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Abstract

The quantum group SUq(ℓ + 1) has a canonical action on the odd dimensional sphere

S2ℓ+1
q . All odd spectral triples acting on the L2 space of S2ℓ+1

q and equivariant under this

action have been characterized. This characterization then leads to the construction of an

optimum family of equivariant spectral triples having nontrivial K-homology class. These

generalize the results of Chakraborty & Pal for SUq(2).
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1 Introduction

Noncommutative differential geometry, which more commonly just goes by the name noncom-

mutative geometry, is an extension of noncommutative topology and was initially developed in

order to handle certain spaces like the leaf space of foliations or duals of groups whose topology

or geometry are difficult to study using machinery available in classical geomtry or topology.

As the subject developed, more and more examples were found that are further away from

classical spaces but can be handled by noncommutative geometric methods.

For quite sometime though, it was commonly believed that quantum groups or their ho-

mogeneous spaces, which are rather far removed from classical manifolds, are not covered by

the formalism of noncommutative geometry. This notion changed with ([2]), where the authors

treated the case of the quantum SU(2) group and found a family of spectral triples acting on its

L2-space that are equivariant with respect to its natural (co)action. This family is optimal, in

the sense that given any nontrivial equivariant Dirac operator D acting on the L2 space, there

exists a Dirac operator D̃ belonging to this family such that signD is a compact perturbation

of sign D̃ and there exist reals a and b such that

|D| ≤ a+ b|D̃|.
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Later Dabrowski et al [13] constructed another equivariant spectral triple for SUq(2) on two

copies of the L2 space, which was shown in [4] to be equivalent to a direct sum two spectral

triples constructed in [2]. Equivariant triples for the two dimensional Podles spheres were

constructed in [11] and [12]. In a more recent paper ([10]), D’Andrea et al gave a construction

of an equivariant spectral triple for the quantum four dimensional spheres.

Our aim in the present paper is to look for higher dimensional counterparts of the spectral

triples found in [2]. We first formulate precisely what one means by an equivariant spectral

triple in a general set up. We then use a combinatorial method, implicitly used in [2] and [3], to

characterize completely all odd spectral triples acting on the L2 space of the odd dimensional

sphere S2ℓ+1
q (see section 3 for the description) and equivariant under the action of the SUq(ℓ+1)

group for all ℓ > 1. This also leads to the construction of an optimum family of equivariant

nontrivial (2ℓ + 1)-summable odd spectral triples sharing all the properties of the triples for

SUq(2) in [2].

One should mention in this context that the construction by Hawkins & Landi ([14]) does

not deal with equivariance, and more importantly, they produce a (bounded) Fredholm module,

not a spectral triple, which is essential for determining the smooth structure, giving a metric

on the state space and also help in computing the index map through a local Chern character.

The paper is organised as follows. In the next section, we will describe the combinatorial

method that was earlier used implicitly in [2] and [3]. We also formulate the notion of equiv-

ariance. This has been done using the quantum group at the function algebra level rather than

passing on to the quantum universal envelopping algebra level. In section 3, we describe the

C∗-algebra of continuous functions on the odd dimensional quantum spheres and state some of

their relevant properties. In section 4, we briefly recall the quantum group SUq(ℓ+ 1) and its

representation theory. In particular, we describe a nice basis for the L2 space and study the

Clebsch-Gordon coefficients. These are then used to describe the action by left multiplication

on the L2 space explicitly. In section 5, we give a description of the L2 space of the sphere and

give a natural covriant representation on it. In the last section, we give a precise characteri-

zation of the singular values and of the sign, which helps us to produce an optimal family of

equivariant Dirac operators, extending the results of [2] in the present case.

2 Preliminaries

2.1 Equivariance

Suppose G is a compact group, quantum or classical, and A is a unital C∗-algebra. Assume

that G has an action on A given by τ : A → A⊗C(G), so that (id⊗∆)τ = (τ ⊗ id)τ , ∆ being

the coproduct. In other words, we have a C∗-dynamical system (A, G, τ).

Definition 2.1 A covariant representation (π, u) of (A, G, τ) consists of a unital *-representation
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π : A → L(H), a unitary representation u of G on H, i.e. a unitary element of the multiplier

algebra M(K(H) ⊗ C(G)) such that they obey the condition (π ⊗ id)τ(a) = u(π(a) ⊗ I)u∗ for

all a ∈ A.

Definition 2.2 Suppose (A, G, τ) is a C∗-dynamical system. An odd G-equivariant spec-

tral data for (A, G, τ) is a quadruple (π, u,H,D) where

1. (π, u) is a covariant representation of (A, G, τ) on H,

2. π faithful,

3. u(D ⊗ I)u∗ = D ⊗ I,

4. (π,H,D) is an odd spectral triple.

2.2 The general scheme

Let G be a graph and (V1, V2) be a partition of the vertex set. We say that (V1, V2) admits an

infinite ladder if there exist infinite number of disjoint paths each going from a point in V1

to a point in V2. Here two paths are disjoint means that the set of vertices of one does not

intersect the set of vertices of the other.

Suppose H is a Hilbert space, and D is a self-adjoint operator on H with compact resolvent.

Then D admits a spectral resolution
∑

γ∈Γ dγPγ , where the dγ ’s are all distinct and each Pγ

is a finite dimensional projection. Assume now onward that all the dγ ’s are nonzero. Let

c be a positive real. Let us define a graph Gc as follows: take the vertex set V to be Γ.

Connect two vertices γ and γ′ by an edge if |dγ − dγ′ | < c. Let V + = {γ ∈ V : dγ > 0} and

V − = {γ ∈ V : dγ < 0}. This will give us a partition of V . This partition has the important

property that (V +, V −) does not admit an infinite ladder. This is easy to see, because if there is

a path from γ to δ and dγ > 0, dδ < 0, then for some α on the path, one must have dα ∈ [−c, c].

Since the paths are disjoint, it would contradict the compact resolvent condition. We will call

such a partition a sign-determining partition.

We will use this knowledge about the graph. We start with a self-adjoint operator with

discrete spectrum. First choose a basis that diagonalizes the operatorD. Next we use the action

of the algebra elements on the basis elements of H and the boundedness of their commutators

with D. This gives certain growth restrictions on the dγ ’s. These will give us some information

about the edges in the graph. We exploit this knowledge to characterize those partitions (V1, V2)

of the vertex set that are sign-determining, i. e. do not admit any infinite ladder. The sign of

the operator D must be of the form
∑

γ∈V1
Pγ −

∑
γ∈V2

Pγ where (V1, V2) is a sign-determining

partition. Of course, for a given c, the graph Gc may have no edges, or too few edges (if the

singular values of D happen to grow too fast), in which case, we will be left with too many
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sign-determining partitions. Therefore, we would like to characterize those partitions that are

sign-determining for all sufficiently large values of c.

In general the scheme outlined above will be extremely difficult to carry out, as the action

of the algebra elements with respect to the basis that diagonalizes D may be quite complicated,

and therefore using boundedness of commutator conditions will in general be very difficult. This

is where equivariance plays an extremely crucial role. It gives us a nice basis that diagonalizes

D, so that the boundedness of commutator conditions are simpler and the subsequent steps

become much more tractable.

3 The odd dimensional quantum spheres

Let q ∈ [0, 1]. The C∗-algebra Aℓ ≡ C(S2ℓ+1
q ) of the quantum sphere S2ℓ+1

q is the universal

C∗-algebra generated by elements z1, z2, . . . , zℓ+1 satisfying the following relations (see [15]):

zizj = qzjzi, 1 ≤ j < i ≤ ℓ+ 1,

ziz
∗
j = qz∗j zi, 1 ≤ i 6= j ≤ ℓ+ 1,

ziz
∗
i − z∗i zi + (1 − q2)

∑

k>i

zkz
∗
k = 0, 1 ≤ i ≤ ℓ+ 1,

ℓ+1∑

i=1

ziz
∗
i = 1.

The K-theory groups for these algebras were computed in [23] and [15].

Proposition 3.1 ([23],[15]) K0(Aℓ) = K1(Aℓ) = Z.

The group SUq(ℓ + 1) has an action on S2ℓ+1
q . Before we describe the action, let us recall

the definition of the quantum group SUq(ℓ+1). The C∗-algebra C(SUq(ℓ+1)) is the universal

C∗-algebra generated by {uij : i, j = 1, · · · , ℓ+ 1} obeying the relations:

∑

k

u∗kiukj = δijI,
∑

k

uiku
∗
jk = δijI

∑

ki’s distinct

(−q)I(k1,k2,··· ,kℓ+1)uj1k1 · · · ujℓ+1kℓ+1
=





(−q)I(j1,j2,··· ,jℓ+1) ji’s distinct

0 otherwise

where I(k1, k2, · · · , kℓ+1) is the number of inversions in (k1, k2, · · · , kℓ+1). The group laws are

given by the folowing maps:

∆(uij) =
∑

k

uik ⊗ ukj (Comultiplication)

S(uij) = u∗ji (Antipode)

ǫ(uij) = δij (Counit)
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The map

τ(zi) =
∑

k

zk ⊗ u∗ki

extends to a *-homomorphism τ from Aℓ into Aℓ⊗C(SUq(ℓ+1)) and obeys (id⊗∆)τ = (τ⊗id)τ .

In other words this gives an action of SUq(ℓ+ 1) on Aℓ.

4 Preliminaries on SUq(ℓ + 1)

Our next job will be to get a description of the covariant representation of the system (Aℓ, SUq(ℓ+

1), τ) on L2(S
2ℓ+1
q ). For this we need a few facts on the representation theory of SUq(ℓ+1). In

the first subsection we describe an important indexing of the basis elements of the representa-

tion space of the irreducibles. Then we describe the Clebsch-Gordon coefficients and compute

certain estimates. In the last subsection, we write down explicitly the left multiplication oper-

ator on L2(SUq(ℓ+ 1)).

4.1 Gelfand-Tsetlin tableaux

Irreducible unitary representations of the group SUq(ℓ + 1) are indexed by Young tableaux

λ = (λ1, . . . , λℓ+1), where λi’s are nonnegative integers, λ1 ≥ λ2 ≥ . . . ≥ λℓ+1 (Theorem 1.5,

[24]). Write Hλ for the Hilbert space where the irreducible λ acts. There are various ways

of indexing the basis elements of Hλ. The one we will use is due to Gelfand and Tsetlin.

According to their prescription, basis elements for Hλ are parametrized by arrays of the form

r =




r11 r12 · · · r1,ℓ r1,ℓ+1

r21 r22 · · · r2,ℓ

· · ·

rℓ,1 rℓ,2

rℓ+1,1



,

where rij’s are integers satisfying r1j = λj for j = 1, . . . , ℓ + 1, rij ≥ ri+1,j ≥ ri,j+1 ≥ 0 for

all i, j. Such arrays are known as Gelfand-Tsetlin tableaux, to be abreviated as GT tableaux

for the rest of this section. For a GT tableaux r, the symbol ri· will denote its ith row. It

is well-known that two representations indexed respectively by λ and λ′ are equivalent if and

only if λj − λ′j is independent of j ([24]). Thus one gets an equivalence relation on the set of

Young tableaux {λ = (λ1, . . . , λℓ+1) : λ1 ≥ λ2 ≥ . . . ≥ λℓ+1, λj ∈ N}. This, in turn, induces an

equivalence relation on the set of all GT tableaux Γ = {r : rij ∈ N, rij ≥ ri+1,j ≥ ri,j+1}: one

says r and s are equivalent if rij − sij is independent of i and j. By Γ we will mean the above

set modulo this equivalence.

We will denote by uλ the irreducible unitary indexed by λ, {e(λ, r) : r1· = λ} will denote

an orthonormal basis for Hλ and uλrs will stand for the matrix entries of uλ in this basis. The
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symbol 11 will denote the Young tableaux (1, 0, . . . , 0). We will often omit the symbol 11 and

just write u in order to denote u11. Notice that any GT tableaux r with first row 11 must be,

for some i ∈ {1, 2, . . . , ℓ+ 1}, of the form (rab), where

rab =





1 if 1 ≤ a ≤ i and b = 1,

0 otherwise.

Thus such a GT tableaux is uniquely determined by the integer i. We will write just i for this

GT tableaux r. Thus for example, a typical matrix entry of u11 will be written simply as uij.

Let r = (rab) be a GT tableaux. Let Hab(r) := ra+1,b − ra,b+1 and Vab(r) := rab − ra+1,b.

An element r of Γ is completely specified by the following differences

D(r) =




V11(r) H11(r) H12(r) · · · H1,ℓ−1(r) H1,ℓ(r)

V21(r) H21(r) H22(r) · · · H2,ℓ−1(r)

· · ·

Vℓ,1(r) Hℓ,1(r)



.

The differences satisfy the following inequalities

b∑

k=0

Ha−k,k+1(r) ≤ Va+1,1(r) +

b∑

k=0

Ha−k+1,k+1(r), 1 ≤ a ≤ ℓ, 0 ≤ b ≤ a− 1. (4.1)

Conversely, if one has an array of the form




V11 H11 H12 · · · H1,ℓ−1 H1,ℓ

V21 H21 H22 · · · H2,ℓ−1

· · ·

Vℓ,1 Hℓ,1



,

where Vij ’s and Hij ’s are in N and obey the inequalities (4.1), then the above array is of the

form D(r) for some GT tableaux r. Thus the quantities Va1 and Hab give a coordinate system

for elements in Γ. The following diagram explains this new coordinate system. The hollow

circles stand for the rij ’s. The entries are decreasing along the direction of the arrows, and the

Vij ’s and the Hij’s are the difference between the two endpoints of the corresponding arrows.
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4.2 Clebsch-Gordon coefficients

In this subsection, we recall the Clebsch-Gordon coefficients for the group SUq(ℓ+1). This will

be important in writing down the natural representation of C(S2ℓ+1
q ) on L2(S

2ℓ+1
q ) explicitly.

Look at the representation u11⊗uλ acting on H11⊗Hλ. The representation decomposes as a

direct sum ⊕µu
µ, i.e. one has a corresponding decomposition ⊕µHµ of H11 ⊗Hλ. Thus one has

two orthonormal bases {eµs } and {e11i ⊗ eλ
r
}. The Clebsch-Gordon coefficient Cq(11, λ, µ; i, r, s)

is defined to be the inner product 〈eµs , e11i ⊗ eλr 〉. Since 11, λ and µ are just the first rows of i, r

and s respectively, we will often denote the above quantity just by Cq(i, r, s).

Next, we will compute the quantities Cq(i, r, s). We will use the calculations given in ([16],

pp. 220), keeping in mind that for our case (i.e. for SUq(ℓ+ 1)), the top right entry of the GT

tableaux is zero.

Let M = (m1,m2, . . . ,mi) ∈ N
i be such that 1 ≤ mj ≤ ℓ + 2 − j. Denote by M(r) the

tableaux s defined by

sjk =




rjk + 1 if k = mj, 1 ≤ j ≤ i,

rjk otherwise.
(4.2)

With this notation, observe now that Cq(i, r, s) will be zero unless s is M(r) for some M ∈ N
i.

(One has to keep in mind though that not all tableaux of the form M(r) is a valid GT tableaux)

From ([16], pp. 220), we have

Cq(i, r,M(r)) =

i−1∏

a=1

〈
(1,0) ra·

(1,0) ra+1·

∣∣∣∣∣
ra· + ema

ra+1· + ema+1

〉
×

〈
(1,0) ri·

(0,0) ri+1·

∣∣∣∣∣
ri· + emi

ri+1·

〉
,

(4.3)

where ek stands for a vector (in the appropriate space) whose kth coordinate is 1 and the rest
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are all zero, rj· stands for the jth row of the tableaux r, and
〈

(1,0) ra·

(1,0) ra+1·

∣∣∣∣∣
ra· + ej

ra+1· + ek

〉2

= q−raj+ra+1,k−k+j ×

ℓ+2−a∏

i=1

i6=j

[ra,i − ra+1,k − i+ k]q
[ra,i − ra,j − i+ j]q

×

ℓ+1−a∏

i=1

i6=k

[ra+1,i − ra,j − i+ j − 1]q
[ra+1,i − ra+1,k − i+ k − 1]q

, (4.4)

〈
(1,0) ra·

(0,0) ra+1·

∣∣∣∣∣
ra· + ej

ra+1·

〉2

= q

 

1−j+
Pℓ+1−a

i=1
ra+1,i−

Pℓ+2−a
i=1
i6=j

ra,i

!

×




∏ℓ+1−a
i=1 [ra+1,i − raj − i+ j − 1]q∏ℓ+2−a

i=1

i6=j

[ra,i − raj − i+ j]q


 , (4.5)

where for an integer n, [n]q denotes the q-number (qn − q−n)/(q − q−1). After some lengthy

but straightforward computations, we get the following two relations:
∣∣∣∣∣

〈
(1,0) ra·

(1,0) ra+1·

∣∣∣∣∣
ra· + ej

ra+1· + ek

〉∣∣∣∣∣ = A′qA, (4.6)

∣∣∣∣∣

〈
(1,0) ra·

(0,0) ra+1·

∣∣∣∣∣
ra· + ej

ra+1·

〉∣∣∣∣∣ = B′qB , (4.7)

where

A =





∑

j∧k<b<j∨k

(ra+1,b − ra,b) + (ra+1,j∧k − ra,j∨k) if j 6= k,

0 if j = k.

=
∑

j∧k≤b<j∨k

(ra+1,b − ra,b+1) + 2
∑

k<b<j

(ra,b − ra+1,b)

=
∑

j∧k≤b<j∨k

Hab(r) + 2
∑

k<b<j

Vab(r). (4.8)

B =
∑

j≤b<ℓ+2−a

Hab(r), (4.9)

and A′ and B′ both lie between two positive constants independent of r, a, j and k (Here and

elsewhere in this paper, an empty summation would always mean zero).

Combining these, one gets

Cq(i, r,M(r)) = P · qC(i,r,M), (4.10)

where

C(i, r,M) =
i−1∑

a=1




∑

ma∧ma+1≤b<ma∨ma+1

Hab(r) + 2
∑

ma+1<b<ma

Vab(r)


 +

∑

mi≤b<ℓ+2−i

Hib(r),

(4.11)
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and P lies between two positive constants that are independent of i, r and M .

Remark 4.1 The formulae (4.4) and (4.5) are obtained from equations (45) and (46), page

220, [16] by replacing q with q−1. Equation (45) is a special case of the more general formula

(48), page 221, [16]. However, there is a small error in equation (48) there. The correct form

can be found in equations (3.1, 3.2a, 3.2b) in [1]. That correction has been incorporated in

equations (4.4) and (4.5) here.

4.3 Left multiplication operators

We next write down the representation of C(SUq(ℓ+1)) on L2(SUq(ℓ+1)) by left multiplication.

Later we will work with a certain restriction of this representation.

The matrix entries uλrs form a complete orthogonal set of vectors in L2(SUq(ℓ+ 1)). Write

eλrs for ‖uλrs‖
−1uλrs. Then the eλrs’s form a complete orthonormal basis for L2(SUq(ℓ+ 1)). Let

π denote the representation of A on L2(SUq(ℓ+1)) by left multiplications. We will now derive

an expression for π(uij)e
λ
rs.

From the definition of matrix entries and that of the CG coefficients, one gets

uρe(ρ, t) =
∑

s

uρ
st
e(ρ, s), (4.12)

e(µ,n) =
∑

j,s

Cq(j, s,n)e(11, j) ⊗ e(λ, s). (4.13)

Apply u⊗ uλ on both sides and note that u⊗ uλ acts on e(µ,n) as uµ:

∑

m

uµmne(µ,m) =
∑

j,s

∑

i,r

Cq(j, s,n)uiju
λ
rse(11, i) ⊗ e(λ, r). (4.14)

Next, use (4.13) to expand e(µ,m) on the left hand side to get

∑

i,r,m

uµmnCq(i, r,m)e(11, i) ⊗ e(λ, r) =
∑

j,s

∑

i,r

Cq(j, s,n)uiju
λ
rse(11, i) ⊗ e(λ, r). (4.15)

Equating coefficients, one gets

∑

m

Cq(i, r,m)uµ
mn

=
∑

j,s

Cq(j, s,n)uiju
λ
rs
. (4.16)

Now using orthogonality of the matrix ((Cq(11, λ, µ; j, s,n)))(µ,n),(j,s) , we obtain

uiju
λ
rs

=
∑

µ,m,n

Cq(i, r,m)Cq(j, s,n)uµ
mn

. (4.17)

From ([16], pp. 441), one has ‖uλ
rs
‖ = d

− 1

2

λ q−ψ(r), where

ψ(r) = −
ℓ

2

ℓ+1∑

j=1

r1j +
ℓ+1∑

i=2

ℓ+2−i∑

j=1

rij , dλ =
∑

r:r1=λ

q2ψ(r)

9



Therefore

π(uij)e
λ
rs =

∑

µ,m,n

Cq(11, λ, µ; i, r,m)Cq(11, λ, µ; j, s,n)d
1

2

λ d
− 1

2
µ qψ(r)−ψ(m)eµmn. (4.18)

Write

κ(r,m) = d
1

2

λd
− 1

2
µ qψ(r)−ψ(m). (4.19)

Lemma 4.2 There exist constants K2 > K1 > 0 such that K1 < κ(r,M(r)) < K2 for all r.

Proof : Observe that

ψ(r) = (ρ, λ(r)) = −
ℓ

2

ℓ+1∑

j=1

r1j +

ℓ+1∑

i=2

ℓ+2−i∑

j=1

rij .

Therefore

min{ψ(r) : r1 = λ} = −
ℓ

2

ℓ∑

1

λi +

ℓ∑

k=2

(k − 1)λk.

This implies that

d
1

2

λ = q−
ℓ
2

Pℓ
1
λi+

Pℓ
k=2

(k−1)λk(1 + o(q)),

which gives us (
dλ

dλ+ek

) 1

2

= q
ℓ
2
−M1+1(1 + o(q)).

Next,

qψ(r)−ψ(M(r)) = q−
ℓ
2

Pℓ+1

j=1
r1j+

Pℓ+1

i=2

Pℓ+2−i
j=1

rij+
ℓ
2
(
Pℓ+1

j=1
r1j+1)−(

Pℓ+1

i=2

Pℓ+2−i
j=1

rij+i−1) = q
ℓ
2
−i+1.

Thus

κ(r,M(r)) = qℓ−i−M1+2(1 + o(q)).

Hence the conclusion follows. 2

5 Covariant representation

Let us write G for SUq(ℓ+ 1) and H for SUq(ℓ). H is a subgroup of G. This means that there

is a C∗-epimorphism φ : C(G) → C(H) obeying ∆Hφ = (φ⊗φ)∆G. In such a case, one defines

the quotient space G\H by

C(G\H) := {a ∈ C(G) : (φ⊗ id)∆(a) = I ⊗ a}.

The group G has a canonical right action C(G\H) → C(G\H) ⊗ C(G) coming from the

restriction of the comultiplication ∆ to C(G\H). Let ρ denote the restriction of the Haar state
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on C(G) to C(G\H). Then clearly one has (ρ⊗id)∆(a) = ρ(a)I, which means ρ is the invariant

state for C(G\H). This also means that L2(G\H) = L2(ρ) is just the closure of C(G\H) in

L2(G). (For a formulation of quotient spaces etc. in the context of compact quantum groups,

see [20])

Now suppose we make the following explicit choice of φ. Let u11 denote the fundamental

unitary for G, i. e. the irreducible unitary representation corresponding to the Young tableaux

11 = (1, 0, . . . , 0). Similarly write v11 for the fundamental unitary for H. Fix some bases for the

corresponding representation spaces. Then C(G) is the C∗-algebra generated by the matrix

entries {u11
ij} and C(H) is the C∗-algebra generated by the matrix entries {v11

ij}. Now define φ

by

φ(u11
ij) =





I if i = j = 1,

v11
i−1,j−1 if 2 ≤ i, j ≤ ℓ+ 1,

0 otherwise.

(5.1)

Then C(G\H) is the C∗-subalgebra of C(G) generated by the entries u1,j for 1 ≤ j ≤ ℓ + 1.

Define θ : Aℓ → C(G\H) by

θ(zi) = q−i+1u∗1,i.

This gives an isomorphism between C(G\H) and Aℓ and the following diagram commutes:

Aℓ

θ

��

τ
// Aℓ ⊗ C(G)

θ⊗id

��
C(G\H)

∆
// C(G\H) ⊗ C(G)

In other words, (Aℓ, G, τ) is the quotient space G\H. As we shall see shortly, this choice of φ

will make L2(G\H) a span of certain rows of the er,s’s and this in turn will help us make use

of the calculations already done in the initial sections.

Proposition 5.1 Assume ℓ > 1. The right regular representation u of G keeps L2(G\H)

invariant, and the restriction of u to L2(G\H) decomposes as a direct sum of exactly one

copy of each of the irreducibles given by the young tableaux λn,k := (n + k, k, k, . . . , k, 0), with

n, k ∈ N.

Proof : Write σ for the composition hH ◦ φ where hH is the Haar state for H. From the

description of C(G\H), it follows that

C(G\H) = {a ∈ C(G) : (σ ⊗ id)∆(a) = a}

= {(σ ⊗ id)∆(a) : a ∈ C(G)}.
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Now the map a 7→ σ ∗ a := (σ ⊗ id)∆(a) on C(G) extends to a bounded linear operator Lσ on

L2(G) (lemma 3.1, [19]), and it is easy to see that L2
σ = Lσ. It follows then that L2(G\H) =

ker(Lσ − I) = ranLσ. From the discussion preceeding theorem 3.3, [19], it now follows that

u keeps L2(G\H) invariant and in fact the restriction of u to L2(G\H) is the representation

induced by the trivial repersentation of H. From the analogue of Frobenius reciprocity theorem

for compact quantum groups (theorem 3.3, [19]) it now follows that the multiplicity of any

irreducible uλ in it would be same as the multiplicity of the trivial representation of H in

the restriction of uλ to H. But from the representation theory of SUq(ℓ + 1), we know that

the restriction of uλ to SUq(ℓ) decomposes into a direct sum of one copy of each irreducible

µ : (µ1 ≥ µ2 ≥ . . . ≥ µℓ) of SUq(ℓ) for which

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λℓ ≥ µℓ ≥ 0. (5.2)

Now the trivial representation of SUq(ℓ) is indexed by Young tableaux of the form µ : (k, k, . . . , k)

where k ∈ N. But such a µ will obey the restriction 5.2 above if and only if λ is of the form

(n+ k, k, k, . . . , k, 0). 2

Remark 5.2 For the case ℓ = 1, the restriction of the irreducible (n, 0) to the trivial subgroup

decomposes into n + 1 copies of the trivial representation. Therefore, in this case, L2(S
3
q )

decomposes into a direct sum of n+ 1 copies of each representation (n, 0).

Proposition 5.3 Let Γ0 be the set of all GT tableaux rnk given by

rnkij =





n+ k if i = j = 1,

0 if i = 1, j = ℓ+ 1,

k otherwise,

for some n, k ∈ N. Let Γnk0 be the set of all GT tableaux with top row (n+ k, k, . . . , k, 0). Then

the family of vectors

{ernk,s : n, k ∈ N, s ∈ Γnk0 }

form a complete orthonormal basis for L2(G\H).

Proof : Let A be the linear span of the elements {u
rn,k ,s : n, k ∈ N, s ∈ Γn,k0 }. Clearly the closure

of A in L2(G) is the closed linear span of {ernk ,s : n, k ∈ N, s ∈ Γnk0 }. It is also immdiate that

the restriction of the right regular representation to the above subspace is a direct sum of one

copy of each of the irreducibles (n+ k, k, k, . . . , k, 0).

We will next show that for any a ∈ A, u1ja and u∗1j a are also in A. Take a = u
rn,k,s. Use

equation (4.17) to get

u1,jurn,k,s =
∑

M,M ′

Cq(1, r
n,k,M(rn,k))Cq(j, s,M

′(s))uM(rn,k),M ′(s)
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=
∑

M ′

Cq(1, r
n,k,M11(r

n,k))Cq(j, s,M
′(s))uM11(rn,k),M ′(s)

+
∑

M ′′

Cq(1, r
n,k,Mℓ+1,1(r

n,k))Cq(j, s,M
′′(s))uMℓ+1,1(rn,k),M ′′(s)

=
∑

M ′

Cq(1, r
n,k, rn+1,k)Cq(j, s,M

′(s))urn+1,k ,M ′(s)

+
∑

M ′′

Cq(1, r
n,k, rn,k−1))Cq(j, s,M

′′(s))u
rn,k−1,M ′′(s), (5.3)

where the first sum is over all moves M ′ ∈ N
j whose first coordinate is 1 and the second sum

is over all moves M ′′ ∈ N
j whose first coordinate is ℓ+ 1. Thus u1ja ∈ A.

Next, note that if 〈u∗1jern,k,s, er′,s′〉 6= 0, then one must have r′ = rn−1,k or r′ = rn,k+1.

Therefore it follows that u∗1jurn,k,s is a linear combination of the urn−1,k ,s urn,k+1,s’s, and hence

belongs to A. Since A contains the element u0,0 = 1, it contains u1j and u∗ij. Thus A contains

the ∗-algebra B generated by the u1j ’s. But by the previous theorem, restriction of the right

regular representation to the L2 closure L2(G\H) of B also decomposes as a direct sum of one

copy of each of the irreducibles (n+ k, k, . . . , k, 0). So it follows that L2(G\H) is equal to the

subspace stated in the theorem. 2

Thus the right regular representation u restricts to the subspace L2(G\H) and it also

follows from the above discussion that the restriction of the left multiplication to C(G\H) keeps

L2(G\H) invariant. Let us denote the restriction of u to L2(G\H) by û and the restriction of

π to C(G\H) viewed as a map on L2(G\H) by π̂. It is easy to check that (π̂, û) is a covariant

representation for the system (Aℓ, G, τ).

6 Equivariant spectral triples

The following lemma is straightforward.

Lemma 6.1 Let D be a self-adjoint operator with compact resolvent on L2(G\H) that is equiv-

ariant with respect to the covariant representation (π̂, û) then it is of the form

er,s 7→ d(r)er,s, r ∈ Γ0.

For such a D, one can then write down the commutatots with algebra elements:

[D,π(uij)]e
λ
rs

=
∑

(d(m) − d(r))Cq(11, λ, µ; i, r,m)Cq(11, λ, µ; j, s,n)κ(r,m)eµ
mn

. (6.1)

Therefore the condition for boundedness of commutators reads as follows:

|(d(m) − d(r))Cq(11, λ, µ; i, r,m)Cq(11, λ, µ; j, s,n)κ(r,m)| < c, (6.2)

where c is independent of i, j, λ, µ, r, s, m and n.

13



Using lemma 4.2, we get

|(d(m) − d(r))Cq(11, λ, µ; i, r,m)Cq(11, λ, µ; j, s,n)| < c. (6.3)

Choosing j, s and n suitably, one can ensure that (6.3) implies the following:

|(d(m) − d(r))Cq(11, λ, µ; i, r,m)| < c. (6.4)

It follows from (6.1) that this condition is also sufficient for the boundedness of the commutators

[D,uij ].

From (4.10), one gets

|d(r) − d(M(r))| ≤ cq−C(i,r,M). (6.5)

Next, let us look at the growth restrictions coming from the boundedness of commutators.

In this case, one has the boundedness of only the operators [D,π(uij)]. Which means, in effect,

one will now have the condition (6.5) only for i = 1 and r ∈ Γ0:

|d(r) − d(M(r))| ≤ cq−C(1,r,M). (6.6)

Observe that only allowed moves here are the moves M = M1,1 ≡ (1) and M = Mℓ+1,1 ≡ (ℓ+1).

Looking at the corresponding quantity C(1, r,M), we find that there are two conditions:

|d(rnk) − d(rn,k−1)| ≤ c, (6.7)

|d(rnk) − d(rn+1,k)| ≤ cq−
Pℓ

j=1
H1j(r

nk) = cq−k. (6.8)

We can now form a graph by taking Γ0 to be the set of vertices, and by joining two vertices r

and s by an edge if |d(r) − d(s)| ≤ c.

Lemma 6.2 Let Fn = {rn,k : k ∈ N}, n ∈ N. Then any two points in Fn are connected by a

path lying entirely in Fn.

If n < n′, then any point in Fn is connected to any point in Fn′ by a path such that

n ≤ V1,1(r) ≤ n′ for every vertex r lying on that path.

Proof : Take two points rn,j and rn,k in Fn. Assume j < k. From the condition (6.7), it follows

that any point r is connected to Mℓ+1,1(r) by an edge. Therefore the first conclusion follows

from the observation that if we start at rn,k and apply the move Mℓ+1,1 successively k − j

number of times, we reach the point rn,j, and the vertices on this path are the points rn,i for

i = j, j + 1, . . . , k. Observe also that throughout this path, V1,1(r) remains n.

For the second part, take a point rn,k in Fn and a point rn
′,j in Fn′ . From what we have

done above, there is a path from rn,k to rn,0 throughout which V1,1(r) = n. Similarly there is

a path from rn
′,j to rn

′,0 throughout which V1,1(r) = n′. Next, note from (6.8) that for p ∈ N,

the points rp,0 and rp+1,0 are connected by an edge and V1,1(r
p,0) = p, V1,1(r

p+1,0) = p+ 1. So

start at rn,0 and reach successively the points rn+1,0, rn+2,0 and so on to eventually reach the

point rn
′,0; also the coordinate V1,1(·) remains between n and n′ on this path. 2
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Theorem 6.3 Let D be an equivariant Dirac operator on L2(G\H). Then

1. D must be of the form

er,s 7→ d(r)er,s, r ∈ Γ,

where the singular values obey |d(r)| = O(r11), and

2. signD must be of the form 2P − I or I − 2P where P is, up to a compact perturbation,

the projection onto the closed span of {ernk ,s : n ∈ F, k ∈ N, s ∈ Γnk0 }, for some finite

subset F of N.

Proof : Start with an equivariant self-adjoint operator D with compact resolvent, so that it is

indeed of the form er,s 7→ d(r)er,s. By applying a compact perturbation if necessary, make sure

that d(r) 6= 0 for all r ∈ Γ0. We have seen during the proof of the previous lemma that for any

n and k in N, the vertices rnk and rn,k+1 are connected by an edge, and for any n ∈ N, the

vertices rn,0 and rn+1,0 is connected by an edge. Thus any vertex rnk can be reached from the

vertex r00 by a path of length n+ k. Therefore one gets the first assertion.

Next, define

Γ+
0 = {r ∈ Γ0 : d(r) > 0},

Γ−
0 = {r ∈ Γ0 : d(r) < 0},

F
+
n = Fn ∩ Γ+

0 ,

F
−
n = Fn ∩ Γ−

0 .

Observe that for the path produced in the proof of the forgoing lemma to connect two points

rn,k and rn,j in Fn, the coordinate H1,ℓ(·) remains between j and k. Now suppose for some n,

both F+
n and F−

n are infinite. Then there are points

0 ≤ k1 < k2 < . . .

such that rnk is in F+
n for k = k2j and rnk is in F−

n for k = k2j+1. Using the above observation,

we can then produce an infinite ladder by joining each rn,k2j−1 to rn,k2j . Thus for each n ∈ N,

exactly one of the sets F+
n and F−

n is finite. Also, note that by the first part of the previous

lemma, the set of all n ∈ N for which both F+
n and F−

n are nonempty is finite. Therefore

by applying a compact perturbation, we can ensure that for every n, either F+
n = Fn or

F−
n = Fn.

Finally, if there are infinitely many n’s for which F+
n = Fn and infinitely many n’s for

which F−
n = Fn, then one can choose a sequence of integers

0 ≤ n1 < n2 < . . .

such that F+
n = Fn for n = n2j and F−

n = Fn for n = n2j+1. Now use the second part of the

previous lemma to join each rn2j−1,0 to rn2j ,0 to produce an infinite ladder.
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Thus there is a finite subset F of N such that exactly one of the following is true:

Fn =





F+
n if n ∈ F,

F−
n if n 6∈ F,

or Fn =





F−
n if n ∈ F,

F+
n if n 6∈ F.

This is precisely what the second part of the theorem says. 2

Next, take the operator D : er,s 7→ d(r)er,s on L2(G\H) where the d(r)’s are given by:

d(rnk) =




−k if n = 0,

n+ k if n > 0.
(6.9)

Theorem 6.4 The operator D is an equivariant (2ℓ + 1)-summable Dirac operator acting on

L2(G\H), that gives a nondegenerate pairing with K1(C(G\H)).

The operator D is optimal, i. e. if D0 is any equivariant Dirac operator on L2(G\H), then

there are positive reals a and b such that

|D0| ≤ a+ b|D|.

Proof : Recall from equation (4.18) that the elements u1,j act on the basis elements ern,k,s as

follows:

u1,jern,k ,s =
∑

M,M ′

Cq(1, r
n,k,M(rn,k))Cq(j, s,M

′(s))κ(rn,k, s)eM(rn,k),M ′(s)

=
∑

M ′

Cq(1, r
n,k,M11(r

n,k))Cq(j, s,M
′(s))κ(rn,k, s)eM11(rn,k),M ′(s)

+
∑

M ′′

Cq(1, r
n,k,Mℓ+1,1(r

n,k))Cq(j, s,M
′′(s))κ(rn,k , s)eMℓ+1,1(rn,k),M ′′(s)

=
∑

M ′

Cq(1, r
n,k, rn+1,k)Cq(j, s,M

′(s))κ(rn,k, s)ern+1,k ,M ′(s)

+
∑

M ′′

Cq(1, r
n,k, rn,k−1))Cq(j, s,M

′′(s))κ(rn,k, s)ern,k−1,M ′′(s), (6.10)

where the first sum is over all moves M ′ ∈ N
j whose first coordinate is 1 and the second sum

is over all moves M ′′ ∈ N
j whose first coordinate is ℓ+ 1. If we now plug in the values of the

Clebsch-Gordon coefficients from equations (4.10) and (4.11), we get

u1,jern,k,s =
∑

M ′

P ′
1P

′
2q
k+C(j,s,M ′)κ(rn,k, s)ern+1,k ,M ′(s)

+
∑

M ′′

P ′′
1 P

′′
2 q

C(j,s,M ′′)κ(rn,k, s)ern,k−1,M ′′(s), (6.11)

where P ′
i , P

′′
j and k(rn,k, s) all lie between two fixed positive numbers. Boundedness of the

commutators [D,u1,j ] now follow directly.
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For summability, notice that the eigenspace of |D| corresponding to the eigenvalue n ∈ N

is the span of

{e
rk,n−k ,s : 0 ≤ k ≤ n, s ∈ Γk,n−k0 }.

Now just count the number of elements in the above set to get summability.

Next, we will compute the pairing of the K-homology class of this D with a generator of

the K1 group. Write ωq := q−ℓu1,ℓ+1. From the commutation relations, it follows that this

element has spectrum

{z ∈ C : |z| = 0 or qn for some n ∈ N}.

Then the element γq := χ{1}(ω
∗
qωq)(ωq − I) + I is unitary. We will show that the index of

the operator QγqQ (viewed as an operator on QL2(G\H)) is 1, where Q =
I−signD

2 , i. e. it is

the projection onto the closed linear span of {e
r0,k ,s : k ∈ N, s ∈ Γ0,k

0 }. What we will actually

do is compute the index of the operator Qγ0Q and appeal to continuity of the index. From

equation (6.10), we get

u1,ℓ+1er0,k ,s

= Cq(1, r
0,k,M11(r

0,k))Cq(ℓ+ 1, s, N1,0(s))κ(r
0,k ,M11(r

0,k))er1,k ,N1,0(s)

+Cq(1, r
0,k,Mℓ+1,1(r

0,k))Cq(ℓ+ 1, s,Mℓ+1,ℓ+1(s))κ(r
0,k,Mℓ+1,1(r

0,k))e
r0,k−1,Mℓ+1,ℓ+1(s)

.

(6.12)

Use the formula (4.3) for Clebsch-Gordon coefficients to get

Cq(1, r
0,k,M11(r

0,k)) = qk(1 + o(q)), (6.13)

Cq(1, r
0,k,Mℓ+1,1(r

0,k) = 1 + o(q), (6.14)

Cq(ℓ+ 1, s, N1,0(s)) = 1 + o(q), (6.15)

Cq(ℓ+ 1, s,Mℓ+1,ℓ+1(s)) = qsℓ+1,1+ℓ(1 + o(q)), (6.16)

where o(q) signifies a function of q that is continuous at q = 0 and o(0) = 0. We also have

κ(r0,k,M11(r
0,k)) = qℓ(1 + o(q)), (6.17)

κ(r0,k,Mℓ+1,1(r
0,k)) = 1 + o(q), (6.18)

where o(q) is as earlier. Plugging these values in (6.12) we get

ωqer0,k ,s = qk(1 + o(q))er1,k ,N1,0(s) + qsℓ+1,1(1 + o(q))er0,k−1,Mℓ+1,ℓ+1(s)
(6.19)

Putting q = 0, we get

ω0er0,k,s =





er0,k−1,Mℓ+1,ℓ+1(s)
if k > 0 and sℓ+1,1 = 0,

er1,0,N1,0(s) if k = 0,

0 otherwise.

(6.20)
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Thus ω∗
0ω0 is the projection onto the span of {er0,k ,sk : k ∈ N} where sk is the GT tableaux

given by

skij =





0 if i = ℓ+ 2 − j,

k otherwise,

which is uniquely determined by the conditions sℓ+1,1 = 0 and that s ∈ Γ0,k
0 . Therefore the

operator γ0 is given by

γ0er0,k ,s = er0,k,s − χ{s=sk}er0,k,s + χ{s=sk}er0,k−1,sk−1.

It now follows that the index of Qγ0Q is 1.

Note that if D0 is an equivariant Dirac operator with eigenvalues d0(r), then by theorem 6.3

there is a b > 0 such that

|d0(r)| < br11 = b|d(r)|, r 6= 0.

Write a = |d0(0)|. Then we have the required inequality. 2
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