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Purpose: The ionizing radiation imparted to patients during computed tomography exams is raising

concerns. This paper studies the performance of a scheme called dose reduction using prior image

constrained compressed sensing (DR-PICCS). The purpose of this study is to characterize the ef-

fects of a statistical model of x-ray detection in the DR-PICCS framework and its impact on spatial

resolution.

Methods: Both numerical simulations with known ground truth and in vivo animal dataset were

used in this study. In numerical simulations, a phantom was simulated with Poisson noise and with

varying levels of eccentricity. Both the conventional filtered backprojection (FBP) and the PICCS al-

gorithms were used to reconstruct images. In PICCS reconstructions, the prior image was generated

using two different denoising methods: a simple Gaussian blur and a more advanced diffusion filter.

Due to the lack of shift-invariance in nonlinear image reconstruction such as the one studied in this

paper, the concept of local spatial resolution was used to study the sharpness of a reconstructed im-

age. Specifically, a directional metric of image sharpness, the so-called pseudopoint spread function

(pseudo-PSF), was employed to investigate local spatial resolution.

Results: In the numerical studies, the pseudo-PSF was reduced from twice the voxel width in

the prior image down to less than 1.1 times the voxel width in DR-PICCS reconstructions when the

statistical model was not included. At the same noise level, when statistical weighting was used, the

pseudo-PSF width in DR-PICCS reconstructed images varied between 1.5 and 0.75 times the voxel

width depending on the direction along which it was measured. However, this anisotropy was largely

eliminated when the prior image was generated using diffusion filtering; the pseudo-PSF width was

reduced to below one voxel width in that case. In the in vivo study, a fourfold improvement in CNR

was achieved while qualitatively maintaining sharpness; images also had a qualitatively more uniform

noise spatial distribution when including a statistical model.

Conclusions: DR-PICCS enables to reconstruct CT images with lower noise than FBP and the

loss of spatial resolution can be mitigated to a large extent. The introduction of statistical mod-

eling in DR-PICCS may improve some noise characteristics, but it also leads to anisotropic spa-

tial resolution properties. A denoising method, such as the directional diffusion filtering, has been

demonstrated to reduce anisotropy in spatial resolution effectively when it was combined with

DR-PICCS with statistical modeling. © 2013 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4773866]
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I. INTRODUCTION

Exposure to ionizing radiation, such as x-rays used in com-

puted tomography (CT) scanners, has been shown to be a

potential mechanism of carcinogenesis. Even though the evi-

dence of cancer incidence at doses below 50 mSv is lacking

at the present date,1 it is a sage objective to reduce radiation

exposure as much as possible without sacrificing the diagnos-

tic information gained during medical imaging examinations.

To this end, a substantial amount of interest and research ef-

forts have been directed towards developing methods that op-

timally use the dose of ionizing radiation imparted to patients

during CT scans. In many cases, these approaches rest on a

reduction in x-ray tube current, which results in high image

noise. Thus, dose reduction can be achieved by reducing im-

age noise while maintaining image features with diagnostic

importance.

Most major CT scanner manufacturers now offer iterative

image reconstruction methods with their products. Some of

these techniques integrate a model of x-ray detection physics

into the reconstruction procedure. Such methods have been

shown to improve noise characteristics in many cases.2–10

However, one must also account for the effect on spatial reso-

lution. The spatial resolution properties of statistical tomo-

graphic image reconstruction algorithms have been studied

extensively.11, 12 It was demonstrated that the local impulse

response of images reconstructed using penalized likelihood

methods is spatially nonuniform and anisotropic when stan-

dard penalties are used. In other words, the sharpness of a

structure may vary if it is positioned in a different region or if
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it is oriented differently with respect to the object and scanner

geometry.

It was recently proposed to use an image reconstruction

framework called prior image constrained compressed sens-

ing (PICCS) (Ref. 13) to reduce radiation dose in CT. PICCS

was first proposed to enable view angle undersampling by in-

tegrating a prior image into the reconstruction procedure.13–24

This framework can also be applied to the CT data acquisi-

tions where the view angles are densely sampled but x-ray ex-

posure levels are considerably reduced. For brevity, this type

of PICCS applications has been referred to as dose reduc-

tion using PICCS (DR-PICCS).25, 26 In DR-PICCS, the prior

image is generated by a denoising post-processing method,

which usually results in a loss in spatial resolution. This low-

noise prior is then used together with the original projection

data in order to recover high spatial resolution using PICCS.

For low-exposure data acquisition and image reconstruc-

tion, it is anticipated that statistical modeling of x-ray detec-

tion may play a role in PICCS reconstruction in a way similar

to other well-known statistical image reconstruction methods.

In fact, PICCS has also been formulated in a statistical im-

age reconstruction framework in previous work.24, 27 The pur-

pose of this paper is to investigate the impact of statistical

modeling in DR-PICCS. In a preceding paper of this series,28

we investigated applications of PICCS in dynamic contrast-

enhanced CT. Specifically, we studied the impact of the sta-

tistical framework on: noise level and uniformity; noise power

spectrum; model-observer detectability; and image quality. In

the current paper, we aim to examine the impact of statisti-

cal modeling on spatial resolution properties in the context of

DR-PICCS.

Note that there is a fundamental difference between the

application discussed in this paper and those discussed in the

previous paper:28 the means to generate the prior image. In

contrast enhanced CT applications discussed in the previous

paper,28 the prior image was generated by averaging CT im-

ages over several time frames to generate a low-noise prior

image. In effect, a temporal filter is used. In contrast, in DR-

PICCS applications, the prior image is generated by spatially

filtering a high-noise image reconstructed from the exact same

projection dataset. In other words, the objective of DR-PICCS

is to restore spatial resolution from a low-noise low-spatial

resolution prior image. This fundamental difference poses dif-

ferent questions in terms of performance evaluation. Can DR-

PICCS recover high spatial resolution from a prior image with

a compromised sharpness? Is the local impulse response of

images reconstructed using PICCS with and without the sta-

tistical model anisotropic? If so, what methods that can be

employed to yield a more isotropic spatial resolution? Does

this behavior depend on the geometric shape of the object?

Does the local spatial resolution depend on the position rela-

tive to other structures of the object?

The paper is structured as follows. Section II briefly de-

scribes statistical image reconstruction. Section III introduces

the DR-PICCS formalism and some methods to denoise the

prior image. The methods and materials are presented in

Sec. IV, while the results are given in Sec. V. Finally,

Sec. VI presents the discussion and conclusions.

II. STATISTICAL IMAGE RECONSTRUCTION: A
BRIEF REVIEW

Statistical image reconstruction aims at modeling the

physics of projection data measurement. In the case of x-ray

CT, the detection process is primarily governed by Poisson

statistics. This was formulated into maximum a posteriori es-

timation (MAP) (Refs. 5, 9, and 29),

x̂ = argmax
x∈RMN

[L(n|x) + R(x)], (1)

where L(n|x) is the log likelihood of having count measure-

ments vector n ∈ R
Nproj ×1, given an M × N image vector

x ∈ R
MN×1. In the case of CT, the log likelihood can be ap-

proximated as5, 10, 30

L(n|x) = −
1

2
(y − Ax)TD(y − Ax), (2)

where D ∈ R
Nproj×Nproj is a diagonal matrix with the elements

of vector n on its diagonal. The notation (•)T indicates a ma-

trix transpose. Nproj is the number of projections acquired.

Note that this formulation assumes a bi-dimensional image

matrix. However, it is straight-forward to extend this formal-

ism to a three-dimensional image volume.

The function R(x) is a roughness penalty, which depends

only on a priori modeling of the image. The Bayesian inter-

pretation of this term is the prior probability distribution for

image objects. It allows one to incorporate information known

a priori about the object into the reconstruction procedure. In

this research, we deviate slightly from this strict statistical in-

terpretation and use the PICCS objective function as rough-

ness penalty.

III. DOSE REDUCTION USING PICCS (DR-PICCS)

PICCS was initially formulated as an extension of the com-

pressed sensing (CS) framework. CS theory stipulates that

if a signal can be made sparse under a known transforma-

tion, then the signal can be reconstructed exactly with over-

whelming probability from only few measurements.31–33 The

reconstruction is accomplished by selecting the sparsest sig-

nal which satisfies the measurements. In practice, this is done

using ℓ1 norm minimization

x̂ = argmin
x∈RMN

‖�x‖1 such that Ax = y, (3)

where x̂ is the reconstructed image, � is a sparsifying trans-

form, A is the system matrix that relates projection measure-

ments vector y = log
(

f
n

)

to image vector x. f is the incident

fluence per detector and n is the detected counts. The ℓ1 norm

is defined as ‖x‖1 =
∑

i |xi |.

In this context, the aim of PICCS is to take advantage a

prior image to promote sparsity of the image signal. A differ-

ence operation is used to this end

x̂ = argmin
x∈RMN

[α‖�1(x − xp)‖1 + (1 − α)‖�2x‖1]

s.t. Ax = y, (4)

Medical Physics, Vol. 40, No. 2, February 2013



021902-3 P. Thériault Lauzier and G.-H. Chen: Statistical PICCS (II): Dose reduction 021902-3

- =

FBP reconstruction (xFBP ) Denoised image (xp) Difference image (xFBP − xp)

- =

PICCS reconstruction (xPICCS) Denoised image (xp) Difference image (xPICCS − xp)

FIG. 1. Illustration of the components contained in the difference image x − xp : edges and noise. The noise component is not as sparse as the edge component.

The presence of edges in the difference images denotes that the loss in spatial resolution in xp is recovered in xFBP and xPICCS. Thus, noise is preferably mitigated

and edges are mostly preserved in images processed using DR-PICCS.

where xp is the prior image, �1 and �2 are sparsifying trans-

forms, and α ∈ [0, 1] is a scalar that controls the relative

weights to be allocated to the prior image and CS terms.

CS and PICCS are written above as constrained optimiza-

tion problems. In order to integrate the log likelihood function

from Eq. (2) in the PICCS framework, we write the recon-

struction problem as an unconstrained minimization24, 27

x̂ = argmin
x∈RMN

[α‖�1(x − xp)‖1 + (1 − α)‖�2x‖1

+
λ

2
(y − Ax)TD(y − Ax)]. (5)

To first order approximation, this framework is expected to

use information contained in the projection data optimally by

weighting the data according to their relative level of noise.

Throughout this paper, we refer to the implementation with

D = diag{n} as PICCS with statistical weighting, while we

refer to the implementation with D set to the identity matrix

as PICCS without statistical weighting.

In the current implementation, the sparsifying transform

used for both �1 and �2 is the image spatial gradient norm.

It is equivalent to the total variation (TV).23, 24, 30, 34–40 In CT

imaging, TV has favorable noise and artifacts mitigating prop-

erties but sometimes produce an image that lacks small and

low-contrast details.24

In contrast with many other applications of PICCS,13–24

the primary goal of DR-PICCS is not to enable undersam-

pled data acquisitions but rather to reduce image noise.25, 26

The enabling principle is an empirical property in PICCS: the

noise level of an image reconstructed with PICCS is deter-

mined to some extent by the noise level of the prior image.

Therefore, it is likely that the PICCS reconstruction frame-

work may also be used to reconstruct low-noise CT images

from high noise projection data. In this case, the prior image

can be generated by applying a denoising procedure to an im-

age produced by an analytic reconstruction algorithm, such

as the well-known filtered backprojection algorithms. When

a spatial filtering method is applied, the denoised prior im-

age typically shows a loss in spatial resolution. PICCS can

then be used to enforce consistency with the projection data

in order to recover spatial resolution. In DR-PICCS, the prior

image term in Eq. (5) favors the reconstruction of a sparse

difference image x − xp. This image contains two main high

spatial frequency signals: edges and noise. Since noise is not

inherently sparse, it is minimized preferably in images recon-

structed using DR-PICCS. This is illustrated in Fig. 1.

In DR-PICCS applications, one central question to be ad-

dressed is to what extent can DR-PICCS recover spatial reso-

lution from a blurred prior image. The answer to this question

may depend on whether or not statistical modeling is used. In

particular, the local impulse function may be anisotropic11, 12

provided that statistical modeling is used. However, the addi-

tional flexibility in generating the prior image in PICCS does

offer a new opportunity to eliminate or mitigate the challenge

of anisotropic spatial resolution. Namely, it is the hypothesis

in this paper that this type of anisotropy could be compen-

sated by generating the prior image using a directional denois-

ing method. In other words, one may be able to reconstruct a

DR-PICCS image with a relatively isotropic spatial resolution

even when the statistical modeling is applied. In this paper, a

directional diffusion filtering denoising method is studied; it

is briefly reviewed in Subsection III.A.
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III.A. Diffusion filtering

Anisotropic diffusion filtering is a type of image process-

ing method based on partial differential equations (PDE). It

aims at applying a spatially variant and anisotropic blur to an

image. This method is used in the research presented here to

reduce the noise level of the prior image used in DR-PICCS.

The PDE solved in this procedure can be formally expressed

as follows:41–44

∂x

∂t
= ∇ · (C∇x) , (6)

where x ∈ R
MN×1 is an M × N image, C ∈ R

2×2×MN is

called a diffusion tensor. The diffusion tensor C with elements

Cijk describes the amount of diffusion allowed in a particular

direction.

If we assume pixel sizes of �1 and �2 along horizontal

and vertical directions, Eq. (6) can be written more explicitly

as

∂xk

∂t
=

2
∑

i=1

∂

∂ri

2
∑

j=1

Cijk

∂xk

∂rj

, (7)

where the discrete horizontal spatial partial derivative is given

by

∂xk

∂r1

=
xk+1 − xk−1

2�1

(8)

and the discrete vertical spatial partial derivative is written as

∂xk

∂r2

=
xk+M − xk−M

2�2

. (9)

This discrete PDE can be solved using finite differences

methods.42–44 In this scheme, the image x is a function of a

“time” variable t. Different levels of diffusion are achieved by

solving the equation up to different times. This results in a

blurring of the image and a reduction in noise level.

Anisotropic diffusion is modeled by selecting for each spa-

tial position k of C a real symmetric matrix whose eigenvec-

tors describe the principal axes of diffusion. Each eigenvalue

describes the diffusion rate in the direction of the associated

eigenvector. When C is a factor of the 2 × 2 identity matrix

at a particular spatial location k, the diffusion can be consid-

ered locally isotropic. If this is the case over the whole image,

this scheme is equivalent to Perona–Malik diffusion.45 If the

diffusion is isotropic and spatially uniform—i.e., Cijk = Cijk′

for all k and k′ combinations—, the solution of Eq. (6) reduces

to a Gaussian blur.

The main interest of using this approach to denoise the

prior image is that it allows to select a blurring direction and

amplitude based on the local structure of the object via the

diffusion tensor. An interesting way of selecting the tensor is

based on the local gradient of the image. An edge-preserving

filter can be designed by allowing less diffusion across edges.

Such a filter can be achieved using the following diffusion

tensor:45

Cijk =

{

g([∇x]k) i = j

0 i �= j,
(10)

(a) Diffusion coefficient function g at constant γ = 0.5

δ
γ

δ

δ

δ

δ

(b) Diffusion coefficient function g at constant δ = 2

δ
γ

γ

γ

γ

γ

FIG. 2. Illustration of the diffusion coefficient function (g) from Eq. (12) for

different values of δ and γ (a) at constant γ = 0.5 and (b) at constant δ = 2.

where [∇x]k is the local gradient at voxel k,

g([∇x]k) =
1

√

1 +
(

||[∇x]k ||

β

)2
. (11)

Here β is a scalar constant. It plays the role of a normalization

and is selected based on the expected gradient of structures in

the image. We refer to function g as diffusion coefficient. A

more general expression is the following:

g([∇x]k) =
1

[

1 +
(

||[∇x]k ||

β

)δ
]γ , (12)

where δ and γ are scalar constants. Figure 2 shows the behav-

ior of the diffusion coefficient for different values of δ and γ .

These parameters enable one to select the amount of diffusion

to be allowed for a particular local gradient value. The param-

eter δ controls the length of the high diffusivity plateau in the

low-gradient region. It does not affect the maximum slope of

the curve substantially; the slope is mainly determined by γ .

Higher values of γ allow a steep transition from high to low

diffusivity.

As is shown later in this paper, when an isotropically

blurred image is used as prior image, the DR-PICCS frame-

work with statistical weighting results in images with a lower

spatial resolution in the direction perpendicular to high noise

projections. However, in statistical DR-PICCS, it is possi-

ble to design a diffusion tensor C that would minimize the

blurring of the prior image along a particular direction. The

combination of this anisotropically filtered prior image with
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TABLE I. Numerical phantom parameters.

Semimajor axes (mm) Attenuation coefficient (mm−1)

Phantom Horizontal Vertical Background ellipse Circle Incident fluence (photons/detector)

A 240 80

B 213 107 0.020 0.040 2.0 × 104

C 192 128

D 175 145

the statistical DR-PICCS reconstruction could lead to images

with relatively isotropic spatial resolution. Specifically, one

could minimize blurring along the direction of unit vector

[n]k ∈ R
2 at a particular voxel position k by using a tensor

with

g([∇x]k) =
1

[

1 +
(

[∇x]k ·[n]k
β

)δ
]γ . (13)

In the numerical study, we selected the direction of vec-

tor [n]k to be perpendicular to the projection with the highest

noise level intersecting voxel k. The value of parameters β, γ ,

and δ can be selected to offer more or less selectivity in terms

of the value of the directional gradient. This enables one to

optimize the diffusivity function g to minimize blurring along

one direction but maximize it along another.

IV. METHODS AND MATERIALS

This paper aimed to investigate the following hypotheses.

1. DR-PICCS enables a recovery of spatial resolution to a

large extent from a prior image with a degraded sharp-

ness.

2. The spatial resolution of images reconstructed using

DR-PICCS behaves differently depending on the in-

clusion of statistical weighting.

3. DR-PICCS shows an anisotropic spatial resolution

when statistical weighting is used.

4. The spatial resolution anisotropy depends on the

amount of eccentricity present in the object.

5. It is possible to design a denoising procedure for the

prior image that can mitigate the spatial resolution

anisotropy.

A theoretical analysis of these hypotheses would be very

challenging. In this paper, we explored these issues exper-

imentally using numerical simulations. This ensured that a

ground truth was available for evaluation purpose. To eval-

uate the applicability of the proposed method in a real clinical

situation, it is also applied to in vivo animal experimental data.

IV.A. Datasets

IV.A.1. Numerical simulations

The numerical phantom used in this study was constituted

of a large elliptical disc containing a small circular disc. Sev-

eral levels of eccentricity were simulated for the background

ellipse. The phantom parameters are presented in Table I. The

attenuation of the background ellipse was selected to simulate

soft tissue, while that of the circular structure was selected to

simulate bone. The studies thus examined a high contrast situ-

ation, relevant for an evaluation of spatial resolution. Poisson

distributed noise was added to each projection datum. Four

hundred and forty-three projections were simulated for each

of 492 view angles equally distributed over an angular range

of 360◦. In order to mitigate the noise in the spatial resolu-

tion measurements, 40 different noise instances were simu-

lated for each of the four phantoms. An image matrix size of

512 × 512 with a pixel dimension of 1 mm2 was used for the

reconstructions.

The images were reconstructed using FBP and DR-PICCS

with and without statistical weighting. Two methods were

used to produce the prior images: Gaussian blurring and dif-

fusion filtering. The Gaussian blur was applied with a width

parameter of 2 mm—equivalent here to the width of 2 pixels.

The diffusion filtering was applied using the tensor defined

in Eq. (13) with β = 0.007, δ = 2, and γ = 20. In order to

illustrate the behavior of the filter in a simple case, the vec-

tor n was set to be vertical such that the blur be minimized

for edges with a strong vertical gradient. The diffusion was

applied with a temporal step size of 0.05 for 50 iterations,

i.e., up to t = 2.5. This set of parameters is representative

choice of values and was not obtained by a formal optimiza-

tion procedure. An exploration of the parameter space may

be an interesting research topic but is out of the scope of this

paper.

IV.A.2. In vivo datasets

The projection dataset used for this study was acquired in

vivo in a porcine model. The scan was approved by the In-

stitutional Animal Care and Use Committee (IACUC) at the

University of Wisconsin–Madison. The animal was a 59 kg

male swine. The mean heart rate of the swine was approxi-

mately 68 beats per minute. The scan was performed using a

64-slice GE Discovery CT scanner (GE Healthcare, Wauke-

sha, WI) at a tube current of 50 mA, tube potential of 120 kV,

and a gantry rotation period of 0.4 s. A short-scan angular

range of 234.0◦ was used. Projection line integral data and

the corresponding counts for the statistical weight D were ob-

tained using the proprietary software provided by the vendor.

Images were reconstructed from the in vivo dataset using

FBP, in addition to DR-PICCS with and without the statis-

tical model. The prior image employed in both versions of
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DR-PICCS was generated by denoising the FBP image

dataset using diffusion filtering. The statistical weights of ma-

trix D were set to approximate count data obtained with the

aid of the scanner’s manufacturer. Because of the unavailabil-

ity of a reference image and because of the difficult use of

quantitative metrics, the evaluation of the in vivo dataset was

done on a qualitative basis.

The noise level was matched between all implementations

of DR-PICCS by reconstructing a series of images at differ-

ent values of the data consistency parameter λ. The CNR was

selected to be about 22 in the dorsal region of the subject for

all methods used.

IV.B. Evaluation metrics

IV.B.1. Noise level

The noise standard deviation was measured over pixels

within a region of interest (ROI) in an area with a uniform

attenuation coefficient. In this case,

σROI =

√

1

NROI − 1

∑

k∈ROI

(xk − μROI)
2, (14)

where

μROI =
1

NROI

∑

k∈ROI

xk, (15)

and NROI is the number of pixels contained within the ROI.

FBP Gaussian blur Diffusion filter

(a) Processed images

(b) Diffusion coefficient map

FIG. 3. (a) shows a reconstruction of numerical phantom A using FBP. De-

noised images using the Gaussian blur and the diffusion filter are also shown.

These are used as prior images in DR-PICCS. The display range was set

to [0.000, 0.045] mm−1. The noise level of both denoised images is within

3% calculated as
2|σ1−σ2|
σ1+σ2

. In (b), a map of the diffusion coefficient g from

Eq. (13) is shown with display range [0, 1].

IV.B.2. Spatial resolution

The potentially anisotropic behavior in spatial resolution

requires the sharpness to be measured at different angles.

We fitted the intensity profile along several edges with the

point spread function corresponding to a Gaussian blur. We

extracted the width of the corresponding blurring function,

which we refer to as the pseudo-PSF width.23, 24 This metric

can be measured locally in the image and can be used to eval-

uate the blurring of structures along several directions.

Specifically, for an image under study, x with dimension M

× N, the blur was quantified as follows:

1. Select a 1D linear segment ℓ through the object of in-

terest in the image.

2. Solve the least squares problem

min
b∈R,h∈R

∑

i∈ℓ

(

xi − hGℓ
b[xref ]i

)2
,

where i is the position in the image matrix, and h is

a multiplicative factor. The blurred image, Gℓ
b[xref ] ∈

(a) DR-PICCS w/o statistical model

λ

(b) DR-PICCS with statistical model

λ

FIG. 4. Plots of the average noise standard deviation measured in images

reconstructed using DR-PICCS without (a) and with (b) the statistical model

as a function of the data consistency parameter λ [Eq. (5)]. Each plot shows

curves for each prior image processing methods. All measurements were per-

formed for phantom A. The image above the plots shows the ROI where the

standard deviation was measured.
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R
MN×1, is the convolution of the reference image with

a normalized Gaussian function of width b. The image

at 2D position (m,n) is

Gℓ
b[x]m+nM =

∑

j

∑

k

{

xk+jM

1

2πb2

× exp

[

[(k − m)�1]2

2b2

]

× exp

[

[

(j − n)�2

]2

2b2

]}

,

where �1 and �2 are the voxel dimension along the

image horizontal and vertical axes. The value of b that

solve the least squares problem above is used as met-

ric of image sharpness. It is referred to as pseudo-PSF

width for the rest of this paper.

An important point that must be emphasized is how to un-

derstand the width of the pseudo-PSF. The metric measures

the relative blur with respect to a reference image. In the event

where the image under study and the reference image do not

differ in sharpness, the pseudo-PSF width takes a value at

or below the voxel dimension. This observation provides a

condition for a local match in spatial resolution between two

images. Note that such a value could also be obtained if the

image under study is sharper than the reference image.

In the numerical phantom evaluation presented in this pa-

per, the reference image was reconstructed using FBP from

a noiseless projection dataset. Thus, the evaluation using the

pseudo-PSF width may only provide information about the

amount of blur relative to the spatial resolution of the FBP

reconstruction. It is possible but unlikely that even below the

pixel width, the pseudo-PSF width retained some accuracy.

This may have resulted in an anisotropic shape of the pseudo-

PSF below the pixel width. However, such minute differences

are not substantial. In this situation, the spatial resolution is

considered to be matched with that of the reference image.

IV.C. Reconstruction algorithm implementation

The FBP and PICCS algorithms were implemented using

C++ with Intel Integrated Performance Primitives (IPP) li-

braries (Intel Corporation, Santa Clara, CA). The nonlinear

conjugate gradient algorithm was used to perform the mini-

mization of the PICCS objective function.46 The specifics of

the unconstrained implementation of PICCS were described

in details in the literature.24

The Gaussian blur and diffusion filter were implemented

using the numerical package MATLAB (MathWorks, Nattick,

MA). The diffusion filtering scheme used here was described

in the literature.42–44

V. RESULTS

V.A. Numerical simulations: Prior images

The projection datasets corresponding to each of the 40

simulated noise instances were processed independently. An

example of the prior images denoised using a Gaussian blur

and the diffusion filter are presented in Fig. 3 for phantom A.

One can appreciate the mitigation in noise level achieved by

both methods; the CNR was 2.3 in the FBP image and ap-

proximately 24 in denoised images. The noise level of both

denoised images was within 3% calculated as 2|σ1−σ2|

σ1+σ2
where
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FIG. 5. DR-PICCS reconstructions and associated pseudo-PSF width at various angles. The reconstructions shown here all had a CNR of approximately 20 in a

ROI along the longest axis of the ellipse. The FBP reconstruction of this dataset [Fig. 3(a)] had a CNR of 2.3. The display range was set to [0.000 0.045] mm−1

for all images. The voxel width was 1 mm. Images with a pseudo-PSF width at or below the voxel width are said match the sharpness of the reference noiseless

FBP image.
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σ 1 and σ 2 correspond to the noise standard deviation mea-

sured in each image in the ROI shown in Fig. 4.

While the noise level was similar in both denoised images,

this was not the case with spatial resolution. The Gaussian

blurred image showed a considerable loss at the edges of the

circular structure at the center of the phantom. In the diffusion

filtered image, the same structure remained sharp in the ver-

tical direction but showed some blurring along the horizontal

axis. A map of the diffusion coefficient is shown in Fig. 3(d).

On this map, darker regions are synonymous with a mitigated

blurring. It is important to note that sharper edges are associ-

ated with an increase in noise in the surrounding region.

V.B. Numerical simulations: Noise level dependence
on data consistency parameter

To characterize PICCS at a number of specific CNR levels,

a series of values of the data consistency parameter λ from

the PICCS objective function were used to reconstruct inde-

pendent images. The dependence of the noise level on λ is

illustrated in Fig. 4. DR-PICCS showed a similar noise level

dependence on λ both with and without statistical weighting.

However, the values of λ for each implementation were not

matched at any particular CNR. This was expected since the

matrix D = diag{n} was not normalized.

V.C. Numerical simulations: DR-PICCS without
statistical weighting

The processed prior images were used in the DR-PICCS

framework. The images thus generated were compared in

terms of spatial resolution at a constant noise level, for each

of the methods used to denoise the prior image. Images re-

constructed at a constant CNR of approximately 20 using

DR-PICCS without statistical weighting are presented in the

left column of Fig. 5. This figure also presents polar plots of

the pseudo-PSF width measured along segments at various

angles.

One can observe that the spatial resolution in images re-

constructed using DR-PICCS without statistical weighting is

largely restored and isotropic. The isotropy is observed for

both Gaussian blurred and diffusion filtered prior images. At

a CNR of 20, only a small relative loss in spatial resolution,

quantified by a pseudo-PSF width of about 1.1 mm, was ob-

served when the prior image was generated using the Gaus-

sian blur. The pseudo-PSF was below 1 mm when the prior

image was generated using the diffusion filter. The pseudo-

PSF width is at or below 1 mm—the voxel width—for all

cases where the CNR was 13.5 or lower. In these cases,

the spatial resolution can be said to match that of the FBP

reconstruction.

V.D. Numerical simulations: DR-PICCS
with statistical weighting

When statistical weighting is introduced in DR-PICCS, a

certain amount of spatial resolution anisotropy appeared in

DR-PICCS images with a Gaussian blurred prior image. This

behavior is shown in the right column of Fig. 5. At a CNR of

20, the pseudo-PSF width in DR-PICCS reconstructed images

varied between 1.5 and 0.75 times the voxel width, depending

on the direction along which it was measured. However, this

anisotropy was largely eliminated when the prior image was

generated using diffusion filtering. In that case, the pseudo-

PSF width remained under 1 mm, signifying a match in spatial

resolution with the FBP reconstruction.

V.E. Numerical simulations: Eccentricity dependence

Another interesting question is how the shape of the ob-

ject impacts the spatial resolution properties in DR-PICCS.

Figures 6–9 show reconstructions of phantoms A, B, C, and

D each with a different eccentricity. The CNR was constant at

approximately 20 measured in the ROI shown in Fig. 4. These

phantoms are constituted of a large ellipse with a semimajor

axis ratios of 1
3
, 1

2
, 2

3
, or 5

6
, respectively.
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FIG. 6. Pseudo-PSF width at various angles for phantom A. The reconstruc-

tions used for these measurements all had a CNR of approximately 20. The

voxel width was 1 mm. Images with a pseudo-PSF width at or below the

voxel width are said to match the sharpness of the reference noiseless FBP

image.
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Highly eccentric phantoms, such as phantom A, produce

a large difference in the signal to noise ratio of vertical and

horizontal projections; this effect is much less significant for

more circular objects. This heteroscedasticity and the low

count level in the horizontal projections may result in noise-

induced streaks. These can be mitigated when the statistical

model is introduced in DR-PICCS. However, this improve-

ment comes at the cost; as discussed in Sec. V.D, the spatial

resolution becomes anisotropic in images that used a Gaus-

sian blurred prior image. It is possible to observe this be-

havior for all levels of eccentricity. In effect, the solid curve

on the pseudo-PSF polar plots of Figs. 6–9 (corresponding

to the DR-PICCS reconstructions with statistical weighting

and a Gaussian blurred prior image) is consistently above

the voxel width in the direction perpendicular to high noise

projections.

To mitigate the anisotropy, the prior image was gener-

ated using diffusion filtering. In that case, both DR-PICCS

with and without statistical weighting produced images with
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FIG. 7. Pseudo-PSF width at various angles for phantom B. The reconstruc-

tions used for these measurements all had a CNR of approximately 20. The

voxel width was 1 mm. Images with a pseudo-PSF width at or below the

voxel width are said to match the sharpness of the reference noiseless FBP

image.
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FIG. 8. Pseudo-PSF width at various angles for phantom C. The reconstruc-

tions used for these measurements all had a CNR of approximately 20. The

voxel width was 1 mm. Images with a pseudo-PSF width at or below the

voxel width are said to match the sharpness of the reference noiseless FBP

image.

a pseudo-PSF equal to or below the voxel width for all ori-

entations studied. This is clearly shown on the polar plots of

Figs. 6–9. This result suggests that the spatial resolution of

DR-PICCS matches that of the FBP reconstruction in these

cases.

Another interesting observation about Figs. 6–9 is that

the ability of DR-PICCS to recover spatial resolution im-

proves for less eccentric phantoms when no statistical model

is used. The mechanism leading to this phenomenon is sim-

ple. More circular phantoms have projection data with a lesser

maximum noise level. This enables the selection of a greater

value of the data consistency parameter λ for the CNR to be

maintained constant. This greater value of λ results in more

consistency with the data and thus in an improved spatial

resolution.

Interestingly, the recovery ability does not improve for

more circular phantoms when the statistical model is in-

cluded. In that case, the projection data of rays that traversed

the center of the phantom were overall allocated a much lesser

weight than those having passed through the edge. The ability
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FIG. 9. Pseudo-PSF width at various angles for phantom D. The reconstruc-

tions used for these measurements all had a CNR of approximately 20. The

voxel width was 1 mm. Images with a pseudo-PSF width at or below the

voxel width are said to match the sharpness of the reference noiseless FBP

image.

to correct blurring at the center of the phantom is, therefore,

mitigated when statistical weighting is used. This demon-

strates a limitation of statistical image reconstruction. How-

ever, in the context of DR-PICCS, this situation can be im-

proved by using a prior image reconstructed using diffusion

filtering or by forgoing the statistical weights altogether. As

shown above, the pseudo-PSF width in these cases is indeed

near or below the voxel width of 1 mm, which signifies a

match in spatial resolution with the reference FBP image.

V.F. Numerical simulations: Position dependence

The evaluations presented in Secs. V.A–V.E were all de-

signed with the circular object at the center of the phantom. In

the following experiments, three more positions were investi-

gated: along the vertical (Fig. 10), horizontal (Fig. 11), and

diagonal (Fig. 12) axes. The background ellipse was that of

phantom A. As was done in previous experiments, the pseudo-

PSF width was again measured at different orientations and

the results were plotted in Figs. 10–12.
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FIG. 10. Pseudo-PSF width at various angles for phantom A with circle off-

center along the vertical axis. The reconstructions used for these measure-

ments all had a CNR of approximately 20. The voxel width was 1 mm. Im-

ages with a pseudo-PSF width at or below the voxel width are said to match

the sharpness of the reference noiseless FBP image.

Overall, the results at these positions agree with those ob-

tained when the circular structure was at the center of the

phantom. Namely, the images reconstructed using DR-PICCS

with the statistical model and a Gaussian blurred prior image

show an anisotropic spatial resolution. This is corrected to a

large extent by using the diffusion filtering method to gener-

ate the prior image. Note however that when the circle was

located on the diagonal axis (Fig. 12), the direction of the

peak pseudo-PSF width was slightly shifted in the clockwise

direction.

V.G. In vivo datasets

The projection dataset from the animal model was pro-

cessed using FBP. The FBP images were denoised using dif-

fusion filtering to produce the prior image used in DR-PICCS.

DR-PICCS reconstructions were performed with and without

statistical modeling. These four images are shown in Fig. 13.

Two enlarged regions are provided to allow one to appreciate
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FIG. 11. Pseudo-PSF width at various angles for phantom A with circle off-

center along the horizontal axis. The reconstructions used for these measure-

ments all had a CNR of approximately 20. The voxel width was 1 mm. Images

with a pseudo-PSF width at or below the voxel width are said to match the

sharpness of the reference noiseless FBP image.

the level of detail and noise in the reconstructions. The CNR

measured in the dorsal region of the FBP image was 5.6; in

the prior image, it was 57; and for both DR-PICCS images, it

was 22.

The FBP image [Fig. 13(a)] shows a high level of noise as

expected from the tube current used for the acquisition. It is

particularly noticeable in the soft tissue of the dorsal region

near the spine. The texture and some of the structures of the

lungs are also difficult to appreciate due to the high level of

noise. The diffusion filtered image [Fig. 13(b)] has a much

mitigated noise level with respect to the FBP image. This

reduction in noise improves the detectability of low-contrast

soft tissue structures in the dorsal region. However, the reduc-

tion in noise comes at the price of a loss in spatial resolution

for small, low-contrast structures. This is particularly visible

in the lungs where small blood vessels and airways show a

clear loss in sharpness.

The DR-PICCS images reconstructed without the statisti-

cal model showed an improvement in the sharpness of struc-
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FIG. 12. Pseudo-PSF width at various angles for phantom A with circle off-

center along a diagonal axis. The reconstructions used for these measure-

ments all had a CNR of approximately 20. The voxel width was 1 mm. Im-

ages with a pseudo-PSF width at or below the voxel width are said to match

the sharpness of the reference noiseless FBP image.

tures with respect to the prior image [Fig. 13(c)]. This was ex-

pected from the results of the numerical studies. One can also

notice the introduction of structured noise in this DR-PICCS

image. This is reflected in the noise power spectrum as was

demonstrated in the first publication of this series.28 All pro-

jections are weighted equally in this reconstruction scheme,

which means that high noise data are allocated the same level

of confidence as their low-noise counterparts. The attempt to

recover spatial resolution by enforcing consistency with the

data thus results in an increase in noise particularly in regions

corresponding to photon-starved projections.

Finally, the DR-PICCS images reconstructed using the sta-

tistical model also showed an improvement in spatial resolu-

tion with respect to the prior image. Again this behavior is

consistent with the numerical phantom study. In this case,

the noise in the image is less structured and less affected

by the presence of high noise projections. This is explained

by the lower relative weight given to high noise projections in

the reconstruction procedure. It is possible to notice that soft
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(a) FBP reconstruction

(b) Prior image denoised using diffusion filtering

(c) DR-PICCS reconstruction without statistical model

(d) DR-PICCS reconstruction with statistical model

FIG. 13. Reconstructions of the animal model dataset acquired in vivo. Three regions are shown: whole animal (left), spine and dorsal area (center), and lung

(right). The display window was set to [−1000, 900] HU.

tissue structure in the dorsal region near the spine is more

easily detected when the statistical model is used. This is

consistent with the results from the first publication of this

series.

Note that the presence or not of anisotropic spatial resolu-

tion is not observable for this dataset. This is a consequence

of the relatively low level of eccentricity in the shape of the

object, as well as the use of diffusion filtering to produce the

prior image.

VI. DISCUSSION AND CONCLUSIONS

VI.A. Limitations

The numerical studies were limited in a few regards. For

instance, neither a bow-tie filter nor tube current modulation

were simulated. Both of these methods enable an equaliza-

tion of the x-ray flux incident on the detector. This could re-

sult in less heteroscedastic projection data and thus may re-

duce the benefits of statistical modeling. It is also likely that
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the anisotropy in the spatial resolution be mitigated in that

case. Furthermore, the elliptical phantoms that were used led

to a difference in x-ray fluence between the vertical and hor-

izontal axes only. This explains in part the adequate perfor-

mance of the single-direction diffusion filter that was used

to generate the prior image. It is possible that such a fil-

ter may not perform as well for more general objects. How-

ever, in many clinical situations, projections with low photon

counts are often concentrated along a particular orientation. In

such cases, the single-direction diffusion filter is expected to

perform well.

Another potential limitation of the numerical studies is that

only Poisson noise was simulated. Other factors such as elec-

tronic noise and scatter were not included. This should be kept

in mind when comparing the results of the numerical and in

vivo studies.

The in vivo study from a swine projection dataset also had

some limitations. The morphology of the swine—namely, a

relatively cylindrical thorax—differs from that of humans. As

was demonstrated in the numerical studies, more circular ob-

jects are less affected by spatial resolution anisotropy. It is,

therefore, possible that a human dataset may display this ef-

fect to a greater extent.

VI.B. Conclusions

Several hypotheses were investigated in this study. It was

shown that DR-PICCS may enable a fourfold reduction in

noise and may recover spatial resolution to a large extent from

a prior image with a degraded sharpness. However, the spatial

resolution of images reconstructed using DR-PICCS behaves

differently depending on the inclusion of statistical weight-

ing. It was demonstrated that the introduction of such a model

slightly limits the ability of the algorithm at correcting blur-

ring present in the prior image. Furthermore, the use of the

statistical model results in images with anisotropic spatial res-

olution. However, the anisotropy can be largely mitigated by

using a specially designed denoising method to produce the

prior image. In this work, a diffusion filtering scheme was

used to this end. It is possible that other methods may provide

similar advantages.

The method described in this paper could be applied to

several clinical situations where low dose and high spa-

tial resolution are necessary. In particular, the application

of DR-PICCS in virtual colonoscopy is currently being

investigated.

While this study was conducted in the context of DR-

PICCS, its conclusions may have wider implications for sta-

tistical image reconstruction (SIR). In addition to improving

scanner hardware and optimizating scanning protocols, SIR

is often touted as the ultimate mean of optimizing dose in

CT. As shown in this research and in Refs. 11 and 12, the

inclusion of a statistical model in the reconstruction proce-

dure may, however, come at the price of anisotropic or de-

graded spatial resolution. In the future, this should be kept

in mind when evaluating the various iterative reconstruc-

tion algorithms now being packaged with commercial CT

scanners.
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