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Abstract. In this work known main characteristics of 11 apportionment methods are 

systemized, including the Hondt, Hamilton, Sainte-Laguë and Huntington-Hill methods, and 

some new ones are determined by computer simulation. To such characteristics, refer the 

disproportionality of solutions and the percentage of Quota rule violation, of the Alabama, 

Population and New state paradoxes occur and of favoring of beneficiaries. For a large 

range of initial data, where determined the preferences order of the explored 

apportionment methods by each of these characteristics. No one of methods is preferable 

by all of the six characteristics-criteria. Of the immune to the three paradoxes, d’Hondt, 

Huntington-Hill, Sainte-Laguë and adapted Sainte-Laguë methods, by disproportionality of 

solutions the best is Sainte-Laguë method, followed by the adapted Sainte-Laguë, then by 

the Huntington-Hill and, finally, by the d’Hondt one. The same order for these four methods 

is by compliance with the Quota rule. The percentage of Sainte-Laguë method’s Quota rule 

violation is little influenced by the total number of seats value, but it strongly decreases (over 

400 times) with the increase of the number of states – from approx. 0.045% for 4 states, up 

to 0.0001-0.0004% for 30 states. Based on multi-aspectual comparative analyses, it is shown 

that from explored methods there is reasonable to use, in specific areas, only three or four: 

the Hamilton, Sainte-Laguë and Adapted Sainte-Laguë methods and may be the Quota 

linear divisor one. 
 

Keywords: apportionment paradoxes, comparative analyses, computer simulation, 

disproportionality of solutions, favoring of beneficiaries, qualitative characteristics, 

quantitative characteristics. 
 

 1. Introduction 

In the examined multi-optional systems, the decision is made on two or more 

options, consisting of parts of a homogeneous resource measured in integers (a set of 

identical objects); the resource in question is apportioned to beneficiaries-options (states, 

regions, parties, institutions, subdivisions, etc.), aiming to ensure the extreme value of a 

given criterion. The decision may be individual or collective. Collective decisions are taken 

by voting. It is considered that both, individual multi-optional decisions and the collective 

multi-optional ones are based on solving a deterministic apportionment optimization 

problem, all the necessary initial data being known. 
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Examples of apportionments: 

1) apportionment of M mandates in the elective body to n parties by the number of 

votes cast Vi for each party i, ni ,1 ; 

2) apportionment of M mandates in the European Parliament to the n EU Member 

States by population Vi in each country i, ni ,1 ; 

3) apportionment of M seats in the US Congress House of Representatives to the n = 

50 states by population Vi in each state i, ni ,1 ; 

4) distribution of M computers to the n public lyceums of Moldova by the number of 

scholars Vi in each lyceum i, ni ,1 ; 

5) distribution of M sector policemen to the n sectors of Chisinau municipality by the 

number of inhabitants Vi in each sector i, ni ,1 . 

One of the most known practices regarding the use of multi-optional decisions 

systems is related to elections. Thus further on the systems in question will be investigated, 

without diminishing the universality of the approach, through elections by party-list 

proportional representation (LPR). 

To solve the optimization problem an apportionment method (algorithm) is used. 

There is not yet a universally accepted apportionment (APP) method to be used in similar 

situations. Therefore, for this purpose several such methods are used, including: Jefferson 

[1, 2], Hamilton (Hare) [2, 3], Webster {1, 2], d'Hondt [4], Sainte-Laguë [5] and Huntington-

Hill [6]. For example, the Hamilton (Hare) method is used in elections in Germany, Russia, 

Ukraine, Mexico and Iceland, the d'Hondt method – in Belgium, Japan, Israel, Peru, 

Portugal, Romania, Spain, Hungary and Thailand, the Sainte-Laguë method – in Poland, 

Denmark, Latvia and New Zealand [7- 9]. 

Studies [1, 2, 10] show that in different situations APP methods behave differently: 

methods that in some situations allow for better solutions, in other situations yield to other 

methods. The obtained solution may vary considerably from one method to the other. This 

can lead to unexpected effects. 

The knowledge of characteristics of APP methods, especially of quantitative ones, 

would facilitate the comparative analysis of methods and a successful selection of a 

particular method for a specific mission. To such characteristics refer [1, 2]: 

disproportionality of solutions, compliance with the Quota rule, favoring of parties, 

monotonicity and so on. 

In addition to the known ones, some new aspects of APP methods are examined in 

this paper, including the estimation, by computer simulation, of disproportionality of 

solutions, of the percentage of Quota rule violation, of Alabama, Population and New state 

paradoxes occurrence and of favoring of parties. Initially, the apportionment optimization 

problem is defined, then the examined APP methods are described, next the characteristics 

of APP methods are obtained, outlined and systemized, and, finally, the comparative multi-

aspectual analysis of methods is made. 
 

2. Preliminary considerations 

The departure point of APP methods is to minimize the disproportion of allocation of 

mandates (seats) to parties (states). To estimate this disproportion various indices were 

proposed, including the Gallagher [2], d’Hondt [4], Sainte-Laguë [5], Rae [12], Loosemore-

Handby (Duncan and Duncan) [13, 18], Rose [14], Grofman [15], Lijphart [16], Monroe [17], 
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Square deviation, Relative standard deviation and Average relative deviation [10] ones. 

Depending on the index used as criterion in the apportionment problem, the solution may 

vary, sometimes considerably [1, 2, 10]. As shown in [10], minimizing the disproportionality, 

within the meaning of each of the above-nominated 11 indices (excluding the Monroe one), 

is ensured, as appropriate, by one of the three methods: Hamilton (Hare) [2, 3], Sainte-

Laguë (Webster) [2, 5] or d’Hondt (Jefferson) [2, 4]. But other methods are known, too, 

including that of Huntington-Hill [6], Largest remainders with Droop quota [11], Largest 

remainders with Hagenbach-Bischoff quota [2], Largest remainders with Imperiali quota [2], 

etc. 

Thus, selecting the relevant index of disproportionality is one of the important steps 

in implementing an adequate multi-optional decision system. A successful selection 

requires as more complete as possible comparative analysis of the known indices. Some of 

such issues are addressed in many papers, including [2, 10, 14-17, 19-21]. In [19], the 

disproportionality is split into two types: (1) forced or unavoidable, due to the very nature of 

the apportionment problem, and (2) the non-forced one. Based on this approach, an index 

just measuring avoidable disproportionality was proposed. A characterization of the Duncan 

and Duncan [18] (also called Loosemore-Hanby [13]) and Lijphart [16] indices, from the 

point of view of Homogeneity, Radial Linearity, Substitution and Invariance, is proposed in 

[21]. 

In LPR apportionments, M. Gallagher [2] highlights two broad categories of measures 

of disproportionality: (1) measures based on the absolute difference between the party’s 

seats and votes; (2) measures focused on the ratio between a party’s seats and its votes. In 

both these categories, parties are primary in assessing the disproportionality. In reality, 

however, primary are the voters; voters should be represented equally in the elective body 

or, if it is not possible, with the smallest possible disproportion. Therefore, at the base of 

the index of disproportionality the value of each vote should stand – vote that reflects 

unequivocally the rights r of each voter in the election. Namely, starting from the value r of 

a vote (r = total number of seats/total number of votes) and basing on a comparative multi-

aspectual analysis, in [10], the opportunity of using the Average relative deviation index 

(ARD) for this purpose is argued. Namely, the ARD index is used in this paper. 

If so, let [10]: M – number of mandates (seats) in the elective body; n – number of 

parties that have reached or exceeded the representation threshold; Vi, vi – number and, 

respective, percentage of valid votes cast for party i; V = V1 + V2 + … + Vn  – total valid votes 

cast for the n parties; r = M/V – equal rights of each elector (decider) in the overall decision; 

xi, mi – number and, respectively, percentage of mandates to be allocated to party i; I – 

index of disproportionality (ARD). Then the apportionment problem can be formulated as 

follows [10]. Knowing quantities (positive natural numbers) M, n and Vi, ni ,1 , the values 

of sizes xi ( ni ,1 ) are required to be determined – natural numbers that would ensure the 

minimization of the Average relative deviation index 
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Problem (1)-(2) is one of mathematical programming in integers. From (1) it can be 

seen that I = 0, i.e. the distribution xi ( ni ,1 ) is proportional, only if equalities 

nivm ii ,1  ,   occur. However, the probability that these equalities occur in particular 

elections, at integer sizes xi ( ni ,1 ) and V >> M ≥ n, is very small. Thus, in real LPR elections 

certain disproportionality of apportionment occurs. In such cases it is important that the 

disproportionality in question to be assessed. 

Sometimes the problem (1)-(2) also includes additional requirements such as [1, 2]: 

compliance with the Quota rule, not favoring of parties, monotonicity, and so on. 

The Quota rule entails compliance with relations ai ≤ xi ≤ ai + 1, ni ,1 , i.e., taking 

into account that xi, ni ,1  are integers, one has xi = ai or xi = ai + 1, ni ,1 , where ai = Vi/Q 
is the Lower quota of mandates, ai + 1 is the Upper quota of mandates for party i and Q = 

V/M is the Standard divisor (Hare quota or simple quota) for the scrutiny. 

In case of successive decisions, for example in the case of periodic elections, 

sometimes the monotonicity of APP methods is important. It is expressed, first of all, by the 

immunity to Alabama, Population and New state paradoxes (the “three paradoxes”) [1, 2], 

but may be also [1, 10] by modifications in decision-makers’ preferences, by merging of 

parties, by partitioning of parties and by changing of the number of parties. Of these 

aspects of monotonicity, further on just those of the three paradoxes will be examined. 

The essence of the three paradoxes [1, 2]: 

a) Alabama paradox – an increase in the total number of seats (mandates) causes 

the loss of seats to some states (parties); 

b) Population paradox – a state (party) with a higher rate of increase in the number 

of inhabitants (votes cast) loses at least one seat to the benefit of states (parties) 

with a smaller increase in the rate in question; 

c) New state paradox – adding of a new state (party), with a proportional increase in 

the total number of seats, leads to the redistribution of seats among other states 

(parties). 

The Balinski and Young impossibility theorem [1] asserts, in general, that there is no 

an APP method, which, at three or more parties (states), would have the following three 

properties: follows the Quota rule; is immune to Alabama paradox; is immune to Population 

paradox. 

For example, the divisor methods such as Jefferson, d'Hondt, Webster, Sainte-Laguë 

and Huntington-Hill are immune to the three paradoxes, but may not follow the Quota rule 

[1, 2]. The Hamilton method follows the Quota rule, but is not immune to the three 

paradoxes [1, 2]. So, we have to make a compromise, depending on the situation, with 

regards to which APP method to apply. 

Known theoretical results sometimes do not give an unambiguous answer to the 

preferences of using a particular APP method in a specific situation. In such cases the 

comparative analysis of methods by computer simulation may be appropriate. For this 

purpose, the computer application SIMAP has been elaborated and respective calculations 

have been made. The initial data used in calculations are: M = 6, 11, 21, 51, 101, 201, 501; n 

= 2, 3, 4, 5, 7, 10, 15, 20, 30, 50; n ≤ M – 1; V = 108; uniform distribution of values Vi, ni ,1 ; 

sample size 106. The use of small values of M is useful, for example, when determining the 

M members of a parliamentary committee basing on the number of deputies (Vi) of each of 

the n parties in the Parliament. 
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3. The essence of the investigated apportionment methods 

There are distinguished two well-known categories of apportionment methods with 

proportional representation [2]: divisor methods (Jefferson, d’Hondt, Sainte-Laguë, modified 

Sainte-Laguë, Webster and Huntington-Hill) and remainders methods (Hamilton, Hare; 

Droop, Hagenbach-Bischoff and Imperiali). Divisor methods are based on the "highest 

average" principle and the remainders methods – on the "largest remainder" one. A special 

case is the Huntington-Hill method [6]. This method is based on the geometric mean at the 

border of the number of mandates for each party (state), but it still uses a divisor as divisor 

methods do. To divisor methods also refer the General linear divisor (GLD), adapted Sainte-

Laguë and Variable linear divisor (VLD) ones [10]. 

One can also talk about a third category of methods – the mixed methods, which 

combines aspects from both previous categories. Of the explored in this paper, to mixed 

methods refer [10]: Quota linear divisor (QLD), Lower quota linear divisor (LQLD), Quota 

dependent linear divisor (QDLD), Quota variable linear divisor (QVLD) and Lower quota 

variable linear divisor (LQVLD). 

At the same time, in [2, 22], for example, it is mentioned that, regarding the results 

of the distribution of seats, the Jefferson and d'Hondt methods and the Webster and Sainte-

Laguë methods are equivalent. But, as shown in [10], the direct use of Jefferson and 

Webster methods do not always guarantee the solution. Also, the disproportionality of 

solutions obtained using the Hamilton method is lower than those of Droop, Hagenbach-

Bischoff and Imperiali methods [2, 10]. Finally, the Hamilton and Hare methods coincide [2], 

and the General linear divisor method defines a class of divisor methods [10]. 

So, the following APP methods are investigated in this paper: Hamilton (H), Sainte-

Laguë (SL), d’Hondt (d’H), Huntington-Hill (HH), adapted Sainte-Laguë (ASL) and, mainly for 

research purposes, the QLD, LQLD, QDLD, VLD, QVLD and the LQVLD ones. 

The Huntington-Hill method provides the calculation of standard divisor Q = V/M; 

then to each party i is initially assigned the lower quota of seats xi = ai = Vi/Q, if Vi/Q  < 

)1( ii aa , or – the upper one, i.e. xi = ai + 1, if Vi/Q ≥ )1( ii aa , ni ,1 .  Thus, the value of 

ratio Vi/Q, rounded up to integers basing on the respective geometric mean, is assigned to 

xi. If the sum of the above-specified quotas of the n parties is equal to M, i.e. x1 + x2 + … + xn 

= M, then the distribution of seats has ended, being proportional. 

Otherwise, iteratively, using several attempts, it is found such a new divisor q* and, 

respectively, xi = ui = Vi/q* if Vi/q* < )1( ii uu , or xi = ui + 1 if Vi/q* ≥ )1( ii uu , ni ,1 , that 

the equality x1 + x2 + … + xn = M to be achieved. The solution obtained will be a 

disproportionate one. 

The majority of divisor methods are particular cases of General linear divisor method 

(GLD) [10], which is based on the APP rule 
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in which c is a constant and uj is the number of mandates already allocated to party j.  

The apportionment algorithm consists in calculating, for each party ni ,1 , of ratio 

Vi/(cui + 1) consecutively at ui = 0, 1, 2, …. Thus, n series of decreasing numbers are formed, 

by one for each of the n parties. Of these n series, the largest M numbers are selected, of 

which xi numbers belong to series i, ni ,1 . To party i is assigned xi mandates, ni ,1 . 
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Particular cases of the GLD method differ only by the value of constant c. So: 

‐ for the d’Hondt method, c = 1; 

‐ for the Sainte-Laguë method, c = 2; 

‐ for the VLD method, c = n/ΔM at ΔM = M – (a1 + a2 + … + an) > 0. 

Thereafter, the terms “GLD method” and “all linear divisor methods” will be used 

synonymously. 

The adapted Sainte-Laguë method [10] differs from the Sainte-Laguë one only by 

allocating, initially, by g ≥ 1 mandates to small parties, so that finally no party will have less 

than g mandates. At g = 1, the Huntington-Hill method corresponds to such a requirement. 

According to the Hamilton method, at first step, by a lower quota of mandates ai = 

Vi/Q  is allocated to each party i, ni ,1  and the number ΔM = M – (a1 + a2 + … + an) of still 

undistributed mandates is determined. If ΔM = 0, then the distribution has ended and is 

proportional. Otherwise, at the second step, by one mandate of the ΔM is allocated 

additionally to each of the first ΔM parties with the larger value of remainder ΔVi = Vi – aiQ. 

The distribution has ended, being disproportionate. 

Taking into account that the Hamilton method ensures the less disproportionate 

apportionment [2, 10], the Hamilton method’s first step is used also as first step of the QLD, 

LQLD, QDLD, QVLD and LQVLD methods. These methods differ only at the second, final, 

step: 

‐ QLD, QVLD and QDLD methods – by one mandate of the ΔM is allocated 

additionally to each of the first ΔM parties with the larger value of ratio, 

respectively, Vi/(2ai + 1), Vi/(nai + ΔM) and Vi/[cai + 1), where c = max{2; n – 1}, 

ni ,1 ;  

‐ LQLD and LQVLD methods – the ΔM mandates are allocated additionally to parties 

with the larger value of ratio, respectively, Vi/[2ui + 1) and Vi/[nui + ΔM), where ui ≥ 
ai, ni ,1 . 

The second step for these methods is defined basing on the following reasons. 

According to [10], the Sainte-Laguë method (linear divisor method with c = 2) ensures, in 

average, the less disproportionate apportionment among all linear divisor methods (at c = 

constant); the value c = 2 is used in the QLD and LQLD methods, too. At the same time [10], 

the linear divisor method with c = n – 1 (QDLD) does not exceed the Upper quota. Also, the 

linear divisor method with c = n/ΔM (VLD) less of all favors parties, when allocating 

mandates to them, and therefore it is the least disproportionate among the linear divisor 

methods [10]. 

Let’s examine the characteristics of the nominated APP methods. 
 

4. Compliance with the Quota rule 

Of the methods explored in this paper, the Hamilton, QLD, QDLD and QVLD ones 

met the requirement of Quota rule, by definition. Also, in the case of two-party voting, the 

DLG method at c ≥ 1, including d'Hondt and Sainte-Laguë ones and the Huntington-Hill, VLD 

and LQLD methods follow the Quota rule [2, 10]. The Sainte-Laguë and LQLD methods follow 

the Quota rule also at n = 3 [1, 10]. 

The D’Hondt method is compliant only with the Lower quota rule [10]. The LQLD and 

LQVLD methods are also compliant with this quota rule, by definition. 

Statement 1 [10]. At c ≥ n – 1, all linear divisor methods are compliant with the Upper 

quota rule. 
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Statement 2 [10]. At c ≥ 1, all linear divisor methods can’t violate simultaneously the 

Lower quota and the Upper quota rules in a poll. 

The last result is used when improving (less calculations) the d’Hondt, Jefferson, 

Webster, Saint-Laguë and Adams methods [10]. 

Figure 1 [10] outlines the various possibilities of DLG method complying with the 

Lower quota and Upper quota rules, depending on the value of constant c and the larger or 

smaller the parties are. The numbers of consequences are from [10].  

The case c = 1 (d'Hondt method) is a special one – it is the only case of complying 

with the Lower quota rule, regardless of the party’s size. An opposite is the case c = n – 1 

(generally, the class of c ≥ n – 1 cases), which complies with the Upper quota rule. Also, 

smaller parties do not exceed the Upper quota, regardless of the value of c, but they can 

violate the Lower quota rule at c < 1. 
 

Figure 1. Definition domain of parameters , 1,ix i n . 
 

At the same time, larger parties can violate both the Lower quota (at c > 1) and the 

Upper quota (at 0 < c < n – 1) rules.  

It is estimated that for M = 435 and n = 50: 

1) the probability of Quota rule violation by Sainte-Laguë (Webster) method is, 

according to [1], of approx. 0.00061, and according to [23] - of approx. 0.0016; 

2) the probability of Quota rule violation by Huntington-Hill method is of approx. 

0.000286 [1]. 

Some results of computer simulation of polls using SIMAP (see section 2), regarding 

the violation of Quota rule, are shown in Table 1. 

With regard to data of Tables 1-5, the calculations made do not guarantee the 

accuracy of four-digits after comma, the representation being, however, useful in some 

comparative research. 

The PQ percentage of Quota rule violation depends on the method used and on the 

values of sizes M (less) and n. Of the four divisor methods, SL, ASL, HH and d'H, the value of 

PQ is the lowest for the Sainte-Laguë method, and the largest – for the d'Hondt one. 
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Table 1 

Percentage PQ of Quota rule violation by divisor APP methods, % 

Sainte-Laguë (Webster) method D’Hondt (Jefferson) method 

n\M 51 101 201 501 n\M 51 101 201 501 

3 0 0 0 0 3 3.9843 4.1367 4.2105 4.2355 

4 0.0472 0.0468 0.0461 0.0452 4 6.3046 6.5047 6.5789 6.6259 

5 0.0790 0.0817 0.0827 0.0821 5 7.7247 8.0367 8.1421 8.2393 

7 0.0698 0.0736 0.0701 0.0698 7 9.5227 9.9902 10.2082 10.3114

10 0.0355 0.0354 0.0310 0.0309 10 10.8147 11.4797 11.9164 12.1932

15 0.0094 0.0080 0.0074 0.0077 15 11.3990 12.7932 13.5830 14.0348

20 0.0018 0.0014 0.0016 0.0018 20 12.2000 13.5427 14.5451 15.3240

30 0.0004 0.0001 0.0001 0.0002 30 9.8856 13.4113 15.4380 16.9379
  

Adapted Sainte-Laguë method Huntington-Hill method 

n\M 51 101 201 501 n\M 51 101 201 501 

3 0.2656 0.1288 0.0673 0.0232 3 0.2928 0.1377 0.0713 0.0237 

4 0.4088 0.2086 0.1171 0.0721 4 0.4875 0.2377 0.1276 0.0769 

5 0.4944 0.2516 0.1649 0.1171 5 0.6126 0.2985 0.1815 0.1209 

7 0.5782 0.2541 0.1447 0.0977 7 0.7831 0.3204 0.1654 0.1019 

10 0.6941 0.2182 0.0967 0.0518 10 1.0293 0.3141 0.1251 0.0598 

15 1.0459 0.1781 0.0511 0.0164 15 1.6536 0.3045 0.0831 0.0208 

20 2.0325 0.1873 0.0292 0.0062 20 3.2937 0.3691 0.0585 0.0103 

30 7.0067 0.3059 0.0166 0.0012 30 10.347 0.6589 0.0449 0.0028 
 

The PQ percentage of the Sainte-Laguë method is to a small extent influenced by the 

value of M, but it decreases strongly (over 400 times) with the increase of n – from approx. 

0.045% at n = 4, up to 0.0001-0.0004% at n = 30.  

Of a smaller dynamics is the PQ value of the d'Hondt method; this is changing, at initial 

data of Table 1 (51 ≤ M ≤ 501, 3 ≤ n ≤ 50), only approx. 4 times (from 4.0% to 16.9%). 

Regarding the Huntington-Hill method, the PQ value decreases with the increase of M 

(from about 0.3% at M = 51 to 0.02% at M = 501 for n = 3 and from about 10.3% at M = 51 to 

0.003% at M = 501 for n = 30).  

The PQ value of the advanced Sainte-Laguë method is lower than for the Huntington-

Hill one. 

Thus, by percentage PQ of compliance with the Quota rule, the preferences of APP 

divisor methods are: SL ≻ ASL ≻ HH ≻ d’H. 

In general, the following preferences of APP methods were identified regarding the 

compliance with: 

- the Lower Quota rule: {H, QVLD, LQVLD, QLD, LQLD, QDLD, d'H} ≻ SL ≻ VLD ≻ ASL ≻ HH. Exceptions exist regarding the VLD method: at n ≤ 10 and M ≥ 101, this in 

some cases is positioned between the ASL and HH methods, and in others  - even 

after the HH method; 

- the Upper Quota rule: {H, QVLD, QLD, QDLD} ≻ HH ≻ ASL ≻ SL ≻ LQLD ≻ VLD ≻ LQVLD ≻ d'H; 

- the Quota rule: {H, QVLD, QLD, QDLD} ≻ LQLD ≻ SL ≻ LQVLD ≻ VLD ≻ ASL ≻ HH ≻ 

d'H. Exceptions exist regarding: 
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a) the d'Hondt method: at small values of M – n, this in some cases is positioned 

between the ASL and HH methods, and in others – even between the VLD and ASL 

methods; 

b) the {LQVLD ≻ VLD} methods: at M ≥ 101 and n ≤ 10, these in some cases are 

positioned between the ASL and HH methods, and in others – even between the 

HH and d'H methods; 

c) the VLD method: at M ≥ 51 and n ≤ 20, this in some cases is positioned between 

the ASL and HH methods, and in others – even between the HH and d'H methods. 
 

5. Party favoring 

The distribution of mandates between parties in LPR electoral systems is usually 

disproportionate, based on the passage of a part of influence power from some parties to 

others. 

Favoring of parties leads to the increase of disproportionality. This is examined in 

details in [10]. 

Definition 1. It is considered that, as a result of apportionment, a party i is favored if it 

obtains an excess of influence power (xi > Di, where Di = MVi /V is the influence power of 

party i, delegated to it by the Vi voters’ votes), is disfavored, if it has a deficit of influence 

power (xi < Di), and is neutral (neither favored nor disfavored) if it obtains a power of 

influence equal to that delegated to it by voters' votes (xi = Di). 

So, for a party i:  

1) favored, occurs xi > ai;  

2) disfavored, occurs xi ≤ ai at Vi > aiQ; 

3) neutral, occurs xi = ai at Vi = aiQ. 

Definition 2. It is considered that the APP method favors large (small) parties, if as a 

result of apportionment, the summary influence power in excess (xi – Di > 0), obtained by 

parties with more (fewer) votes, is greater than that, obtained by parties with fewer (more) 

votes. 

Definition 3. It is considered that the APP method is neutral (as a whole, favors 

neither large nor small parties), if the summary influence power in excess (xi – Di > 0), 

obtained by parties with fewer votes, is equal to that obtained by parties with more votes. 

Statement 3. The Hamilton method may favor particular parties both large and small, 

but generally, on infinity of polls, it is neutral in favoring of parties. 

Statement 4. When applying the GLD method (Figure 2): 

1) if c < n/(n – 1) then, as a rule, larger parties may be favored; 

2) if c > n then, as a rule, smaller parties may be favored; 

3) if n/(n – 1) ≤ c ≤ n then both the larger parties and the smaller ones may be 

favored, inclusively: 

3.1) at n/(n – 1) ≤ c < n/ΔM, more larger parties than smaller ones may be favored; 

3.2) at n/ΔM < c ≤ n, more smaller parties than larger ones may be favored; 

3.3) at c = n/ΔM, both larger parties and smaller ones may be favored, but rarely. 

Statement 5. For the GLD method, the optimal value of constant c (in sense of (1) and 

of not favoring of parties) is equal to 2. In average, the GLD method at c < 2 favors larger 

parties, and at c > 2 – the smaller ones. So: 

‐ the d'Hondt method can favor particular parties, both large and small, but overall it 

favors large parties; 
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‐ the Sainte-Laguë method can favor particular parties, both large and small, but 

overall it is neutral. It may favor particular parties, predominantly, large – at ΔM  

[1; n/2), small – at ΔM  (n/2; n – 1], and usually does not favor any party at ΔM = 

n/2. 
 

Figure 2. Favoring of parties by GLD method.
 

Statement 6. From the multitude of GLD method alternatives that differ only by the 

value of constant c, in average, on an infinite number of polls, the Sainte-Laguë method is 

the least predisposed to favoring particular parties, ensuring the least disproportionality I of 

apportionments. 

Statement 7. From the multitude of GLD method alternatives that differ only by the 

value of constant c, even dependent on sizes n and ΔM, the least predisposed, probably, to 

favoring of parties apart is the VLD method, ensuring the lowest disproportionality of 

apportionments. 

Statement 8. The Hamilton method is characterized, in average, by a less favoring of 

particular parties than the adapted Sainte-Laguë one. 

Statement 9. The Huntington-Hill method may favor particular parties, both large and 

small, but generally favors small parties, the tendency in question decreasing with the 

increase of the number of votes cast by parties and tending towards neutrality. 

Statement 10. The Huntington-Hill method is characterized, in average, by a higher 

favoring of parties than the adapted Sainte-Laguë one. 

So, by not favoring of parties, we have preferences H ≻ SL ≻ ASL ≻ HH ≻ d’H. 
 

6. Immunity to paradoxes 

The so-called "paradoxes" have influenced the replacement of some APP methods 

with others in practice. It is well known the immunity to Alabama, Population, and New 

State paradoxes of such APP methods as Jefferson, Webster, d'Hondt, Sainte-Laguë, 

modified Sainte-Laguë and Huntington-Hill ones [1, 2]. The adapted Sainte-Laguë and GLD 

methods are immune to these paradoxes, too [10]. There are also a number of particular 

cases of elections for which other APP methods also are immune to the three paradoxes 

[10]. 
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It is well-known the non-immunity to the three paradoxes of APP methods with 

remain-ders: Hamilton, Droop quota, Hagenbach-Bischoff quota and Imperiali quota [1, 2]. 

The QLD, LQLD, QDLD, VLD, QVLD and LQVLD methods are not immune to these paradoxes, 

too [10]. 

Statement 11 [10]. In case of two-party elections, the QLD, LQLD, QDLD and QVLD 

methods are immune to Alabama, Population and New state paradoxes, and the Hamilton 

and VLD methods – to Alabama and Population paradoxes. 

Statement 12 [10]. In case of three-party elections, the QLD, LQLD and QDLD 

methods are immune to Alabama and Population paradoxes. 

It is estimated [1] that for M = 435 and n = 50, the Hamilton method exhibits a 

monotonicity paradox about once in every 18 apportionments. Under certain assumptions 

as the number of seats tends to infinity, the expected number of states that will suffer from 

the Alabama paradox when applying the Hamilton method is asymptotically bounded above 

by 1/e and, on average, is approximately 0.123 [24]. 

Some results of computer simulation using SIMAP (see section 2) with refer to the 

three paradoxes are described below. 

Alabama paradox. Calculations were performed for the increase δM of the total 

number of mandates M by 1 to M mandates (1 ≤ δM ≤ M). It was found that the percentage 

PA of Alabama paradox is increasing to n and is decreasing (with rare deviations at M and n 

large, and δM small) to the number δM of additional mandates, becoming equal to 0 for at 

most δM = M. 

Exception, regarding the dependence of PA on M, are the QLD and LQLD methods – 

the value of PA(QLD) and PA(LQLD) slightly depends on M. At n = 2, occurs PA = 0 for all 

examined methods – the Hamilton method and the six mixed methods; obviously there 

exist, however, cases for which the Alabama paradox occurs. 

The character of percentage PA dependence to M and n can be seen in Figure 3 and 

Table 2. 
 

 
Figure 3. Parameter PA dependence to M and n for Hamilton method. 

 

The PA percentage for QVLD, LQVLD, VLD and DQLD methods is slightly higher, and 

for QLD and LQLD methods it is much lower than for the Hamilton method. Moreover, if the 

maximum value of PA for Hamilton method is 9.5827% (at M = 501, n = 50 and δM = 2), then 

the maximum value of PA for QLD method is 0.0129% (at M = 51, n = 7 and δM = 1), i.e. more 

than 742 times smaller, this being 0% in most of other cases of 106 alternatives each. At 6 ≤ 
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M ≤ 501, 3 ≤ n ≤ 50, n < M and 1 ≤ δM ≤ M, the relationships occur: 0 ≤ PA(H) ≤ 9.58 and 0 ≤ 
PA(QLD) ≤ 0.013. 

 

Table 2 

Percentage PA of Alabama paradox for the Hamilton and QLD methods 

M n δM PA(H) PA(QLD) M n δM PA(H) PA(QLD)

101 

3 

1 2.6646 0

501 

3 

1 2.6827 0

2 0.8522 0 2 0.8504 0

99 0 0 99 0 0

4 

1 4.3549 0

4 

1 4.2981 0

2 2.2120 0 2 2.1988 0

100 0 0 100 0 0

5 

1 5.3302 0.0035

5 

1 5.3046 0.0040

2 3.6361 0.0003 2 3.6049 0.0003

100 0 0 100 0 0
 

By immunity of APP methods to Alabama paradox, the following preferences occur:  

{SL, ASL, HH, d’H} ≻ LQLD ≻ QLD ≻ QDLD ≻ H ≻ QVLD ≻ LQVLD ≻ VLD. 
 

New state paradox. Calculations were performed for the (n + 1) state’s population Vn+1 

– random size of uniform distribution in interval [Q; QM/n], where Q = (V1 + V2 + V3 + … + 

Vn)/M. 

The results of calculations are largely similar to those for Alabama paradox. The 

percentage PS of New state paradox occurrence slightly depends on M, but it is increasing 

with respect to n (with some deviations for QLD and LQLD methods). 

The value of PS for QVLD, LQVLD, VLD and QDLD methods is slightly larger, and for 

QLD and LQLD methods it is over 1000 times smaller than for the Hamilton method. 

Moreover, in many cases of 106 alternatives each, the PS value for LQLD and QLD methods is 

0%; obviously there exist, however, cases for which the New state paradox occurs. At 6 ≤ M 

≤ 501, 2 ≤ n ≤ 50 and n < M, the following relations occur: 0 ≤ PS(H) ≤ 8.46 and 0 ≤ PS(QLD) ≤ 
0.0041. The character of percentage PS dependence on M and n can be seen in Figure 4. 

 

Figure 4. Parameter PS dependence to M and n for Hamilton method. 
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Some results of calculations are shown in Table 3. 

By immunity of APP methods to New state paradox, the following preferences occur:  

{SL, ASL, HH, d’H} ≻ LQLD ≻ QLD ≻ QDLD ≻ H ≻ QVLD ≻ LQVLD ≻ VLD. 

Population paradox. The total number of votes in the second poll V+ is determined as 

V+ = (1 + b)V. Here V is the total number of votes in the first poll, and (1 + b) is the rate of V 

increase to the second poll. Values Vi+, ni ,1  in the second poll are random sizes 

determined as Vi+ = piVi, ni ,1 , with corrections needed to make V+ = V1+ + V2+ + … + Vn; pi is 

a stochastic size of uniform distribution in range [b(1 – d); b(1 + d)] and d is a constant. 
 

Table 3 

Percentage PS of New State paradox for Hamilton (H) and QLD methods 

M n PS(H) PS(QLD) M n PS(H) PS(QLD) 

101 

2 3.1705 0

501 

2 3.1694 0 

3 4.8226 0 3 4.8615 0 

4 5.7543 0.0020 4 5.7436 0.0022 

5 6.3341 0.0038 5 6.3324 0.0040 

7 7.0230 0.0035 7 7.0311 0.0028 

10 7.4950 0.0011 10 7.5344 0.00063 

20 8.0157 0.00007 20 8.1542 0 

30 8.0408 0.00003 30 8.3556 0 

50 8.1086 0 50 8.4606 0 

The character of percentage PP dependence to n and d can be seen on Figure 5 and 

Table 4. 

 

 
Figure 5. Parameter Pp dependence to M and n for Hamilton method. 

 

The percentage PP of Population paradox is slightly lower compared to those of 

Alabama (PA) and New State (PS) paradoxes; at n = 2 this is even equal to 0 for all seven 

explored methods. Also, for QVLD, LQVLD, VLD and QDLD methods it is almost the same; it 

is, however, slightly larger than that for the Hamilton method (PP(H)). At the same time, the 

PP value for QLD (PP(QLD)) and LQLD (PP(LQLD)) methods is at least 200 times (usually over 

1000 times) lower than that for the Hamilton method. At 6 ≤ M ≤ 501, 3 ≤ n ≤ 50, 0.02 ≤ b ≤ 
0.1, 0.1 ≤ d ≤ 1 and n < M, the relations 0.018 ≤ PP(H) ≤ 4.66 and 0 ≤ PP(QLD) ≤ 0.0061 occur. 
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Table 4 

Percentage PP of Population paradox for Hamilton and QLD methods  

M n b d PP(H) PP(QLD) M n b d PP(H) PP(QLD)

101 

3 

0.02 

0.1 0.1372 0 

501

3 

0.02

0.1 0.5393 0 

0.3 0.3703 0 0.3 0.6064 0 

1 0.7057 0 1 0.2589 0 

0.1 

0.1 0.4977 0 

0.1

0.1 0.4634 0 

0.3 0.6587 0 0.3 0.2018 0 

1 0.2629 0 1 0.0585 0 

5 

0.02 

0.1 0.2656 0.0031 

5 

0.02

0.1 0.9848 0.0041 

0.3 0.6951 0.0043 0.3 1.3498 0.0028 

1 1.3589 0.0039 1 0.692 0.0008 

0.1 

0.1 0.9433 0.0041 

0.1

0.1 1.1284 0.0018 

0.3 1.3602 0.0028 0.3 0.5487 0.0003 

1 0.7264 0.0006 1 0.2010 0 
 

By immunity of APP methods to Population paradox, the following preferences occur:  

{SL, ASL, HH, d’H} ≻ LQLD ≻ QLD ≻ QDLD ≻ H ≻ QVLD ≻ LQVLD ≻ VLD. 
 

7. Disproportionality of solutions 

If not taking into account other constraints, the optimal solution of problem (1)-(2) is 

ensured by the Hamilton method [2, 10]. The mathematical expectancy *I of 

disproportionality of such solutions is determined, approximately, as  
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the error not exceeding 0.5% mandates, and, in most cases, met in practice - 0.05% 

mandates [10]. Function *I (M,n) is ascending to n and descending to M. Some results of 

calculations according to (4) are shown in Table 5. 

Table 5. 

Average disproportionality of Hamilton method’s apportionments, % mandates 

M 
n 

2 3 4 5 7 10 15 20 30 50 

51 1.02 1.53 2.07 2.59 3.60 5.10 7.56 10.02 14.93 24.75 

101 0.51 0.77 1.04 1.31 1.82 2.57 3.82 5.06 7.54 12.50 

201 0.26 0.39 0.52 0.66 0.91 1.29 1.92 2.54 3.79 6.28 

501 0.10 0.16 0.21 0.26 0.37 0.52 0.77 1.02 1.52 2.52 
 

As proven in [10], in average, the Sainte-Laguë method is the least disproportionate 

of all linear divisor methods, i.e. the value c = 2 is optimal for the APP rule (3). So, the 

Sainte-Laguë method is less disproportionate than the d’Hondt one. Also, in average, the 

Sainte-Laguë method is less disproportionate than the Huntington-Hill and the adapted 

Sainte-Laguë ones [10]. In their turn, the adapted Sainte-Laguë method is less 

disproportionate than the Huntington-Hill one [10]. 
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The average disproportion I , when applying the compared methods, is determined 

by simulation using the SIMAP application for the initial data specified in section 2.  

Some results of calculations are shown in Figure 6. 
 

 
Figure 6. Dependence of disproportion I  to n, at M=101. 

 

From Figure 6 one can see that the highest average disproportions has the d’Hondt 

method, followed by the QDLD one and, after, by the Huntington-Hill method. The other 

eight methods are close to each other, but, at M = 101 and 2 ≤ n ≤ 15, the order by the 

increase of disproportion is: H ≻ QVLD ≻ LQVLD ≻ QLD ≻ LQLD ≻ SL ≻ VLD ≻ ASL ≻ HH ≻ 

QDLD ≻ d’H. The value of I  is ascending to n. When using the d’Hondt method, for 

example, the value of I is: 

a) 15.97% at M = 101 and n = 50; 

b) 8.30% at M = 201 and n = 50; 

c) 3.45% at M = 501 and n = 50. 

More informatively, in graphical form, the situation is reflected by the difference 

between the disproportions of APP methods, Figures 7, 8. 

From Figures 7 and 8 one can see to what extent the Sainte-Laguë method ( )SL(I ) 

is better than the d'Hondt one ( )H'd(I ), and the adapted Sainte-Laguë method ( )ASL(I ) is 

better than the Huntington-Hill (I(HH)) one. 
 

 
Figure 7. Dependence of )H'd(I – )SL(I to M, and n. 
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Figure 8. Dependence of )HH(I  – )ASL(I to M, and n. 

 

The value of difference )H'd(I – )SL(I  is descending to M and is ascending to n 

(Figure 7). With reference to the difference )HH(I  – )ASL(I  (Figure 8), it is nonnegative 

and is also descending to M, but to n it is ascending at large values of ratio (M – n)/M, and is 

descending at small values of (M – n)/M, becoming 0 at (M – n)/M = 1/M. 

Although, by disproportionality I , in average, Sainte-Laguë method is better than 

the d'Hondt one, and the adapted Sainte-Laguë method is better than the Huntington-Hill 

one, no matter of parameters M and n values ( )H'd(I – )SL(I  > 0, )HH(I  – )ASL(I ≥ 0), 

there may be particular cases, when d'Hondt method, as well as Huntington-Hill method, 

provides a lower value of parameter I than the Sainte-Laguë and adapted Sainte-Laguë 

ones, respectively. To characterize such situations, parameters RSL-d’H and RASL-HH are used. 

Parameter RSL-d’H is the ratio of the percentage of apportionments, for which )H'd(I > )SL(I , 

to the percentage of apportionments, for which )H'd(I < )SL(I . Similarly, RASL-HH is the ratio 

of the percentage of apportionments, for which )HH(I  > )ASL(I , to the percentage of 

apportionments, for which )HH(I  < )ASL(I . 

Some results of parameters RSL-dH, RSL-HH, PSL=d’H and PASL=HH calculations are shown in 

Table 6 and Figures 9 and 10. Here PSL=d’H is the percentage of apportionments for which 

)H'd(I = )SL(I , and PASL=HH is the percentage of apportionments for which )HH(I  = )ASL(I . 
 

Table 6 

Parameters PSL=d’H and PASL=HH dependence to M and n 

M\n 

PSL=d’H 

 

PASL=HH   

2 3 4 5 7 50 2 3 4 5 7 50 

101 78.9 63.0 50.5 40.7 26.4 0.0156 99.4 98.4 97.2 95.8 92.7 41.9 

201 78.8 62.8 50.2 40.1 25.8 0.0033 99.6 99.0 98.3 97.3 95.1 42.1 

501 78.8 62.7 50.0 40.0 25.5 0.0014 99.8 99.5 99.1 98.6 97.4 48.4 
 

Data of Table 6 show that, in cases of 101 ≤ M ≤ 501 and 2 ≤ n ≤ 5, for over 40% of 

apportionments, the d’Hondt method gives the same allocation of seats as the Sainte-Laguë 

one does ( )H'd(I = )SL(I ). In case of the adapted Sainte-Laguë and Huntington-Hill 

methods, the value of such an index is over 95%. Both characteristics, PSL=d’H and PASL=HH, are 
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descending to n, but PASL=HH is slightly descending to M, too, while PSL=d’H is slightly ascending 

to M. 

Figure 9. Dependence of ratio R(SL-d’H) to 
M and n. 

Figure 10. Dependence of ratio R(ASL-HH) 
to M and n. 

 

Figure 9 shows that ratio RSL-d’H is ascending to n and to M, while ratio RASL-HH  (Figure 

10) is ascending to n, but is descending to M. For the same initial data, ratio RSL-d’H is 

considerably larger (13 – 20 times and more) than the RASL-HH one (1.2-1.5 times and more). 

Also, at n = 2 occurs )H'd(I = )SL(I  and there are no cases for which )HH(I  < )ASL(I . 

Overall, of the monotonous linear divisor methods the most efficient (less 

disproportionate) is the Sainte-Laguë method; also, the adapted Sainte-Laguë method is 

less disproportionate than the Huntington-Hill one. 

The quantitative comparison of the Sainte-Laguë method (the less disproportionate 

APP method which complies to the tree paradoxes) with the Hamilton one (the less 

disproportionate APP method) is made in Figure 11 and Table 7. 
 

Table 7 

Percentage PSL=H of cases in which )H()SL( II  , % 
 

M\n 2 3 4 5 7 10 15 20 30 50 

101 100 93.4 90.5 88.0 84.1 79.9 75.0 71.0 65.5 55.7 

201 100 93.4 90.5 88.0 84.2 79.9 74.8 71.1 65.5 58.2 

501 100 93.4 90.5 88.0 84.1 80.0 74.9 71.1 65.6 58.4 
 

It is known that there are no cases in which the Sainte-Laguë method ensures a less 

disproportionate solution than the Hamilton method does.  

At the same time, the percentage of cases in which the Sainte-Laguë method ensures 

the same solution as Hamilton method does )))H()SL((( IIP  , practically does not depend 

on M, but is descending to n, being 100% at n = 2, and more than 55% at n = 50 (Table 7). 

Figure 11 shows that the average value of the difference I(SL) – I(H) is ascending to 

n but is descending to M, beginning with 0% at n = 2, and for n = 50 reaching no more than 

0.038 % at M = 101, no more than 0.017% at M = 201 and no more than 0.0065% at M = 

501. Of the five mixt methods, the LQLD and QLD ones have considerably better features 
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with regard to the three paradoxes (the probability of their occurrence is at least 200 times 

(usually over 1000 times) lower than for the Hamilton method. 
 

 

Figure 11. Dependence of (SL) (H)I I to M and n. 
 

Also, they are the second and, respectively, the third, after QVLD and LQVLD, less 

disproportionate mixt method at a very little difference. At the same time, QLD method 

follows the Quota rule, while the LQLD one doesn’t. Therefore, the QLD method is the only 

method that is compared quantitatively, by disproportionality, with the Sainte-Laguë and 

Hamilton methods. 

To be mentioned that, by computer simulation using SIMAP and the initial data 

specified in section 2, there have not beed identified cases when )QLD()SL( II  ; although 

such cases exist [10], they are rear. At the same time, at n = 2 and n = 3 (no matter the value 

of parameter M), and at n = 50 for 51 ≤ M ≤ 501 the equality )QLD()SL( II   occurs. The 

percentage of cases for which )QLD()SL( II   is equal to 100% – PQ(SL) (see Table 1). From 

Figure 12 it results that )H()QLD( II   ≤ )H()SL( II  , but taking into account the little 

value of difference )QLD()SL( II  , the dependence of difference )H()QLD( II   to M and n 

is close to that of difference )H()SL( II   to M and n (Figure 11). 
 

 
Figure 12. Dependence of )QLD()SL( II  to M and n. 

By disproportionality of solutions, the following preferences of APP methods occur: H ≻ QVLD ≻ LQVLD ≻ QLD ≻ LQLD ≻ {SL, VLD} ≻ ASL ≻ HH ≻ d’H ≻ QDLD; at n < 1015 
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(also, when M = 6 and n = 5), we have )VLD()SL( II  , and at n ≥ 1015, we have 

)VLD()SL( II  . 
 

8. Multi-aspectual comparisons of apportionment methods 

Qualitative and quantitative comparisons contribute to the selection of a suitable 

APP method in specific situations. Some characteristics of APP methods taken from sections 

4-7 are systematized in Table 8. It should be noted that the disproportionality of 

representation of each party in the decision is less than one mandate if the Quota rule is 

followed, and may be more than one mandate for some parties if it is not followed. 

In addition to Table 8, by not favoring of parties, the following preferences occur:  

H ≻ SL ≻ ASL ≻ HH ≻ d’H. 
 

Table 8 

Qualitative characteristics of some apportionment methods 

Method 

Following the Quota rule/ 

rating  

Immunity to paradoxes/

rating  

Not favoring 

parties 
Dispropor-

tionality 

rating lower upper total Alabama Population New state small large 

Hamilton yes/ 1-7 yes/ 1-4 yes/ 1-4 n = 2/ 7 n = 2/ 7 no/ 7 yes yes 1

D’Hondt yes/ 1-7 n = 2/ 11 n = 2/ 11 yes/1-4 yes/1-4 yes/1-4 yes no 10

Sainte-Laguë 3,2n / 8 3,2n / 7 3,2n / 6 yes/1-4 yes/1-4 yes/1-4 yes yes 6-7

Huntington-

Hill 
n = 2/ 11 n = 2/ 5 n = 2/ 10 yes/1-4 yes/1-4 yes/1-4 no yes 9

ASL n = 2/ 10 3,2n  /6 n = 2/ 9 yes/1-4 yes/1-4 yes/1-4 yes* yes 8

VLD n = 2/ 9 n = 2/ 9 n = 2/ 8 n = 2/ 10 n = 2/ 10 no/ 9 yes yes 6-7

QVLD yes/ 1-7 yes/ 1-4 yes/ 1-4 n = 2/ 8 n = 2/ 8 no/ 8 yes yes 2

LQVLD yes/ 1-7 n = 2/ 10 n = 2/ 7 n = 2/ 9 n = 2/ 9 no/ 10 yes no 3

QLD yes/ 1-7 yes/ 1-4 yes/ 1-4 3,2n / 5 3,2n / 5 n = 2/ 5 yes yes 4

LQLD yes/ 1-7 3,2n / 8 3,2n / 6 3,2n / 6 3,2n / 6 n = 2/ 6 yes no 5

QDLD yes/ 1-7 yes/ 1-4 yes/ 1-4 3,2n / 7 3,2n / 7 n = 2/ 7 3,2n  yes 11

* Except parties for which ai = 0. 
 

To mention that criteria of following the Lower quota and the Upper quota rules are 

auxiliary, the main, resultant, being the criterion of following the Quota rule (total). The last 

will be used in comparing the 11 APP methods. 

According to Table 8, none of the compared methods completely prevails over the 

others. But if to consider the other constraints too, such a prevalence exists in many cases. 

As such constraints used in practice are the mandatory of immunity to the three paradoxes 

and/or the allocation of minimum one mandate to each party (state). 

The Hamilton method yields to the other methods only in that it is not immune to 

the three paradoxes. So, if the immunity to the three paradoxes is not mandatory, the 

Hamilton method is the best one (the adapted Hamilton method, if the allocation of 

minimum one mandate to each party is required). 

Of the four methods that are immune to the three paradoxes, D’Hondt, Sainte-Laguë, 

Huntington-Hill and adapted Sainte-Laguë ones, the Sainte-Laguë method prevails upon 

the other three methods. So, if the immunity to the three paradoxes is mandatory but the 

allocation of a minimum number g > 0 of mandates to each party is not mandatory, the 

Sainte-Laguë method is the best. 
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Of the two methods that ensure the allocation of minimum one mandate to each 

party, the Huntington-Hill and the adapted Sainte-Laguë ones, the last method prevails 

upon the first by all criteria in Table 8. So, if the immunity to the three paradoxes and the 

allocation of minimum one (or more) mandate to each party are required, the adapted 

Sainte-Laguë method is the best. 

With reference to the VLD and five mixt methods, their disproportionality, except the 

QDLD one, differs slightly. However, a position apart is beheld by the QLD method. If not 

take the disproportionality into account, the QLD method prevails over all the other five 

methods by all other criteria of Table 8. Moreover, the non-immunity to the three paradoxes 

of the QLD method is considerably more rear (more than 2001000 times) than that of the 

Hamilton method (0% ≤ PP(QLD) ≤ 0.0061%, 0% ≤ PS(QLD) ≤ 0.0041%, 0 ≤ PA(QLD) ≤ 0.013%). 

So, the QLD method is nearly immune to the three paradoxes, is less disproportionate than 

the Sainte-Laguë one and is compliant with the Quota rule. 

For details on comparative analysis, in addition to the qualitative characteristics of 

Table 8, the quantitative characteristics, including that of Tables 1-7 and Figures 1-12, may 

be useful. 
 

9. Conclusions 

A few new main qualitative and quantitative characteristics of 11 apportionment 

methods have been determined and some known ones have been systemized. It refers to 

such characteristics of APP methods as: disproportionality of solutions, solutions’ 

compliance with the Quota rule, favoring of parties and the immunity to Alabama, 

Population and New state paradoxes (Sections 4-8). Formula (4) ensures the estimation of 

mathematical expectancy of Hamilton method apportionments’ disproportionality, the error 

not exceeding, in most cases met in practice, 0.05% mandates. 

By computer simulation (for initial data specified in Section 2 with concretizations 

and complementation in some cases described below), it was found that: 

1) for initial data {M = 101, 201, 501; n = 2, 3, 4, 5, 7, 10, 15, 20}, the mathematical 

expectancy of solutions’ disproportionality varies in the range (% mandates): 

a) 0.100  5.03 – for the Hamilton method; 

b) 0.100  5.06 - for the Sainte-Laguë and Quota linear divisor methods; 

c) 0.100  5.81 - for the adapted Sainte-Laguë method; 

d) 0.100  5.88 - for the Huntington-Hill method; 

e) 0.126  6.75 - for the d’Hondt method. 

2) the percentage of Quota rule violation varies in the range of: 

a) 0%  0.083% - for the Sainte-Laguë method; 

b) 0.0001%  5.61% - for the adapted Sainte-Laguë method, at 2 ≤ n ≤ M/2; 

c) 0.0002%  7.18% - for the Huntington-Hill method, at 2 ≤ n ≤ M/2; 

d) 2.69%  18.77% - for the d’Hondt method. 

3) the percentage of paradoxes occurrence for the Hamilton method varies in the 

range of: 

a) 2.56%  8.36% - for the Alabama paradox at δM = 1 and 2 < n < M – 1; 

b) 3.17%  8.46% - for the New state paradox at 2 ≤ n ≤ M/2 and Vn+1 a random 

value in the range [Q; QM/n]; 
c) 0.01%  4.65% - for the Population paradox at {b = 0.02, 0.1; d = 0.1, 0.3, 1} and 

2 < n < M – 1. 
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To be mentioned that the percentage of Quota rule violation when applying the 

Sainte-Laguë method is to a small extent influenced by the total number of seats, but it 

decreases strongly (over 400 times) with the increase of the number of states – from approx. 

0.045% at 4 states, up to 0.0001-0.0004% at 30 states. 

The performed comparative analysis shows the following preferences of APP 

methods: 

‐ by the disproportionality of solutions (with few exceptions between the SL and VLD 

methods),  

H ≻ QVLD ≻ LQVLD ≻ QLD ≻ LQLD ≻ {SL, VLD} ≻ ASL ≻ HH ≻ d’H ≻ QDLD; 

‐ by the percentage of compliance with the Quota rule (with exceptions described in 

Section 4), 

{H, QVLD, QLD, QDLD} ≻ LQLD ≻ SL ≻ LQVLD ≻ VLD ≻ ASL ≻ HH ≻ d'H; 

‐ by not favoring options (parties, etc.), H ≻ SL ≻ ASL ≻ HH ≻ d’H; 

‐ by the percentage of Alabama paradox,  

{SL, ASL, HH, d’H} ≻ LQLD ≻ QLD ≻ QDLD ≻ H ≻ QVLD ≻ LQVLD ≻ VLD; 

‐ by the percentage of New state paradox,  

{SL, ASL, HH, d’H} ≻ LQLD ≻ QLD ≻ QDLD ≻ H ≻ QVLD ≻ LQVLD ≻ VLD; 

‐ by the percentage of Population paradox, 

{SL, ASL, HH, d’H} ≻ LQLD ≻ QLD ≻ QDLD ≻ H ≻ QVLD ≻ LQVLD ≻ VLD. 

Based on these characteristics, it has been found that none of the 11 explored 

methods is overall preferable by each of the six characteristics-criteria. Of the 11 

investigated methods, only three or four are reasonable to use in specific areas: 

1) the Hamilton method (adapted Hamilton, if the allocation of minimum g ≥ 1 seats 

to each state is required), if the immunity to the three paradoxes is not 

mandatory; 

2) the Sainte-Laguë method and, may be, the Quota linear divisor one, if the 

immunity to the three paradoxes is required but the allocation of minimum one 

(or more) mandate to each state is not mandatory; 

3) the adapted Sainte-Laguë method, if the immunity to the three paradoxes and the 

allocation of minimum one (or more) mandate to each party are required. 

Also, the obtained quantitative characteristics allow estimating the extent to which 

each of the 11 explored apportionment methods corresponds to the need of a specific 

beneficiary. At the same time, they may be useful for the quantitative comparative analysis 

of methods, especially of their difference regarding the disproportionality of 

apportionments. 
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