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Characterization of Subsynchronous Oscillation with

Wind Farms Using Describing Function and

Generalized Nyquist Criterion
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Abstract—Eigen-analysis is widely used in the studies of power
system oscillation and small-signal stability. However, it may give
inaccurate analyses on subsynchronous oscillation (SSO) when
nonlinearity is not negligible. In this paper, a nonlinear analytical
approach based on the describing function and generalized Nyquist
criterion is proposed to analyze the characteristics of SSO with
wind farms. The paper first presents describing function-based
model reduction considering key nonlinear elements involved in
SSO, and then uses a generalized Nyquist criterion for accurate
estimation of SSO amplitude and frequency. The results are verified
by time-domain simulations on a detailed model with different sce-
narios considering variations of the system condition and controller
parameters.

Index Terms—Wind farm, subsynchronous oscillation, descri-
bing function, generalized Nyquist criterion.

I. INTRODUCTION

S
UBSYNCHRONOUS oscillation (SSO) with wind farms

has become one of the main stability issues of modern

power systems integrating wind generations. There have been

a number of studies on SSO with wind farms in literature.

For instance, ref. [1] builds a doubly-fed induction generator

(DFIG) based wind farm model for SSO analysis. Ref. [2]

identifies the induction generator effect as the mechanism of

SSO rather than torsional interaction. Ref. [3] reports an SSO

event in Texas, USA in 2009, which was caused by subsyn-

chronous control interactions between wind turbines and line

series capacitors. Ref. [4] proposes an aggregated circuit model

to intuitively explain and quantitatively evaluate the SSO with

DFIG-based wind farms. Ref. [5] reports an SSO event of the

permanent magnet synchronous generator (PMSG)-based wind
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farm that was firstly observed in Xinjiang power gird of China

in 2015. Its mechanism is found that the wind farm appears as

an impedance with capacitance and small negative resistance

in a certain range of subsynchronous frequencies. It forms a

resistance-inductance-capacitance negative-damping oscillator

circuit with the AC system, which leads to SSO. Ref. [5] employs

both eigen-analysis and impedance-based modeling approach

to investigate the dynamic interactions between PMSGs and

the AC network. Such an impedance-based modeling approach

has been widely used for studying stability problems caused by

grid-connected voltage source converters (VSCs) [6]- [12]. Sev-

eral impedance-based stability criterions for VSCs are proposed

in [13]–[15]. Paper [16] provides a state-space representation

to analyze subsynchronous interactions between two different

PMSGs, and the SSO characteristics under different system

parameters are also discussed. In addition to eigen-analysis and

impedance-based approach, papers [17]–[20] use a linearized

model to derive the subsynchronous dynamic responses with the

control systems of VSCs. It is pointed out that subsynchronous

responses can be amplified by the feedback loop of VSCs.

Linear system analysis methods and an impedance-based

approach have successfully identified some causes of the SSO

with wind farms in literature. However, when nonlinearities

of the system contribute to SSO, they need to be modeled

and addressed appropriately for accurate estimation on SSO.

Field data have shown that a DFIG or PMSG-based wind farm

may have non-growing, sustained SSO when a saturation or

control limit is met [3], [5]. Therefore, in order to estimate the

amplitude and frequency of SSO accurately, the influence of the

VSC controller saturation nonlinearity should not be ignored.

Accurate estimation on SSO is important since abnormal voltage

or current values in SSO can damage wind generators like the

damage to the crowbar circuit in the Texas SSO event in 2009

[3]. Moreover, if the frequency of the wind farm SSO coincides

with the torsional vibration frequency of the nearby thermal

power unit shaft, the thermal power unit will undergo torsional

vibration. For instance, the aforementioned Xinjiang wind farm

SSO event in 2015 caused a thermal power unit to trip due to

torsional vibrations [5].

This paper proposes a nonlinear analytical approach based

on the describing function and generalized Nyquist criterion

(for short, the DF-GNC approach) to characterize the SSO

with a DFIG or PMSG-based wind farm. Firstly, the describing

function method introduced by [21]–[23] is employed to model
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the saturation nonlinearity in the VSC control systems. Then, a

generalized Nyquist criterion is used to analyze the characteristic

of sustained SSO and estimate its amplitude and frequency.

Finally, time domain simulations with a detailed model are

conducted to validate this DF-GNC approach under different

scenarios like changing the power grid strength and control

parameters with the phase-locked loop (PLL) and inner current

control loop (CCL). Research results indicate that the DF-GNC

approach can provide more accurate characteristics of the wind

farm SSO than linear system analysis.

The rest of this paper is organized as follows: Section II

introduces the DF-GNC approach. In Section III, the model

of a PMSG-based wind farm connected to a power grid is

established. The characteristics of the wind farm SSO are stud-

ied respectively by the DF-GNC approach, eigen-analysis and

time domain simulations. The frequencies and amplitudes of

the SSO estimated by different methods are compared. Finally,

conclusions are drawn in Section IV.

II. PROPOSED APPROACH BASED ON DESCRIBING FUNCTION

AND GENERALIZED NYQUIST CRITERION

The dynamic performance of a wind farm connected to a

power grid can be modeled by a set of nonlinear differential

and algebraic equations.

ẋ = f (x,y)

0 = g (x,y) (1)

wherex ∈ Rnx is the vector of state variables, e.g., rotor speeds

and angles of wind turbine generators, rotor and stator currents,

state variables of controllers, etc. and y ∈ Rny is the vector of

non-state variables, e.g., bus voltage magnitudes and angles.

To estimate the frequency and amplitude of SSO with the

wind farm, a traditional approach is to linearize (1) and per-

form eigen-analysis or apply Nyquist criterion. However, some

nonlinearities that may significantly influence oscillation char-

acteristics such as saturation or dead-band elements will be lost.

This paper proposes the following analytical approach based on

DF-GNC for more accurate analysis of SSO characteristics as

shown in Fig. 1.

First of all, assume that the characteristics of SSO can signifi-

cantly be influenced by some critical nonlinear elements existing

in some of functions of g(x, y), such as saturation effects. Denote

these functions byg2 and the rest ofg byg1, i.e., rewriting (1) as:
{

ẋ = f (x,y)

0 = g1 (x,y)
(2)

0 = g2 (x,y) (3)

Next, apply a mathematical tool named the “describing func-

tion” to analyze the characteristics of SSO caused by g2. Mean-

while, the response of the rest of the system are modeled by a

conventional transfer function, which can integrate the describ-

ing functions on nonlinear elements in g2. Then, the frequency

and amplitude of SSO can be obtained from the transfer function

using generalized Nyquist criterion. The details are presented as

follows.

Fig. 1. Flowchart of the nonlinear analytical approach based on DF-GNC.

A. Describing Function

The describing function method was proposed in the 1940s for

nonlinear control system analysis and design [21]. It is generally

used to analyze stability and predict oscillation properties, such

as frequency and amplitude, for nonlinear oscillator systems and

has been successfully applied to oscillator design and analysis

[24], [25]. It has been widely applied to the power electronics

field, e.g., for calculating AC transfer characteristics of DC/DC

converters [26]. Many studies and engineering practices in recent

years show that the describing function method is concise and

effective in analyzing stability, especially oscillatory character-

istics of a control system containing nonlinear elements.

For a nonlinear element modeled by function y = h(x), whose

characteristics do not change with time, a sinusoidal input x does

not necessarily result in a sinusoidal output y, but the output y

is guaranteed to be periodical having the same frequency as

the input signal. Thus, assume the input to be a sinusoidal signal

with amplitude A, i.e.,x(A, t) = Asinωt, and output y(A, t) =
h(Asinωt) can be decomposed into a Fourier series so as to

obtain the coefficient at fundamental frequency ω/2π, which

is denoted by Y(A) and reflects the oscillation amplitude at the

fundamental frequency. A describing function is defined by (4),

which describes how much the oscillation amplitude A of the

input signal x(A, t) is changed by the nonlinear function h(x):

N(A) = Y (A)/A. (4)

Considering that Y(A) is complex, re-write N(A) as

N(A) =
1

A
(a1 + jb1) (5)

{

a1 = + 1
π

∫ 2π

0 h (A · sinωt) · sinωtdωt

b1 = − 1
π

∫ 2π

0 h (A · sinωt) · cosωtdωt
(6)
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Thus, each nonlinear element can be replaced by a function

only depending on the oscillation amplitude A, not the angular

frequency ω if h(x) is a memoryless algebraic function. This

nonlinear element is regarded as a variable gain amplifier that

varies with the input signal amplitude.

Take the saturation characteristic function as an example:

h (x) =

⎧

⎪

⎨

⎪

⎩

−kδ, x ≤ −δ

kx, −δ < x < δ

kδ, x ≥ δ

. (7)

With input x(A, t) = A · sinωt, output y(A, t) is

y(A, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

kδ, 2kπ + φ < ωt < (2k + 1)π − φ

−kδ, (2k + 1)π + φ < ωt

< (2k + 2)π − φ

kAsin (ωt) , everywhere else

(8)

where k ∈ Z and φ = arcsin(δ/A), assuming A ≥ δ. There is

a1 =
2kA

π

⎡

⎣arcsin

(

δ

A

)

+
δ

A

√

1−

(

δ

A

)2
⎤

⎦ . (9)

Similarly, we have

b1 = −
1

π

∫ 2π

0

h (A · sin (ωt)) cos (ωt) dωt = 0. (10)

Finally, the analytical expression of the describing function

for saturation function can be calculated as

N(A) =
2k

π

⎡

⎣arcsin

(

δ

A

)

+
δ

A

√

1−

(

δ

A

)2
⎤

⎦ , A ≥ δ.

(11)

The describing functions of several common nonlinearities in

power systems are listed in Table I.

In power systems, other typical nonlinear elements are such as

the dead-bands in speed governing systems, saturation elements

in voltage-source converter (VSC) control systems and some

controllers in photovoltaic generation whose critical nonlinear

components can be modeled as ideal relay elements as shown in

the second row of Table I.

Apply the describing function method to model the critical

nonlinear elements in (3) and the Fourier transform to create the

model in (2). Then, the system model can be obtained, so that

the generalized Nyquist criterion can be used to analyze the SSO

characteristics of the system.

B. Frequency and Amplitude Prediction Using Generalized

Nyquist Criterion

For a single-input single-output (SISO) system, assume that

its transfer function can be represented as Fig. 2, where the

R(jω) andC(jω) are the input and output, N(A) is the describing

function on its nonlinear element of interest and G(jω) contains

all linear elements, or in other words, the rest of the system

whose nonlinearity can be ignored such as equations in (2). The

TABLE I
DESCRIBING FUNCTIONS OF SEVERAL COMMON NONLINEARITIES

Fig. 2. Typical structure of a nonlinear system.

closed-loop characteristic equation of the system is

1 +N(A)G0(jω) (12)

where the open-loop transfer functionG0(jω) = G(jω)H(jω).
In the Nyquist criterion, the case where G0(jω) surrounds

the point (−1, j0) in a linear system can be extended to the case

where G0(jω) surrounds the curve −1/N(A) in a nonlinear

system. This is called as the generalized Nyquist criterion. Two

lemmas under this particular condition can be deduced [27]:

1) If the linear part of the nonlinear system is stable, meaning

that the transfer function of the linear part has no poles on

the right half plane, the necessary and sufficient condition

for stability of the closed-loop system is that the Nyquist

plot of G0(jω) does not surround the curve −1/N(A).
2) If the linear part of the nonlinear system is unstable,

meaning that the transfer function of the linear part has P

poles on the right half plane, the necessary and sufficient

condition for the stability of the closed-loop system is that

the Nyquist plot of G0(jω) needs to surround the curve

−1/N(A) for P times in the counter-clockwise direction.

IfG0(jω)does not have any poles on the right half plane under

the given parameters, the necessary condition for the system to

be marginally stable is

G0(jω) = −
1

N(A)
. (13)

The condition (13) is satisfied only when the plot of−1/N(A)
on complex plane graphically intersects with the Nyquist plot
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Fig. 3. System model with PMSG-based wind farm connected to AC grid.

of G0(jω). The ω and A at the intersection provide predictions

to the oscillation’s frequency and amplitude, respectively.

In fact, according to the formula (13) and the describing

functions on nonlinear components, analytical formulas may be

derived for direct calculation of the oscillation amplitude A. For

a trivial example, considering a system involving only the ideal

relay nonlinearity, the oscillation amplitude A can be calculated

by A = −
4MG0(jω)

π
according to (13) and Table I.

In the following, for an oscillating system whose nonlinearity

is dominated by the saturation nonlinearity in Table I, a pro-

cedure is presented for deriving an approximate formula on

amplitude A:

First, let x = δ
A
∈ [−1, 1]. From (11) and (13), there is

arcsinx+ x
√

1− x2 = −
π

2kG0(jω)
(14)

Then, replace the left hand side by its truncated Taylor series

up to the 3rd order to yield:

x3 − 6x−
3π

2kG0(jω)
= 0. (15)

Its real root is solvable analytically and can be plugged into

(16) to calculate the amplitude.

A =
δ

x
. (16)

In the next case study section, the amplitudes estimated by

this formula will be compared to more accurate results from

the proposed DF-GNC approach for estimating the oscillation

amplitude of SSO that is dominated by saturation nonlinearity.

The following case study will demonstrate a high accuracy of

this analytical formula.

III. CASE STUDY

The nonlinear analytical approach based on DF-GNC can be

employed to analyze various oscillation issues in power systems.

In this section, we take the SSO problem with a PMSG-based

wind farm as a case to validate the effectiveness of the proposed

DF-GNC approach for SSO characterization.

A. System Modeling

Fig. 3 shows a PMSG-based wind turbine generator as an

equivalence of a wind farm connected to a weak AC grid. The

wind farm is assumed to have N identical type-4 wind turbine

generators (WTGs) of K MW each. Each generator consists of

a wind turbine, a PMSG, a machine-side converter (MSC), a

DC link, and a grid-side converter (GSC). The VSC bridge arm

resistance and inductance are ignored in this model.

Fig. 4. Block diagram of GSC.

In Fig. 3, Rg and Lg are the equivalent resistance and induc-

tance of the grid, respectively, Req and Leq are the equivalent

resistance and inductance of the transformer and filter, ug is the

infinite bus voltage, uk is the point of common coupling (PCC)

voltage, and ut is the terminal voltage of the GSC. The main

circuit dynamics are modeled in the x-y orthogonal reference

frame, which rotates counterclockwise with synchronous angu-

lar velocity ω0
{

sLeqixg = −Reqixg + ω0Leqiyg + uxt − uxk

sLeqiyg = −Reqiyg − ω0Leqixg + uyt − uyk

(17)

{

sLgixg = −Rgixg + ω0Lgiyg + uxk − uxg

sLgiyg = −Rgiyg − ω0Lgixg + uyk − uyg

(18)

where ixg and iyg represent the x-axis and y-axis line currents of

the main circuit, uxt and uyt are the x-axis and y-axis terminal

voltages of the GSC, uxk and uyk are the x-axis and y-axis

PCC voltages, uxg and uyg are the x-axis and y-axis infinite bus

voltages.

In addition to the main circuit, the most important part in

wind farm is its control system which mainly consists of the

PLL and the VSC control system. It is widely known that the

SSO in PMSGs mainly arises from the control strategy of GSC.

Therefore, this paper mainly focuses on GSC control parameters.

The output of the proportional integral (PI) controller often has

a hard amplitude limit, which can be modeled by a saturation

element as shown in Fig. 4.

Here udc is the dc-bus capacitor voltage, idg and iqg are the

line currents in the d-q reference frame which are obtained from

the network current using transformation of coordinates,udk and

uqk represent the PCC voltages, udt and uqt represent the GSC

voltages in the d-q reference frame, the superscript “∗” indicates

the reference value of each operating parameter, kpu and kiu are

the proportional gain and integral gain of voltage outer-loop

control respectively, kpi and kii are the CCL proportional and

integral gain respectively. After modeling the saturation nonlin-

ear elements as shown in Fig. 4, the dynamic equations of GSC

control system are

i∗dg = GuNu(A)(u∗
dc − udc)

{

u∗
dt = udk +GiNi(A)

(

i∗dg − idg

)

− ω0Leqiqg

u∗
qt = uqk +GiNi(A)

(

i∗qg − iqg
)

+ ω0Leqidg

Gu = kpu + kiu/s

Gi = kpi + kii/s (19)
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where Nu(A) and Ni(A) are the describing functions of voltage

and current control loop saturation functions.

PLL includes x-y to d-q reference frame transformation. The

d-q reference frame rotates counterclockwise with synchronous

angular velocity ω0, and the relation between x-y and d-q refer-

ence frames is
[

fd

fq

]

=

[

cosθ sinθ

−sinθ cosθ

][

fx

fy

]

. (20)

where θ is the angle difference between the synchronous rotation

angle and the output angle of PLL. fx and fy are the components

of electrical quantity f in x-y reference frame, and fd, fq are the

components of f in d-q reference frame. Here, f represents the

current ig and the voltages ut, uk, ug.

The PLL model is

θp =

(

skpp + kip
s

uqk + ω0

)

/s = θ + ω0t (21)

where kpp and kip are the PLL proportional gain and integral

gain respectively, θp is the output angle of PLL.

Details on the rest of the system shown in Fig. 3 can be

found in [28] and [29]. Keeping all nonlinearities of the model

will cause complexities in analyses and computations, so it is

advisable to divide all nonlinearities into two categories: “hard”

and “soft” nonlinearities. In VSCs, the “hard” ones can refer

to saturation nonlinearities, and the “soft” ones are, e.g., ref-

erence transformations. Compared with “hard” nonlinearities,

small-signal models that linearize “soft” nonlinearities may be

used without much sacrifice on the accuracy of oscillation or

resonance analysis [30]. These “hard” and “soft” nonlinearities

can correspond to the “nonlinear part” and “linear part” of the

system assumed by the Describing Function method.

In order to derive the transfer function on the linear part,

choose the line current reference as the input and the actual

value of the line current as the output. To analyze the stability of

the current control loop, the DC voltage control is ignored. The

q-axis current reference i∗qg is zero when the constant reactive

power control is employed to the system. After linearizing and

simplifying (17)–(21), the current control expressions can be

simplified as
⎧

⎨

⎩

∆ixg = KGi(1+Ni(A)I−Ni(A)J1)
1+Ni(A)(I−I·J1+I·J2)

∆i∗dg

∆iyg = (KGi)
2J3(1+Ni(A)I)

1+Ni(A)(I−I·J1+I·J2)
∆i∗dg

(22)

K, I and J1 to J3 can be calculated by these formulas:

K =
Ni (A)

Ni (A)Gi + sLeq +Req

(23)

I =
Gi

sLeq +Req

(24)

J1 = GPLL (sLg +Rg) ixg0 (25)

J2 = GPLLω0Lgiyg0 (26)

J3 = GPLLω0Lgixg0 (27)

GPLL = (skpp + kip) /(s
2 + skpp + kip) (28)

Fig. 5. d/x-axis current closed-loop control block diagram.

TABLE II
MAIN PARAMETERS OF THE STUDY SYSTEM

Note: Base Capacity SB = 1200MVA

TABLE III
TWO OTHER SETS OF PARAMETERS OF VSC

In (25), (26) and (27), the subscript 0 represents the initial

value of each operating parameter. Taking the d/x-axis current

for example, its closed-loop control block diagram is shown in

Fig. 5.

In Fig. 5, G0(jω) represents the frequency characteristics

of the linear part including the “soft” nonlinear elements. The

mathematical expressions of G0(jω) and G1(jω) are

G0(jω) = I − I · J1 + I · J2 (29)

G1(jω) = KGi (1 +Ni(A)I −Ni(A)J1) . (30)

B. Estimation of the SSO Characteristics by the DF-GNC

Main parameters affecting the characteristic of SSO are stud-

ied to provide references of the magnitude and frequency to

possible practical outcomes as shown in Table II.

Under a sinusoidal signal input, if the linear element of the

system has a low-pass filtering characteristic, the amplitude of

the system output at a high frequency will be much smaller than

the amplitude at the fundamental frequency. Thus, the output

of the nonlinear system will be much closer to its response at

the fundamental frequency. Characterizing the nonlinear ele-

ment with a describing function under such a condition is more

accurate. We select two other sets of controller parameters in

the reference [20], [31] as shown in Table III, and obtain G′
0 and

G′′
0 respectively according to (29). The Bode diagram of G0(s)

under three sets of controller parameters is shown in Fig. 6.

From Fig. 6, the amplitude-frequency and the phase-

frequency plots on G0(s) are similar under different parameter

settings, so the Bode plot of the G0(jω) with parameters in
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Fig. 6. Bode plot of G0(jω).

Table II is typical of converters used in PMSGs. From the

amplitude-frequency plots, the slopes are flat at low frequen-

cies range and become steeper in the higher-frequency range.

The linear parts under different parameters all have excellent

low-pass filtering characteristics. Therefore, it is reasonable to

use a describing function to model the nonlinear element. For

the current inner-loop control, the describing function of this

saturation nonlinear element is

Ni(A) =
2

π

⎡

⎣arcsin

(

0.05

A

)

+
0.05

A

√

1−

(

0.05

A

)2
⎤

⎦ ,

A ≥ 0.05. (31)

Now, use the DF-GNC approach to characterize the wind

farm SSO under different power grid strengths, PLL and CCL

parameters. Based on the parameters of the base case as shown

in Table II, separately change the grid inductance Lg, the PLL

proportional and integral coefficients kpp and kip, the CCL pro-

portional and integral coefficients kpi and kii. The Nyquist plots

of G0(jω) under different conditions and the plot of −1/Ni(A)
overlaid in the same complex plane as shown in Fig. 7.

According to the result from the proposed DF-GNC approach,

it can be inferred that the wind farm can have sustained SSO

since the Nyquist curves intersect with the curve of −1/N(A),
meaning that the system is marginally stable.

Moreover, the amplitudes and frequencies of sustained SSOs

with different parameters can be estimated by the DF-GNC

approach as shown in Table IV.

The sign “↓” or “↑” indicate that the variable is decreasing

or increasing. From Table IV, the amplitude of SSO becomes

bigger with a lower grid strength (namely a larger inductance

Lg), a higher PLL proportional and integral gains, a higher CCL

integral gain or a lower CCL proportional gain. The frequency

of SSO becomes higher with a higher grid strength or higher

PLL proportional and integral gains. The frequencies are almost

constant with the variations of the CCL proportional and integral

gains.

According to the formulas (14)–(16) and (24)–(29), the os-

cillation amplitude can approximately be estimated. Table V

compares the estimations with the results from the proposed

DF-GNC for different Lg, which are very close.

Fig. 7. Nyquist plots under different conditions.

C. Comparison With Eigen-Analysis of SSO

This section provides the eigen-analysis results on the SSO as

a comparison with the DF-GNC approach. A linearized model

for the system in Fig. 3 can be derived in the d-q reference



XU et al.: CHARACTERIZATION OF SUBSYNCHRONOUS OSCILLATION WITH WIND FARMS 2789

TABLE IV
THE SSO AMPLITUDE AND FREQUENCY ESTIMATED BY DF-GNC

TABLE V
THE SSO AMPLITUDES ESTIMATED BY DF-GNC AND APPROXIMATED

ANALYTICAL FUNCTION WITH DIFFERENT GRID INDUCTANCE

TABLE VI
OSCILLATORY EIGENVALUES RELATED TO VSC AND AC GRID

TABLE VII
PARTICIPATION FACTORS OF STATE VARIABLES

frame as

∆Ẋ = A∆X +B∆U

∆X = [∆x1 ∆x2 ∆x3 ∆x4 ∆idg ∆iqg ∆θp ∆udc] (32)

where ∆X and ∆U are incremental state vector and control

vector, respectively. A and B are coefficient matrices. x1 is the

intermediate state variable of voltage outer control loop in GSC;

x2 and x3 are the intermediate state variables of current inner

control loop in GSC; x4 is the intermediate state variable of

PLL. θp is the output angle of PLL. The eigenvalues that are

closely related to the GSC and AC grid are listed in Table VI.

Obviously, there exist a pair of conjugate eigenvalues with

frequency located in the SSO frequency range. For the unstable

SSO mode, participation factors of state variables are shown in

Table VII.

Fig. 8. The SSO mode varies with parameters.

Clearly, there are some highly participating variables, e.g.,

x2, x4, idg, θp, and udc. In addition to the PLL parameters, the

other parameters such as kpi and kii in current control would also

influence the system stability. The change of the small-signal

stability regarding the SSO mode with different parameters is

illustrated in Fig. 8.

Fig. 8 depicts how the eigenvalues related to the SSO mode

change with different parameters. As Lg or kii increases, the

eigenvalues move toward the right, meaning degeneration of

stability with the increase of weakness in grid connection and

kii. As kpp or kip increases, the eigenvalues will move toward the



2790 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 4, JULY 2020

TABLE VIII
THE REAL PART AND FREQUENCY OF THE SSO EIGENVALUE

Fig. 9. Dynamics of PMSG-based wind farm with or without nonlinearity
saturation.

left and then the right significantly. However, when kpi grows, the

real part of the eigenvalues will decrease to cross the imaginary

axis at the critical parameter level. Table VIII lists the real

parts (σ1, σ2, σ3) and frequencies (f1, f2, f3) of certain SSO

eigenvalues which are printed in red in Fig. 8.

Based on the base case shown in Table II, when Lg is equal to

0.855, 0.627 and 0.456, respectively, the real parts and frequen-

cies are shown in the second column. Similarly, the columns 3 to

6 show the results when kpp is 80, 50 and 20, kip is 4kip0, kip0 and

1/4kip0, kpi is 5, 10, and 20, kii is 100, 40, and 30, respectively.

It shows that the real parts of the eigenvalues are all positive.

Through eigen-analysis, we can only get the conclusion that the

system is unstable, which means the growing SSO will occur

rather than the sustained SSO.

D. Nonlinear Time-Domain Simulations

The time-domain simulations are performed using Matlab

Simulink, and the basic parameter settings as shown in Table II.

The dynamics of SSO with and without the saturation nonlin-

earity following a step change of line reactance are investigated.

The base-case scenario is used, and the reactance is initially set

as 0.285 pu. Then, it is suddenly raised to 0.855 pu at 2 s, which

weakens the connection to the AC grid. The curves of the active

power and the current ixg from 1.5 s to 4.8 s are shown in Fig. 9.

The SSO current or active power both exponentially diverge

when there is no saturation nonlinearity, which is consistent

Fig. 10. Current ixg response and frequency spectrum under different Lg .

Fig. 11. Current ixg response and frequency spectrum under different kpp.

with the unstable SSO mode 5,6 as predicted by eigen-analysis

in Table VI. When the saturation nonlinearity exists, the SSO

current or active power demonstrate sustained oscillation as

they reach the hard limit. Fig. 9 to Fig. 14 present the effect

of the grid inductance Lg , the PLL proportional and integral

coefficients kpp and kip, and the CCL proportional and integral

coefficient kpi and kii on the sustained SSO characteristics. The

variation extent of parameters are the same as the DF-GNC and

eigen-analysis.

From Fig. 9 to Fig. 14, the wind farm demonstrates sustained

oscillations, whose amplitudes and frequencies are shown in

Table IX.

From Table IV and Table IX, the simulation results match well

the results from the DF-GNC approach. To clarify the difference

between the eigen-analysis and the DF-GNC approach, select

some of the results from Table IV, Table VIII and Table IX and

compare them in Table X and Table XII.
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Fig. 12. Current ixg response and frequency spectrum under different kip.

Fig. 13. Current ixg response and frequency spectrum under different kpi.

Table X lists the oscillation frequencies under 6 cases using

the three different methods. The base case is shown in Table II.

The rest of the cases in the first column is obtained by changing

one of the parameters in Table II. The second to fourth columns

are frequencies by simulation, eigen-analysis and DF-GNC,

respectively. Taking the simulation results as the references,

EE and EN are errors of the eigen-analysis and the DF-GNC

respectively. From Table X, errors from both methods are less

than 1%, and the eigen-analysis has a slightly bigger error.

When kpp is increased to 110, 120, and 130, the error of the

eigen-analysis also increases as shown by Table XI while the

DF-GNC still gives accurate estimates on frequency.

Similarly, the oscillation magnitudes are listed in Table XII,

which shows that the results from DF-GNC are very close to the

Fig. 14. Current ixg response and frequency spectrum under different kii.

TABLE IX
THE SSO AMPLITUDE AND FREQUENCY BY SIMULATION

TABLE X
THE FREQUENCY OF SSO BY DIFFERENT METHODS

Note: Case 1, Lg = 0.456; Case 2, kpp = 20; Case 3, kip = 1/4 kip0; Case 4, kpi = 20;

Case 5, kii = 30.

TABLE XI
THE FREQUENCY OF SSO BY DIFFERENT METHODS
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TABLE XII
THE MAGNITUDE OF SSO BY DIFFERENT METHODS

Note: Case 1, Lg = 0.456; Case 2, kpp = 20; Case 3, kip = 1/4 kip0; Case 4, kpi = 20;

Case 5, kii = 30.

Fig. 15. X-axis current response and frequency spectrum under different limit
values of the saturation nonlinearity.

Fig. 16. X-axis current phase diagrams of ixg under different limit values of
the saturation nonlinearity.

simulation results. Therefore, eigen-analysis can only be used

to obtain the oscillation frequency and stability of the system.

However, the DF-GNC used in this paper can calculate the

oscillation frequency and amplitude, and it has advantages in

the accuracy and completeness of the SSO characteristic.

Fig. 15 and Fig. 16 present the current response and phase

diagrams under different limit values of the saturation nonlin-

earity. We can see that the amplitude will increase with the more

considerable limit value of the saturation nonlinearity. Under

the effect of saturation nonlinearity, the trajectory of the current

phasor eventually approaches a limit cycle, and the bigger the

limit value is, the larger the limit cycle reaches.

IV. CONCLUSION

The DF-GNC based approach is proposed to characterize the

SSO with wind farms. The research results of a PMSG-based

wind farm connected to a power gird indicate that the DF-

GNC approach can predict the sustained SSO characteristics

and the estimated SSO amplitudes are close to those of time

domain simulation with a detailed model. The SSO frequencies

estimated by the DF-GNC approach are more accurate than

the results from conventional eigen-analysis. The cases with

different grid strengths, PLL proportional and integral gains,

CCL proportional and integral gains have validated the feasi-

bility and correctness of the proposed DF-GNC approach for

characterization of the SSO with wind farms.
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