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ARTICLE

Characterization of the enhancer and promoter
landscape of inflammatory bowel disease from
human colon biopsies
Mette Boyd1,2, Malte Thodberg1,2, Morana Vitezic1,2, Jette Bornholdt1,2, Kristoffer Vitting-Seerup1,2, Yun Chen1,2,

Mehmet Coskun1,2, Yuan Li3, Bobby Zhao Sheng Lo1,2,3, Pia Klausen4, Pawel Jan Schweiger2,

Anders Gorm Pedersen 5, Nicolas Rapin 2,6,7, Kerstin Skovgaard8, Katja Dahlgaard9, Robin Andersson 1,

Thilde Bagger Terkelsen1,2, Berit Lilje1,2, Jesper Thorvald Troelsen9, Andreas Munk Petersen10,11,

Kim Bak Jensen 2,7, Ismail Gögenur12, Peter Thielsen3, Jakob Benedict Seidelin3, Ole Haagen Nielsen3,

Jacob Tveiten Bjerrum3 & Albin Sandelin 1,2

Inflammatory bowel disease (IBD) is a chronic intestinal disorder, with two main types:

Crohn’s disease (CD) and ulcerative colitis (UC), whose molecular pathology is not well

understood. The majority of IBD-associated SNPs are located in non-coding regions and are

hard to characterize since regulatory regions in IBD are not known. Here we profile tran-

scription start sites (TSSs) and enhancers in the descending colon of 94 IBD patients and

controls. IBD-upregulated promoters and enhancers are highly enriched for IBD-associated

SNPs and are bound by the same transcription factors. IBD-specific TSSs are associated to

genes with roles in both inflammatory cascades and gut epithelia while TSSs distinguishing

UC and CD are associated to gut epithelia functions. We find that as few as 35 TSSs can

distinguish active CD, UC, and controls with 85% accuracy in an independent cohort. Our

data constitute a foundation for understanding the molecular pathology, gene regulation, and

genetics of IBD.

DOI: 10.1038/s41467-018-03766-z OPEN

1Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark. 2 Biotech Research and Innovation Centre, University of Copenhagen,

2200 Copenhagen N, Denmark. 3Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark.
4Department of Gastroenterology, Surgical Section, Herlev Hospital, 2730 Herlev, Denmark. 5DTU Bioinformatics, Technical University of Denmark, 2800

Lyngby, Denmark. 6 The Finsen Laboratory, Rigshospitalet, University of Copenhagen, 2200 Copenhagen N, Denmark. 7Novo Nordisk Foundation Center for

Stem Cell Biology, DanStem, University of Copenhagen, 2200 Copenhagen N, Denmark. 8Department of Biotechnology and Biomedicine, Technical

University of Denmark, 2800 Lyngby, Denmark. 9Department of Science and Environment (INM), Roskilde University, 4000 Roskilde, Denmark. 10Hvidovre

Hospital, Gastrounit Medical Division, University of Copenhagen, 2650 Hvidovre, Denmark. 11Hvidovre Hospital, Department of Clinical Microbiology,

University of Copenhagen, 2650 Hvidovre, Denmark. 12Centre for Surgical Science, Department of Surgery, Zealand University Hospital, 4600 Koege,

Denmark. These authors contributed equally: Mette Boyd, Malte Thodberg, Morana Vitezic, and Jette Bornholdt. Correspondence and requests for materials

should be addressed to J.T.B. (email: jacob.wium.bjerrum@regionh.dk) or to A.S. (email: albin@binf.ku.dk)

NATURE COMMUNICATIONS |  (2018) 9:1661 |DOI: 10.1038/s41467-018-03766-z |www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0001-9650-8965
http://orcid.org/0000-0001-9650-8965
http://orcid.org/0000-0001-9650-8965
http://orcid.org/0000-0001-9650-8965
http://orcid.org/0000-0001-9650-8965
http://orcid.org/0000-0001-5208-8874
http://orcid.org/0000-0001-5208-8874
http://orcid.org/0000-0001-5208-8874
http://orcid.org/0000-0001-5208-8874
http://orcid.org/0000-0001-5208-8874
http://orcid.org/0000-0003-1516-879X
http://orcid.org/0000-0003-1516-879X
http://orcid.org/0000-0003-1516-879X
http://orcid.org/0000-0003-1516-879X
http://orcid.org/0000-0003-1516-879X
http://orcid.org/0000-0001-6569-1664
http://orcid.org/0000-0001-6569-1664
http://orcid.org/0000-0001-6569-1664
http://orcid.org/0000-0001-6569-1664
http://orcid.org/0000-0001-6569-1664
http://orcid.org/0000-0002-7109-7378
http://orcid.org/0000-0002-7109-7378
http://orcid.org/0000-0002-7109-7378
http://orcid.org/0000-0002-7109-7378
http://orcid.org/0000-0002-7109-7378
mailto:jacob.wium.bjerrum@regionh.dk
mailto:albin@binf.ku.dk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


I
nflammatory bowel disease (IBD) is an umbrella term for a
range of chronic idiopathic disorders, of which Crohn’s dis-
ease (CD) and ulcerative colitis (UC) constitute the two major

entities1, both with an increasing incidence and prevalence
worldwide2–4 with an estimated 2.5–3 × 106 patients in Europe
alone5. UC is characterized by mucosal inflammation of the
colon, whereas CD may affect all layers of the intestine
throughout the gastrointestinal tract (Fig. 1a). The distinction
between CD and UC is critical for correct medication and espe-
cially surgery, yet the diagnosis is challenging. In a previous meta-
analysis of 22,038 IBD patients, it was impossible to distinguish
UC or CD in 13% of cases6. This is a major problem for patients
who have failed medical therapy and are facing colectomy.
Genome-wide association studies (GWAS) have identified >200
loci containing IBD-associated variants7,8, but IBD-associated
single-nucleotide polymorphisms (SNPs) can only explain
15–20% of the disease phenotype9. Moreover, ~70% of IBD-
associated SNPs are non-coding10 and might affect gene regula-
tion. However, a comprehensive map of active promoters and
enhancers is lacking for IBD patients.

Genome-wide 5′-RNA sequencing of capped RNAs (Cap
Analysis of Gene Expression, CAGE) can detect transcription
start sites (TSSs) and thereby promoter regions11. Distal enhancer
regions can also be detected by CAGE, because active enhancers
transcribe enhancer RNAs (eRNAs)12,13. eRNA expression is a
powerful proxy for cell-specific enhancer activity14, and CAGE-
identified enhancers are two to three times more likely to validate
in vitro than non-transcribed enhancers detected by chromatin-
based methods13. An advantage of CAGE is that it can be easily
applied on small biological samples, such as colonic biopsies that
are routinely taken when diagnosing IBD.

Here we present CAGE analysis on biopsies from the des-
cending colon from 94 IBD patients and controls. These data
enabled annotation of IBD-regulated enhancers and TSSs, and
characterization of IBD-associated SNPs in such regions. Fur-
thermore, we define a small subset of TSSs that allow for accurate
classification between UC, CD, and control subjects.

Results
The TSS expression landscape of IBD. We recruited 94 subjects
undergoing lower endoscopy as part of routine visits, diagnosed as
UC, CD, or control based on ref. 15. UC patients were graded by the
Mayo score: a score ≤2 with endoscopic sub-score of 0 (no mac-
roscopic inflammation) as quiescent UC and >2 as active UC. CD
patients were graded by the Harvey–Bradshaw score: a score <5 as
quiescent CD and ≥5 as active CD. For controls, an endoscopy was
performed due to gastrointestinal symptoms but all clinical inves-
tigations returned normal. We extracted RNA from pinch biopsies
from the descending colon of 94 subjects (cohort 1): 25 active UC
(UCa), 20 active CD (CDa), 17 UC patients in remission (UCi), 3
CD patients in remission (CDi), and 29 control subjects (Ctrl) (Fig.
1a, Supplementary Table 1 and Supplementary Data 1). For UCa
and CDa, biopsies taken from visually inflamed segments were
confirmed by histology (Supplementary Figure 1). The choice of
focusing on macroscopically inflamed rather than not visibly
inflamed tissue was based on practical and statistical considerations:
(i) in clinical diagnosis of IBD, histological examination is made on
biopsies obtained from grossly inflamed intestine, together with
endoscopical findings, medical history, laboratory, and imaging
procedures. (ii) We wanted to characterize the most affected colonic
regions of the disease to maximize comparability between biopsies,
since non-macroscopically inflamed tissue might still show
inflammation at the molecular level16.

For each subject, we prepared a CAGE library (Supplementary
Data 2). We defined 48,593 expressed TSSs based on CAGE tag

clusters (Supplementary Data 3). Most CAGE-defined TSSs were
within gene loci: 22.6% (11,013) corresponded to annotated main
TSSs from GENCODE models17, 12.8% (6229) to annotated
alternative TSSs and 40.7% (19,787) TSSs were putative novel
alternative TSSs within known gene loci, although the majority of
these were lowly expressed (Fig. 1b). These may reflect spurious
transcription initiation, TSSs expressed in rare cells or noise, but
were not classified as bidirectional transcribed enhancers in our
analysis (see below). The ST6GAL1 gene, exemplifies the common
occurrence of known and novel alternative TSSs in the same gene.
The annotated main ST6GAL1 TSS was detected but did not
change between groups, while one novel alternative TSS was
upregulated in IBD, and another was downregulated (Fig. 1c).

CAGE TSSs principal component analysis (PCA) showed a
separation between active IBD (UCa, CDa) and other groups
(UCi, CDi, Ctrl), and a weaker separation between CDa and UCa
(Fig. 2a). Surprisingly, UCi and CDi were not readily distinguish-
able from Ctrl (Supplementary Note 1). Hence, we excluded UCi
and CDi from the systematic analysis below.

In order to identify differentially expressed TSSs, we used the
generalized linear model framework in edgeR18. As observed
above, CDa and UCa samples were characterized by a shared
response compared to Ctrl (PC1 in Fig. 2a.), and secondly by
differences between CDa and UCa (PC2 in Fig. 2a). To capture
this, we defined sets of significantly up- or downregulated TSSs
identified in both CDa and UCa vs. Ctrl (IBDup and IBDdown). To
identify TSSs distinguishing CDa and UCa, we identified TSSs
significantly upregulated in CDa vs. UCa, defined as CDspec, and
TSSs significantly upregulated in UCa vs. CDa, defined as UCspec.
The differential expression analysis recapitulated the PCA results:
the number of TSSs within IBDup (4376) and IBDdown (2536) was
much larger than in CDspec (337) and UCspec (71) (Fig. 2b,
Supplementary Data 4). The inclusion of additional patient data
in the analysis, i.e. gender and previous medication, did not affect
the number of differentially expressed TSSs substantially,
indicating these effects are small compared to the CDa/UCa/Ctrl
diagnosis (Supplementary Figure 2a). We also identified genes
where one or more TSSs responded differently compared to the
other TSSs inside the same gene (as exemplified in Fig. 1c): 2068
genes showed this pattern in IBDup/IBDdown and 82 in CDspec/
UCspec (Supplementary Data 5).

Because most functional annotations are on gene rather than
TSS level, we defined differentially expressed genes by summing
the contribution of each TSS within each GENCODE gene model
and repeating the differential expression analysis above (Supple-
mentary Data 6, Supplementary Fig. 2b). Gene Ontology (GO)
analysis (Fig. 2c, Supplementary Data 7) of IBDup genes showed a
strong overrepresentation of GO terms related to inflammatory
response and cytokines. IBDup genes were also enriched for
colon-specific processes previously related to IBD pathogenesis,
for example remodeling of the extracellular matrix (FDR= 2.66e
−09) and antibacterial peptide secretion (FDR= 1.02e−14).
Because small networks of biologically linked genes are challen-
ging to identify through GO analysis, we supplemented this
analysis with STRING network analysis19. This identified smaller
sets of upregulated genes with known functions in gut epithelia
barrier integrity, including gap junctions (connexins AQP5,
GJA4,5) and tight junctions (claudins CLDN1, 2, 10, 14, and 18)
(Supplementary Fig. 2c). Interestingly, the full set of CLDN genes
could distinguish IBD from Ctrl subjects, because a subset was
part of the IBDdown set (Supplementary Fig. 2d−e). More
generally, the IBDdown set was enriched for terms related to
xenobiotic response and drug/steroid processing (Fig. 2c):
STRING analysis showed that proteins corresponding to IBDdown

genes were involved in cell cycle and growth, solute and
membrane transport and maintenance of fluid balance in the
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Fig. 1 Defining the TSS landscape of IBD. a Overview of data set. Pinch biopsies from the descending colon were taken from 94 human subjects, classified

into active ulcerative colitis (UCa), active Crohn’s disease (CDa), UC and CD patients in remission (UCi, CDi) and controls (Ctrl: subjects screened for IBD

where all subsequent investigations turned out normal). For each biopsy, a CAGE library was produced, resulting in the detection of TSSs and enhancer

regions. Schematics show the typical inflammatory patterns in the intestinal system, the approximate location of biopsy sampling and number of subjects

in each group. b Detection and annotation of gene TSSs. Top panel shows an example gene with CAGE-defined TSSs, which are annotated as main,

alternative or novel TSSs defined by their overlap with GENCODE gene annotation as indicated in callouts. CAGE-defined TSSs not falling into any of the

categories were defined as novel intergenic TSSs. Left bottom panel shows the number of detected TSSs in each category (colors correspond to callouts in

top panel), split by CAGE expression strength measured as tags per million (TPM). Right bottom panel shows the expression distribution of each category

of TSSs as boxplots. c Genome-browser example of the detection of annotated and novel TSSs in the ST6GAL1 gene. From top to bottom, the browser plot

shows the genomic location investigated, RefSeq gene annotation (exons are denoted as boxes, green indicate forward strand transcription). Below, CAGE

TPM expression on the forward strand is shown as average across subjects (green bars) and for individuals (pink heat map, each row is one subject,

columns are widened 5× for readability), split by subject group. Annotated and novel TSSs, annotated as in b are highlighted. Note that the first novel

alternative TSS is upregulated in CDa and UCa vs. remaining groups, while the last novel alternative TSS has the opposite pattern (block arrows indicate

TSSs and their overall strength in each subject group for these two TSSs). Conversely, the annotated TSSs are detected but not substantially changing

between groups
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intestine (Supplementary Fig. 2f), with a strong sub-network of
genes involved in steroid hormone biosynthesis.

The CDspec set was enriched for terms related to steroid, lipid,
and lipoprotein metabolism (Fig. 2c). Because of the limited
number of genes in the UCspec set, only a handful of GO terms
were overrepresented, including several terms linked to gap

junctions. These results largely mirrored those identified by RNA-
seq in ileal pediatric CD20. This study identified a CD-vs-UC
upregulation of apolipoprotein genes, which was also present in
our set (Supplementary Fig. 2g). Thus, it is clear that while CDa
and UCa share a strong inflammatory component, we show that
genes that differentiate CDa and UCa are not primarily related to
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immune response but rather to cellular functions associated to
gut and gut epithelia.

Differential expression analysis will favor genes showing low
variance within groups. However, gene expression variance across
patients with the same diagnosis is relevant for patient
stratification and precision medicine. We found that five
antibacterial peptide genes, defensins DEFA5 and DEFA6
(normally expressed in small intestine21 and Paneth cells) and
c-lectins REG1A, REG1B, and REG3A (normally expressed in
pancreas and small intestine21) were highly upregulated in IBD
and at the same time showed extreme variance across UC and CD
subjects (Fig. 2d). The upregulation of these genes was highly
correlated to cytokine induction (Supplementary Fig. 2h). The
large variance might indicate patient-specific responses to
inflammatory factors, disease chronicity or cell metaplasia, and
again highlights the role of epithelia-specific genes IBD response.

Colonic biopsies consist of multiple cell types, whose
composition may change in IBD. We assessed this in two ways.
First, we took advantage of the FANTOM5 TSS atlas, where
individual TSSs were annotated as being preferentially expressed
in one or more cell types sampled across the human body based
on CAGE expression21. With these data, we could estimate
overall cell type enrichments for each differentially expressed TSS
group across all FANTOM5 primary cell types (Fig. 2e,
Supplementary Data 8). IBDup TSSs were enriched in immune-
related cells, while IBDdown TSSs were enriched in epithelial cells.
Cell-type enrichment patterns of CDspec and UCspec TSSs were
different: CDspec TSSs were mostly enriched for immune-related
cells (including basophils, monocytes, and eosinophils) and
intestinal epithelial cells, while the UCspec TSSs were mostly
enriched in epithelial cells and mesenchymal cells. Although T-
helper cells have previously suggested to define the difference
between CDa and UCa (reviewed in ref. 22), they were not
enriched in our analysis, consistent with previous results23.

Second, because FANTOM5 data only included cells from
healthy tissue, we wanted to also assess whether induction of an
inflammatory response induced IBD signature genes in immune
cells and/or epithelial cells. To address this, we used primary
cultures of colonic epithelia organoids24 and monocytes, which
were stimulated with TNF (also known as TNFα), one of the most
prominent inflammatory molecules associated with flaring
disease in IBD patients25. Cells were stimulated with TNF for 4
and 24 h (Fig. 2f, Supplementary Fig. 3a, Supplementary Data 9)
and the expression of 35 TSSs (established in the classification
section below) was measured by qPCR. The same TSSs were
measured by qPCR in gut biopsies from an independent cohort

with 18 CDa, 37 UCa and 46 Ctrl subjects (cohort 2). We found
that out of a total of 21 TSSs that were upregulated in UCa or
CDa vs. control, 66% (14/21) and 81% (17/21) were also
upregulated in TNF-stimulated organoids and monocytes,
respectively, at any time point; 47% (10) of TSS were upregulated
in both stimulated organoids and monocytes (Fig. 2f and
Supplementary Fig. 3b, c). It is thus unlikely that the IBD
expression change is solely attributed to immune cells; epithelial
cells are likely part of shaping the transcriptional changes
associated with UC and CD.

Thus, in agreement with the GO analysis, these cell type
enrichment results indicated that the difference between Ctrl,
CDa, and UCa does not only lie in immune cells and their
associated general immune response pathways, but also in cells
and genes associated with gut epithelia.

The enhancer landscape of inflammatory bowel disease. Gene
and TSS-focused analysis as above can give insights into gene
expression but not their regulation by distal enhancers. As
established previously, bidirectional CAGE peaks accurately
predict enhancer locations and activity13. Using the same method
as in ref. 13, we predicted a permissive set of 37,231 enhancers,
and a strict subset of 10,670 enhancers where ≥8 samples had
detectable enhancer expression (the latter set was used in the rest
of the analyses; Supplementary Data 10, 11 and Supplementary
Fig. 4a). The strict enhancer set overlapped ENCODE DNase
hypersensitive sites (DHSs)26 in 90% of cases (P < 2e−16, by
sampling), and these enhancers were significantly more conserved
across mammals than non-transcribed DHSs from gut tissue27

and randomly selected genomic regions (P < 5.26e−4, two-sided
Mann–Whitney U test; Fig. 3a). These enhancers were also
strongly enriched for ENCODE transcription factor (TF) ChIP-
seq peaks from diverse cells (Fig. 3b). Similarly, they were highly
enriched for H3K27ac and H3K4me1 ChIP-seq signals from
rectal and colonic mucosa, and to a lesser degree other intestinal
regions27 (Fig. 3c and Supplementary Fig. 4b). FAIRE-seq signals
from colonic CD and control patients28,29 were also enriched
(Supplementary Fig. 4c). However, the regions had less H3K27ac
and H3K4me1 ChIP-seq enrichment in immune cells and non-
gut tissues (Fig. 3c and Supplementary Fig. 4b). Thus, the
enhancer candidates had the hallmarks of enhancer regions in
general, but seemed most strongly used in gut tissue.

PCA of enhancer expression showed separation between
inflamed samples (UCa and CDa) and Ctrl, but only minor
separation between UCa and CDa (Fig. 3d). We used EBSeq30 to

Fig. 2 Differential expression of TSSs and genes in IBD. a Principal component analysis (PCA) based on CAGE TSS regions. X- and Y-axes show principal

components (PCs) 1 and 2, percent of variance explained is indicated. Dots correspond to subjects, colored by group. Boxplots at the bottom and right

show the distribution of PC. Circles show three major groups: CDa, UCa, and non-inflamed samples (UCi, CDi, and Ctrl). b Number of differentially

expressed TSSs. Bar plot shows the number of differentially expressed TSSs in the four defined groups. c Gene ontology (GO) term overrepresentation

analysis of differentially expressed genes. X-axis shows GO term overrepresentation FDR values on −log10 scale for differentially expressed genes in the

IBDup, IBDdown, and CDspec sets. Y-axis shows the top 10 GO terms, ordered by FDR. d Identification of IBD-upregulated genes with extreme variance across

IBD patients. Y-axis shows the variance of CAGE expression across CDa, UCa, and Ctrl subjects. X-axis shows the F-statistic from edgeR. Dots correspond

to genes, where size indicates the average CAGE expression in respective group. Five outliers are highlighted, corresponding to antibacterial peptides.

e FANTOM5 cell type enrichment of differentially expressed TSSs. Differentially expressed TSS sets were analyzed for overlap with TSSs specifically

expressed in cell types in FANTOM5. X-axis shows under/over-representation of a given cell type expressed as log2(odds). Whiskers indicate 95%

confidence intervals. Whiskers with black lines indicate statistical significance (Fisher’s exact test, FDR < 0.05). Cell types are ordered by their log-odds

ratio in IBDup. Numbers in parentheses indicate the number of IBD-expressed TSSs specifically expressed in respective cell type in FANTOM5. Red shading

shows cell types only enriched in CDspec TSSs, blue indicates cell types only enriched in UCspec TSSs. f Correspondence of TSSs upregulated in IBD with

TSSs upregulated after TNF stimulation in epithelial organoids and blood monocytes. Venn diagram shows the number of TSSs (out of 36) upregulated in

IBD (UCa or CDa vs. Ctrl), upregulated after TNF stimulation in gut epithelia organoids or blood monocytes, measured by qPCR. Upregulation after 4 and

24 h of TNF stimulation are pooled; see Supplementary Fig. 3c for time-specific measurements
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define four differentially expressed enhancer groups, analogous to
the TSS groups defined above: shared CDa and UCa up/
downregulated vs. Ctrl (IBDup and IBDdown), upregulated in
CDa vs. UCa (CDspec) and vice versa (UCspec) (Supplementary
Data 12 and Supplementary Fig. 4d). In agreement with the PCA,
the IBDup, and IBDdown enhancer sets were much larger than
CDspec and UCspec sets (Fig. 3e).

Next, we used HOMER31 to identify shared predicted TF
binding sites around IBDup and IBDdown enhancers (±300 bp

around enhancer midpoints; CDspec and UCspec sets were too
small for meaningful analysis). The same analysis was used for
promoter regions of corresponding TSS groups (defined as −500/
+100 bp around TSSs) (Fig. 3f). IBDup promoters and IBDup

enhancers were enriched for sites linked to TFs previously
associated with inflammation, including ETS1, IRF1, STAT4, and
RELA. IBDdown promoters and enhancers site enrichments were
also highly similar: in particular, HNF4A and CDX2 sites were
over-represented, consistent with their important roles in

e

d

CDa

CDi

Ctrl

UCa

UCi

0 50

0

40

80

0 50
PC1: 9%

P
C

2
: 

3
%

0

40

80

C
D

a
C

D
i

C
tr

l
U

C
a

U
C

i

CDa

CDi

Ctrl

UCa

UCi

g

CDa

Ctrl

UCa

HNF4A

NR5A2

CDX2

PPARG

RXRA

TCF3

IRF1

RELA

ERG

STAT4

ETS1

CEBPE

CAGE expression

(log
2
 TPM)

TFBS over

representationTF Sequence logo

0 10 20 30

−log(P )

IB
D

u
p  e

n
h
a
n
c
e
rs

IB
D

u
p  p

ro
m

o
te

rs

IB
D

d
o
w

n  p
ro

m
o
te

rs

IB
D

d
o
w

n  e
n
h
a
n
c
e
rs

0.0

0.2

0.4

0.6

0.8

Not

differentially

expressed 

IBD
up

IBD
down

CD
spec

UC
spec

Number of enhancers

correlated to TSS
0 1 2 3 >3

b

a f

c

0

118

Number

of ChIP

peak

overlaps

CAGE signal summits

Rectal mucosa Colonic mucosa

T helper cells CD14+ cells

2000–2000 0 2000–2000 0

P
re

d
ic

te
d
 e

n
h
a
n
c
e
r 

re
g
io

n
s
 (

N
=

1
0
,6

7
0
)

P
re

d
ic

te
d
 e

n
h
a
n
c
e
r

re
g
io

n
s
(N

=
1
0
6
7
0
)

ENCODE transcription factor peaks

Number of differentially

expressed enhancers

0 250 500 750

920

CD
spec

 (CDa > UCa) 

UC
spec

 (UCa > CDa) 

IBD
down

 (Control > CDa+UCa) 

IBD
up

 (CDa+UCa > Control) 

118

292

25

0.05

0.10

0.15

0.20

−2000 −1000 0 1000 2000

Distance from region midpoint (bp)

Distance from enhancer midpoint (bp)

A
v
ra

g
e

 P
h
y
lo

P
 c

o
n
s
e
rv

a
ti
o
n
 s

c
o
re

(1
0
0
 v

e
rt

e
b
ra

te
 g

e
n
o
m

e
s
)

TSS group

ChIP

signal

Min

Max

Strict enhancer set (non-overlapping, N=6262)

Permissive enhancer set (non-overlapping, N=26,530)

Non-transcribed DHSs from gut tissue (non-

overlapping, N=63,131)

Random non-genic regions (N=5e5)

vs. P=5.26e–4

vs. P=2e–16

F
ra

c
ti
o
n
 o

f 
T

S
S

s

H3K27acH3K27ac

H3K4me1 H3K4me1

H3K4me1H3K4me1

H3K27ac H3K27ac

1110

4.0 5.0

9.0 10.0

5.0 6.0 7.0

5.0 6.0 7.0

8.0 9.0

8 9 10 11

5.5 6.0 6.5

7.0 7.5 8.0

8.5 9.5 10.5

10 11 12

98 10

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03766-z

6 NATURE COMMUNICATIONS |  (2018) 9:1661 |DOI: 10.1038/s41467-018-03766-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


differentiation of gut epithelial cells32. Decreased CDX2 and
HNF4A expression were previously observed in IBD33,34, and
indeed, site enrichments generally correlated with the expression
of the associated TF (Fig. 3f). We observed similar enrichment
patterns when analyzing enhancer and promoter regions for
overlapping ENCODE TF ChIP-seq peaks (Supplementary Fig. 5).
Thus, IBD-induced enhancers and promoters share similar TF
binding pattern enrichments, which are distinct from those of
IBD-repressed enhancers and promoters.

To understand enhancer regulation, enhancers must be linked
to target gene TSSs. As shown previously13, enhancer-TSS pairs
can be predicted based on CAGE co-expression across samples.
Following the same approach, we identified 21,502 enhancer-TSS
pairs within 500 kb with positive and significant Pearson
correlation (correlation test, FDR < 0.05) (Supplementary
Data 13). Of these pairs, 8507 (39.6%) were between a
differentially expressed TSS and an enhancer, regardless of its
differential expression status. Around half of IBDup and IBDdown

TSSs (54.7% and 47.9%, respectively) were linked with at least one
enhancer, compared to smaller fractions for CDspec, UCspec

(40.9% and 18.3%) and remaining TSSs (Fig. 3g). Enhancer-
linked TSSs in IBDup and IBDdown groups were commonly linked
with more than one enhancer: in particular, IBDup TSSs linked to
>3 enhancers were as frequently observed as TSSs linked to a
single enhancer (Fig. 3g).

The NOD2 locus, a cluster of chemokine genes (CXCL1-3,
CXCL5-6, and CXCL8), and two receptors for these chemokines
(CXCR1 and CXCR2), represent examples of enhancers linked
with neighboring TSSs of genes associated with IBD pathogenesis
(Fig. 4a–c). The examples show putative distal regulators for key
IBD genes, and highlighted a potential regulatory SNP that may
affect the chemokine response pathway. Due to the common
occurrence of enhancers linked to cytokine-related genes, we
annotated the cytokine–cytokine receptor interaction pathway
with linked enhancers and alternative TSSs (Supplementary
Fig. 6).

Characterization of IBD-upregulated enhancer clusters. Pre-
viously, large regions having enhancer-like chromatin features—
so-called “super”—or “stretch”—enhancers—were identified as
drivers of central biological processes35. By eye, clusters of
CAGE-defined enhancers were evident, for instance in the region
surrounding CEBPB, a key inflammatory response TF (Fig. 5a).
We defined CAGE-based enhancer clusters by requiring >2
consecutive enhancer midpoints spaced ≤15 kb from each other,
resulting in a set of 693 enhancer clusters (Supplementary
Data 14), where 67% overlapped enhancer clusters defined by

ChIP-seq in immune and gut cells36. CAGE-defined enhancer
regions within clusters often co-occurred with ENCODE TF
ChIP-seq peaks (Fig. 5a).

The number of CAGE-defined enhancers within a cluster
correlated with the average fraction of IBDup, but not IBDdown

enhancers in the same cluster (Fig. 5b). The same trend was
observed for predicted enhancer targets: TSSs linked to at least
one enhancer within a cluster had a higher IBD vs. Ctrl fold
change if the enhancer cluster contained >6 enhancers compared
to TSSs linked to clusters with fewer enhancers (P < 2.2e−16,
two-sided t-test) (Fig. 5c and Supplementary Fig. 7a). Consistent
with these observations, if an IBDup TSS was linked to an
enhancer in a cluster with >6 enhancers, it was typically linked
with all or most enhancers within the cluster (Supplementary
Fig. 7b). Altogether, this suggests that enhancer clusters with
many members and singleton enhancers have distinct functions
in IBD.

To further explore the relation between the number of
enhancers within a cluster and their regulatory function in IBD,
we compared (i) IBDup TSS-linked enhancers from enhancer
clusters with >6 members with (ii) IBDup TSS-linked singleton
enhancers (not belonging to any cluster). Singleton enhancers had
a greater overlap with ENCODE ChIP-seq peaks corresponding
to TFs associated with inflammation (including RELA, SP1,
STAT factors, and IRF1) (Fig. 5d), while enhancer clusters were
overrepresented for ChIP-seq peaks for chromatin remodelers
and insulators, including SMARCA4 and CTCF. As SMARCA4
has a function in activation of repressed genomic regions37 and
CTCF is an insulator, these larger enhancer clusters might reflect
large-scale changes in chromatin structure induced by the
inflammatory response, while smaller enhancer clusters may be
driven by the binding of one or a few TFs.

SNP overrepresentation in enhancers and promoters. As dis-
cussed above, a majority of IBD-associated SNPs are located in
intergenic regions, and may impact gene regulation. The UC-
associated SNP overlapping an IBDup enhancer located between
cytokine receptors CXCR1 and CXCR2 (Fig. 4c) exemplifies an
SNP with potential regulatory function. As we did not have access
to the genotypes of our subjects, we investigated the overlap
between publically available IBD-associated SNPs and enhancer
and promoter regions using two complementary approaches;
GWAS SNP enrichment and partitioned heritability of IBD.

First, we obtained all SNPs significantly associated with a
disease/trait from the GWAS catalog38. For each GWAS SNP, we
merged the region covered by other SNPs in linkage disequili-
brium (LD, R2 > 0.75 and within 500 kb) into a single block, using

Fig. 3 Discovery and characterization of enhancer activity in IBD a. Conservation analysis of enhancer regions. X-axis shows the distance from the center of

regions. Y-axis shows average PhyloP100 vertebrate conservation score65 for strict and permissive enhancer sets, non-transcribed DHSs from gut27 and

random non-genic regions. P-values indicate Mann–Whitney U tests between conservation scores in the ±200 bp region (dashed lines). Number of regions

in each set are shown (overlapping regions were discarded). b Transcription factor binding enrichment within CAGE-defined enhancer regions. Heat map

rows correspond to the 10,670 enhancer predictions, sorted by distance between bidirectional CAGE peaks. X-axis corresponds to the ±2000 bp region

centered on enhancer midpoints. CAGE peak summits are shown as black lines. Color intensity corresponds to number of ENCODE transcription factor

ChIP-seq peaks (all ENCODE cells) overlapping a given region. c H3K27ac and H3K4me1 ChIP-seq enrichment within enhancer regions identified by CAGE

in gut biopsies. Heat maps are constructed as in b, but show ChIP-seq signal from H3K27ac and H3K4me1 from rectal/colonic mucosa, T helper and CD14

+ cells27. Colors are assigned based on observed min and max ChIP-seq intensity values within each heatmap. d Principal component analysis based on

CAGE expression within enhancer regions. Plot is organized as Fig. 2a. e Number of differentially expressed enhancers. Bar plot shows the number of

differentially expressed enhancers per group, organized as Fig. 2b. f Predicted transcription factor site enrichment in enhancer and TSS regions. Each row

shows data related to one transcription factor. Left panel shows site enrichment P value in respective groups of differentially expressed enhancers or

promoters for the sites corresponding to the relevant motif, as indicated by color scale. Middle panel shows the CAGE expression as log2 TPM for the

transcription factor across groups as boxplots. Right panel shows motif sequence logo. g Linkage between enhancer and TSS through co-expression. Y-axis

shows the fraction of CAGE TSSs that can be linked to enhancers within 500 kb through co-expression correlation, split by how many enhancers each TSS

is linked to. X-axis shows sets of TSSs split by their differential expression as in Fig. 2b
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the 1000 genomes CEU reference population39. If LD blocks
overlapped, they were merged into an LD clump.

For every GWAS disease, we assessed the overlap between LD
clumps with our identified promoter (−500/+100 bp around TSS
peaks) and enhancer regions (±300 bp around enhancer mid-
points) by using empirical Bayes to shrink fraction of overlapping
LD clumps toward the average of all GWAS diseases. Only IBD,

CD and UC LD clumps had a high degree of overlap with both
the promoter and enhancer sets (Fig. 6a and Supplementary
Fig. 8a). Next, we analyzed whether differentially expressed TSSs
and enhancers were enriched for LD clump overlaps. IBDup

promoters and enhancers were enriched for LD clumps associated
with several immune-related diseases, but only IBD, CD, and
UC LD clumps were enriched in both promoters and enhancers
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(Fig. 6b). Enhancers, but not promoters, were highly enriched for
other inflammatory intestinal disease LD clumps. Conversely,
IBDdown TSSs and enhancers were not enriched for LD clumps
associated with IBD, UC, or CD, but showed modest enrichment
for LD clumps associated with heart disease (Fig. 6c).

The above analysis only assessed enrichments of genetic
variants reaching genome-wide significance. However, many
genetic variants might collectively make important contributions
to IBD pathogenesis without individually reaching genome-wide
significance. To this end, we performed partitioning of heritability
analysis using the stratified LD-score regression method40 to
investigate if TSSs and enhancers were enriched for SNPs
explaining the heritability of IBD. Briefly, this method measures
SNP heritability enrichment in a set of genomic regions (e.g.

enhancers) as the proportion of SNP heritability Pr h2g

� �� �

divided by the proportion of SNPs Pr SNPð Þð Þ in the same
regions, based on GWAS summary statistics. Previously, this
method was employed on 24 classes of annotated functional
regions and GWAS summary statistics from 17 complex diseases,
to establish a “baseline model” describing the contribution of each
annotation class40. To extend this analysis with our enhancer and
TSS sets in an IBD setting, we obtained GWAS summary statistics
for ~12 million SNPs from the International IBD Genetics
Consortium8. We then analyzed the partitioned heritability of
IBD in the 24 annotated functional regions from40 but added our
enhancer (±300 bp around enhancer midpoints) and promoter
(−500/+100 bp around TSS peaks) regions, and the subsets of
these belonging to the IBDup or IBDdown groups, to the original
model. We found that our enhancers and promoter sets were
significantly enriched for IBD SNP heritability. This was even
more evident in the IBDup enhancers and promoters, while
IBDdown was not significantly enriched (Fig. 6d, Supplementary
Fig. 8b, c). The combined IBDup enhancer and promoter set had
the highest heritability enrichment of all regions included in the
baseline model, including FANTOM5 enhancers. Overall, IBD
heritability enrichment was considerably higher for annotation
classes corresponding to regulatory regions (enhancers, promo-
ters etc.) than coding exons.

Overall, these results suggest that there is an association
between IBD-associated SNPs and the regulatory regions we
define. While the genotypes of the samples investigated here
would be necessary to establish the causal effect of individual
SNPs, our analysis indicate that the enhancer and promoter
resources we provide are useful starting points for future
investigations of non-coding IBD-associated SNPs, since they
allow for a more detailed interpretation of otherwise unchar-
acterized intergenic regions.

Classification of UC, CD, and controls from TSS expression.
The statistical analyses above could identify TSSs and enhancers

that were up- or downregulated between subject groups, but
cannot assess whether expression data for a single biopsy contain
enough information to accurately classify the subject as active
UC, active CD, or control. This is a relevant question as the
diagnosis between active UC and CD is often clinically difficult,
and expression data might be useful to increase overall diagnosis
accuracy. We reasoned that CAGE-based analysis is not realistic
in a clinical setting; instead, we sought to define a small set of
CAGE-based biomarkers for active UC, active CD and controls
that were amendable to robust targeted methods such as qPCR.

To achieve this, we used successive steps of biomarker selection
and testing (Fig. 7a). First, we analyzed the CAGE data from the
25 UCa, 20 CDa, and 29 Ctrl subjects in cohort 1 with an
ensemble of statistical and manual curation methods to extract
274 TSSs/enhancers distinguishing UCa, CDa, and Ctrl groups
(Supplementary Data 15). A Random Forrest (RF) classification
framework trained on CAGE data for these 274 biomarkers could
predict UCa, CDa, and Ctrl diagnosis with an overall accuracy of
95%, assessed by five-fold cross-validation (Fig. 7b, left and
middle panels). This high accuracy could be retained when
reducing the number of biomarkers (Fig. 7b, right panel). We
were able to design and validate qPCR primers corresponding to
161 of these biomarkers (Supplementary Data 15, 16), and
analyzed their expression using microfluidic qPCR on the same
biopsies as above (cohort 1: 161 primer pairs analyzed in biopsies
from 74 subjects) (Supplementary Data 17). An RF trained on the
microfluidic qPCR expression data gave an overall accuracy of
84% assessed by five-fold cross-validation (Fig. 7c, left and middle
panels). Thus, accurate classification of IBD based on these
biomarkers was achievable across experimental methods. Similar
accuracy levels were achieved using fewer biomarkers: we retained
comparable accuracy using 30–40 biomarkers (Fig. 7c, right
panel). Encouraged by this, we reduced the number of biomarkers
to a final set of 35. In this final selection no enhancers were
retained, consistent with their lower RNA abundance compared
to gene TSS.

To test whether the classification power of our biomarkers
generalized beyond cohort 1, we enrolled a second independent
validation cohort (cohort 2: 18 CDa, 46 Ctrl, 37 UCa;
Supplementary Table 1), which included biopsies acquired at
two different hospitals by different physicians, and measured the
expression of same 35 biomarkers using microfluidic qPCR
(Supplementary Data 18). We then trained a RF on microfluidic
qPCR data from the 35 biomarkers from cohort 1 and predicted
the diagnosis of the subjects in cohort 2. We achieved an overall
accuracy of 85% in cohort 2 (Fig. 7d, left and middle panels),
strongly suggesting that our selected biomarkers generalize to the
larger population. Although the CD sensitivity was lower when
using qPCR than with CAGE (see Discussion), our results were in
all cases substantially better than expected by chance, as estimated
by training on randomly shuffled cohort 1 labels and then

Fig. 4 Examples of IBD-upregulated enhancers and linked TSS and genes. Each larger panel shows: genome browser with the average CAGE expression in

TPM on both strands, UCSC gene models, TSS-enhancer-linkage through expression correlations (Pearson correlation coefficients are indicated by color,

only positive correlations are shown) and CAGE-defined enhancers (black). Green indicates data on forward strand, purple on the reverse strand. Left part

of lower panel shows a zoom-in of the enhancer region, with CAGE signal intensity as above, ENCODE DHS peaks and TF ChIP-seq peaks26,66. ChIP-seq

peaks are labeled with cognate TF name. Primer locations for qPCR analysis are indicated as double arrows. Right lower panel shows corresponding qPCR

analysis of eRNA expression in CDa, UCa and Ctrl samples on both strands as boxplots, relative to the PIAS4 reference gene. a An enhancer upstream of

the NOD2 TSS. An enhancer region was detected upstream of the TSS of NOD2, a key gene in IBD pathogenesis with strong support from ENCODE cell line

data. b An enhancer in the CXCL1-3,5,6,8 cytokine cluster. Several enhancer regions within a cluster of chemokine genes (CXCL1-3, CXCL5-6, and CXCL8, all

upregulated in IBD) were detected. The analysis is focused on a single enhancer linked to the above gene TSSs (for ease of visualization, only links between

this enhancer and TSSs are shown). c An enhancer between CXCR1 and CXCR2. An enhancer between CXCR1 and CXCR2 (receptors for the cytokines in

panel b) was detected. This enhancer overlapped multiple ENCODE TF ChIP-seq peaks, and the UC-associated rs11676348 SNP. Note the two alternative

TSSs for CXCR2. In the lower panel, a track with disease-associated SNPs is shown
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predicting the labels of cohort 2 (Fig. 7d, right panel and
Supplementary Figure 9a, b). To explore whether CD sensitivity
could be improved further, we employed the gradient boosting
decision tree method implemented in XGBoost41, training on the
same 35 biomarkers cohort 1 and predicted the diagnosis of the
patients in cohort 2. This resulted in an increase in CDa
classification sensitivity by 13% points with no overall classifica-
tion performance decrease (Supplementary Figure 9c). Thus, our
initial results are not specific to machine learning method

employed and may be improved by the use of more complex
techniques. In summary, we have shown that a small set of qPCR
primers, selected from CAGE data, could distinguish control,
active UC, and active CD biopsies.

Discussion
Here we have profiled the enhancer and TSS landscape of biopsies
taken in the descending colon of admitted IBD patients and
controls. Such biopsies are identical to biopsies used in current
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diagnosis methods. This has the advantage that samples are
highly clinically relevant, and that transcriptional changes in the
disease states measured will be close to the in vivo reality. Thus,
from a diagnostic perspective, such tissue samples are more
relevant than selected primary cells isolated from tissue. As with
all tissue samples, expression changes may be partially due to
changes in cell composition. We showed that aside from a shared
increase of immune cell-linked TSSs, active CD and UC seem to
have different composition of cells, where UC-specific gene
expression was more strongly linked to epithelial cells.

CAGE data interpreted on gene level identified similar pathway
and GO term enrichments as previous RNA-seq studies20,28,42. A
recent study28 identified two distinct CD populations based on
RNA expression data: we could not replicate this finding but the
CAGE data did show the active CD population to be much more
transcriptionally diverse than active UC or controls, as discussed
below.

This is a large-scale analysis of enhancer activities across a total
of 94 CD, UC, and control subjects: ref. 28 investigated two
smaller CD populations (N= 10 and 9) using FAIRE-seq, a

method identifying accessible DNA, while H3K27ac ChIP-seq has
been performed in gut tissue for even fewer individuals, and not
in an IBD context27,43. With our data, we could establish that
promoters and enhancers that are upregulated in IBD share the
same DNA-binding patterns enrichments, and that enhancer
clusters upregulated in IBD are distinct from corresponding
singleton enhancers.

The enhancer component of IBD reported here gives new
possibilities for understanding the disease and its genetics. We
show a clear overrepresentation of IBD-associated SNPs in both
IBD-upregulated enhancer and promoter regions, and these
regions had the largest IBD heritability enrichment compared to a
large set of other genomic regions. Thus, the IBD TSS and
enhancer sets reported here are unique resources for interpreta-
tion of the functional impact of noncoding genetic variants.

Aside from adding to the functional and genetic understanding
of IBD, CAGE data can be used to distinguish between active UC,
CD, and control subjects. This accuracy could be retained using
as few as 35 TSSs, quantified by microfluidic qPCR and validated
in an independent cohort. Although the method is not at usable
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35. We analyzed the expression of these biomarkers in an independent validation cohort (cohort 2) using microfluidic qPCR. Classification analysis was
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in clinical settings in its current form, it may provide an inroad
for new qPCR-based diagnostic methods complementing current
diagnostic methods. Several studies have used microarray- or
qPCR-based approaches to classify UC, CD and controls pre-
viously (e.g.16,23,44), with varying degrees of success ranging from
high separation in small cohorts to little or no separation: a meta-
study analyzing multiple microarray experiments indicated that
UC-CD differences are not substantial23, and the accuracy of one
of the reportedly best-performing methods could not be verified
in an independent laboratory45. These variations in accuracy may
be due to small patient cohorts, and that different standards may
have been applied in the initial patient diagnosis and inclusion
criteria. For comparison, we tested the classifying power of gene
expression markers previously selected by two previous stu-
dies16,44 in our set, using CAGE data in cohort 1. These markers
performed consistently worse than ours (Supplementary Fig. 9d).

There are two important limitations with our analysis. First,
biopsies were collected from inflamed segments of the descending
colon only; expression patterns may be different in other parts of
the intestinal system, and while UCa patients typically are
inflamed in the descending colon, this is less common for CDa
patients. Similarly, it is possible that non-macroscopically
inflamed biopsies from IBD patients have better classification
potential, but on the other hand macroscopically inflamed
biopsies are the primary type of samples used for histology
assessment in the clinical diagnosis of IBD and it is clear that
IBD-upregulated regions we identified in such biopsies were
highly overrepresented in SNPs associated to the disease. The
latter argues that the regions identified are disease-relevant and
involved in pathogenesis. Second, the sensitivity of CDa predic-
tion was lower than that of UCa and Ctrl. This may be related to
the above, but as we noticed a much higher variance among CDa
patients than UCa (Supplementary Fig. 10), it might reflect
subtypes of CDa28,46. Although a higher CDa sensitivity would be
desirable, a high sensitivity in UCa prediction is more clinically
important than in CDa, because the surgical option of ileal
pouch-anal anastomosis exists for UC only. Thus, CD in general
is considered a contraindication for ileal pouch-anal anastomosis,
due to high risk of pouch dysfunction, fistula formation, and
peripouch sepsis, ultimately leading to a higher rate of pouch
excision and the potential for short bowel syndrome47.

As a summary, the data sets presented here comprise com-
prehensive maps of TSSs and enhancers in clinical IBD samples,
and show the feasibility of predicting active UC/CD and control
status using such data.

Methods
Human samples and cohorts. Two independent cohorts, including IBD patients
and controls, were analyzed. Cohort 1 (N= 94) was used for CAGE assay and
subsequent microfluidic real-time quantitative reverse transcription polymerase
chain reaction (qPCR) validation. This cohort included 25 patients with active UC
(UCa), 17 patients with UC in remission (UCi), 20 patients with active CD (CDa),
3 patients with CD in remission (CDi) and 29 healthy controls (Ctrl). Cohort 2 (N
= 101) was used for independent qPCR validation of selected target genes. The
cohort included 37 UCa, 18 CDa, and 46 Ctrl subjects. All included subjects
underwent a routine sigmoidoscopy or colonoscopy as part of their clinical eva-
luation at the Department of Gastroenterology, Medical Section, Herlev Hospital,
Denmark or Department of Gastroenterology, Medical Section, Hvidovre Hospital,
Denmark due to their clinical symptoms. They were included into the study as UC
or CD patients undergoing lower endoscopy to assess possible disease activity,
extension of disease or surveillance for dysplasia, or as controls (endoscopy was
performed due to gastrointestinal symptoms but all investigations returned nor-
mal). IBD patients were diagnosed established using well-defined criteria15. UC
patients were graded by Mayo score: a score ≤2 with endoscopic sub-score of 0 (i.e.,
no macroscopic inflammation) as quiescent (in remission) UC and >2 as active UC,
and CD patients were graded in accordance with the Harvey-Bradshaw score: a
score <5 as quiescent (in remission) CD and ≥ 5 as active CD. Exclusion criteria
were as follows: age >80 or <18, clinical evidence of infection, use of antibiotics or
probiotics within 14 days, severe mental illness and pregnancy. Additional data for
each cohort is available in Supplementary Table 1 and Supplementary Data 1.

Ethics. The IBD sample collection and CAGE study was approved by the Scientific
Ethics Committee of the Capital Region of Denmark, filed under the ethical per-
mission numbers 36538/H-C-2009-057, 22484/H-C-2009-057, 43691/H-6-2014-
051, and 53619/H-6-2014-051, covering both biopsy collection and the application
of data to next-generation sequencing approaches. All individuals provided written
informed consent to participate in this study. In this context, participation meant
that five extra biopsies were obtained in addition to the number of biopsies
required on medical grounds, extending the examination time by 2–3 min. Ctrl
subjects were a subset of the above set, but were assigned “Ctrl” when all clinical
and paraclinical investigations subsequently indicated no inflammation. Partici-
pants were informed both orally and in writing in compliance with the Declaration
of Helsinki and the guidelines of the Danish National Scientific Ethics Committee.
The gut epithelia organoid and monocyte studies were approved by the local
bioethical committee (ethical approval numbers 1302159 and 51899, respectively).
All samples were obtained from patients who provided informed consent before
surgery (for gut organoids) or blood sampling (monocytes).

Tissue isolation and RNA extraction. Mucosal pinch biopsies (weight on average
15 mg) were obtained from the descending colon using endoscopic forceps. We
choose the descending colon in order to avoid intersegmental variation. The
endoscopic diagnosis of active or inactive disease was confirmed by histopathology
conducted on parallel biopsies taken within an inch of the 1st biopsy. The biopsies
were immediately placed in RNAlater® Stabilization Solution (Ambion™, Life
Technologies) and kept at 4 °C for 24 h before long-term storage at −80 °C. The
RNA was extracted using PureLink® RNA Mini Kit (Ambion™, Life Technologies)
with freshly made lysis buffer containing 1% 2-mercaptoethanol (Sigma). The
biopsies were homogenized directly in the lysis buffer using an ULTRA-TURRAX®
(IKA Works, Inc). The purification was performed following the manufacturer’s
instructions including an on-column DNase treatment with the PureLink® DNase
Set (Ambion™, Life Technologies). For 16 samples RNA extraction was performed
as previously described in ref. 48. Quantity and purity of the RNA was determined
for all the samples on a Nanodrop ND-1000 spectrophotometer (Thermo Scien-
tific). The purity was measured as the A260/280 ratio and was between 1.9 and 2.1.
RNA quality (integrity) was determined using the 2100 Bioanalyzer Instrument
(Agilent Technologies) with the Agilent RNA 6000 Pico Kit (Agilent Technologies)
as recommended by manufacturer. In cohort 1, the average RNA integrity number
(RIN) was 7.6 and no samples were below 5.3. For cohort 2, the average RIN value
was 8.0 and no samples were below 6.2.

Monocyte isolation and stimulation. Blood was freshly collected from IBD
patients with informed written consent. First, freshly drawn blood was diluted at a
ratio of 1:1 with PBS. Peripheral blood mononuclear cells (PBMCs) were isolated
from diluted blood by Ficoll-Paque density gradient centrifugation according to the
manufacturer’s instructions (GE Healthcare, Uppsala, Sweden). Harvested PBMCs
were used for monocytes isolation. CD14+ monocytes were isolated from PBMCs
by negative immunomagnetic bead separation using Monocytes Isolation Kit II
(Miltenyi Biotec, CA, USA). After monocyte isolation, 1 × 106 monocytes were
plated in each well of 24-well plates (TPP, Trasadingen, Switzerland) in 1 ml
growing medium (RPMI-1640 medium containing 10% human serum, 50 IU/ml
penicillin, 50 μg/ml streptomycin, and 0.5 mg/ml gentamycin) at 37 °C in a cell
culture incubator. Cells were cultured overnight and stimulated with 10 ng/ml
TNFα the next day and harvested at indicated time. Control cells were not treated
with TNFα but otherwise treated in the same way. Cells were pelleted, snap frozen
on dry ice and stored at −80 °C until use. RNA was purified using Qiagen RNeasy
Micro Kit as recommended by manufacturer with lysis buffer containing 1% 2-
mercaptoethanol (Sigma) and on column DNase digestion. The average yield was
700 ng, with RIN values between 8 and 9.2. TSS expression analysis of 36 TSS
targets (as defined below) was done using the microfluidics Fluidigm platform in
parallel with biopsy qPCR, as described below.

Epithelial organoid growth and stimulation. Biopsies of morphologically normal
epithelium from patients undergoing surgery for colorectal cancer were aseptically
collected. After washing thoroughly with PBS, biopsies were cut into ca. 4 mm
pieces and incubated in freshly prepared chelation buffer (96 mM NaCl, 55 mM D-
sorbitol, 44 mM sucrose, 10 mM EDTA, 8 mM KH2PO4, 5.6 mM Na2HPO4, 1.6
mM KCl, 0.5 mM DTT) for 45 min with agitation on ice. After replacing chelation
buffer with PBS, biopsies were manually shaken 3 × 10 s in order to detach colonic
crypts. Filtered crypts were suspended in ice cold Matrigel, plated in 48-well plates
and maintained in organoid culture medium: Advanced DMEM/F12 (Life Tech-
nologies), 1× penicillin/streptomycin (Life Technologies), 10 mM HEPES (Life
Technologies), 2 mM GlutaMAX (Life Technologies), 10 mM Nicotamide (Sigma),
1× N2 (Life Technologies), 1× B27 (Life Technologies), 1 mM N-acetylcysteine
(Sigma), 10 μM Y-27632, 0.5 μM A-83-01 (Tocris), 10 μM SB202190 (Sigma), 100
ng/ml mWnt3a (Cell Guidance Systems), 500 ng/ml mRspondin-1 (R&D systems),
100 ng/ml mNoggin (R&D systems), 50 ng/ml hEGF (Peprotech), 2.5 μM PGE-2
(Sigma). For TNFα stimulation experiments, primary organoid lines from different
patients (passage number < 3) were run in technical triplicates and maintained in
organoid culture medium supplemented with 10 nM hTNFα (R&D systems) for 0,
4, or 24 h in duplicate wells. Duplicate wells were pooled together and RNA was
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isolated using Trizol (Invitrogen) in combination with Purelink minicolumns (Life
Technologies). The Purelink minikit was used as recommended by manufacturer
including the on column DNase step. The average yield was 5540 ng with a RIN
between 6.8 and 9.8. TSS expression analysis of 36 TSS targets (as defined below)
was done using the microfluidics Fluidigm platform in parallel with biopsy qPCR,
as described below.

CAGE library preparation, sequencing, mapping, and processing. CAGE
libraries were prepared according to ref. 11 with an input of 1500 ng of total RNA
as starting material. Individually prepared CAGE libraries with unique barcodes
were pooled (4 per lane). The following four barcodes were used: no. 2 (CTT), no. 3
(GAT), no. 6 (ACG), and no. 8 (ATC). All used primers and adaptors were pur-
chased from Integrated DNA technologies (IDT). A HiSeq2000 instrument from
Illumina at the National High-throughput DNA sequencing Centre, University of
Copenhagen was used; 30% Phi-X spike-ins were added to each sequencing lane.
CAGE reads were matched to their originating samples if barcodes matched
identicaly. Linker sequences were removed and reads were filtered, requiring at
least 30 in 50% of the bases usingthe FASTX-Toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/) with the length of 25 bp. CAGE tags were mapped using Bowtie49

(version 0.12.7) to the hg19 assembly using v= 2 and otherwise standard settings
but allowing for multiple alignments. Subsequently, only uniquely mapping reads
were retained. Reads that mapped to chrM were discarded. Supplementary Data 2
shows mapping statistics. In short, for each library on average 17.3 million reads
mapped, of these, on average 74% (S.D.± 2.8) mapped to a unique location.

To generate a genome wide map of transcription start sites, 5′ ends of the
CAGE tags (CTSSs) that mapped close to each other on the same strand were
grouped into tag clusters (TCs) which were used for all the post analysis as in ref.
50. In brief: for initial cluster definition, for each library, CTSSs supported only by
one CAGE tag 5′ end were ignored. After Tags Per Million (TPM) normalization
(CAGE tags per total mapped tags in library*1e6), remaining CTSSs from all
libraries were summed into a joint CTSS profile. CTSSs within 20 bp of each other
on the same strand were merged into TCs. We trimmed weakly TC expressed tails
around TCs using a queue-based trimming algorithm: base pairs were removed
iteratively from the edge of TCs, always choosing the most lowly expressed edge,
until 10% of the total TPM of the TC had been removed. Trimmed TCs were then
quantified in all samples by counting the total number of CAGE tags in each TC
and each sample (for this step, singleton CTSSs were included). Unless otherwise
mentioned, only TCs having ≥1 TPM in at least three libraries were retained for
further analysis. For simplicity, we refer to TCs as “CAGE-defined TSSs”. A
summit, or ‘TC peak’, was identified in each TC, defined as the single base-pair
position within the TC with highest total TPM coverage across all samples.

Annotation of CAGE-defined TSSs and gene-level expression. CAGE-defined
TSSs were annotated using GENCODE v19 annotation17. Canonical TSSs were
defined as the most upstream annotated TSS in the GENCODE gene model.
CAGE-defined TSSs within ±100 bp of the most upstream annotated TSS for a
GENCODE-annotated gene were thus labeled as canonical TSSs. CAGE-defined
TSSs ±100 bp from all other GENCODE-annotated TSS were defined as “known
alternative TSS”. CAGE-defined TSSs within gene bodies more than 100 bp from
an GENCODE-annotated TSS were annotated as “novel alternative TSSs”, CAGE-
defined TSSs > 100 bp distant from gene annotation were annotated as novel
intergenic TSSs and finally all TSSs located on the antisense strand to annotated
genes were defined as novel antisense TSSs. Some analyses were performed at the
level of annotated genes, rather than on CAGE-defined TSS level. For these ana-
lyses, based GENCODE v19 annotation17, we summed up all CAGE-defined TSSs
overlapping the gene on the same strand, including intronic TSSs. In case of a TSS
overlapping different genes (not different transcripts of the same gene), we used an
annotation ranking so that the TSS was associated with a single gene, based on the
type of annotation overlap with the following priority order: canonical TSSs >
known alternative TSS > novel alternative TSSs.

Enhancer identification. Enhancer regions were identified from CAGE-derived
bidirectionally transcribed loci, as in ref. 13 with the following modifications: only
enhancer regions candidates whose bidirectionality score |D| < 0.6 (D ranges from
−1 to 1 where D= 0 corresponds to a perfectly balanced transcription between
strands around the enhancer midpoint, as defined in ref. 13) were used. The per-
missive set was defined by requiring at least two CAGE tags in at least one sample
within the enhancer region (as in ref. 13), while the strict set was defined by regions
having at least two tags in at least eight samples (Supplementary Fig. 4a). Ten
technical replicate libraries were included at this stage, but discarded in final
expression measurement table. Overlap with FANTOM5 enhancers (http://fantom.
gsc.riken.jp/5/datafiles/latest/extra/Enhancers/) was calculated using the inter-
sectbed command from BEDTools package51.

Evolutionary conservation analysis of enhancer regions. Enhancer regions from
the strict set were aligned by their midpoint. Enhancers whose ±2000 bp flanks
from their midpoint overlapped were discarded, because otherwise the same
regions would contribute to the analysis more than once. For each nucleotide in the
±2000 bp region, we calculated the average PhyloP evolutionary conservation score

based on 100 vertebrate genomes52 (http://genome.ucsc.edu/cgi-bin/hgTrackUi?
db=hg19&g=cons100way). Enhancers from the permissive set were analyzed in
the same way. For comparison, we defined a set of DHS peaks from gut tissue from
ENCODE data (https://www.encodeproject.org/). These included transverse colon
(acc. numbers: ENCSR504WYA, ENCSR979ZJS, ENCSR790FIS) and sigmoid
colon (acc. numbers: ENCSR592DQC, ENCSR907VOR). We excluded the DHS
peaks overlapping any gene TCs or enhancers defined in either this study or
FANTOM513. We further discarded DHS regions overlapping ±200 bp around any
annotated exons or ±500 bp around any annotated TSSs (the same criterion used to
define CAGE enhancers). The middle points of remaining DHS peaks were
extended 2000 bp and used in the analysis in the same way as the strict enhancer
set. Similarly, to assess background levels of conservation, we sampled 500,000
regions of 4001 bp from intergenic regions in canonical chromosomes (chr1-22, X
and Y) excluding assembly gaps. Expected background per bp was calculated as
mean per position across all random regions.

Visualization of ChIP signals at predicted enhancer regions. ChIP heatmaps for
transcription factor peaks were derived from ChIP-Seq peaks in the ENCODE
consortium (version 3, including 161 TFs from 91 cell types). Number of peaks
were aggregated for coverage per bp and used as TFBS signals in the heatmap.
H3K27ac and H3K4me1 ChIP-Seq signals used for equivalently arranged heat
maps were downloaded from the Roadmap Epigenetics Consortium27. Heat maps
were ordered by the increasing width of enhancers from the strict set and centered
at enhancer middle points. ChIP-Seq signals falling in ±2 kb around enhancer
middle points were visualized in 401 bins as averages. Binned values were then
broken into permilles and assigned to a color gradient ranging from red (high
ChIP-Seq signals) to blue (low ChIP-Seq signals).

TSS-enhancer linkage. TSS-enhancer linkage prediction was assessed by CAGE
expression correlation across subjects. Prior to correlation calculation, the TSS and
enhancer expression matrices, for all samples including CDi and UCi, were TPM-
normalized using edgeR’s RLE-method and log2 transformed with a pseudocount
of 0.25 (using calcNormFactors(method= ”RLE”) and cpm(log= TRUE)). The R-
function cor.test was used to test for significant Pearson correlations between pairs
of TSSs and enhancers where the TSS peak and enhancer midpoint were within
±500 kb of each other. Resulting P-values were FDR corrected using the Benjamini-
Hochberg method. TSS-enhancer correlations with FDR < 0.05 and a positive
correlation were considered significant for the following analyses.

Definition of enhancer clusters. Consecutive enhancers from the strict set were
chained together if their distance was no longer than 15 kb, producing enhancer
clusters with varying number of enhancer members. An enhancer cluster was
defined as linked with a TSS if at least one of its enhancer members had a sig-
nificant and positive correlation with the TSS, as defined above.

Exploratory differential expression data analysis. We defined an expression
matrix consisting of CAGE-defined TSSs (TCs as defined above) and their summed
number of CAGE tags for each subject. Raw counts were normalized to log-TPM
values and subjected to a variance stabilizing transformation using the var-
ianceStabilizingTransformation function from the DESeq2 package53 (with blind
= TRUE) to improve linear modeling of the data by dampening the mean-variance
trend inherent in count-type data. Principal Component Analysis (PCA) was used
to explore major expression patterns in the dataset using the prcomp function from
base R (with scale= TRUE and center= TRUE). This revealed four major groups
which were not related to any specific part of the study design, but was correlated
with the date, on which the individual samples were prepared (Supplementary
Fig. 11). This effect may be due to change of reagent batches e.g. the biotin
hydrazine and antarctic phosphatase which were replaced between batches. To
remove these batch effects for plotting purposes, we used the ComBat function
(default parameters) from the sva R-package54, after first performing a variance
stabilizing transformation with blind= FALSE (Supplementary Fig. 11). All sam-
ples and all five experimental groups (CDa, UCa, CDi, UCi, and Ctrl) were used for
the batch effect correction for the initial PCA plot (Figs. 2a and 3d). Only CDa,
UCa, and Ctrl were used for batch-corrected gene-level expression plots for the
later parts of the main text (Fig. 3f, Supplementary Fig. 2d, e, h and Supplementary
Fig. 6). For differential expression analysis, batches were taken into account as
blocking factors (see below). As a complement to the unsupervised PCA plot, we
also performed a supervised analysis using Partial Least Squares Discriminant
Analysis (PLS-DA), via the Discriminer R-package and the plsDA function. The
same variance stabilized expression values used for ComBat (with blind= FALSE)
was used as input to the PLS-DA with components set to two (comps= 2). 95%
confidence ellipses were added using stat_ellipse from ggplot2 (with type= ”t”).

Statistical tests for differential expression. The edgeR package was used to test
for differential expression at both TSS- and gene-level using the GLM quasi-
likelihood framework (default settings were used, with the exception that robust
estimation at the empirical Bayes stage was used). As described in the main text,
only CDa, UCa, and Ctrl samples were included in this analysis. The four major
batches were included as blocking factors (Supplementary Data 1). The following
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contrasts were used: (i) IBD: average of CDa and UCa different from Ctrl and (ii)
CDvsUC: CD different from UC. Resulting P-values were corrected for multiple
testing Benjamini–Hochberg method (producing FDR values). To obtain the final
sets of differentially expressed TSSs (or genes) used in the main text, we filtered
TSSs (or genes) with |log2 fold change| > 1 and FDR < 0.05. The IBDup/IBDdown sets
correspond to TSSs (or genes) with a positive/negative log2 fold change in contrast
i) and the CDspec/UCspec sets correspond to TSSs (or genes) with a positive/negative
log2 fold change in contrast ii), where a positive log2 fold change corresponds to
higher expression in CDa compared to UCa (and vice versa). The diffSpliceDGE
function was used to identify differential TSS usage within annotated genes. The
Simes method was used to aggregate TSS P-values to gene level. To decide whether
including additional covariates would improve modeling of the data, we added
effects of various medical labels, such as medication, smoking, gender, etc. to the
design matrix described above, and used limma-voom to test for differential
expression in a similar manner (due to the higher speed of limma compared to
edgeR). Most extra covariates did not have any significantly differentially expressed
genes, except minor effects for gender and SASA treatment. Since these were far
smaller than the effects of either inflammation or batch, we chose not to include
them in the main analysis shown in the main text (Supplementary Fig. 2a).

Differential expression analysis of enhancer regions. Because edgeR analysis
has limited power for globally lowly expressed entities like enhancer RNAs, we
used an alternative approach to assess differential expression between conditions
for these data. The enhancer RNA data were normalized using the median-based
method implemented in the DESeq package (default)55. Instead of normalizing
directly on the counts of enhancer RNA, we used the counts from TSSs from the
same samples. These signals are typically orders of magnitude higher and the
measured median counts are therefore associated with much smaller uncertainties.
The R-package EBSeq (version 1.10.0) was used for the identification of differen-
tially expressed enhancers based on the normalized data30. EBSeq assumes that any
given data row (enhancer count data for CDa, UCa, and Ctrl samples, respectively)
can follow one of a number of possible expression patterns, corresponding to
different plausible hypotheses about that specific enhancer. For the three condi-
tions considered here, there are a total of five possible patterns

Pattern 1: Enhancers expressed at the same level in CDa, UCa, and Ctrl (non-
differential expression).

Pattern 2: Enhancers with the same expression level in CDa and UCa, and a
different expression level in Ctrl (general IBD enhancers).

Pattern 3: Enhancers having similar expression levels in CDa and Ctrl, while
being expressed differently in UCa (enhancers specific for UCa).

Pattern 4: Enhancers having similar expression levels in UCa and Ctrl, while
being expressed differently in CDa (enhancers specific for CDa).

Pattern 5: Enhancers expressed differently in all three conditions.
For each enhancer in the dataset, EBSeq computes the posterior probabilities

that it follows each of these five patterns. EBSeq also produces posterior estimates
of the fold change in expression levels between each pair of the three conditions for
any given enhancer. Another feature of the EBSeq method is that it uses
hierarchical (or multi-level) modeling: the expression level (read count) of
individual enhancers is assumed to follow negative binomial distributions whose r-
and q-parameters are inferred from the data. For any given enhancer, these
parameters may be identical across conditions (non-differential expression) or
different across conditions (differential expression). Different enhancers each have
their own set of parameters, but all q-parameters are assumed to be related, in that
they are drawn from a higher-level beta distribution whose (hyper) parameters are
also estimated from data. This multi-level modeling approach results in “borrowing
of strength” (inference from data on one enhancer will help inform inference for
other enhancers), and “shrinkage” (parameter estimates for enhancers with little
data will be automatically shrunk toward the overall mean). Since the majority of
all enhancers are not differentially expressed the approach is conservative (it
requires a substantial amount of data to pull log-fold estimates away from zero)
and thereby helps avoiding issues with multiple testing.

Specifically, the analysis was performed using the EBMultiTest function in the
EBSeq package with maxround set to 100 iterations. Convergence was checked by
inspecting plots of the hyper-parameters Alpha and Beta and the mixture
parameter P and ensuring their values had settled at stable values at the end of the
iterations. The function QQP was used to generate QQ-plots confirming that the
beta prior used in the analysis was appropriate (data not shown). We used a
posterior probability cutoff of 0.9 for deciding when to label an enhancer as
differentially expressed, corresponding to a false discovery rate of 0.1. Labeled
enhancers were then reconciled with the classification of differential expression
made for TSSs as follows (P= posterior probability):

IBDup: P(Pattern 2) > 0.9 and (CDa and UCa positive log fold change vs. Ctrl)
IBDdown: P(Pattern 2) > 0.9 and (CDa and UCa negative log fold change vs.

Ctrl)
CDaspec: P(Pattern 4) > 0.9
UCaspec: P(Pattern 3) > 0.9
There is no simple way of accounting for batch effects in the software used here,

and we therefore performed the analysis independently for the two batches. Results
reported in this paper are for the larger batch (58 subjects), but we found very
similar results for the smaller batch (Supplementary Fig. 4d). All analyses were

performed both on the (larger) permissive enhancer set, and the (smaller) restricted
enhancer set. On the whole, enhancers identified as being differentially expressed in
the strict data set were a subset of those identified based on analysis of the
permissive data set (data not shown).

Gene ontology and protein interaction analysis. For differential expression
analysis performed at the gene-level, we performed enrichment tests for GO-terms
using the gProfiler online tool56 via the associated gProfiler R-package (https://
CRAN.R-project.org/package=gProfileR) using the gProfiler function. Default
settings were used, except the background set (i.e., “universe”) was set to all
expressed genes. The results of the enrichment analysis on each of the four sets can
be found in Supplementary Data 7. Additionally, we also queried each of our gene-
level differential expression sets against the STRING database of protein-protein
interaction networks (using default settings, but removing proteins with no con-
nections to any other proteins).

FANTOM5 cell specificity enrichment analysis. For TSSs that were differentially
expressed, we performed enrichment tests for FANTOM5 cell specificity of TSSs.
We downloaded the table of cell type specificity of CAGE tag clusters from http://
fantom.gsc.riken.jp/5/datafiles/phase1.1/extra/Sample_ontology_enrichment_of_
CAGE_peaks/. For each TSS, we noted whether it was differentially expressed and
if it overlapped (based on genomic coordinates) with a FANTOM5 cell-specific tag
cluster. We used the table function from base R to create a 2 × 2 contingency table
for differential expression statistics and cell specificity, and tested for independence
between rows and columns of this table using a Fisher’s Exact test (via R’s fisher.
test). P-values for each cell category were corrected for multiple testing using the
Benjamini–Hochberg method. The complete table of statistics for all cell type terms
can be found in Supplementary Data 8.

Transcription factor binding site enrichment analysis. Promoter regions were
defined as follows: for each TSS defined as differentially expressed in the respective
sets (IBDup, IBDdown, as defined above), we extracted the genomic positions cor-
responding to −500 and +100 bp around each such TSS peak. Background pro-
moters were defined as corresponding regions from TSSs, which were not part of
any of the four differential expression sets (IBDup, IBDdown, UCspec, CDspec). For
enhancer regions, we selected enhancer regions that were differentially expressed in
the respective sets (IBDup, IBDdown, as defined above). We extracted the genomic
positions corresponding to ±300 bp around the midpoint of each such enhancer
region. Background enhancers were defined as corresponding regions from
enhancers not part of any differentially expressed set. Next, we used the HOMER
tool31 to score enrichment of sites corresponding to known motifs in the regions
and background described in the previous paragraph (using default settings, except
genome= hg19 and size= given, and mset= auto which defaults to “vertebrate”).
Sequence logos for these motifs were acquired from http://homer.salk.edu/homer/
motif/HomerMotifDB/. HOMER motifs were manually paired with CAGE-defined
transcription factor expression (ComBat-corrected gene-level expression).

ENCODE transcription factor ChIP peaks enrichment. ChIP-Seq peaks were
downloaded from the ENCODE consortium (161 TFs from 91 cell types; see above
section for heatmap visualization for details). We analyzed the enrichment of each
set of TF peaks in a given set of enhancer regions (e.g., IBDup enhancers) by
constructing a contingency table as defined in Supplementary Table 2.

Enrichment of a given TF in the region of interest was defined as log2
A=ðAþCÞ
B=ðBþDÞ

� �

(terms defined in Supplementary Table 2) and significance of enrichment was
tested by Fisher’s exact test for each TF based on the above contingency table. For
the analysis in Supplementary Fig. 5 the regions of interest were IBDup or IBDdown

enhancers and the background regions were non-differentially expressed
enhancers. In Fig. 5d, we only focused on enhancers that were associated with
IBDup TSSs by expression correlation as defined previously. Among these
enhancers, we defined the regions of interest as the enhancers from large enhancer
clusters (>6 enhancers in a cluster) and the background regions as singleton
enhancers (not part of any cluster).

Selection of biomarkers. In order to create an initial candidate list for machine
learning-based selection and classification, we reasoned that any single prioritiza-
tion method has its own disadvantages. Therefore, we performed an ensemble
approach where we integrated the results of multiple analysis methods each aimed
to extract TSSs with high power to distinguish the subject groups. As our main goal
was classification by machine learning, we will refer to these TSS regions as “fea-
tures” in this section (instead of biomarkers as in the main text). Because the
shared inflammatory response in UCa and CDa vs. Ctrl was strong, we divided our
analysis into an IBD set of features (shared CDa and UCa up- or downregulation
vs. Ctrl), and a set of features corresponding to features differentially expressed
between UCa and CDa.

The ensemble analysis consisted of the following components:

i. edgeR18. In a similar fashion to the quasi-likelihood implementation explained
above, standard edgeR (fitGLM and glmLRT) was used to test for effects of
CDa vs. Ctrl, UCa vs. Ctrl, CDa vs. UCa, and CDa&UCa vs. Ctrl (shared
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inflammatory response), while controlling for batch effects. Extracted TSSs
had a Benjamini–Hochberg FDR < 0.05 and a |log2 fold change| >1, for a total
of four sets.

ii. Partial Least Squares Discriminant Analysis (PLSDA): The plsDA function
from the R-package DiscriMiner (https://cran.r-project.org/
package=DiscriMiner) was used to perform PLSDA with two components
on the variance stabilized expression values from above, using all samples,
including quiescent patients, in three groups: CDa+ CDi, UCa+ UCi, and
Ctrl. The 500 TSSs with the highest and lowest loadings for the component
separating Ctrl from the remaining samples were extracted for a total of 1000
TSSs.

iii. ComBat54 followed by PCA: ComBat corrected values were used for PCA
analysis. We identified the component that contributed the most to the
difference between the two states and sampled 1000 TSSs from each side with
the highest rotation values. We focused on the PCAs that gave the most
explanations for each of the comparisons (PCA1 for shared IBD-specific
signal and PCA2 for CDspec and UCspec), producing two lists for IBD (from
each side one list) and one list for CDspec and UCspec (from each side one
list).

iv. ComBat followed by limma57: Combat normalized data (as described above)
was used for differential expression analysis using the limma package and the
lmFit function. TSSs that passed the threshold of log fold change > |1| and
FDR < 0.05 were taken into account making two lists for IBD (over-
represented in UCa vs. Ctrl and overrepresented in CDa vs. Ctrl) and one list
for CDa vs. UCa.

v. Random Forest analysis. We utilized the inherent ability for Random Forests
(RFs) to rank features by their importance for classification accuracy. To do
this we used the randomForest function from the randomForest R package
(https://CRAN.R-project.org/package=randomForest) on Combat-
normalized TC expression data (as described above in the “Exploratory data
analysis” section). To circumvent the “Large p, small N” problem with our
data (74 samples, 48,593 TCs), which makes difficult to find the most
predictive features, we used an iterative feature selection approach where we
in each step remove a subset of the least important features. More specifically:
in each iteration we first evenly divided all the data into subsets each
containing max 500 features. For each of these data subsets a RF was trained
to classify the patient labels based only on the data in that particular subset.
Next, for each of the data subsets, we removed the 5% of features that had the
lowest classification power (lowest MeanDecreaseAccuracy values) resulting
in a list of features that is analyzed in the next iteration of the procedure. To
make sure an important feature was not lost due to a challenging subset of
data, in each iteration we randomly divided all our data into subsets 10 times.
In other words, features had several chances of showing its importance. This
iterative procedure was terminated when less than 200 features were left. Each
RF was made with default parameters except specifying that 501 trees per
forest should be generated and specifying the number of variables randomly
sampled as candidates at each split by setting the “mtry” parameter to (sqrt(x)
−1) * 2, where x was the number of features supplied to the individual RF.
Using this approach we generated four candidate lists: two that enabled
classification of IBD patients (CDa and UCa) from healthy patients (Ctrl) and
two lists that aimed at differentiating between CDa and UCa. For the two lists
in each category, one was based on the full data set (N= 48,593 TCs) and the
other was based on a high confidence dataset (N= 9699 TCs). The high-
confidence data set was obtained by requiring that (i) the tag cluster was
annotated as “5_prime_UTR”, “intergenic”, “known_alternative_cds”, “know-
n_alternative_tss”, “proximal” or “tss”. (ii) the width of the TC was in the
range of 2–100 nucleotides (both included). (iii) the TC was expressed more
than 10 TPM in at least 3 subjects.

As a summary, the ensemble produced 10 candidate sets for separating CDa
and UCa from Ctrl (3 edgeR, 4 ComBat, 2 RandomForest, 1 PLSDA) and 5
candidate sets for separating CDa and UCa (edgeR, limma, 2 RandomForests, and
PCA).

Next, we overlapped the lists from each comparison to find a consensus set of
classification candidates. For the IBD vs. Ctrl comparison, we selected features that
appeared in at least 9 out of 10 lists, resulting in 63 features. From the UC/CD set
we selected the 169 features that appeared in at least 2 out of 5 lists. The reasoning
behind this unbalanced selection was to have a higher number of features for the
more difficult task of distinguishing CDa from UCa, compared to the easier task of
distinguishing Ctrl from UCa or CDa.

The two lists were merged and a short list of expert-curated known and novel
biomarkers (21 TSSs and 10 enhancers) was added. The combined list was then
further pruned by manual curation, taking into account overall expression strength
and genomic loci complexity. In total, the initial list comprised 263 features, which
was used for initial classification using CAGE data (see below).

Microfluidic qPCR analysis. For qPCR analysis, the 263 features identified above
were assessed for qPCR primer targeting suitability. 181 candidates were taken into
the primer design stage, where genomic complexity and primer design feasibility
was evaluated manually.

Primers were designed using Primer3 (v.0.4.0)58 aiming for an amplicon length
of 70–110 bp and a primer melting temperature of 60 °C calculated by Breslauer
thermodynamics. Primers were designed to be intron-spanning when possible, and
each designed primer-set was analyzed with the UCSC browser in-silico PCR tool
in order to ensure a unique region would be amplified. Primers were synthesized by
Integrated DNA Technologies (IDT). Primer sequences are shown in
Supplementary Data 16. Primer amplification efficiencies and dynamic ranges were
acquired from standard curves constructed from several separate dilution series of
pooled cDNA: with the dilutions 1:5, 1:25, 1:100, 1:500, and 1:2500. Melting curves
of amplicons were measured to ensure primer specificity. 161 primer pairs
(features) successfully passed our quality control and were used for analysis of
cohort 1 on the Fluidigm platform.

The cDNA synthesis and preamplification for cohort 1 was performed as
described previously59. Total RNA (500 ng RNA, from biopsies) was converted into
cDNA using QuantiTECT Reverse Transcription kit (Qiagen), using a mix of
random and oligo-dT primers, as per the manufacturer’s instructions. We
performed two separate cDNA reactions for each RNA sample. Preamplification
was performed using TaqMan PreAmp Master Mix (Applied Biosystems). A 500 μl
primer mix (200 nM) combining all primers to be used on the Fluidigm plate was
prepared by pooling 5 μl of all primer pairs (20 μM) and filling up the remaining
volume with low EDTA TE-buffer (VWR International). TaqMan PreAmp Master
Mix (5 μl) was mixed with 2.5 μl of the 200 nM primer mix, 2.5 μl diluted cDNA,
and incubated at 95 °C for 10 min, followed by 15–21 cycles of 95 °C for 15 s and
60 °C for 4 min (the number of cycles depended on the expression measured by
CAGE). 16 U of Exonuclease I (New England BioLabs) was added to the
preamplified cDNA, and incubated 30 min at 37 °C, 80 °C for 15 min. The
preamplified cDNA was diluted with low EDTA TE-buffer (VWR International)
either 1:5 if the cDNA was preamplified for 21 cycles or 1:10 if the cDNA was
preamplified for 19 or 15 cycles.

RNA expression was analyzed by real-time qRT-PCR in the microfluidics
system BioMark™ 96.96 Dynamic Array (Fluidigm) following the protocol
described previously59. The following cycle parameter was used: Thermal Mix with
2 min at 50 °C, 30 min at 70 °C, 10 min at 25 °C, UNG and Hot start with 2 min at
50 °C, 10 min at 95 °C, followed by 35 cycles with denaturing for 15 s at 95 °C and
annealing/elongation for 1 min at 60 °C. Melting curves were generated after each
run to confirm a single PCR product (from 60 °C to 95 °C, increasing 1 °C per 3 s).
We performed reactions in duplicates. Non-template controls were used to indicate
problems with sample contaminations or non-specific amplification. To assess
potential DNA contamination, non-reverse transcriptase controls were used.

We used the Fluidigm Real-Time PCR Analysis software 3.0.2 (Fluidigm) to
aquire Cq values. These were exported to GenEx (MultiD) for data pre-processing
including normalization to reference genes, interplate calibration, individual PCR
efficiency correction for each primer assay, and averaging of cDNA technical
replicates. Using GeNorm60 and NormFinder61, we identified the most stable
reference genes of the 10 reference genes included on the plates. This was done
separately for all plates run with the same number of preamplification cycles. The
used reference genes for each preamplification batch are specified in
Supplementary Data 16. By normalizing to these reference genes, ∆Cq values were
calculated and used in the down-stream analysis.

Feature selection for cohort 2. The 161 features were reduced to 36 features by
ranking the features for classification power. Briefly, a RF was trained to predict
subject groups, both using all groups and one-vs.-rest specification (i.e. UCa vs.
non-UCa) using the randomForest R package62. The optimal value for the mtry
parameter was found using 100 five-fold cross-validations using the caret package
(https://cran.r-project.org/web/packages/caret/index.html) train-function and
ntree= 1000. Feature importance for both classification tasks were extracted using
the importance function with type= 2 (mean decrease in node impurity or gini
index). Primer pairs with a high importance in both complete and one-vs.-rest
classification were selected as the most predictive. In addition to these RF pre-
dictive features, six gene-based features were selected to validate pathology-based
findings in the first cohort.

cDNA synthesis and preamplification for cohort 2 was performed as described
above for cohort 1 with an adjustment of the number of pre-amplification cycles. In
this cohort cDNA was either preamplified 15 or 20 cycles, depending on expression
level of the primer targets. The preamplified cDNA was diluted with low EDTA
TE-buffer (VWR International) either 1:5 if the cDNA was preamplified for 20
cycles, or 1:10 if the cDNA was preamplified for 15 cycles. RNA expression was
analyzed by real-time qRT-PCR in the microfluidics system BioMark™ 192.24
Dynamic Array (Fluidigm) following the same protocol as used for the cohort 1
runs, with volumes adjusted to the 192.24 format, as described by manufacturer.
Expression data (∆Cq values) were acquired and treated similar to cohort 1 (see
above).

qPCR analysis of monocyte and organoid samples. cDNA synthesis and pre-
amplification was performed as described for cohort 1 and 2, but with an input of
300 μg (organoids) or 440 μg (monocytes) of RNA in the cDNA synthesis due to
limited amounts of RNA. RNA expression was analyzed by real-time qRT-PCR in
the microfluidics system BioMark™ 192.24 Dynamic Array (Fluidigm) as described
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for cohort 2. Monocyte samples and organoid samples were placed on two inde-
pendent plates.

Batch correction and expression normalization of qPCR data. For each primer
all ∆Cq values from cohort 1 and cohort 2 were batch corrected using the remo-
veBatchEffect function from limma, giving the subject/group labels (CDa, UCa,
Ctrl) as covariates and cohort and hospital of origin as batch effects and specifying
the ‘robust’ method should be used for the linear models. To make organoid and
monocyte data comparable with the batch corrected data a batch correction factor,
obtained as the mean of the batch correction factors for the two hospitals, was
applied to the organoid and monocyte data. Afterwards the batch corrected ∆∆Cq
values were calculated in a two-step process: (1) x= 2(−1* ∆Cq). (2), ∆∆Cq= log2
(x/min(x)).

Preprocessing of microfluidic qPCR data. For classification analysis of cohorts 1
and 2 (see below), only Ctrl, UCa, and CDa subjects were considered. We removed
one subject and one primer pair from the analysis which both had >10% “NA”
values from the ∆∆Cq Fluidigm data (Supplementary Data 18), making the final
feature count 35. The remaining missing values (N= 16, 0.26% of total) were
imputed via bagged regression trees using the preprocess function from the “caret”
R package (https://CRAN.R-project.org/package=caret) specifying methods to the
bagImpute function. Experimental practice and reporting were performed
according to MIQE guidelines.

Comparison of organoid, biopsy, and monocyte qPCR data. Only measurable
∆∆Cq Fluidigm data were analyzed (values labeled “missing” or “infinite” were
discarded). For each qPCR primer we defined the following quantifications:

i. Inflammatory response in UCa or CDa as log2(∆∆Cq_CDa/UCa (average
(∆∆Cq_all_Ctrl))

−1).
ii. 4 or 24 h TNFα response in gut epithelia organoid as log2(∆∆Cq_orga-

noid_TNF_4h/24h (average(∆∆Cq_all_organoid_TNF_0h))
−1)

iii. 4 or 24 h TNFα response in monocyte as log2(∆∆Cq_monocyte_TNF_4h/24h

(average(∆∆Cq_all_organoid_TNFa_0h))
−1)

Median of responses across replicates or subject group (CDa, UCa, monocyte
TNF 4 h, monocyte TNF 24 h, organoid TNF 4 h and organoid TNF 24 h) was then
used to indicate the IBD or TNFα response of the group. Specifically, if the median
IBD or TNFα response of a qPCR primer in a sample group was >0, it was labeled
upregulated in the sample group, and vice versa. qPCR primers with missing
median in any of the sample groups were discarded, resulting in analysis of 30
qPCR primers in Fig. 2f and Supplementary Fig. 3b, c.

Real-time quantitative PCR. For specific enhancer RNA expression validations
(Fig. 4), we used the Applied Biosystems® QuantStudioTM 6 Flex Real-Time PCR
System, with the 384-well plate. This platform allows for higher reaction volumes
compared to the Fluidigm system. The cDNA preparations were done as described
for cohort 1. All samples were run in triplicates in 5 μl reaction volumes using
SYBR Select Master Mix (Life Technologies) as described by manufacturer, with a
primer concentration of 0.5 μM, and under the following conditions: 50 °C for 2
min, 95 °C for 2 min, 45 cycles of 95 °C for 15 s, 58 °C for 1 min. All results were
normalized to the reference gene PIAS4.

Prediction of subject diagnosis using random forests. For all three classification
analyses in Fig. 7, we used a two-step RF classification approach with the ran-
domForest function from the randomForest R package (https://CRAN.R-project.
org/package=randomForest). In this approach, the first step was a RF trained to
distinguish IBD (CDa and UCa) from Ctrl and the second step was a RF trained to
distinguish CDa from UCa. The two-step approach was chosen over an all-in-one
approach because, based on five-fold cross-validation in the CAGE data, resulted in
better CDa sensitivities (data not shown).

To optimize the parameters most important for a RF model, m indicating the
number of variables randomly sampled as candidates at each split and n indicating
the minimum size of terminal nodes (corresponding to the mtry and nodesize
options in the R RandomForest package), we used a grid search approach testing
each pairwise combination where n ¼ f2; 3; 4; 5g and m ¼

ffiffiffiffiffiffiffiffiffiffiffi

x � 1
p� �

� y, where x
is the number of features supplied to the RF and y={1/2, 3/4, 1, 6/4, 2}. For each of
the three classifications analyses performed, the final m and n parameters were
chosen as the combination giving the highest overall accuracy in the two-step RF
approach based on the average result of five-fold cross-validation in cohort 1. Apart
from this all RFs were created with default parameters except specifying that each
RF should have 1001 trees.

To assess the accuracy of the classification model we performed 101 RF
iterations of 5-fold cross validation. The only exception to this was the classification
of subject labels on cohort 2, where 101 RFs were created based on data from
cohort 1 and used for prediction in cohort 2. For each of the 101 iterations, the
overall accuracy and CDa, UCa, and Ctrl-group-specific accuracy, sensitivity and

specificity were calculated. For each of these, we reported the average and 95%
confidence interval across the 101 iterations. The CDa, UCa and Ctrl-group specific
performance measures were calculated by for each label recasting the problem in a
binary setting (e.g. for the “Ctrl” label converting both CDa and UCa to “non-
Ctrl”) and then assessing accuracy, sensitivity, and specificity. The overall accuracy
was assessed on all three categories.

To assess the observed vs. expected performance in classification, we trained
1001 RF models on randomly shuffled labels (again only based on cohort 1 data).
These models were then used to predict the patient labels of cohort 2 and these
predictions were compared to the true labels. Performance measures were
calculated as described above.

To analyze the relation between number of features in the model and
classification accuracy, for a selected number of features referred to as i, we
randomly selected i features from the total set of features and performed five-fold
cross-validation with the same parameters as identified by the grid search above.
This procedure was repeated 11 times for each selected i. The average accuracy and
95% confidence interval of these repeated analyses were reported for each i.

Prediction of subject diagnosis using XGboost. We used the XGboost frame-
work41 to perform the same classification as done with Random Forests in Fig. 7c
(training on cohort1 qPCR data and evaluating on the independent cohort 2 qPCR
data). For additional power, each sample was scored using a database of curated
pathways (wikipathways.org). Briefly, for each patient, we computed pathway
expression scores, based on the sum of overlapping genes in each pathway and the
qPCR data. From the 569 original pathways in the database, 16 returned a non-null
score. These scores were then used to provide 16 supplemental features, on top of
the 35 original ones, for the training of the classifier. After parameter optimization
on the training data (max_depth, min_child_weight and subsample), the final
classifier was used on the cohort 2.

Analysis of GWAS data. A recent version of the GWAS catalog was downloaded
(2016-12-15) and lifted to hg19 using the gwascat R-package (http://bioconductor.
org/packages/gwascat/). To calculate linkage disequilibrium (LD), we used geno-
type data from whole-genome sequencing of Europeans. This was obtained from
the VCF files from the 1000 Genomes CEU population release 20130502. We use
only diallelic SNPs with <5% missing genotypes that were polymorphic in the CEU
population39. SNPs from the GWAS catalog were merged with 1000G SNPs by
genomic position, and PLINK63 was used to calculate LD between all SNPs within
500 kb (using the function plink -r2 -ld-window-kb 500 -ld-window 99999 -ld-
window-r2 0.5). Pairs of SNPs were considered to be in LD if R2 > 0.75. LD clumps
were found by expanding all SNPs with their associated LD-SNPs, and then
reducing the set by merging overlapping regions.

To assess LD clump enrichment, Empirical Bayes shrinkage was performed with
the ebbr R-package (https://github.com/dgrtwo/ebbr) package using the
ebb_fit_prior and augment functions (with default arguments). Prior means were
calculated as alphaz(alpha+beta)−1 and added to the plot of shrunken proportions.
LD-clump (one-sided) enrichment was calculated using the kegga function from
the limma R-package57, but using user-supplied sets: universe was set to all TSSs/
enhancers, de the respective differentially expressed sets and gene.pathway set to all
promoters overlapping LD clumps for a GWAS disease. No trend based on an
additional covariate was used.

Partitioned heritability analysis was performed using the ldsc tool from (https://
github.com/bulik/ldsc)40,64. The two analyses below were done based on
recommended practice by the creators of the tool: https://github.com/bulik/ldsc/
wiki/LD-Score-Estimation-Tutorial, https://github.com/bulik/ldsc/wiki/
Partitioned-Heritability). LD-scores were calculated for TSSs, enhancers, IBDup

and IBDdown sets (including both promoter (−500/+100 bp around TSS peaks) and
enhancers (±300 bp around enhancer midpoints)). IBD SNP summary statistics
were obtained from the International IBD Genomics Consortium, https://www.
ibdgenetics.org/downloads.html (downloaded 2016-12-22). SNP summary statistics
were processed using munge_sumstats.py (with settings -N-cas 12882 -N-con
21770 for sample sizes (as described in ref. 8). Base model enrichment statistics for
this set of GWAS summary statistics can be seen in Supplementary Fig. 8b. All four
extra categories were added to the baseline model for Fig. 6d. Additionally, each
new annotation was separately added to the baseline model in sequence, similar to
the cell-type group analysis from the original paper40. Proportions, enrichments
and coefficients were obtained from each model and compared (Supplementary
Fig. 8c)

Data availability. CAGE data from this study has been deposited in GEO database
under accession number GSE95437. Microfluidics qPCR data are available in
Supplementary Data 9, 17, 18.
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