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In this paper, we propose the use of crossing statistics and its generalizations as a new framework

to characterize the anisotropy of a 2D rough surface. The proposed method is expandable to higher

dimensions. By measuring the number of up-crossing, �þ [crossing points with a positive slope at a

given threshold of height (a)], and the generalized roughness function, Ntot, it is possible to charac-

terize the nature of an anisotropy, rotational invariance, and Gaussianity of any given surface. In

the case of anisotropic correlated self- or multi-affine surfaces, even with different correlation

lengths in different directions and/or directional scaling exponents, we examine the relationship

between �þ and Ntot, and corresponding scaling parameters analytically. The method identifies the

direction of anisotropy through the systematic use of P-value statistics. After applying the common

methods in determining the corresponding scaling exponents in the identified anisotropic directions,

we are able to determine the type and the ratio of the involved correlation lengths. To demonstrate

capability and accuracy of the method, as well as to validate the analytical calculations, we apply

the proposed measures on synthetic stochastic rough interfaces and rough interfaces generated from

the simulation of ion etching. There is a good agreement between analytical results and the out-

comes of the numerical models. The proposed algorithm can be implemented through a simple soft-

ware in various instruments, such as AFM and STM, for surface analysis and characterization.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4998436]

I. INTRODUCTION

Isotropy and anisotropy are important characteristics of a

given surface or an interface that depends on various condi-

tions and factors. The method of the creation (crack,1 growth,2

etching3) and the building blocks of the media can influence

the symmetries of the given surface/interface. For instance, in

the case of growth via evaporation/condensation, different

mechanisms can alter the isotropy of the surface to various

extent4–6 that can be described by the Anisotropic Kardar-

Parisi-Zhang (AKPZ) equation.7–9 Different properties of a

given rough surface or interface such as friction, diffusivity of

particles, wettability, liquid contact angle, and conductivity

can be influenced by topography of it. Therefore, adequate

characterization of the local (Geometrical) and global

(Topological) properties of the surface plays a crucial role in

its specifications.

To characterize the anisotropic features of a surface/

interface, it is not enough to only determine the anisotropy

direction. The anisotropy can be further characterized by its

associated correlation length and/or scaling exponent for

systems, which exhibit scaling behavior.4–6 Such characteri-

zation should be performed however within a universal

framework, allowing for standardized comparison between

surfaces. This becomes even more important in the case of

stochastic rough interfaces, where anisotropic features could

be screened by the random nature of the surface fluctuations,

introducing additional and/or spurious properties. Examples

of this situation can be found in the growth of anisotropic

organic thin films, or erosion and growth with incident

angle.3,10

Usual methods to detect anisotropies, e.g., Fourier trans-

form, encounter numerical and technical limits, especially in

situations, where having large number of samples to create

an adequate statistical ensemble is not possible. Among

quantitative methods that can characterize anisotropy,11–17

one notable example is the one proposed by Zhao et al. based

on light diffraction from anisotropic rough surfaces.4,5 Vivo

et al. have used the height power spectral density analysis to

examine the scaling anisotropic rough surface.18,19 Recently,

Guillemot et al. have introduced a regularity parameter to

quantify the degree of anisotropy of periodic structures on

rough surfaces.20 Several methods are based on field renorm-

alization19,21,22 and a well-known approach is the height-

height correlation function measurement followed by the

analysis of directional dependency of the roughness expo-

nents.18,22 Even though previous research provides appropri-

ate tools to find the direction of anisotropy, in very few of
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them the possibility of shedding lights on the nature of the

anisotropy is provided.

In this paper, we introduce and apply crossing statistics

as a measure for characterizing anisotropic feature of a given

surface. The proposed approach is independent from the

mechanism used to generate the surface, for instance, by ero-

sion or growth, and acceptability works for both self-affine

and nonself-affine rough surfaces. We show that this method

enables us to quantify the existence of anisotropy and to dis-

criminate isotropic and anisotropic patterns in the real space.

From the computational point of view, it can be mounted on

the experimental devices, such as atomic force microscopy

(AFM) and scanning tunneling microscopy (STM).

The rest of the paper is organized as follows. In Sec. II,

we provide a brief explanation on the synthetic generation of

isotropic and anisotropic rough surfaces. We introduce the

crossing statistics to investigate the height fluctuation of iso-

tropic and anisotropic rough surfaces in Sec. III. Simulations

of isotropic and anisotropic rough surfaces and analysis based

on crossing statistics by means of theoretical and numerical

computation are given in detail in Sec. IV. Finally, summary

and conclusions are presented in Sec. V.

II. SYNTHETIC ISOTROPIC AND ANISOTROPIC
ROUGH SURFACES

In order to demonstrate the affordances of crossing sta-

tistics to characterize an anisotropic rough surface, we use

two different methods for preparing synthetic rough surfaces.

First, we utilize fractional Brownian motion (fBm) for gener-

ating synthetic self-affine rough surfaces, associated with a

wide range of growth models. Second, a Kinetic Monte

Carlo (KMC) method is exploited to model the pattern for-

mation by ion-beam sputtering (IBS).10,23–27 These two types

represent a wide range of surfaces generated by nanoscale

topography in surface growth and erosion processes up to

large scale self-affine rough surfaces in macroscopic system

sizes.2,28 Here, we outline the two methods and introduce the

model parameters that control the anisotropy of the gener-

ated surfaces.

A. Self-affine surfaces

Several methods have been introduced for generating

synthetic 2D rough surfaces: multiplicative cascading pro-

cess,29–32 random measure b-model,33 a-model,34 log-stable

models, log-infinitely divisible cascade models,35,36 and

regeneration.37 In addition, the successive random addition

method,38 the Weierstrass-Mandelbrot function,39 the opti-

mization method,40 and oriented non-Gaussian method41

have been introduced and implemented in computational sur-

face generators. Another efficient way of generating a rough

surface is the modified Fourier filtering method.42

To generate a Gaussian anisotropic rough surface in 2D

with a given anisotropic correlation lengths, the following

power spectrum is considered:4

S 2Dð Þ
kð Þ ¼ 4pcr20k

2c
c nunw

L2 k2c þ n2uk
2
u þ n2wk

2
w

h icþ1
; (1)

where nu and nw are correlation lengths in u and w directions

as an orthogonal set on the surface respectively. k:(ku, kw) is

the wave vector, kc is the cutoff wave vector, and c is the scal-

ing exponent. The variance of surface height is represented by

r0, and L is the size of the rough surface. For scaling aniso-

tropic model, we use the following power spectrum:4

S 2Dð Þ
kð Þ ¼

4pr20k
2 cuþcwð Þ
c nunw

C

1

2
þ cu

� �

C cuð Þ
C

1

2
þ cw

� �

C cwð Þ

L2 k2c þ n2uk
2
u

h icuþ1=2

k2c þ n2wk
2
w

h icwþ1=2
; (2)

where cu and cw are the scaling exponents in directions u and

w, respectively. Both power spectra [Eqs. (1) and (2)] repre-

sent the fractional Brownian motion. The heights of two

points on the surface separated with distance r < 1=kc are cor-
related, whereas correlation is diminished for r > 1=kc.

1,43–45

Moreover, Eqs. (1) and (2) imply r20 ¼ L
2p

� �2 Ð

dkSð2DÞðkÞ.

B. Anisotropic pattern in surface erosion

Surface sputtering by energetic ions (Neþ, Arþ, Xeþ,
etc.) as an efficient method to manufacture nano-scale struc-

tures on surface of solids (glass, metals, semiconductors, etc.)

is widely applied and examined in the last five decades.46–48

The base of an Ion-Beam Sputtering (IBS) experiment is

shooting energetic ions in the range of keV towards a pre-

pared surface of solid. Etching the surface due to atomic col-

lision cascades initiated by the energetic ions along with

enhanced surface diffusion of lateral ad-atoms leads to for-

mation of regular patterns with typical size of 10–100 nm,

reported in both experiments and computer simulations.48–50

Nano-ripples, quantum dots, and nano-holes with symmetric

and amorphous lateral distributions are among different

types of patterns forming in IBS experiments.

Though such patterns are highly desirable for practical

and technological applications in many different areas,51 there

is not much known about the underlying mechanisms of for-

mation and anomalous features of them. Coarsening of the pat-

terns in time, presence of symmetries in unexpected directions,

and complete phase diagram of type of the patterns forming in

different experimental conditions are the most important and

puzzling challenges in theoretical understanding of the phe-

nomena as well as in experimental investigations.

The Monte Carlo modeling set-up, which is based on the

theoretical model of Bradley-Harper,3 includes two main

parts: erosion of the surface atoms due to collisions of the ions

and the diffusion of lateral atoms of the solid, enhanced by the

heat released by collision cascades. We consider a 3D cubic

lattice of atoms of L� L substrate size, with periodic bound-

ary conditions and solid-on-solid restriction (see Fig. 1). Ions

navigate to the surface from random starting points at a plane

parallel to the initially flat solid surface (i.e., (x–y) plane). As

indicated in Fig. 1, an ion beam follows a straight trajectory

that makes an angle h with the normal of this plane. The pro-

jection of the ion-beam direction on the plane target surface

[(x� y) plane] makes an azimuthal angle of / exp relative to

the x axis. All ions penetrate into the bulk for a typical dis-

tance and release their energy modeled by a 3D Gaussian
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distribution.52 The share of energy for each lateral atom of the

solid is calculated based on the Gaussian distribution, and

each lateral atom is eroded with a probability proportional

to that energy. In each diffusion sweep, hops to nearest neigh-

bor sites are checked for all atoms with empty neighbors.

Here, the probability of acceptance of a possible hop is calcu-

lated based on an Arrhenius hopping rate of the form of

P ¼ k0 exp ð�DE=kBTÞ, where k0 is a temperature dependent

and material specific attempt rate, DE is an energy barrier

assigned to the different possible local configurations of the

lattice before and after a hop, kB is the Boltzmann constant,

and T is the surface temperature.

Upon varying values of parameters and irradiation time

length, different kinds of isotropic and anisotropic surface

profiles can be produced.27 Here, we fix all the parameters

except h and /exp. Examples of surface profile in size of

L¼ 256 after shooting 30 (atom/lateral atom) at different

beam directions are depicted in Fig. 2.

III. METHODOLOGY: CROSSING STATISTICS
ANALYSIS

After the initial introduction by Rice,53 the level cross-

ing statistics has been improved and used to investigate

up-crossing and down-crossing of a given stochastic field.

During the last decades, many researches have examined its

capabilities in studying growing processes in 1D, 2D, and

3D.54–61 In this study, we use mentioned method to charac-

terize isotropic and anisotropic rough surfaces. Also the

curve-crossing method is another useful method for this

purpose.62

As explained in Sec. I, we are seeking a criterion to dis-

tinguish isotropic and anisotropic rough surfaces, to that goal,

the crossing statistics method will be carried out in a 2D

framework. Some advantages of this approach are as follows:

in the common methods, there is no possibility to analyze the

dependence of anisotropy on the threshold parameter, whereas

in the crossing statistics, the threshold parameter can be sys-

tematically changed and the anisotropy can be recalculated.

In addition, crossing statistics is robust against more compli-

cated correlation functions as well as various forms of proba-

bility density functions of the underlying fluctuation. In other

words, the non-Gaussianity of the underlying rough surface

can be handled by this method simultaneously. In the pres-

ence of isotropy and homogeneity, the crossing statistics for

2D and 3D stochastic fields can be expressed in terms of the

statistics of 1D slices of the surface.54–61

Crossing statistics has been used to examine cosmologi-

cal stochastic fields for example and its features have been

FIG. 1. A sketch showing the Monte Carlo modeling set-up for an ion-beam

sputtering. As described in the text, an ion beam trajectory makes an angle

of h with the axis z, and the projection of the ion-beam direction on the x�y

plane makes an angle of / exp relative to the x axis. Anisotropic direction is

perpendicular to the x�y projection of the ion-beam.

FIG. 2. Upper: Isotropic simulated rough surface for h ¼ 0� and / exp ¼ 0�.
Middle: A preferred direction for h ¼ 25� and / exp ¼ 23� exists for simu-

lated surface. Lower panel corresponds to simulated anisotropic rough sur-

face for h ¼ 50� and / exp ¼ 0�. The color-bar is in an arbitrary unit.
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investigated in different domains.54–57 In the following, we

describe the sequential steps in analyzing the crossing statis-

tics of a surface:

Step1: Definition of variables: Suppose that for a 2D

rough surface, height fluctuations are represented by HðrÞ at
coordinate r ¼ ðn;mÞ with resolution D and size L�L (see

Fig. 3). For convenience, suppose that the origin of the coor-

dinate system is located at the center of the rough surface.

We describe the height fluctuations by Hðxn; ymÞ, where xn
and ym represent the coordinate position. Crossing points

with a positive slope at an arbitrary threshold, # ¼ a=r0, are
called up-crossings (indicated by�-symbols in the upper

panel of Fig. 4). Here a and r0 are the values of the surface

height and the variance of the height fluctuations, respec-

tively. The extension of crossing statistics for a 2D rough

surface requires considering iso-height contours at a given

threshold, while for a 3D stochastic field, crossing statistics

is achieved by considering iso-density surfaces.54

Step 2: Preparing data sets: We consider two categories

of 1D slices of the height profile in two separate orthogonal

directions labeled by u and w (Fig. 2). These two directions

could be produced by a counterclockwise rotation of an

angle / (middle panel of Fig. 2). We indicate the variation

of the surface along these two directions by Huð/; n;mÞ and
Hwð/; n;mÞ. The size of these 1D slices depends on the reso-

lution and the direction of slicing of the underlying rough

surface. The upper panel of Fig. 4 shows a schematic illus-

tration of height fluctuations along a given direction. If

HðrÞ is invariant under Eulerian rotation, the statistical isot-

ropy is present. For an isotropic and homogeneous profile,

in long run, the up-crossings and down-crossings are statisti-

cally equivalent.61 Throughout this paper, we focus on up-

crossings.

Step 3: Theoretical calculations: Probability distribution

function (PDF) of the height of a rough surface is repre-

sented by PðHÞ and the corresponding conditional PDF is

defined by Pgð~gjHÞ, here ~g � ~rH. The gradient of the

height can be written as: ~g ¼ guû þ gwŵ. As discussed

before, for both u and w directions, we construct one dimen-

sional slices of the height fluctuations as H�ð/; n;mÞ, in
which � symbol is replaced by u and w. n and m run from 1

to N and the sample size is L ¼ D� N. We define nþ
�
ð/; aÞ

as the number of up-crossings of the height profile at a given

level a (see Fig. 2 for more details). For convenience, we set

a � H�ð/; n;mÞ � hHi. The ensemble average for level

crossing with a positive slope is given by

Nþ
�
ð/; a; LÞ ¼ hnþ

�
ð/; a; LÞi: (3)

In order to have up-crossing condition at level a, the follow-

ing two necessary and sufficient conditions should be satis-

fied (see the lower panel of Fig. 4)

(I) H�ð/; n;m1Þ � hHi � a and

(II) the slope of H�ð/; n;mÞ to be larger than or equal to

the slope of a line connecting the starting point of the

interval and the level a:

g� /; n;m1ð Þ � a� H� /; n;m1ð Þ � hHi½ �
D

:

Considering the joint PDF of the height fluctuations and

its derivative, Pð~g;HÞ, the region corresponding to I

(H� � a) and II (g� � ða�H�Þ=D) conditions in the plane

(H�ð/; nÞ; g�) is associated with the probability of having up-
crossing in the direction � at level a. In Fig. 5, the shaded vol-

ume corresponds to probability of having crossing with a posi-

tive slope at a given threshold, H� ¼ a.60 Subsequently, the

probability of having up-crossing in the interval D is given by

Nþ
�
ð/; a;DÞ ¼ D� �þ

�
ð/; aÞ

¼
ð

d~g Hðg�Þ
ða

a�jg�jD
Pð/;~g;H�ÞdH�

(4)

in which Hð:Þ is the step function. Therefore
FIG. 3. Typical surface with a cell represented by a square. The size of

mesh equates to resolution of underlying rough surface.

FIG. 4. Upper panel corresponds to a typical 1D surface with its positive

slope crossing at the level H ¼ a marked by�-symbols. Lower panel shows

the necessary and sufficient conditions to have up-cross at thresholdH ¼ a.
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�þ
�
ð/; aÞ ¼

ð1

0

dg� jg�j �Pð/; g�;H� ¼ aÞ

¼ Pð/; aÞ
ð1

0

dg� jg�j �P~gð/; g�jaÞ; (5)

where �Pð/; g�;H� ¼ aÞ has been marginalized over other

component of~g vector (hereafter we remove bar symbol for

convenience). �þ
�
ð/; aÞ is the number of up-crossings at level

H�ð/; n;mÞ � hHi ¼ a. In other words, �þ
�
ð/; aÞ�1

corre-

sponds to wavelength of having an up-crossing event at level

a through the direction �. The most familiar form of Eq. (5)

is �þ
�
ð/; aÞ ¼ Pð/; aÞhjg�jHðg�Þia. In addition, if P~gð/;

~gjaÞ ¼ P~gð/;~gÞ which is the case for a homogeneous and

isotropic Gaussian field, then Eq. (5) becomes �þ
�
ð/; aÞ

	 Pð/;H� ¼ aÞ. From the theoretical point of view, one

can calculate up-crossing statistic using the functional form

of joint PDF of the relevant variables. In the case of multi-

variate Gaussian joint PDF, we have

P Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

detM
2pð Þ3

s

e�
1
2
A
T :M:Að Þ

; (6)

where A � fH; gu; gwg and M is the inverse of the covari-

ance matrix of the underlying variables

M�1 � Cov ¼
hH2i hHgwi hHgui
hgwHi hg2wi hgwgui
hguHi hgugwi hg2ui

2

6

6

6

4

3

7

7

7

5

: (7)

Each element of covariance matrix can be computed using

the power spectrum of the underlying 2D rough surface,

Sð2DÞðkÞ. We derived these elements for an m-dimensional

isotropic stochastic field in the Appendix. We suppose that

hHi ¼ 0; therefore, the analytical form of up-crossing statis-

tics for isotropic rough surface for arbitrary slice [Eq. (5)]

becomes

�þ
�

að Þ ¼ P að Þhjg�jH g�ð Þia
¼ 1

2p
ffiffiffi

2
p r1

r0
e
�a2=2r2

0 ; (8)

where r0 and r1 are spectral parameters (see the Appendix

for the definition).

In a general case, the up-crossing reads as

�þ
�
ðaÞ ¼ hddðHðrÞ � aÞjg�jHðg�Þi: (9)

Here, dd is the Dirac delta function. In addition to the above-

mentioned definition of up-crossing, the conditional up-

crossing introduced in Ref. 55 is

�þx ðajcond:Þ ¼ hddðHðrÞ � aÞjgxjHðgxÞddðgyÞjnyyji:

The perturbation formula for Eq. (9) up to Oðr20Þ is

given in Ref. 56, and for an isotropic Gaussian field in 2D,

the closed form of Eq. (10) is worked out in Ref. 55. As

we are going to use this method for probing anisotropies

imposed on a typical rough surface in 2D, we can express

that the up-crossing in an arbitrary direction based on the 1D

power spectrum, Sð1DÞðkÞ, as in Ref. 56

�þ
�

a; 1Dð Þ ¼ 1

2p

r1 1Dð Þ
r0

e
�a2=2r2

0 ; (10)

where

r21� 1Dð Þ ¼ L

2p

ð

dk�k
2
�
S 1Dð Þ

k�ð Þ (11)

and the 1D power spectrum is given by

S 1Dð Þ
k1ð Þ ¼ L

2p

ð

dk2S
2Dð Þ

kð Þ: (12)

For an isotropic rough surface, r21ð2DÞ ¼ 2r2
1�
ð1DÞ, and

consequently �þ
�
ða; 1DÞ ¼ �þ

�
ðaÞ.

For a Gaussian anisotropic rough surface, we use the

power spectrum given in Eq. (1) belonging to the correlation

length anisotropic model. The up-crossing in the direction� is

�þ
�

að Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 c� 1ð Þ
p

kc

n�
e
�a2=2r2

0 : (13)

Therefore for an anisotropic Gaussian rough surface, the

ratio of up-crossing in two anisotropic directions is

�þu ðaÞ=�þw ðaÞ ¼ nw=nu representing the inverse ratio of cor-

responding correlation length scales.

For a scaling anisotropic model, the power spectrum

introduced in Eq. (2) is implemented. Therefore, up-crossing

in the direction� becomes

�þ
�

að Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 c� � 1ð Þ
p

kc

n�
e
�a2=2r2

0 ; (14)

and in this case we have

�þu að Þ
�þw að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

cw � 1

cu � 1

s

nw

nu
: (15)

FIG. 5. Sketch of joint probability density function of a typical surface and

its derivative with respect to corresponding dynamical parameter (position)

in the level crossing theory. The shaded area corresponds to the total proba-

bility of finding crossings with a positive slope at the level H� ¼ a. The �

symbols can be replaced for each direction. The original idea of this plot has

been given in Ref. 60.

085302-5 Ghasemi Nezhadhaghighi et al. J. Appl. Phys. 122, 085302 (2017)



Another useful parameter based on �þ
�
ð/; aÞ is the gen-

eralized up-crossing defined as

N�totð/; qÞ �
ðþ1

�1
�þ
�
ð/; aÞja� hHijqda: (16)

Clearly, if q¼ 0, N�totð/; qÞ specifies the total number of

up-crossings for the height fluctuations with a positive slope

at all levels in the direction �. For a typical rough surface,

N�totð/; q ¼ 0Þ can be considered as a measure of roughness.

For a typical long-range correlated surface, N�totð/; q ¼ 0Þ is
smaller than that of a shuffled surface, while for an anti-

correlated surface N�totð/; q ¼ 0Þ has to be larger than that of

a completely un-correlated process. For an isotropic

Gaussian rough surface, we have

N�tot qð Þ ¼
r1

r0

2
q
2
�1

p
C

1þ q

2

� �

; q > �1: (17)

For a correlated anisotropic Gaussian surface, by using Eqs.

(1) and (13), Eq. (16) reads as

N�tot qð Þ ¼
kc2

q
2
�1

p
ffiffiffiffiffiffiffiffiffiffiffi

c� 1
p

n�
C

1þ q

2

� �

; q > �1 (18)

while for the scaling exponent of the anisotropic Gaussian

surface, we consider a power spectrum according to Eqs. (2)

and (14); therefore, Eq. (16) becomes

N�tot qð Þ ¼
kc2

q
2
�1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c� � 1
p

n�
C

1þ q

2

� �

; q > �1: (19)

The upper panel of Fig. 6 shows the isotropic Gaussian

rough surface. The filled circle symbols in the middle panel

of this figure correspond to the numerical computation of

�þ
�
ðaÞ, while the solid line is calculated by Eq. (8), which is

the theoretical prediction for the up-crossing as a function of

a. The generalized up-crossing statistics, N�totðqÞ, is shown in

the lower panel. Our results demonstrate a good consistency

between the numerical and theoretical predictions.

In Sec. IV, we are going to compute �þ
�
ð/; aÞ for the

height fluctuations in two distinct directions and then we try

to find a robust criterion to distinguish isotropic and aniso-

tropic surfaces.

IV. IMPLEMENTATION OF CROSSING STATISTICS ON
ANISOTROPIC SURFACES

After generating a 2D stochastic field via synthetic meth-

ods or preparing a rough surface in an experiment, an impor-

tant question is whether a preferred direction has been

imposed on the underlying stochastic field. Suppose there is

an arbitrary feature on a given rough surface HðrÞ. Statistical
isotropy causes HðrÞ to be invariant under Eulerian

transformation

hHðrÞi ¼ hHðRrÞi; (20)

here R represents the rotation matrix.

In order to quantify the probable anisotropy of the

rough surface, we apply the up-crossing statistics method to

calculate �þ
�
and N�tot of the surface. We expect that the up-

crossing statistics for various directions on an isotropic rough

surface to be statistically identical, while in an anisotropic

case, �þðaÞ takes different values at least for # � a=r0 ¼ 0

in different directions. The upper panel of Fig. 7 confirms

this. The lower panel corresponds to the same quantity for a

synthetic anisotropic rough surface. In this plot, we select u

and w axes to be aligned with the anisotropy direction

imposed on the synthetic rough surface. In Fig. 8, we use the

power spectrum for the correlation anisotropy [Eq. (1)].

Then we compute the crossing statistics for directions

FIG. 6. Upper panel: Simulated isotropic Gaussian rough surface. Middle

panel: Up-crossing analysis for the isotropic Gaussian rough surface. Lower

panel is N�totðqÞ for the isotropic Gaussian rough surface. The red solid line

represents the theoretical prediction and filled circles correspond to the

numerical computation. The color-bar is in the unit of height fluctuation var-

iance. The symbol size is equal to the statistical errors at 68% level of

confidence.
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parallel and perpendicular to the given anisotropic direction.

The solid lines in the middle and lower panels indicate the

theoretical prediction. Fig. 9 contains same information

except for the scaling exponent anisotropy.

To compare our method with other approaches, for

example, the power spectral density, we compute the power

spectrum for scaling anisotropic simulations. Figure 10

demonstrates the scaling behavior of the anisotropic sur-

face. The scaling exponents of the power spectrum are com-

patible with those used for the simulations. Worth to

mention is that for kc ! 1 corresponding to rc ! 0, the

precision of the computed scaling spectra decreases due to

the finite size effects, while the crossing statistics is robust

due to the fact that the corresponding analysis is performed in

the real space.

To utilize the power of the crossing statistics in detect-

ing the direction of the anisotropy, we use an anstz as

Q2 /; qð Þ �
X

N

n¼1

Nw
tot n;/; qð Þ � Nu

tot n;/; qð Þ
� �2

r2w n;/; qð Þ þ r2u n;/; qð Þ
� � : (21)

Here, r�ðn;/; qÞ denotes the error bar of the generalized up-

crossing and n runs from 1 up to the total number of sample

profiles. Since we are looking for the magnitude of rotation

(/), for which the difference in the generalized up-crossing

is maximum, we measure Q2ð/; qÞ as a function of /

for each value of q and, by estimating the P-value for this

quantity, quantify the degree of reliability. Fig. 11 shows

Q2ð/Þ for q¼ 0 as a function of / for the synthetic aniso-

tropic rough surface simulated by the IBS method with

/ ¼ 23�. It demonstrates a peak in Q2ð/Þ around / 	 23�.
In order to quantify the degree of anisotropy in the

underlying rough surface, we need to investigate the statisti-

cal deviation between Nu
totð/; qÞ and Nw

totð/; qÞ. The signifi-

cance of this deviation is systematically checked by

FIG. 7. Upper panel shows the up-crossing analysis for completely isotropic

rough surface for two arbitrary directions. Lower panel corresponds to �þa as

a function of level for anisotropic rough surface through mentioned aniso-

tropic directions. The symbol size is equal to the statistical errors at 1r con-

fidence level.

FIG. 8. Upper panel: Simulated anisotropic Gaussian rough surface with the

power spectrum given by Eq. (1). Middle panel: Up-crossing analysis for the

correlation length anisotropic Gaussian rough surface. Lower panel is

N�totðqÞ for the same simulated rough surface. The red solid line represents

the theoretical prediction and the filled circles correspond to the numerical

computation. The color-bar is in the unit of the height fluctuation variance.

The symbol size is proportional to the statistical errors at 1r confidence

level.
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calculating Student’s t-test for equal sample sizes and

unequal means and variances for each q and / according to

t /; qð Þ ¼ Nu
tot /; qð Þ � Nw

tot /; qð Þ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nrun

r2u /; qð Þ þ r2w /; qð Þ

s

; (22)

where Nrun indicates the index of the ensemble which is

equal to n introduced in Sec. III. The P-value, corresponding

to tð/; qÞ for m ¼ 2Nrun � 2 degrees of freedom, is deter-

mined by two-tailed hypothesis: pð/; qÞ ¼ 2
Ð1
tð/;qÞ

Cððmþ1Þ=2Þ
Cðm=2Þ

1
ffiffiffiffiffi

mp
p 1þ x2

m

	 
�ðmþ1Þ=2
dx. The chi-square for the P-

value reads as:

v2ð/Þ ¼ �2
X

qmax

q¼qmin

lnpð/; qÞ: (23)

Finally, by using the chi-square distribution function for

final P-value, Pfinalð/Þ, associated with v2ð/Þ and with

l � 2 qmax�qmin
Dq

	 


� 2 degrees of freedom, is computed as

Pfinal /ð Þ ¼ 1� 1

2l=2C l=2ð Þ

ðv2 /ð Þ

0

e�x=2xl=2�1dx: (24)

For 3r significance level, Pfinalð/Þ < 0:0027, we can conser-

vatively say that there exists a significant difference between

the two generalized up-crossing quantities for the two direc-

tions, u and w at the given /. Fig. 12 represents the P-value

for the anisotropic rough surface shown in Fig. 11.

The crossing statistics also enables us to investigate the

type of anisotropy of the rough surface. Correlation length

anisotropy and scaling exponent anisotropies are ubiquitous

in simulations and experiments. In practice, to discriminate

between these two types of anisotropies, one should compute

Eq. (24). After determining the direction of anisotropy, the

left hand side of Eq. (15) and/or Eq. (19) can be set based on

the ratio �þu ðaÞ=�þw ðaÞ.
By the use of methods such as spectral analysis,63 fluctu-

ation analysis,64 detrended fluctuation analysis (DFA),65–67

wavelet transform module maxima (WTMM),68–72 and dis-

crete wavelets,73,74 the value of scaling exponents in u and

w directions is determined, and finally by means of Eq. (15)

and/or Eq. (19), the type of anisotropy and the ratio of the

correlation length anisotropy are determined. It is worth not-

ing that methods implemented for determining the scaling

exponent usually give an accurate value for scaling expo-

nent, while methods established for computing characteristic

correlation length scale encounter the finite size effects.

FIG. 9. Upper panel: Synthetic anisotropic Gaussian rough surface with cor-

relation and scaling exponent anisotropies [Eq. (2)]. Middle panel: Up-

crossing analysis of the anisotropic Gaussian rough surface. Lower panel is

N�totðqÞ for the same simulated rough surface. The red solid line represents the

theoretical prediction and the filled circles correspond to the numerical com-

putation. The color-bar is in the unit of the height fluctuation variance. The

symbol size is proportional to the statistical errors at 1r confidence level.

FIG. 10. This figure demonstrates that scaling exponents of the scaling

exponents’ anisotropic model are in agreement with those we used for the

simulation. The solid line corresponds to the directional power spectrum

for the x-direction and the dashed line is for the 1D power spectrum for the

y-direction.
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The statistical periodicity of anisotropic patterns at a

given threshold can be examined by the up-crossing statis-

tics. As mentioned in Sec. III and can be found from Eq. (5),

�þðaÞ represents the wave-number at the threshold

# ¼ a=r0; consequently, 1=�
þðaÞ shows the statistical char-

acteristic length scale for the up-crossing at the threshold

# ¼ a=r0. In addition, the generalized total number of cross-

ing statistics [Eq. (16)] is a useful criterion to determine the

type of the roughness for all thresholds, a, in various direc-

tions. For example for q¼ 0, Eqs. (16)–(18) represent the

total roughness of the surface in a given direction.

V. SUMMARYAND CONCLUSIONS

Anisotropy and non-Gaussianity are two important prop-

erties of stochastic fields, which should be well addressed

from the theoretical and experimental points of view. Several

methods have been implemented to explore exotic features

and properties of stochastic fields, but systematic limitations

in theoretical and computational approaches cause discrepan-

cies among these approaches. Based on the previous work on

crossing statistics in various dimensions,53–61 in this paper we

relied on the crossing statistics at a given threshold,

# � a=r0, and introduced them as a robust benchmark for

anisotropy detection imposed in stochastic fields in 2D. In

addition, we showed that this method can examine the

Gaussianity nature of 2D rough surfaces. According to an

extensive study by Ryden,54 the crossing statistics for aniso-

tropic field in mD is related to that of computed from one

dimensional slices of underlying field. Subsequently, we used

�þ
�
ðaÞ for prepared slices parallel and perpendicular to a given

direction, �, and compared them to find the probable aniso-

tropic direction. The generalized total crossing N�tot with a

positive slope has been investigated for complementary tests.

The characteristic wavelength or the characteristic length

scale, 1/�þ
�
, at an arbitrary threshold, can be introduced in the

context of the crossing statistics for further evaluation. From

the theoretical point of view, considering the multivariate

probability density function, we showed that the crossing sta-

tistics for an arbitrary slice in an isotropic Gaussian rough sur-

face is given by Eq. (8) using a 2-dimensional power

spectrum. We also derived perturbation expansions for up-

crossing for mD isotropic stochastic fields. In addition, as

introduced in Eq. (10), the theoretical prediction for up-

crossing with applying additional conditions is straightfor-

ward to set up.55

In order to examine the direction of the anisotropy and

to determine the type of the anisotropy in a 2D rough sur-

face, we used two methods to synthesize isotropic and aniso-

tropic rough surfaces. The first method is based on the

modified Fourier filtering method with anisotropy imposed

on the rough surface due to the correlation length scale [Eq.

(1)] and/or due to the scaling anisotropic model [Eq. (2)].

We also used a Kinetic Monte Carlo (KMC) method to

FIG. 11. The value of Q2 as a function

of / for the anisotropic rough surface

illustrated in Fig. 2 with / ¼ 23�.

FIG. 12. The significance of the differ-

ence given by the p-value analysis for

the anisotropic rough surface illus-

trated in Fig. 2 with / ¼ 23�.
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model the pattern formation by ion-beam sputtering (IBS).

Up-crossing enumeration of the simulated isotropic Gaussian

rough surface through different directions is in agreement

with what is predicted by theoretical calculations (Fig. 6).

We assumed a set of orthogonal axes on the underlying

2D field labeled by w (parallel) and u (normal) with respect

to the unknown anisotropic direction. Consequently, we

determined �þ
�
ðaÞ and N�totðqÞ in both directions. The direc-

tional dependency of the difference between the computed

results in those directions demonstrated that one can deter-

mine the imposed anisotropic direction.

In addition, specifying the type of the anisotropy in the

rough surface is well motivated from the experimental point

of view. Fig. 8 shows our results for a simulated correlation

length anisotropic surface. Our results confirmed that the the-

oretical prediction for the ratio of the up-crossing statistics

of u and w directions is compatible with that of determined

by computation. Therefore, we are able to determine not

only the direction of the anisotropy but also the ratio of the

correlation length scales for u and w directions by using the

quantity �þu =�
þ
w .

For the anisotropy produced by different scaling expo-

nents, we found consistent results reported in Fig. 9. To dis-

tinguish between the correlation length and scaling exponent

anisotropies, according to Eq. (15), we should use prior

information about the value of n’s or c’s. Using a method to

determine the scaling exponent, one can break this degener-

acy and determine the type of the anisotropy and the ratio of

the correlation lengths in u and w directions. It is worth not-

ing that the methods for determining the scaling exponents

are well established, whereas, because of the various defini-

tions for the correlation length scale, computation of the

characteristic scale is more challenging. However, the up-

crossing analysis can determine the correlation length scale

in a more robust approach.

The strategy for determining the direction of anisotropy

is as follows: for both w and u directions on the anisotropic

2D surface, we computed N�totðqÞ and the directional depen-

dency of difference in generalized up-crossing by introduc-

ing Q2ð/; qÞ in Eq. (21). Subsequently, by computing the

relevant P-value, we could recognize the anisotropic direc-

tion at the 3r confidence interval (Figs. 11 and 12).

Before finalizing this paper, some advantages of the up-

crossing statistics as anisotropic probe are listed below:

(1) The crossing statistics is well established both theoreti-

cally and experimentally. We work with it in the real

space and it is not affected by boundary effects. Also ini-

tial information is not modulated with the other auxiliary

quantities in the phase space.

(2) It is possible to add an arbitrary condition for enumera-

tion of the crossing statistics. It is also straightforward

to set up a theoretical framework for this condition

[Eq. (10)].

(3) From the computational point of view, one can apply

this method to anisotropic non-Gaussian fields in arbi-

trary dimensions. In some cases, one can find an analyti-

cal solution for the statistics, such as the one presented

in Ref. 55. This method is able to determine the

non-Gaussianity nature accompanying the anisotropy.

The contribution of different scales in the detected

anisotropy can be examined by varying the value of q.

(4) One can determine various characteristic length scales

for an arbitrary threshold in the context of crossing

statistics.

(5) In some cases, e.g., isotropic Gaussian stochastic field,

the up-crossing statistics for higher dimensions can be

written in terms of the crossing statistics in lower

dimensions.

(6) The generalized up-crossing, Nþ(q), gives also a crite-

rion for determining the roughness75 and other exotic

features.59

We propose to use the described pipeline in examples of

real stochastic fields in condensed matter, cosmology, and

astrophysics.
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APPENDIX: PERTURBATIVE EXPANSIONS

In this appendix, we will provide detailed derivations of

some of the equations used in the paper.

For a stochastic field in mD, we consider a covariant

vector field containing relevant quantities of the underly-

ing stochastic field as: Ab : fa;~g; nijg, where a represents

the value of the stochastic field (HðrÞ), g’s are the first

derivative, and nij’s correspond to the second derivative

with respect to the independent parameter in i and j direc-

tions. The correlation function of the stochastic field

becomes

CH Rð Þ � hH rþ Rð ÞH rð Þi

¼ Lm

2pð Þm
ð

dkS mDð Þ
kð Þeik:R: (A1)

The spectral parameters are

r20 � hH rð Þ2i ¼ Lm

2pð Þm
ð

dkS mDð Þ
kð Þ: (A2)

r2n �
@nH rð Þ
@xn

� �2
* +

¼ Lm

2pð Þm
ð

dkk2nS mDð Þ
kð Þ: (A3)

For the isotropic rough surface, we can write
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hHguji ¼ H @H
@uj

� �

¼ Lm

2pð Þm
ð

dkikujS
mDð Þ

kð Þeik:R ¼ 0: (A4)

The correlation functions of the derivatives of the stochastic

field in the isotropic case are

hg2wi ¼
Lm

2pð Þm
ð

dkk2wS
mDð Þ

kð Þ

hg2ui ¼
Lm

2pð Þm
ð

dkk2uS
mDð Þ

kð Þ

¼ 1

m
hg2i ¼ 1

m
r21; (A5)

where

hg2i ¼ Lm

2pð Þm
ð

dkk2S mDð Þ
kð Þ: (A6)

Using the correlation function, we can write

H @2H
@ui@uj

� �

¼ � @H
@ui

@H
@uj

� �

¼ � 1

m
r21dij: (A7)

To compute the up-crossing statistics, we should also deter-

mine the statistical average of the absolute value of the

derivative of the underlying stochastic field, so for a multi-

variate Gaussian PDF, we have

hjgui ji ¼
ð

dgu1…dgum jgui j
e

�
P

m

j¼1

g2uj

2r2guj

2pð Þm=2Pm
j¼1ruj

¼
ffiffiffi

2

p

r

rgui
; (A8)

because rgui
¼ r1

ffiffiffi

m
p and r21 � hg2i, so hjgui ji ¼

ffiffiffiffiffi

2
mp

q

r1. For

hjgji, one can write

hjgji ¼
ð

dgu1…dgum jgj
e

�
g2u1

2r2gu1

�
g2u2
2r2gu2


 
 
 �
g2um
2r2gum

2pð Þm=2ru1…rum

¼
ffiffiffiffi

2

m

r C
mþ 1

2

� �

C
m

2

� � r1: (A9)

Subsequently, for m¼ 2: hjg�ji ¼ 2
p
hjgji ¼ r1

ffiffi

p
p . Plugging

them in Eq. (9), one can simply get the theoretical prediction

for the Gaussian rough surface in an arbitrary direction rep-

resented by Eq. (8). In the presence of weak non-

Gaussianity, there is a perturbative approach to set up the

theoretical model for any desired feature (see also Ref. 56).

Here to complete the explanation, we will consider the

perturbative equations up to Oðr30Þ, for the up-crossing

[Eq. (9)]. The characteristic function related to the free

energy of the underlying field is defined by56

ZðkÞ ¼
ðþ1

�1
dNAPðAÞeik:A: (A10)

Here, A contains N components. Using the definition of

cumulants, Kn
b1;b2;…;bn

� hAb1Ab2…Abnic (here hic is written

to emphasize that here we have cumulants rather than

moments. As examples hAb1ic ¼ hHic and hAb1Ab1ic
¼ hH2ic ¼ hH2i � hHi2. If the mean value of the underly-

ing stochastic field is zero, cumulants are identical to

moments.), one can expand lnðZðkÞÞ as

ln Z kð Þð Þ ¼
X

1

j¼1

i
j

j!

X

N

b1

X

N

b2

:::
X

N

bj

K
j
b1;b2;…;bj

kb1kb2…kbj

0

@

1

A:

(A11)

Hence the above equation becomes

Z kð Þ ¼ e
�1

2
kT :M�1:k

� e

P

1

j¼3

ij

j!

P

N

b1

P

N

b2

:::
P

N

bj

K
j

b1 ;b2 ;…;bj
kb1kb2…kbj

� �

: (A12)

By using an inverse Fourier Transform, one can read the

probability density function as follows:

P Að Þ ¼ 1

2pð ÞN
ðþ1

�1
dNkZ kð Þe�ik:A: (A13)

Plugging Eq. (A12) in Eq. (A13), we find

P Að Þ ¼ e

P

1

j¼3

�1ð Þj
j!

P

N

b1

P

N

b2

:::
P

N

bj

K
j

b1 ;b2 ;…;bj

@j

@Ab1
@Ab2

…@Abj

� � �

�
ffiffiffiffiffiffiffiffiffiffiffiffi

detM
2pð ÞN

s

e
�1

2
A
T :M:Að Þ

: (A14)

Here, M is the inverse of covariance N�N matrix, and for

N¼ 3, it is the same as Eq. (7). The last term in the above

equation equates to the multivariate Gaussian probability

density function introduced in Eq. (6). By using Eq. (A14),

the statistical average of a typical feature, f, in the general

case reads56

hf i ¼
ðþ1

�1
dNAPðAÞf ðAÞ: (A15)

By taking into account up to Oðr30Þ in the context of the per-

turbative approach, the probability density function of H
reads as

P að Þ ¼ hdd H� að ÞiH
� 1

ffiffiffiffiffiffi

2p
p

r0
e
�a2=2r2

0 1þ Br0 þ Cr20 þO r30
� �� �

(A16)

in which
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B � S0

6

a3

r30
� 3

a

r0

 !

; (A17)

C � K0

24
H4

a

r0

� �

þ S20
72

H6

a

r0

� �

; (A18)

S0 �
hH3ic
r40

; (A19)

K0 �
hH4ic
r60

(A20)

also H4ða=r0Þ and H6ða=r0Þ are probabilistic’s Hermite pol-

ynomials of orders 4 and 6, respectively. Now we are ready

to compute the crossing statistics represented in Eq. (9) in

mD:

�þ
�

að Þ ¼ 1

2p

r1
ffiffiffiffi

m
p

r0
e
�a2=2r2

0

� 1þ Br0 þ Cr20 þO r30
� �� �

; (A21)

where

B � S0

6

a3

r30
� 3

a

r0

 !

þ S1

3

a

r0
; (A22)

S1 � � 3

4

hH2r2Hi
r20r

2
1

(A23)

also

C � S20
72

H6

a

r0

� �

þ K0 � S0S1

24
H4

a

r0

� �

� 1

12
K1 þ

S21
8

� �

H2

a

r0

� �

� 1

8
K3; (A24)

K1 �
hH3r2Hic

r40r
2
1

; (A25)

K3 �
hjrHj4ic
2r20r

4
1

: (A26)
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