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Characterization of surface carbon formed during the conversion of
methane to benzene over Mo/H-ZSM-5 catalysts
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During the conversion of methane to benzene in the absence of oxygen over a 2 wt% Mo/H-ZSM-5 catalyst at 700 °C, three different
types of surface carbon have been observed by X-ray photoelectron spectroscopy: adventitious or graphitic-like C (284.6 €V), carbidic-
like C (282.7 eV), and hydrogen-poor sp-type C (283.2 eV), where the C 1s hinding energies for the respective forms of carbon are given
in parentheses. Pretreatment of the catalyst at 700°C in CO aso resulted in a strong signa at 283.2 eV; thus, the species responsible
for this signal appears to be different from the usual aromatic-type coke. The coke with dominantly sp hybridization is concentrated on
the external surface of the zeolite and is responsible for the gradua deactivation of the catalyst.
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1. Introduction

Molybdenum-loaded H-ZSM-5 zeolites are promising
catalysts for the conversion of methane to benzene in the
absence of oxygen via the reaction [1-10]

6CH,4 — CgHg + 9H, D

Recent investigations in our laboratory have shown that,
following an initial induction period, a methane conversion
of 8% could be achieved at a benzene selectivity of 70%
a 700°C [9,10]. During this induction period, Mo(V1) is
amost completely reduced to the carbide, Mo,C, which
was identified by X-ray photoelectron spectroscopy (XPS).
This phase is believed to be responsible for methane acti-
vation [9]. Ethyleneisfirst formed, and thisis converted to
benzene over the acid sites in the zeolite. The role of the
metal carbide was further supported by the effect of treat-
ing the catalyst in a CH4/H, gas mixture at 700°C [10],
which resulted in the rapid formation of Mo,C and an al-
most complete elimination of the initial induction period
for methane activation.

Although similar catalytic performances have been re-
ported by several other research groups, different active
phases were proposed [1-7]. Recently, Solymosi et al. [8]
also reported that Mo,C was the active phase for methane
activation. Discrepancies among various research groups
in identifying the active phase for methane activation may
result from: (1) different sample preparation and pretreat-
ment; (2) the apparent inactivity of commercia Mo,C for
methane activation; (3) the rapid reoxidation of M0o,C in
air; and (4) the overlap of the carbidic C 1s XPS signal with
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other forms of carbon that are formed on the surface dur-
ing methane activation. In previous studies, considerable
attention has been given to the state of the molybdenum,
but not to the forms of carbon on the surface.

The present investigation was undertaken to elucidate the
nature of the surface carbon species that are formed during
methane activation. It will be shown that coke deposition
is responsible for the gradual deactivation of Mo/H-ZSM-5
catalysts during methane activation. The coke, however, is
not of the aromatic type, which is surprising in view of the
aromatic products.

2. Experimental
2.1. Catalyst preparation

The 2 wt% Mo/H-ZSM-5 catalyst was prepared starting
from commercia H-ZSM-5 (PQ Corp., CBU 5020E) hav-
ing a SI/Al ratio of 25. Fully exchanged H-ZSM-5 was
obtained by ion exchange with 500 ml of a 1 M aque-
ous solution of ammonium nitrate (NH;NO3, EM Science)
at 80°C for 12 h, followed by drying at 90°C overnight
and calcination at 500°C for 5 h. An agueous solution
of ammonium paramolybdate ((NH4)sM 07024, Spectrum)
was used for impregnation of Mo by the incipient wetness
method, followed by drying at 90 °C overnight and calcina-
tion at 500°C for 5 h. The freshly prepared 2 wt% Mo/H-
ZSM-5 sample was then crushed and sieved to 20/45 mesh
granules.

2.2. Catalyst pretreatment and characterization

Reactions were carried out in a flow system, using re-
actors constructed from alumina tubes (Coors, AD-998,
99.8% Al,O3) having an interna diameter of 6.4 mm and
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containing 1.0 g of the catalyst used. To minimize the con-
tribution from any gas-phase reactions, quartz chips filled
the space above and below the catalyst beds in the flow
reactors. A thermocouple in a smaller aumina tube was
attached to the outside wall of each of the reactors.

Reactant gases, which included 10% N,/CH4 (UHP),
O, (UHP), He (UHP) and CO (UHP), were obtained from
Matheson. Traces of iron carbonyls were removed from
the CO stream by flowing it through an alumina tube filled
with quartz chips at 300 °C. Other gases were used without
further purification. Gas flows were regulated by mass-flow
controllers (MKS model 1159A). In the flow system, the
catalyst was heated in an O, flow at 500°C for 1 h, and
flushed in He for 30 min (flow rate of 50 ml/min). Some
catalysts were then reduced in a stream of CO for several
hours at 700°C (flow rate of 50 ml/min). After calcination
and treatment in CO, the catalyst was subjected to a CH,4
stream at 700°C. The GHSV was 800 h—1. N, in CH4 was
used as an internal standard so that the CH4 conversion
could be determined accurately and coke formation during
the reaction could be evaluated from a carbon mass bal-
ance. Theresulting reaction mixtureswere analyzed using a
HP5890A chromatograph, equipped with a 5% Bentone 34
on Chromosorb W-AW column and a HayeSep D column.
All studies were carried out at atmospheric pressure.

XPS spectra were acquired using a Perkin-Elmer (PHI)
model 5500 spectrometer. All spectra were obtained using
samples prepared in the form of pressed wafers and pre-
treated in a specia quartz reactor system to duplicate the
conditions employed in the catalytic reaction experiments.
Comparisons between activity/sel ectivity data obtained with
a flow-through catalyst bed and XPS results obtained with
pressed wafers have been useful in understanding the tran-
sients that result from changes in the chemical state of Mo,
as well as the effects of poisons such as CO; [9,10]. The
quartz reactor system contained an O-ring-sealed port that
allowed transfer of the ceramic holder containing the treated
sample into a stainless steel vacuum transport vessel (PHI
model 609217). The removable vessel was then transferred
to a similar port on the inlet system on the XPS spectrom-
eter, which was subsequently evacuated, allowing the sam-
ple to be introduced into the UHV analysis chamber of the
instrument using magnetically coupled transfer rods with-
out exposure to the air. A typica XPS data acquisition
employed a pass energy of 29.35 eV, a step increment of
0.125 eV, and a Mg anode power of 400 W. All binding en-
ergies were referenced to the zeolitic Al 2p and Si 2p peaks
at 74.5 and 102.8 eV, respectively. Near-surface composi-
tions were calculated from peak areas using the appropriate
sengitivity factors [11].

3. Results

3.1. Catalytic results

In the first series of experiments, we studied the ef-
fect of CO prereduction at 700°C on the catalytic per-
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Figure 1. Methane conversion and benzene selectivity results, represented

by squares and circles, respectively, for CH4 reaction over 2 wt% Mo/H-

ZSM-5 prereduced at 700 °C with CO for 0 h (solid symbols) and 6 h

(open symbols). The catalytic reaction was conducted at 700°C, 1 atm,
and GHSV = 800 h—1.

formances of a 2 wt% Mo/H-ZSM-5 catalyst. Figure 1
shows the methane conversion and benzene selectivity for
the reaction of methane with and without CO pretreatment
at 700°C. Following an initial activation period during the
first 2 h of reaction, a benzene selectivity of about 70%
could be reached at a methane conversion of 8% for a non-
prereduced Mo/H-ZSM-5 catalyst. The thermodynamic
equilibrium conversion under these conditions is 12% [9].
The catalytic activity then slowly decreased with increas-
ing time-on-stream. A similar catalytic behavior was ob-
served for a 2 wt% Mo/H-ZSM-5 catalyst prereduced at
700°C with CO for 6 h; however, the methane conversion
was only about 5%, and the material deactivated somewhat
faster than the non-prereduced catalyst. Other prereduction
times at 700 °C resulted in different methane conversions,
asillustrated in figure 2. The methane conversion at max-
imum benzene selectivity (ca. 4 h time-on-stream) gradu-
ally decreased with increasing reduction time and was only
about 2% after CO prereduction for 12 h at 700°C.

3.2. X-ray photoelectron spectroscopy

The chemical state of Mo and C in the 2 wt% Mo/H-
ZSM-5 catalysts, together with the near-surface compo-
sition, were examined by conventional and by angle-
resolved XPS. Angle-resolved XPS provides information
about changes in the sample composition with depth. Elec-
trons emerging from the solid at low take-off angles char-
acterize properties of the uppermost surface layers of the
sample, whereas the electrons measured at high take-off
angles more nearly reflect the bulk contribution [12-14].

The XPS spectra obtained in the Mo 3d and C 1s regions
of a non-prereduced 2 wt% Mo/H-ZSM-5 catalyst for in-
creasing time-on-stream have been discussed in detail in
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Figure 2. Methane conversion at maximum CgHg selectivity for CHy

reaction over 2 wt% Mo/H-ZSM-5, prereduced at 700 °C with CO, as a

function of the reduction time. The catalytic reaction was conducted at
700°C, 1 atm and GHSV = 800 h—1,

previous publications [9,10] and will not be repeated. It is
sufficient to illustrate the near-surface composition of the
catalyst for increasing time-on-stream in CH, at 700°C,
which is given in figure 3. The XPS signals due to Mo and
(Al'+ Si + O) gradually decreased with increasing time-on-
stream. By contrast, the C signal steadily increased, which
indicates that the catalyst was covered by an increasing
amount of coke. The effect was more pronounced dur-
ing the first 6 h on stream. In addition to a C 1s peak at
283.2 eV, an additional one was observed at 282.7 eV for
a sample that was treated in a CH4/H, mixture [10]. The
latter peak was attributed to carbidic carbon in Mo,C. In
the present work, however, we have used pure CH,4, and
the carbidic C 1s signal was always overshadowed by the
C 1s band centered around 283.2 eV.

The XPS spectrain the C 1sregion of the Mo/H-ZSM-5
catalyst, treated for 13 h in methane at 700 °C, are given in
figure 4. At an electron take-off angle of 60°, two peaks at
around 284.6 and 283.2 eV were observed (spectrum (a)).
The former peak can be assigned to “adventitious C" or
graphitic-like C [12-14], whereas the | atter is different from
that observed for pure Mo,C at 282.7 [10]. It is important
to note that the C/Mo atomic ratio was around 10, and
therefore much larger than the expected value of 0.5 for a
pure supported Mo,C species. Thisvalue of 0.5 was previ-
ously approached by treating the Mo/H-ZSM-5 catalyst in
a CHy4/H; mixture, which is known to suppress coke forma-
tion [10]. Thus, the 283.2 eV band, whichisat an unusually
small BE for catalytic coke, most probably encompasses
two different types of carbon, a small amount of carbidic C
and a new carbon type, which is subsequently referred to
as pregraphitic-like C. The band at 283.2 eV gradualy in-
creased in intensity with decreasing electron take-off angle
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Figure 3. Near-surface composition of a non-prereduced 2 wt% Mo/H-
ZSM-5 catalyst, exposed at 700 °C to methane, as a function of time-on-
stream.
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Figure 4. Angle-resolved XPS spectra in the C 1s region of a non-
prereduced 2 wt% Mo/H-ZSM-5 catalyst exposed for 13 h to methane
at 700°C: (a) = 60°, and (b) & = 20°.

and was a maximum at § = 20° (spectrum (b)). At this
low electron take-off angle, the 284.6 eV peak of graphitic-
like C was only visible as aweak shoulder. The dominance
of the 283.2 eV pesk at the low take-off angle indicates that
the species responsible for this signal is concentrated on the
external surface of the zeolite.

Spectra obtained in the Mo 3d region and C 1s region of
a2 wt% Mo/H-ZSM-5 catalyst, reduced with CO at 700°C
for severa hours, are presented in figure 5. The XPS spec-
trum in the Mo 3d region of the Mo/H-ZSM-5 catalyst,
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Figure 5. XPS spectra (A) in the Mo 3d region, and (B) in the C 1s region of a2 wt% Mo/H-ZSM-5 catalyst, exposed to CO at 700 °C, as a function
of the reduction time: (&) O h, (b) 3 h, (c) 6 h, and (d) 12 h. The electron take-off angle 6 was 45°.

treated in O, at 500°C, was characterized by two bands
due to Mo(V1)/Mo(V) centered around 233.1 and 236.3 eV
(figure 5(A), spectrum (@)). The corresponding C 1s re-
gion was typical of graphitic-like carbon. Reduction of the
catalyst at 700°C with CO for 3 h resulted in a large de-
crease in the Mo(V)/Mo(V1) bands and the formation of
new bands located at 227.9 and 231.1 eV (figure 5(A),
spectrum (b)). The latter bands indicate the formation
of Mo,C [9,10]. The intensity of these bands decreased
upon increasing prereduction time, and after 12 h reduc-
tion with CO, a less intense XPS spectrum was obtained
(figure 5(A), spectrum (d)). The C 1sregion showsthat pre-
reduction at 700 °C resulted in the formation of the same
pregraphitic-like carbon with a band at around 283.2 eV
(figure 5(B), spectra (b)—(d)) as that observed following
exposure of the catalyst to CH,4. This band became domi-
nant after reduction with CO for 6 h. Thus, Mo,C can be
formed by CO reduction at 700 °C, but is covered to alarge
extent by C, which is characterized by the band at 283.2 eV.

The near-surface composition of the cataly<t, following
different prereduction treatments, is summarized in figure 6.
The results show that the signals originating from the ze-
olite and the Mo decrease with increasing reduction time,
whereas the intensity of the signal belonging to C steadily
increased. In particular, the dominant pregraphitic-like car-
bon is deposited onto both the Mo and the zeolite surface.

In afinal set of experiments, angle-resolved XPS spectra
of pure H-ZSM-5 were obtained after treating the sample
in methane at 700 °C. Although this material exhibited only
limited methane conversion (0.6%) and no benzene selec-
tivity, its color became black after exposure to methane for
several hours. For H-ZSM-5 treated for 48 h in methane
at 700°C, the C 1s region was characterized by a single
band at 283.6 eV, which broadened towards higher binding
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Figure 6. Near-surface composition of a 2 wt% Mo/H-ZSM-5 catalyst,
exposed a 700 ° C to CO, as afunction of the reduction time. The electron
take-off angle 6 was 45°.

energies, suggesting the presence of some adventitious or
graphitic C. The BE of 283.6 eV is somewhat larger than
the value given above for the pregraphitic-like carbon on
the Mo/H-ZSM-5 catalyst.

4. Discussion
The primary aim of this work was to elucidate the na-

ture of the different surface carbon species that are formed
during the conversion of methane to benzene over Mo/H-
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ZSM-5 catalysts in the absence of oxygen. Angle-resolved
XPS, in combination with reduction trestments, shows that
three different types of surface carbon species are present
in an active catalyst. The following discussion will include:
(1) the nature of surface carbon species, and (2) the deac-
tivation process of Mo/H-ZSM-5 catalysts.

4.1. Nature of surface carbon species

In contrast with the C 1s binding energies of functional
groups, such as C-O, C=0, and C-OH, the assignments
of the C 1s band positions to C—C, C=C, C=C, and C-H
bonds are less straightforward [13]. Degspite this lack of
uniqueness in the literature for the binding energies of C 1s
bands, it is possible to distinguish between general forms
of carbon, and table 1 gives a summary of C 1s binding en-
ergies reported in the literature for different hybridizations
of carbon. Although octaethylporphin (OEP) contains C
with sp? hybridization, the C 1s binding energy is distinctly
less than that in polystyrene. This smaller binding energy
may result from the presence of N in the ring structure of
OEP [20].

In the present work, the binding energies were corrected
for charging by referencing the zeolitic Al 2p and Si 2p
bands at 74.5 and 102.8 €V, respectively, in ZSM-5. The
corresponding value of graphitic-like or adventitious car-
bon in pure H-ZSM-5 was 284.6 eV, which is the same
value as that reported by Barr [13]. Sexton et al. [21]
reported BE's of 284.5-284.7 eV for internal coke, and
284.3 eV for external coke, formed during the conversion
of methanol to aromatics over H-ZSM-5. These values are
referenced to a Si 2p band at 103.4 eV. If one uses our
value of 102.8 eV for the S 2p reference, the respective
BE's for the C 1s bands reported by Sexton et al. become
283.9-284.1 eV and 283.7 €V. The latter is very close to
the value of 283.6 eV that we observed following the re-
action of CH4 with H-ZSM-5. By comparison with results

Table 1
Literature survey of C 1s assignments for different types of carbon.
Carbon type  Compound Binding energy (eV) Reference
s C polyethylene 284.8 [16]
polypropylene 284.9
hydrocarbon oil 284.8
OEP? 284.6
sp? C polystyrene 284.2
graphite 284.2
OEP? 283.7
spC CH/Pt(111) (methine) 283.8-284.0 [17]
CoH,/Fe(110)° 283.5 [18]
carbidic C Mo,C 282.8 [19]

aOEP, octaethylporphin, which contains both diphatic and aromatic car-
bon atoms.

b The reported value of 283.9 eV was corrected by 0.4 €V to compensate
for the unusually high binding energy of graphite-like carbon (285.0 eV).
Charging effects are usually corrected by referencing to adventitious or
graphite-like carbon, which is the mgjor C-C/C—H C 1s peak located at
284.6 eV.

obtained from solid-state 1*C NMR studies, Bibby and co-
workers [21] conclude that the larger C 1s BE's result from
internal coke which is composed of methyl-substituted aro-
matic coke and the smaller BE results from external coke
which is graphitic or composed of highly condensed poly-
cyclic aromatic rings.

Although the band at 283.2 eV has a BE that is near
the value of 283.7 eV (corrected) for surface coke, it is
distinctly less than the value of 284.2 eV for well defined
graphite (table 1). Moreover, this band on Mo/H-ZSM-5
can be formed from CO as well as from CHy, thus the
surface species need not contain hydrogen. The relatively
low BE of 283.2 eV suggests sp hybridization on the car-
bon, and chains of the type (C=C),,— may be precursors
in the formation of graphite. This interpretation suggests
that there may be an alternative pathway to the formation
of graphite that does not involve polycyclic aromatic inter-
mediates. Blackmond et al. [22] have reported a lack of
aromatic character in the coke formed over an HY zeolite.
Lagow et al. [23] have recently prepared a carbon allotrope,
based on sp hybridization, that contains alternating triple
and single bonds. The dehydrogenation function of Mo,C
and the temperature of 700°C may favor this nonaromatic
pathway.

4.2. Deactivation process of Mo/H-ZSM-5 catalysts

In this work, we have shown that prereduction with CO
at 700°C did not result in more active materials. In-
stead, our results clearly demonstrated that CO reduction
at 700°C for increasing periods resulted in the gradual
formation of coke which covered the catalyticaly active
phase, Mo,C. These observations are in contrast with re-
cent characterization results, in which we have shown that
prereduction in CH4/H; at 700°C [9,10] or in CO at 500°C
[24,25] resulted in a large decrease in the initial induction
period. However, neither of these pretreatment procedures
resulted in significant coke formation. This suggests that
(pre)reduction, although necessary for the transformation of
Mo(V1) to the catalytically active phase, Mo,C, may also
lead to coke deposition which blocks the active sites. Thus,
pretreatment in CH4/H, at 700°C or in CO at 500°C isre-
quired to obtain the most active Mo/H-ZSM-5 catalyst for
methane activation.

Similar results were previously obtained for unsupported
Mo,C [24,25]. Leary et al. [26] concluded from detailed
temperature-programmed desorption (TPD) and reduction
(TPR) experiments that the decrease in ethylene dehydro-
genation activity over Mo,C is due to accumulation of car-
bon on the surface, which blocks the active sites. This car-
bon was produced by the cracking of ethylene over Mo,C.
In addition, Wang et a. [27] observed by angle-resolved
XPS that at low electron take-off angles the surfaces of
annealed Mo,C samples were enriched in carbon.
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5. Conclusions

Three different types of surface carbon species are
present on an active Mo/H-ZSM-5 catalyst: (a) species A,
characterized by a C 1s BE of 284.6 eV, is due to adventi-
tious or graphitic-like C and is mainly present in the zeolite
channel system as shown by angle-resolved XPS studies;
(b) species B, withaC 1sBE of 282.7 eV, isdueto carbidic-
like C in Mo,C and is predominantly located at the outer
surface of the zeolite; and (c) species C, with a C 1s BE of
283.2 eV, is a hydrogen-poor sp-type or pregraphitic-type
of carbon. This carbon, which is formed by the decomposi-
tion of CH,4 during the catalytic reaction or by pretreatment
of the catalyst in CO at 700°C, is mainly present on the
outer surface of the zeolite, and its amount increases with
increasing time-on-stream. The sp-type carbon gradually
covers both the zeolite surface and the Mo,C phase during
methane activation and is responsible for the deactivation
of Mo/H-ZSM-5 material s during the dehydroaromatization
of methane.

Since surface carbon is often used as an internal standard
for the determination of binding energies, it is worth point-
ing out that a significant error in binding energies would
result if the large carbon signal at 283.2 eV was used as a
standard and assigned the value of 284.6 eV for adventi-
tious carbon.
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