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a b s t r a c t 

By April 7th, 2020, the Coronavirus disease 2019 (COVID-19) has infected one and a half million people 

worldwide, accounting for over 80 thousand of deaths in 209 countries and territories around the world. 

The new and fast dynamics of the pandemic are challenging the health systems of different countries. In 

the absence of vaccines or effective treatments, mitigation policies, such as social isolation and lock-down 

of cities, have been adopted, but the results vary among different countries. Some countries were able to 

control the disease at the moment, as is the case of South Korea. Others, like Italy, are now experienc- 

ing the peak of the pandemic. Finally, countries with emerging economies and social issues, like Brazil, 

are in the initial phase of the pandemic. In this work, we use mathematical models with time-dependent 

coefficients, techniques of inverse and forward uncertainty quantification, and sensitivity analysis to char- 

acterize essential aspects of the COVID-19 in the three countries mentioned above. The model parameters 

estimated for South Korea revealed effective social distancing and isolation policies, border control, and 

a high number in the percentage of reported cases. In contrast, underreporting of cases was estimated to 

be very high in Brazil and Italy. In addition, the model estimated a poor isolation policy at the moment 

in Brazil, with a reduction of contact around 40%, whereas Italy and South Korea estimated numbers 

for contact reduction are at 75% and 90%, respectively. This characterization of the COVID-19, in these 

different countries under different scenarios and phases of the pandemic, supports the importance of 

mitigation policies, such as social distancing. In addition, it raises serious concerns for socially and eco- 

nomically fragile countries, where underreporting poses additional challenges to the management of the 

COVID-19 pandemic by significantly increasing the uncertainties regarding its dynamics. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

On December 31th, 2019, China reported an outbreak of novel 
pneumonia in which the causative agent was identified on January 
7th as SARS-CoV-2. The new disease was called COVID-19 (short 
for Corona Virus Disease 2019 ) by the World Health Organization 
(WHO) [1] . One month after the first notification, WHO declared 
COVID-19 as a world public health emergency and on March 11th 
as a pandemic situation [2] . By April 7 th , there were 1,418,730 
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people infected and 81,497 deaths in 209 countries and territories 
around the world and 2 international conveyances [3] . 

Although there are vaccine candidates for COVID-19 under ex- 
ploratory or preclinical stages, they will not be available before 
2021 [4] . Moreover, no antiviral has yet demonstrated efficacy and 
more clinical trials are necessary [5–8] . Due to the lack of pharma- 
ceutical treatments, non-pharmaceutical interventions have been 
proposed by many countries to deal with the pandemic, more 
specifically to reduce transmission and the impact on healthcare 
systems [9–15] . Besides, WHO has recommended massively testing 
of the population and due to the great demand for diagnostic tests 
to COVID-19 all over the world, the high demand for tests has be- 
come an issue and increases the underreporting of the cases [16] . 
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0960-0779/© 2020 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.chaos.2020.109888
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109888&domain=pdf
mailto:rodrigo.weber@ufjf.edu.br
https://doi.org/10.1016/j.chaos.2020.109888


2 R.F. Reis, B. de Melo Quintela and J. de Oliveira Campos et al. / Chaos, Solitons and Fractals 136 (2020) 109888 

As we write this paper, some countries managed to control the 
disease. Others are now experiencing the peak of the pandemic. 
And some countries are in the initial phase of the pandemic. South 
Korea had the first case entering the country on 20 January and 
after the initial outbreak was able to dramatically slow the spread 
of the disease, flattening the pandemic curve [3,17] . Italy is one of 
the countries that has reported a large number of deaths related 
to the COVID-19 at more than 13,0 0 0. In Brazil the pandemic is in 
its early stages with the first case of infection reported on Febru- 
ary 26th, 2020. One month after the first confirmed case in Brazil, 
3904 cases and 114 deaths have already been registered [18] . 

This work proposes the use of a simple mathematical model, 
based on the classical SIRD model, with a reduced number of pa- 
rameters, to characterize essential aspects of the COVID-19 in the 
three countries, Brazil, Italy, and Korea, which are examples of very 
different scenarios and stages of the COVID-19 pandemic. Other 
papers found in the literature have proposed more compartments 
in their models (like exposed, asymptomatic, and many others) 
[19–24] . Here, we decided to keep the model as simple as pos- 
sible, since adding more compartments increases the number of 
unknown parameters to be estimated, which in turn hinders the 
accurate calibration of the model. In addition, to face the fast dy- 
namics of COVID-19 pandemic, the model includes time-dependent 
coefficients. 

The characterization of COVID-19 in the three countries is per- 
formed using the technique of inverse uncertainty quantification 
(UQ). Therefore, during the calibration of the models, the coeffi- 
cients are treated as unknown probability density functions (PDFs). 
Once estimated, the PDFs of the coefficients, their means, stan- 
dard deviations (SD), and shape provide important information on 
model parameters that are essential in the characterization of the 
COVID-19 pandemic. After the inverse UQ, we observed that dif- 
ferent PDFs of the model coefficients were needed to explain the 
distinct dynamics of the COVID-19 in the three countries. In sum- 
mary, the methods proposed in this work assist in the develop- 
ment of specific models for each country and in the quantification 
of the level of uncertainties present in the model parameters and 
results. 

Despite its simplicity, the proposed model incorporates new 

features that are important for decisions on intervention policies: 
parameters to characterize the reduction of contact, in response to 
mitigation policies, the effectiveness of border control, the percent- 
age of positive cases that are reported, and the delay between the 
infection and the result of COVID-19 tests that confirm the disease. 

2. Methods 

2.1. Mathematical model 

Several mathematical models have been proposed to represent 
the dynamics of populations and their interactions and forecast the 
dynamics of the COVID-19 pandemic [19–24] . Most of them de- 
scribe the spread of COVID-19 based on SIR (Susceptible, Infected 
and Recovered) or SEIR (Susceptible, Exposed, Infected, and Recov- 
ered) modifications. For example, Giordano et al. [25] extended 
the SIR model partitioning the population in eight stages, Prem 

et al. [26] used an age-structured SEIR model, and stochastic mod- 
els have also been used [27] . 

In this work, the mathematical model proposed is a non-linear 
system of ordinary differential equations (ODE) [28–30] , based on 
the classic compartmental SIRD model [31–33] . We decided to 
keep the model as simple as possible since adding more compart- 
ments increases the number of unknown parameters to be esti- 
mated, which in turn hinders the accurate calibration of the model. 
In addition, to face the fast dynamics of the COVID-19 pandemic, 
the model includes time-dependent coefficients. The model is de- 

scribed by the following equations: 

dS 

dt 
= −

α(t) 

N 
SI, (1) 

dI 

dt 
= 

α(t) 

N 
SI + f (t) − βI − γ I, (2) 

dR 

dt 
= γ I, (3) 

dD 

dt 
= βI, (4) 

I r = θ I(t − (1 − θ ) τ1 ) , (5) 

where S, I, R, D , and I r are the variables that represent the number 
of individuals within a population of size N that are susceptible, 
infected, recovered, dead, or that are reported as infected, respec- 
tively. The term 

α(t) 
N = a (t) b/N denotes the rate at which a suscep- 

tible individual becomes infected; where a ( t ) denotes the proba- 
bility of contact and b the rate of infection. The function a ( t ) mod- 
els the non-pharmaceutical interventions adopted to contain the 
spread of the virus: 

a (t) = 

{ 
1 , if t < t i , 
r−1 
�

(t − t i ) + 1 , if t i ≤ t and t ≤ t i + �, 

r, otherwise . 
(6) 

This is a simple approach that assumes the intervention for con- 
taining the spread of the virus start to be implemented at t i and 
at the final time t i + � it reduces the probability of contact by a 
factor r . The constant β = m (1 /τo ) models the mortality rate of in- 
fected individuals, where m is the probability of death. Note that 
this is different to the rate of death and to the percentage of death 
among the reported cases of positive infection ( I r ). τo = τ1 + τ2 
is the number of days from infection until death, where τ 1 is 
the incubation time of the virus and τ 2 is the time between the 
first symptoms until death. Similarly, τr = τ1 + τ3 , where τ 3 is 
the time between the first symptoms until recovery. The constant 
γ = (1 − m )(1 /τr ) is the rate at which infected individuals recover 
from the virus, where τ r is the number of days from infection un- 
til recovery. The function f (t) = eP (t) represents a positive influx 
of infected individuals coming from other countries, where P ( t ) is 
the number of infected individuals in the world, and was modeled 
as an exponential function of the form P (t) = c 0 exp (c 1 t) , where 
c 0 and c 1 are coefficients determined from reported data. The pa- 
rameter e models how the COVID-19 worldwide dynamics affects 
the country. Small values of e suggest that border controls are ef- 
fective. Finally, θ represents the percentage of confirmed infected 
individuals that are notified or reported. Observe that (1 − θ ) τ1 is 
used to model the delay between the first day of infection and the 
notification day for the cases that are reported ( I r ). 

2.2. Model calibration and uncertainty quantification 

The parameters related to COVID-19 dynamics are based on 
data reported in the available literature and reports of the epi- 
demic in other locations experiencing more advanced stages of the 
spread of the disease [3,18,30,34–36] . The values and ranges for the 
model parameters are shown in Table A.1 in the Appendix. 

Model parameters were adjusted using the differential evolu- 
tion (DE) optimization method implemented in the Python pro- 
gramming language [37,38] . The differential evolution was used 
to estimate each of the parameters of the proposed mathemati- 
cal model, respecting the limits established for each one of them 

(see Table A.1 in the Appendix). The parameter values were esti- 
mated based on official data from the epidemic reported in each 
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Fig. 1. Probability density functions obtained for the parameters: transmission rate ( b ), death probability ( m ), contact reduction ( r ) and fraction of notified cases ( θ ) of the 

proposed COVID-19 model. 

country (S. Korea, Italy and Brazil), where ˆ I (t) and ˆ D (t) are the 
reported numbers of infected people, and the number of deaths, 
respectively. To this end, the following objective function was used 
to minimize the relative error between the data and the model: 

min 
p 

(

‖ I(t, p) − ˆ I (t ) ‖ ∞ / ‖ ̂ I (t ) ‖ ∞ + ‖ D (t , p) − ˆ D (t ) ‖ ∞ / ‖ ̂  D (t ) ‖ ∞ 

)

, 

(7) 

where p is the set of parameters to be estimated. 
Inverse UQ techniques are used to estimate the PDFs and cor- 

responding uncertainties of the input parameters or coefficients of 
the model during model calibration [39] . In this work, for each pa- 
rameter of the model, we estimated its PDF from the fitting pro- 
cedure using the DE method. Among all candidates generated by 
the DE during the fitting process, we selected 15% of the individu- 
als with the best fitness values. From these samples, the marginal 
distribution of each model parameter, the covariance matrix, and 
correlation coefficients were estimated. These data were used to 
perform a forward UQ analysis via the Monte Carlo method with a 
total of 10,0 0 0 samples using the ChaosPy library [40] . 

Forward UQ techniques determine how uncertainties in the in- 
put parameters of the model impact its outputs. Using the UQ 

technique, the model can be viewed as a mapping from input pa- 
rameters treated as continuous random variables described by a 
probability density function to stochastic responses. One of the 
most used methods to perform uncertainty propagation is the 
Monte Carlo method, which draws samples of the input parameters 
and evaluates the model using them to provide statistical proper- 
ties for the quantities of interest [41] . 

In addition, a sensitivity analysis (SA) was performed via main 
Sobol indices [42] using SALib [43] . These indices support the 
process of identifying the parameters of the model that most af- 
fect the outputs, Y , predicted by the model. The main Sobol in- 
dex of the parameter p i , S 

i 
m , is the ratio between the variance of Y 

when only the input parameter p i is fixed and the total variance of 
Y when all the parameters are allowed to vary. A high value of S i m 

indicates that the outputs of the models are very sensitive to p i . 

3. Results and discussion 

A summary of the results of the inverse UQ analysis is pre- 
sented in Table A.2 in the Appendix. This table presents the mean 
and standard deviation (SD) of the estimated probability density 
functions of the parameters for the three countries. Fig. 1 presents 
four examples of the estimated PDFs for parameters b, m, r and θ , 
comparing results among the three different countries. Fig. B.3 in 
the Appendix also presents the Pearson’s correlation coefficients of 
the estimated parameters. 

Once the PDFs of the parameters of the model have been es- 
timated, the forward UQ analysis was performed. Fig. 2 compares 
the results of the fitted models to the original data for each coun- 
try. For each time t, I r ( t ) and D ( t ) are also PDFs, in response to the 
process of forward uncertainty quantification. It should be noted 
that the same model, with different parameters, was able to re- 
produce the very distinct scenarios of the COVID-19 pandemic in 
Brazil, Italy, and S. Korea. Analyzing the results of the forward UQ, 
we note that the uncertainties of the simulations increase in the 
following order, S. Korea, Italy and Brazil. This order correlates with 
the estimated parameter θ , that models the notification of positive 
cases, and with the phase of the COVID-19 pandemic in each coun- 
try. Therefore, earlier phases pose more challenges and uncertain- 
ties to the modeling of the pandemic, as well as the underreport- 
ing of cases. 

Due to the descriptive nature of the model, the analysis of 
the estimated parameters allows the identification of important 
characteristics of the phenomena. For instance, we observed that 
the transmission rate, b , is higher in Italy (0.37) than in S. Korea 
(0.28), see Fig. 1 . For Brazil, the PDF of b has the highest vari- 
ance, which suggests high levels of uncertainties for the estima- 
tion of this parameter in this country, at this initial stage. The 
percentage of mortality, m , is also higher in Italy (3.1%) than in 
S. Korea (1.8%). Brazil has once again a large SD, with estimated 
values for m between 1% and 2%. This characterization reflects 
the different scenarios between Italy and S. Korea. A fast spread 
of the virus in Italy, and a possible collapse of the health sys- 
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Fig. 2. Simulation results for Italy, S. Korea and Brazil. (A,C,E) Number of infected people who were notified over days. (B,D,F) Number of deaths over the days. The solid 

lines indicate the expected value, shaded regions the ± standard deviation (SD) region, while the dots are the data from the literature [44] . Italy and S. Korea were fitted 

using the active case data, and Brazil the confirmed case data. 

tem corroborate with the highest estimated values for both b and 
m . 

Concerning the non-pharmaceutical interventions adopted by 
the countries, there are also interesting differences. S. Korea has 
rapidly adopted an effective isolation strategy of infected individu- 
als during the initial stage of the epidemic, followed by social dis- 
tance and lock-down policies. This was well characterized by the 
model via the parameter r , which models the reduction of trans- 
mission. For the case of S. Korea, r was as low as 9% (which would 
correspond to 91% of the population respecting social distancing). 
For Brazil, a poor reduction of transmission was observed, with r 
as high as 60% (or only 40% at social isolation). And in this case, 
even considering the high uncertainties revealed by the large vari- 
ance of this PDF, see Fig. 1 , the values of r in Brazil are much 
higher than those of Italy, which are higher than those of S. Ko- 
rea. For S. Korea, the estimated parameter e , which reflects the re- 
duction in the influx of infected people from outside the country, 
was also the lowest one, near 1 . 0 × 10 −6 , see Table A.2 in the Ap- 
pendix, when compared to the values of Italy and Brazil, around 
1 . 0 × 10 −4 . The above characterization, via parameter estimation, 
and comparison of distinct scenarios suggest that mitigation poli- 
cies and border control are effective strategies to control the dy- 
namics of the COVID-19 pandemic. 

The parameter that models the notification of cases also var- 
ied among the different countries. The estimation of notification 

of infected cases in S. Korea is very high, around 95%, while in 
Brazil and Italy the notification is around 10% and 30%, respectively. 
Therefore, the number of infected cases ( I ) in these two countries 
is between 3 to 10 times the number of reported cases ( I r ). These 
differences on percentage of notification correlates with the differ- 
ent dynamics observed so far in these three countries. Indeed, S. 
Korea has successfully tested its population and is an example of 
less underreported cases [45] , furthermore it is also an example of 
a country that has decreased the infection curve [3] . This suggests 
that the underestimation of cases complicates the management of 
the pandemic, adds greater uncertainties regarding its dynamics, 
and poses additional challenges for controlling the pandemic. 

The correlations between the estimated parameters are pre- 
sented in Appendix B and Fig. B.3 . In S. Korea we observe in- 
teresting negative correlations between b and �, the transmission 
rate and the time interval for the social response to mitigation 
policies, and t i , the start of the mitigation policies. This means 
that for higher transmission rates and higher delays for social re- 
sponse, the initial day of mitigation policies needs to be earlier. For 
Italy, the strong negative correlations between τ 2 and θ , and τ 1 

and � are less intuitive. Since the mortality rate is inversely pro- 
portional to τ 2 , a decrease in τ 2 increases the ratio between the 
number of dead and infected individuals. However, data reflects 
the ratio between dead and reported infected individuals. There- 
fore, to reestablish the fraction observed in the data, the value 
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of θ needs to be increased. The negative correlation between τ 1 

and � can be interpreted by the delay for reporting positive cases, 
I r = θ I(t − (1 − θ ) τ1 ) . Large delays for notification (high values of 
τ 1 ) demands fast social response to the mitigation policies, i.e., 
small values for �. In Brazil, the same interpretations above for 
Italy explains the strong positive correlations between θ and �, 
τ 1 and t i , m and θ , and τ 1 and θ . These correlations reveal the 
importance of the model for the reported infected cases, I r , which 
plays extremely important roles in describing the dynamics in Italy 
and Brazil. 

The results of the sensitivity analysis using the main Sobol in- 
dices, which represent the direct effects of an input parameter in 
the variance of an output quantity, are reported in Appendix C and 
Fig. C.4 . Among the three countries, Brazil has the largest esti- 
mated value for underreported cases (see Table A.2 ) and this is 
reflected in the sensitivity analysis, where θ plays an important 
role for infection in Panel C.4 A. Although Brazil has the weak- 
est social distancing policy among these countries, the parameter 
for border control, e , plays an important role as revealed by the 
sensitivity analysis (see Panel C.4 A). Finally, for Brazil and Italy, 
the incubation period ( τ 1 ) plays the main role in the initial pe- 
riod of the simulation, unlike S. Korea. This reflects how the re- 
ported cases are sensitive to delays for the results of the tests, 
I r = θ I(t − (1 − θ ) τ1 ) , in countries where underreporting is an is- 
sue. 

3.1. Limitation and future works 

The mathematical model adopted highlights the importance of 
time-dependent parameters for the correct characterization of the 
fast dynamics of the COVID-19 pandemic. For simplicity, we have 
used only two time dependent parameters, a ( t ), to model the miti- 
gation policies, and f ( t ) to capture the influx of infected individuals. 

In this work, the contact reduction, a ( t ), was modeled as a lin- 
ear function that decays from 1 to r . After � days, a ( t ) remains 
constant at r . It is a simplification, where we only consider a single 
intervention in terms of restriction policy. Nevertheless, this single 
intervention was enough to recover the very distinct dynamics ob- 
served in the three countries. Multiple phases of social distancing 
policies could be implemented in future works. Also, other time- 
dependent functions could be used for a ( t ), instead of a linear one, 
such as the exponential decay used in Fanelli and Piazza [23] . 

For describing the influx of infected individuals the function 
f (t) = eP (t) was adopted, where P ( t ) was described by an expo- 
nential: P (t) = c 0 exp (c 1 t) . The exponential function was chosen 
to simplify the implementation. This function could be easily re- 
placed by another one with a distinct shape, such as a simple in- 
terpolation of the active cases in the world. Different from the con- 
tact reduction, a ( t ), the border restriction was modeled as a single 
time-independent parameter, e , i.e., the border restriction has an 
immediate impact. A time-dependent parameter for border restric- 
tions ( e ( t )) may be more suitable to represent distinct scenarios 
and could be easily implemented in future work. 

Other time-dependent parameters should be considered in the 
near future. For instance, with the current availability of fast kits 
for testing [46] , the percentage of notification is likely to increase 
with time, θ ( t ). Likewise, clinical studies of new potential treat- 
ments [4,6–8] , will also affect other parameters of the model. 

Finally, mathematical models have been used for both the char- 
acterization of important parameters that determine the dynamics 
of the COVID-19 pandemic and for forecasting and analysis of pro- 
jections of different scenarios. In this work, we have focused on 
the fine characterization of the COVID-19 pandemic using UQ and 
SA methods and comparing the developed framework for the char- 
acterization of the pandemic in three different countries on very 
distinct stages of the pandemic. In the near future, we will extend 

this framework and apply it to studies that involve forecasts and 
projections. 

4. Conclusions 

A new mathematical model, based on a system of ODEs, was 
used to capture the dynamics of COVID-19 in countries that are 
at distinct stages of the pandemic: S. Korea, Italy, and Brazil. The 
model adopts time-dependent coefficients to follow the fast dy- 
namics of the COVID-19 pandemics and decisions concerning mit- 
igation policies. In addition, inverse UQ and SA were used for the 
proper estimation of the coefficients of the models as probabil- 
ity density functions, and their impact on the dynamics of the 
pandemic, respectively. Other novel features of the model include: 
(1) A variable that models the reported infected population, I r = 

θ I(t − delay ) , where θ is the percentage of reported case, and de- 
lay models the time from the day of infection to the conclusion of 
the test for COVID-19; (2) a model for the reduction of contact, iso- 
lation, or social distancing; and (3) a parameter that represents the 
effectiveness of the border control. The proposed model was used 
to analyze three countries at different stages of the pandemic with 
different intervention policies. The proposed framework helped the 
unique characterization of the pandemic in each country. This fine 
characterization of the dynamics may support authorities in im- 
portant questions such as decisions on stronger or weaker social 
isolation, border restriction policies, as well as on the estimation 
of the real number of infected cases. 

Forward and inverse UQ provided a rigorous analysis of the un- 
certainties in the parameters and the model simulation results. In 
addition, the computation of the correlation between the parame- 
ters of the model, together with a sensitivity analysis revealed im- 
portant and unique characteristics of the dynamics of COVID-19 in 
the three different countries. Of notice, all the novel features of the 
model mentioned above played essential roles in the characteriza- 
tion of the pandemic. 

Our results, based on data collected until April 6, suggest that 
the percentage of deaths among infected patients (which is differ- 
ent from the estimation made using the notification of infected 
cases) in Brazil is around 1.5% and is closer to S. Korea than to 
Italy, 3.1%. The notification of infected cases in S. Korea is esti- 
mated to be high, around 95%, while in Brazil and Italy, the notifi- 
cations are very low, around 10% and 23%, respectively. The simu- 
lations have confirmed that S. Korea adopted very effective mitiga- 
tion strategies: the virus transmission dropped to 9% of its initial 
value. On the other hand, Brazil only reduced their transmission 
rates to 60% and Italy to 23%. The number of infected people in S. 
Korea has been declining for almost a month. Therefore, the simu- 
lations performed in this study suggest that non-pharmaceutical 
interventions are decisive in fighting against the COVID-19 pan- 
demic, and underreporting challenges the management of the pan- 
demic by adding significant uncertainties in the characterization of 
the COVID-19 dynamics. The results also highlight a delicate situa- 
tion for Brazil. Our estimation of the product r b , i.e., the transmis- 
sion rate reduced by the mitigation policies, is 0.15, 0.07, and 0.02 
for Brazil, Italy, and S. Korea, respectively. An effective transmis- 
sion rate that is twice the one observed in Italy and notification of 
cases as low as 10% may pose additional challenges to the control 
of the COVID-19 pandemic in Brazil. 

Data accessibility 

Code to reproduce the results is available at https://github.com/ 
FISIOCOMP- UFJF/ChaosSolitonsFractals- 10- 04- 2020 . 

https://github.com/FISIOCOMP-UFJF/ChaosSolitonsFractals-10-04-2020
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Table A.1 

Baseline data used for the calibration of the parameters of the proposed COVID-19 model. 

Name Meaning (units) Interval Ref. 

b Transmission rate (1/day) [5 . 5 × 10 −9 , 1 × 10 −7 ] [35] 

θ Fraction of notified cases ( −) [0,1] –

r Contact reduction ( −) [0,1] –

t i Start of intervention policy (day) [0 , t f − 14] a –

� Duration of intervention policy (day) [2,30] –

m Death probability ( −) [1%, 3.4%] [47] 

τ 1 Incubation period (day) [2,14] [30] 

τ 2 Period from symptoms to death (day) [6,22] [3] 

τ 3 Period from symptoms to recovery (day) [7,17] [3] 

e Border restrictions ( −) [0 , 1 × 10 −3 ] –

a The upper bound for t i is 14 days before the end of the simulation. 

Table A.2 

Characterization of the COVID-19 pandemic in terms of model parameters: b is the COVID-19 trans- 

mission rate; m death probability; r contact reduction; t i start of intervention policy; � duration 

of intervention policy; τ 1 incubation period; τ 2 period from symptoms to death; τ 3 period from 

symptoms to recovery; e effect of border restrictions; θ fraction of notified cases; and N the pop- 

ulation. 

Name 

Brazil Italy S. Korea 

Mean SD Mean SD Mean SD 

b 2 . 50 × 10 −1 1 . 62 × 10 −2 3 . 17 × 10 −1 8 . 72 × 10 −3 2 . 79 × 10 −1 5 . 20 × 10 −3 

m 1 . 30 × 10 −2 1 . 69 × 10 −3 3 . 12 × 10 −2 1 . 69 × 10 −3 1 . 80 × 10 −2 1 . 37 × 10 −3 

r 5 . 94 × 10 −1 1 . 08 × 10 −1 2 . 27 × 10 −1 1 . 20 × 10 −2 8 . 62 × 10 −2 9 . 36 × 10 −3 

t i 1.76 × 10 1 5.80 × 10 0 4.43 × 10 0 1.62 × 10 0 1.72 × 10 1 1.15 × 10 0 

� 2.05 × 10 1 5.68 × 10 0 2.86 × 10 1 1.19 × 10 0 2.33 × 10 1 6 . 89 × 10 −1 

τ 1 3.32 × 10 0 1.21 × 10 0 3.88 × 10 0 6 . 33 × 10 −1 5.34 × 10 0 1.25 × 10 0 

τ 2 1.28 × 10 1 2.15 × 10 0 6.91 × 10 0 9 . 76 × 10 −1 2.00 × 10 1 1.25 × 10 0 

τ 3 1.44 × 10 1 2.25 × 10 0 1.38 × 10 1 9 . 37 × 10 −1 1.15 × 10 1 1.22 × 10 0 

e 7 . 73 × 10 −5 4 . 47 × 10 −5 9 . 32 × 10 −4 7 . 06 × 10 −5 9 . 84 × 10 −7 4 . 36 × 10 −7 

θ 1 . 32 × 10 −1 2 . 24 × 10 −2 2 . 90 × 10 −1 2 . 83 × 10 −2 9 . 56 × 10 −1 2 . 33 × 10 −2 

N 2.09 × 10 8 – 6.05 × 10 7 – 5.15 × 10 7 –
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Appendix A. Parameter estimation 

For fitting the model we use the data reported in scientific lit- 
erature by the Center for Systems Science and Engineering at Johns 

Hopkins University [36] , between 01/22/2020 and 04/06/2020. 
Furthermore, the parameter bounds are described in Table A.1 . 
Table A.2 shows the mean and standard deviation of all offspring 
solution with less than 15% of error. 

Appendix B. Correlation of the parameters 

The Pearson’s correlation coefficients was evaluated for all 
model parameters an are presented in Fig. B.3 . 

The correlations between the estimated parameters reveals that 
two significant positive correlations can be observed for S. Ko- 
rea: the correlations between τ 1 and τ 2 vs. m . This is expected, 
since β = m (1 / (τ1 + τ2 )) models the mortality rate of infected in- 
dividuals. The observed significant negative correlations between 
τ 3 and m vs. τ 1 are also expected since the recovery rate γ = 

(1 − m )(1 / (τ1 + τ3 )) . More interesting negative correlations were 
observed between b and δ, the transmission rate and the time in- 
terval for the social response to mitigation policies, and t i , the start 
of the mitigation policies. This means that for higher transmission 
rates and higher delays for social response, the initial day of miti- 
gation policies needs to be earlier. 

The same negative correlations between b and δ vs. t i were ob- 
served for Italy. The strong negative correlations between τ 2 and 
θ , and τ 1 and � are less intuitive. Since the mortality rate is in- 
versely proportional to τ 2 , a decrease in τ 2 increases the ratio be- 
tween the number of dead and infected persons. However, data 
reflects the ratio between dead and reported infected individu- 
als. Therefore, to reestablish the fraction observed in the data, the 
value of θ needs to be increased. The negative correlation between 
τ 1 and � can be interpreted by the delay for reporting positive 
cases, I r = θ I(t − (1 − θ ) τ1 ) . Large delays for notification (high val- 
ues of τ 1 ) demands fast social response to the mitigation policies, 
i.e., small values for �. The same interpretation explains the strong 

https://doi.org/10.13039/501100003593
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Fig. B.3. Matrix of Pearson’s correlation coefficients between model parameters for (A) Brazil, (B) Italy, and (C) South Korea. 

positive correlation between θ and �, and τ 1 and t i , see Fig. B.3 in 
Appendix. 

Similar strong correlations described for S. Korea and Italy were 
observed in Brazil. In addition, strong positive correlations are 
present between m , and τ 1 vs. θ . The explanation for these in- 

triguing correlations follows the one given for the correlation be- 
tween τ 2 and θ for Italy. These correlations reveal the importance 
of the model for the reported infected cases, I r , which plays ex- 
tremely important roles in describing the dynamics in Italy and 
Brazil. 
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Fig. C.4. Main Sobol sensitivity indices for I and D , as a function of time, of the proposed model for all the cases studied here. 

Appendix C. Sensitivity analysis 

The results of the sensitivity analysis using the main Sobol in- 
dices, which represent the direct effects of an input parameter in 
the variance of an output quantity, are reported in Fig. C.4 . The 
transmission rate ( b ) is a very sensitive parameter for all simulated 
scenarios. Among these three countries, Brazil has the largest esti- 
mated value for underreported cases (see Table A.2 ). This is also 
reflected in the sensitivity analysis, where θ plays an important 
role for infection (see Panel C.4 A). Although Brazil has the weak- 
est social distancing policy among these countries, the parameter 
for border control, e , plays an important role as revealed by the 
sensitivity analysis (see Panel C.4 A). For the three countries, the 
mortality rate ( m ) and the period from the first symptoms to death 
( τ 2 ) play a key role in the entire dynamics of deaths (see death 
in Fig. C.4 ). However, for S. Korea, m decreases its sensitivity sig- 
nificantly along time since the number of active cases is also de- 
clining. Finally, for Brazil and Italy, the incubation period ( τ 1 ) has 
played a main role in the initial period of the simulation, unlike 
S. Korea. This reflects how the reported cases are sensitive to de- 
lays in the results of the tests, I r = θ I(t − (1 − θ ) τ1 ) , in countries 
where underreporting is an issue. 
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