (2006). We
break down the polarimetric measurement process as:

Smeas = XT(Q')SO (1)

where T(a) is the telescope Muller matrix, X denotes the po-
larimeter response, and Sp and Sy, are the incoming (solar)
and the measured Stokes vectors, respectively. The polarimeter
calibration optics (typically a combination of a polarizer and a
retarder than can be slided in and out of the beam and rotated
independently of each other) mark the split point of the optical
train. Any optical surface upstream from that point is consid-
ered part of the telescope and included in T, whereas everything
downstream is part of the polarimeter and characterized in X. We
shall take the polarimeter as a static system since it has no mov-
ing parts, with only minor changes due to thermal fluctuations.
The telescope, on the other hand, has a variable configuration,
e.g. with moving mirrors to point and track across the sky. We
parameterize the particular configuration in the vector a.
Acquiring calibration data to constrain T(@) is much more
difficult and time-consuming than for X. This is due to two rea-
sons: a) the fact that « (and therefore T) varies over the course of
a day, and b) the solar beam has a much larger diameter at the en-
trance of the telescope than at the polarimeter. The first difficulty
imposes the need to take calibration observations for at least a
half day (but preferably more than that) to ensure appropriate
coverage over the range of variation of the parameters in @. The
second problem is not insurmountable for currently existing 1 m
solar telescopes but the planend large aperture of the EST or the
ATST will require new strategies (e.g., Socas-Navarro 2005a,b).
In this paper we take the DST as a case study and analyze its
polarimetric properties at many wavelengths spanning the visi-
ble and near-infrared (nIR) ranges of the spectrum. We start by
building an improved model of the telescope with respect to what
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has been done in previous work. We then use a novel mathemat-
ical formalism to validate the degrees of freedom in the model.
Finally, we use two different strategies to fit the various param-
eters and obtain a reliable multi-wavelength characterization of
the telescope. One of such strategies makes use of data taken
with entrance window polarizers in the beam, whereas the other
uses solar data thus avoiding the need for polarizers filling the
full telescope aperture. We conclude that both strategies produce
consistent results, which opens new interesting perspectives for
the calibration of future large-aperture facilities.

2. The telescope model

In observing mode, the DST has the following optical surfaces,
which could in principle alter the polarization state of the solar
light. In the order encountred by the incoming beam, we find:

— An entrance window (EW) used to keep the optical train
evacuated. Mechanical stress on the window mount could
make it act as a retarder with a small degree of retardation.

— A turret with two 1 m diameter mirrors that track the Sun
and send the light down in the vertical direction to the pri-
mary mirror which is located underground. The first turret
mirror moves in the elevation direction (y) and the second
in azimuth (¢). These two angles are needed to define the
telescope configuration and we take them as the first com-
ponents of the configuration vector @ introduced earlier. The
turret is a heavily polarizing device, since the beam strikes
both mirrors at a 45 degree angle of incidence.

— The primary mirror, which due to its near normal angle of
incidence does not alter the light polarization significantly
except for a 180 degree phase change.

— The exit window (XW), which marks the end of the evacu-
ated optical train. Like the EW, this element could introduce
some small degree of retardation in the beam (in general, dif-
ferent from that of the £W). The main mirror, the XW and
the instrument platform can rotate rigidly to compensate for
the diurnal solar image rotation on the instrument focal plane
and/or to define the orientation of the spectrograph slit. Let
us donte by ¢ the angle of this whole system, which is the
third and last element of the configuration vector a.

Behind the XW we have the polarimeter calibration optics and
the polarimeter itself. Therefore, the above elements are all that
we need to consider in our telescope model.

We model both windows as an ideal retarder whose retarda-
tion is a free parameter. The orientation of the retarder fast axis is
also a free parameter. The turret mirrors are modeled taken their
diattenuation (r,/r,) and retardance as free parameters and calcu-
lating the orientation of the plane of incidence from y and ¢. For
the main mirror it is a good approximation to consider a perfectly
symmetric reflection with no diattenuation and a 180-degree re-
tardation. With these considerations in mind, we construct the
total Muller matrix of the telescope as:

T(y, ¢, ¥) = DxwMuainBumain-az(, @)MazREeL ()MeL Dew,  (2)

where D denotes the Muller matrix of a retarder in the (s, p)
reference frame (i.e., with the axes parallel and perpendicular to
the incidence plane), M is the matrix of a mirror and R is a ro-
tation of the coordinate frame from one element to the next. The
subscripts EL, AZ and Main refer to the elevation and azimuth
mirrors of the turret and the primary mirror, respectively. In the
equation above we have only written down explicitly the depen-
dence of the various matrices with the telescope configuration
angles «, but not with the free parameters.
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The free parameters of the model are then the EW fast axis
orientation and retardance, the elevation and azimuth mirrors di-
attenuation and retardance and the XW fast axis orientation and
retardance. In addition to those six parameters, we also consider
as a free parameter a rotation angle between the telescope and
the polarimeter respective reference frames and finally, in the
case that the entrance window calibration polarizer is used, the
zero point of the calibration polarizer. This results in a total of
8 free parameters for a single-wavelength model. In the next sec-
tion we present a formal justification that this number of free pa-
rameters is nearly optimal for the problem under consideration.

For a multi-wavelength characterization we take a somewhat
different approach from that in Socas-Navarro et al. (2006). We
have observed that the polynomial fit proposed in that work to
the wavelength dependence of the various parameters is not al-
ways adequate, as it does not always capture the real polarimet-
ric behavior of the optical elements. When the number of wave-
lengths observed increases, that model has difficulty fitting all
the data. In view of the results presented in this paper, particu-
larly those in Sect. 4 below, it is easy to see that a third-order
polynomial will not be able to reproduce the real behavior of the
telescope at all wavelengths.

The new model that we propose in this work has a num-
ber of 4 + 4 X n, free parameters (where n, is the number of
wavelengths observed). The 4 wavelength-independent param-
eters are the EW and XW fast axis orientations, the telescope-
polarimeter reference frame rotation and the offset of the EW
polarizers with respect to our assumed zero point. The EW,
XW retardances and the turret mirror diattenuations (r,/r,) and
retardances are functions of wavelength. We take their value at
the observed wavelengths as a free parameter. Intermediate val-
ues are obtained from linear interpolation. In this manner in-
creasing n, results in more free parameters but at the same time
the amount of data is also largely increased.

3. Dimension analysis

In principle, even if one bases the model of the telescope on sim-
ple assumptions, it is possible that the final model contains too
many free parameters that cannot be constrained by the observa-
tions. In such a case, when one fits the model parameters to a set
of calibration observations, the model might not be representa-
tive of the general behavior of the telescope. Obviously, this is
produced by the overfitting ability of a model with too many free
parameters. This is particularly relevant when several parameters
are degenerated, meaning that the variation of one parameter can
be compensated to a great extent with variations in one or more
of the other parameters.

Consequently, we analyze the intrinsic dimensionality of the
model using the maximum-likelihood estimation developed by
Levina & Bickel (2005) and applied with success by Asensio
Ramos et al. (2007) to estimate the intrinsic dimensionality of
spectro-polarimetric data. By intrinsic dimensionality we mean
the number of free parameters that the T-matrix really depends
on, taking into account that degeneracies introduce correlations
between the parameters and reduce the dimensionality. Given N
vectors of dimension M represented as x;, the dimensionality is
estimated by using the expression:

PP o) W 1.} 3
CTNG-D G4 T

where Ty(x;) represents the Euclidean distance between point
x; and its kth nearest neighbor. The previous equation is only

Estimated dimension

0 L | P I
1 10 100
Neighbors k

Fig. 1. Dimensionality of three different polynomial models with 2, 3
and 4 coefficients. The curves converge to the correct degrees of free-
dom for a small number of neighbors.

valid for £ > 2 and it depends on the number of neighbors that
we select. In principle, this can be used to analyze variations of
the intrinsic dimensionality at different scales, but our results are
relatively constant with k. The computational cost of this method
is mainly dominated by the calculation of the k nearest neighbors
for every point x;.

As an illustrative example, we have considered data gener-
ated with a polynomial function:

yx) =y cx'. )

This function may be viewed as a non-linear model with n free
parameters (the ¢; coefficients). Our aim is to estimate the order
of the polynomial just from the samples. Since we have gener-
ated the data for this experimient, we can then verify a posteri-
ori that the results accurately yield the correct number. Three
different experiments were carried out for polynomials of or-
der 1, 2 and 3, respectively. For each value of n, we generate
N = 10* vectors composed of samples of the polynomial at
M = 10 different positions (x). The estimation of the dimen-
sionality is shown in Fig. 1 where n indicates the number of co-
efficientes of the polynomial (i.e., the polynomial order is n — 1).
Note that the results converge towards the correct dimensionality
for small number of neighbors (for large values, the results are
sensitive to the finite and discrete nature of the grid). Further de-
tails of this procedure and more exhaustive tests can be found in
Asensio Ramos et al. (2007). Here we simply intend to use this
example to illustrate the application to the telescope model pre-
sented below, where instead of a simple polynomial we have the
T-matrix constructed as indicated in Eq. (2) above from its 8 free
parameters. If we had correlations or degeneracies among these
parameters, then the dimensionality of the data produced with
the model would be less than the number of free parameters.
For the analysis of the telescope model we consider each
Stokes parameter Q, U and V separately, and the N vectors are
built as follows. Let Ny, be the number of angles of the axis
of our EW polarizers. Let Ny, be the number of combinations
of azimuth, elevation and table angles that characterize the tele-
scope configuration. For each combination of polarizer angle,
azimuth, elevation and table angle, we propagate a Stokes vec-
tor representing unpolarized light through the telescope (with its
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Fig. 2. Dimensionality of the telescope model with 8 free parameters
described in Sect. 2. All Stokes parameters Q, U and V converge to a
value of approximately 7.5, evidencing that the model does not have
degerate parameters.

EW polarizers) by multiplying (1,0, 0, 0)f by the full telescope
Muller matrix T (the symbol § represents the matrix transposi-
tion operation). Keeping the parameters of the matrix fixed, we
construct the vector of length M = NpoNaye = 100 by stacking
the emergent Stokes parameter (Q, U or V) for all the possible
combinations. Each such vector then represents a realization of
the observable that can be used to characterize the Mueller ma-
trix of the telescope. This procedure is repeated N times until the
entire database is filled. Due to computational limitations in the
k nearest neighbors calculation, we limit ourselves to N = 10*
different values of the parameters. These values have been gen-
erated by means of a latin hypercube sampling (McKay et al.
1979), which produces a better sampling of the parameter space.

We have applied the dimension analysis on these data and
obtained the results plotted in Fig. 2. All of the Stokes param-
eters exhibit the same behavior and converge to approximately
7.5, which is very close to the number of free parameters (8, see
Sect. 2) in our model. From this we can conclude that no signif-
icant degeneracies exist among the various free parameters and
that a variation on each one of them produces an independent,
measureable result on the observables. In other words, we can
be confident that with enough data and a sufficient coverage of
the configuration space, it is possible to univocally retrieve all of
these parameters.

Our original model also had the main mirror diattenuation
and retardance as free parameters. However, after a few attempts
with different initializations, we quickly realized that there were
uniqueness issues as we were able to fit the data with differ-
ent combinations of the parameters. In particular, we found that
the main mirror retardation exhibited a seemingly random wave-
length dependence that was nearly identical (but opposite) to that
of the XW. A quick look at the model (see Eq. (2)) shows that
there are no other elements between the main mirror and the XW.
Therefore, one can set any arbitrary value for the retardation in
the main mirror and then compensate it with an opposite retar-
dation in the XW. We explored this issue with the dimension
analysis, this time having 10 free parameters in the model (the
previous 8 plus the main mirror diattenuation and retardance).
The results are plotted in Fig. 3. Note that, even though we now
have more free parameters, the dimensionality of the data has
not changed significantly and we obtain again a result close to 8.
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Fig. 3. Dimensionality of the telescope model with 10 free parame-
ters (the previous 8 plus main mirror diattenuation and retardance). All
Stokes parameters Q, U, and V converge to a value of approximately 8
even though we have 10 free parameters, evidencing that the model has
degenerate parameters.

This indicates that this model now has too much freedom and
some of the free parameters are degerate. We thus decided to fix
the primary mirror properties to those of a non-polarizing reflec-
tion. This is a good approximation based on the small tilt angle
and large f/#. Most night-time polarimeters support this assump-
tion with measurements of unpolarized standard stars finding
less than 0.1% polarization at small field angles in most instru-
ments such as Fossati et al. (2007), Patat & Romaniello (2006)
or Sanchez-Almeida & Martinez-Pillet (1992).

4. Entrance window polarizers

The DST is equipped with an array of achromatic linear polariz-
ers that can be mounted on top of the EW. The entire array may
be rotated in azimuth to any desired angle by means of a sys-
tem consisting of a motor and its associated control electronics.
With this device it is possible to feed the telescope with light in
a known state of polarization and probe the properties of the full
optical train, from the EW to the polarimeter.

In addition to the EW polarizers we also have the regular
polarimeter calibration optics with which it is possible to fully
characterize the instrument (in our case, SPINOR). We start the
process by determining the SPINOR response matrix which we
then fix in the determination of the telescope properties. This
is a routine operation that involves inserting the SPINOR cali-
bration polarizer and retarder and rotating them independently
to various angles. After going through the calibration polarizer,
the previous state of polarization becomes irrelevant as the light
will then become fully polarized in the direction set by the po-
larizer (the total light intensity is also irrelevant since we work
with normalized Stokes vectors and consider only the degree of
linear/circular polarization). The polarimeter calibration is then
independent of the telescope configuration («).

It is important to have the polarimeter characterized first,
othwerwise we would have to fit also the matrix X and there
would be too many free parameters with unpleasant couplings
between some of the optical elements. On 2010 May 3 we per-
formed a total of 21 polarimeter calibration operations at dif-
ferent times during the day. In each one of these operations
we recorded a sequence of 76 x 8 images (76 configurations
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Fig. 4. Example of a calibration image with the cross-dispersed spectral
orders. Each band enclosed with dashed lines represents one of the over-
lapping orders in the spectrograph (order-isolation filters are removed
for these operations) that we have used for this work, ranging from 470
(bottom) to 1413 (top) nm. Spectral lines are visible in the data. The
central orders have been saturated in the figure to show the weaker ones
at the top and the bottom.

of the calibration optics and 8 modulation states) with a cross-
dispersing prism placed in front of the detector, removing the
order isolation pre-filter and blocking most of the spectrograph
slit length to allow only a small field of view in the spatial direc-
tion.

We apply the proper demodulation to the sequence of 8 raw
images to obtain 4 frames containing at each pixel the Stokes /7,
0, U and V parameters. Each image contains a number of spec-
tral ranges (9 in our case) that span the entire visible and nIR
range, as shown in the example of Fig. 4. The Stokes parameters
for each spectral order are extracted at each spatial and spectral
point along a simple polynomial fit spanning the illuminated re-
gion shown between the dashed lines of Fig. 4. The extraction
is then averaged to produce a measurement of the Stokes vector
for each spectral order.

We employ a Levenberg-Marquardt (see, e.g. Press et al.
1986) algorithm to fit the Stokes data to a model with a 4 x 4 re-
sponse matrix. Since the calibration retarder is not a perfect 1/4
plate over the entire wavelength range, we also take its retar-
dance as a free parameter and determine it from the fit. The ori-
entation of the retarder fast axis is also a free parameter to cor-
rect for possible errors in the mount alignment. All the Stokes
vectors are normalized to their respective intensity so only their
orientation in the Poincaré sphere is considered. As a result, the
X(1,1y matrix element will always be equal to 1.

Figures 5 and 6 show the resulting polarimeter properties as
a function of wavelength obtained as described above. In Fig. 5
we can see the properties of the calibration retarder. Since the
retarder is not perfectly achromatic, there is a variation of its
retardance (Fig. 5, upper panel). The difference between the ori-
entation of the retarder fast axis and its reference zero-point is
also fitted (Fig. 5, lower panel). As expected this difference is
very small, below a few degrees in any case.

Figure 6 shows the 16 elements of the X matrix as a func-
tion of wavelength. As mentioned above, we have repeated the
measurements 21 times at different times of the day. Both figures
are actually showing all 21 curves overplotted. The differences
among them are so small in most cases that all of these curves
virtually coincide (although the spread seems to increase for the
greatest wavelengths). This impressive agreement reinforces our
degree of confidence in the methodology that we have employed,

Calibration retarder retardance
100 W
80

60

Degrees

40

20

IS
o
s

600 800 1000 1200 1400 1
Wavelength (nm)

o
=3
S

Calibration retarder misalignment

Degrees

400 600 800 1000 1200 1400 1600
Wavelength (nm)

Fig. 5. Properties of the polarimeter (SPINOR) calibration retarder as
a function of wavelength. Upper panel: retardance. Lower panel: dif-
ference between the retarder fast axis orientation and the mount zero
point. In both cases we have overplotted all 21 curves obtained from the
(independent) calibration measurements carried out over the course of
a day.

since each one of the 21 curves was obtained from independent
measurements that were also fitted independently. Furthermore,
it also indicates that SPINOR exhibits a very high degree of tem-
poral stability in its polarimetric properties.

Now that we have the elements of X and we can fix that
part of the equation, we turn to the telescope itself. With the
EW polarizer in the beam, we acquired data during the after-
noon of 2010 May 3 and also during the following day. A to-
tal of 15070 Stokes vectors were recorded at each one of the 9
wavelengths considered (the same wavelengths that had been ob-
served before during the polarimeter calibration) and for differ-
ent telescope configurations, which was continuously tracking
the Sun on the sky and also moving the DST rotating platform
to different angles.

Similarly to the polarimeter characterization above, we ap-
plied a computer-intensive Levenberg-Marquard fit to the en-
tire dataset using the telescope model described in Sect. 2. The
results are summarized in Fig. 7 (wavelength-dependent pa-
rameters) and in Table 1 (wavelengt-independent parameters).
Comparing Figs. 7 to 5 of Socas-Navarro et al. (2006) one can
see where the problems with the previous model come from. The
third-order polynomials can adequately reproduce the behavior
that we find here for the EW and XW retardances and also the
turret retardance. However, the turret r,/r, is not properly de-
scribed and, for some wavelengths, it departs significantly.

We can see in Fig. 7 that the various elements behave mono-
tonically. The fact that different wavelengths are measured and
fit independently but produce consistent results gives us confi-
dence in the accuracy of the model results.

There is a trend for the instrumental polarization to de-
crease towards longer wavelengths (note, however, that even in
the nIR the telescope elements polarize significantly). The only
exception is the diattenuation of the turret mirrors, which ex-
hibits a peak around 850 nm. This peak is to be expected for
an aluminum-coated mirror. Theoretical models of the mirrors
show a qualitatively similar behavior with the 850 nm peak.
The actual details depend on the thickness of the Al,O3 layer
deposited on the mirror substrate but some ilustrative examples
are given in Fig. 8. The details of the calculation can be found in
Born & Wolf (1975).
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Fig. 6. Elements of the polarimeter (SPINOR) 4 x 4 response matrix as a function of wavelength. In all panels we have overplotted all 21 curves
obtained from the (independent) calibration measurements carried out over the course of a day. The first panel is / to / crosstalk which, since we

are dealing with normalized output vectors, is always 1 by definition.

Table 1. Telescope wavelength-independent parameters from the
model fit.

Parameter Value

(degrees)
EW fast axis orientation 138.29
XW fast axis orientation 42.76
Telescope-SPINOR frame rotation 93.17
EW polarizer zero offset 81.53

On longer time scales (months), variations in the mirror
properties are to be expected due to variations in the oxide layer,
accumulation of dust, etc. Therefore, the detailed values of the
telescope properties are expected to change. In addition, the op-
tical constants of aluminum, aluminum oxide and the oxide layer
thickness are current topics of study making these additional
variables a telescope model might consider. Telescope calibra-
tions such as Giro et al. (2003) use optical constants as free
parameters in model fits while various studies use different val-
ues taken from various handbooks and other publications (e.g.
Joos et al. 2008; Harrington & Kuhn 2008). The recent investi-
gation of van Harten et al. (2009) finds substantial polarimetric
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impact from assumptions about oxide layer thicknesses and op-
tical constant assumptions.

5. Polarimeter calibration optics

When incoming unpolarized light goes through the telescope
system, it becomes partly polarized. The state of polarization
depends on the telescope configuration «. It is then possible to
obtain information on the telescope properties by simply mon-
itoring how the transfer from Stokes / to Q, U and V changes
over the course of the day. Such measurement can in principle
be carried out without resorting on polarizers filling the entire
telescope aperture, as done in Sect. 4. We can use the polarime-
ter calibration optics at the exit port of the telescope to measure
the outgoing Stokes vector produced from a raw unpolarized so-
lar beam.

The main polarization creation device is the turret, which in-
troduces both diattenuation and retardation in the unpolarized
beam. The resulting partly polarized beam further undergoes an
additional retardation by the XW. The main mirror contributes
negligibly, as mentioned above, because of the near normal in-
cidence. Finally, the retardance introduced by the EW on an
unpolarized incoming beam is also irrelevant. Based on these
considerations, it is easy to see that this method will not provide
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Fig. 7. Wavelength-dependent parameters obtained for the telescope model. The dashed lines represent the properties of a non-polarizing element,

such as the DST primary mirror in our model.

information on the EW or the main mirror properties but one
may hope to learn something about all the other elements.

Figure 9 shows the results of fitting all the calibration op-
eration data acquired over the course of a day to the telescope
model. The results are compatible with the measurements using
the EW polarizer presented in Sect. 4. The turret mirror prop-
erties are much better constrained than those of the EW, as one
would expect since they polarize the incoming beam much more
strongly than the XW.

6. Conclusions

Calibrating the instrumental polarization of large telescopes and
next-generation instruments is an important challenge in the near
future, especially for multi-wavelength observations. A key part
of the process is the parametrization of the system in terms of
a geometrical model with a few free parameters determined by
fitting large calibration sets. One needs to make sure that the
model chosen has the right number of free parameters. With too
much freedom one is able to fit the data but the model obtained
is not unique and the properties of the individual components
are unreliable. Too little freedom, on the other hand, limits the
ability of the model to fit the calibration data and results in an
inaccurate calibration.

We have presented here a robust polarization model for the
DST. Our dimension analysis, together with the model’s ability
to fit all the data at all wavelengths, shows that it has the cor-
rect amount of freedom. The technique based on EW polarizers
is the most straightforward and accurate way to characterize the
polarimetric properties of a telescope. However, we have shown

0.8
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200 ]
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180 - . 3
E e ———=—========%¢% ]
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Fig. 8. Theoretical calculation of an aluminum mirror diattenuation (up-
per panel) and retardance (lower panel) as a function of wavelength.
The four curves represent different values for the thickness of the ox-
ide layer. From top to bottom: 10, 20, 50 and 80 nm, respectively. The
curves for 10 and 20 nm overlap in the upper panel. The diamonds show
the values obtained from our fit for the turret mirrors (see Fig. 7).

that, when this is not practical, it is also possible to use the cali-
bration optics downstream to constrain model parameters.

If a sufficiently large and accurate collection of calibra-
tion data is acquired, a unique and well-constrained tele-
scope polarization model is easily created. Upcoming precision

A2, page 7 of 8


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015804&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015804&pdf_id=8

A&A 531, A2 (2011)

XW retardance
20 T T T

Degrees

o
L

_20 Il Il Il Il L
400 600 800 1000 1200 1400
Wavelength (nm)

1600

Turret diattenuation

0.9

o

0.8 L L L I I

400 600 800 1000 1200 1400
Wavelength (nm)

1600

XW orientation
120 T T T

100

80

60

Degrees

40

20

O Il Il — Il L
800 1000 1200
Wavelength (nm)

1400 1600

Turret retardance
180 T T T

170

160

Degrees

150

140 . . . .

400 600 800 1000 1200
Wavelength (hm)

1400 1600

Fig. 9. Fit to the data with the polarimeter calibration optics (diamonds) compared to the model obtained with the EW polarizer (dashed line). The
error bars are 1-o errors derived from the inverse of the Hessian matrix in the least-squares fit.

polarimetric instruments and telescope designs require detailed
consideration of many additional variables including mirror, op-
tic and coating properties, chromatic variations and optical mis-
alignments as well as basic geometric considerations. The results
from our general formalism for dimensional analysis and the ap-
plication to a many-variable model for DST illustrates new pos-
sibilities for accurate broadband characterization of future large-
aperture telescopes and polarimetric instruments.
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