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Abstract
Background: The tumor microenvironment chie�y consists of tumor cells, and tumor-in�ltrating immune
cells admixed with the stromal component. The recent clinical trial has shown that the tumor immune cell
in�ltration is correlated with the sensitivity to immunotherapy and the prognosis of head and neck
squamous cell carcinoma (HNSC). However, to date, the immune in�ltrative landscape of HNSC has not
yet been elucidated.

Methods: We proposed two computational algorithms to unravel the immune in�ltration landscape of
1029 HNSC patients. The Boruta algorithm and principal component algorithms (PCA) were employed to
quantify three immune cell in�ltration gene subtypes categorized as per the immune cell in�ltrations
pattern.

Results: The high ICI score subtype was characterized by a higher tumor mutation burden (TMB) and the
immune-activated signaling pathway. However, a low ICI score subtype was categorized as per the
activation of immunosuppressive signaling pathways such as TGF-BETA, WNT signaling pathway, and
lower TMB. Two immunotherapy cohorts con�rmed patients with higher ICI score demonstrated
signi�cant therapeutic advantages and clinical bene�ts.

Conclusions: This demonstrated that the ICI score could serve as an effective prognostic biomarker and
predictive indicator for immunotherapy. A comprehensive understanding of the HNSC immune landscape
might help in tailoring immunotherapeutic strategies for different patients. 

Background
Head and neck cancer rank as the sixth most common malignancies worldwide that claim around 35000
lives per year [1]. The squamous cell carcinoma is the most common pathological type of head and neck
cancer [2]. Local recurrence, cervical node metastasis, and treatment failure due to resistance to
conventional chemotherapy are the leading causes of death in patients with advanced head and neck
squamous cell carcinoma (HNSC).

Immunotherapy activates the host’s natural defense system, which identi�es and eliminates the tumor
cells. It has emerged as an effective treatment with unparalleled and synergistic survival bene�ts in
multiple cancers [3–6]. However, a major limitation of this treatment is that it bene�ts only a minority of
patients, suggesting the urgent need for the discovery of novel therapeutic markers associated with
variation in response would tailoring appropriate immunotherapy for distinct patients [3, 7].

The tumor microenvironment (TME) of HNSC includes transformed cells admixed with immune cells and
stromal cellular elements [8]. Extensive research on TME has revealed a crucial role of the tumor-
in�ltrating immune cells in tumor dissemination, relapse, metastasis, and therapeutic response to
immunotherapy [9, 10]. For instance, tumor-associated macrophages (TAM) displays multiple pro-tumor
effects by secreting immunosuppressive cytokines such as IL-10, TGF-BETA, and by enhancing the TAM
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density in, which is associated with unfavorable prognosis [11–13]. On the other hand, the escalated
levels of tumor-in�ltrating lymphocytes (TLS) such as CD4 + T cells and CD8 + T cells have been
associated with improved survival-rate and response to immunotherapy [14]. TLS cells play a crucial role
in response to immunotherapy as the immune checkpoint blockade activates the pre-existing TLS cells,
which recognizes and eliminates the dysplastic and neoplastic cells [15, 16]. However, a response is not
assured in patients with higher in�ltration of TLS, which implied that although TLS is necessary, but it is
insu�cient in introducing clinical bene�t [13, 17, 18]. The immunosuppressive cytokines secreted by TAM
can impair the TLS-mediated anti-tumor effects. Moreover, the excessive in�ltration of stromal
components in tumors tissue can decrease the TLS tra�cking into tumors [16, 17]. It elucidates that the
intercellular relationships in TME are more critical than the single-cell population. So far, the expansive
landscape of immune cells in�ltrating the TME of HNSC has not been elucidated.

Over the past decades, advances in the next-generation sequencing technology, speci�cally the NGS
algorithm technology, have unveiled massive biological information about HNSC tumorigenesis and
metastasis [19]. In this study, we used two computational algorithms, CIBERSORT and ESTIMATE, to
analyze the gene-expression pro�les of bulk tumor and to acquire a comprehensive outlook about the
intra-tumoral immune landscape [20, 21]. Besides, we classi�ed the HNSC into three discrete subtypes as
per the immune cell-in�ltration patterns. Conclusively, in this study, we established the ICI scores to
characterize the various immune landscape, which could precisely predict patient outcome and response
to immunotherapy.

Materials And Methods

HNSC datasets and samples
A total of 1029 HNSC samples data was procured from �ve publicly available datasets: TCGA-HNSC,
GSE65858, GSE41613, GSE42743, and E-MTAB-1328. The RNA-seq (FPKM value) data of TCGA-HNSC
datasets were download from the UCSC Xena browser (GDC hub: https://gdc.xenahubs.net, accessed
June 15, 2019). The microarray data of GSE65858, GSE41613, GSE42743, and E-MTAB-1328 datasets
were downloaded from the Array Express database (www.ebi.ac.uk/arrayexpress, accessed June 15,
2019). Out of these �ve datasets, overall survival data for TCGA-HNSC, GSE65858, GSE42743, and
GSE41613 were available. The expression pro�les (FPKM values) of TCGA-HNSC were transformed into
TPM (transcripts per kilobase million), which were more similar to those resulting from microarrays [22].
The “ComBat” algorithm was applied to reduce the likelihood of batch effects from non-biological
technical biases between different datasets [23].

Consensus clustering for tumor-in�ltrating immune cells
In�ltration levels for immune cell types in HNSC were quanti�ed using CIBERSORT implementation in R
package [21]. It was conducted by using the LM22 signature and 1000 permutations. ESTIMATE was
used to evaluate the immune and stromal content (immune and stromal score) for each HNSC sample
[20]. The hierarchical agglomerative clustering of HNSC was executed based on the ICI pattern of each

http://www.ebi.ac.uk/arrayexpress
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sample. The unsupervised clustering method used here is the “Pam” method based on Euclidean and
Ward’s linkage. This procedure was performed using the “ConsensuClusterPlus” R package [24], and it
was repeated 1,000 times to ensure the stability in the classi�cation.

Differentially expressed genes (DEGs) associated with the
ICI phenotype
Patients were grouped into the ICI clusters based on immune-cell in�ltration to identify genes associated
with the ICI patterns. DEGs among ICI subtypes were determined by signi�cance criteria (adjusted p-value 
< 0.05 and absolute fold-change > 1.4) as implemented in the R package limma.

Dimension reduction and generation of ICI score
Firstly, the patients in the TCGA cohort were categorized into several groups as per the DEGs values by
using unsupervised clustering. Furthermore, gene expression values that were positively correlated with
the signature of the clusters were termed as the ICI gene signatures A; conversely, signature B. It was
followed by dimension reduction of the ICI gene signatures A and B by employing the Boruta algorithm
[25] and principal component 1 was extracted as the signature score by employing the PCA. Lastly, we
applied a method similar to GGI [26] to de�ne the ICI score of each patient: ICI score = PC1A - PC1B.

Collection of somatic alteration data
The corresponding mutation data of patients in the TCGA-HNSC cohort were downloaded from the TCGA
Data Portal (https://tcga-data.nci.nih.gov/tcga/). To assess the mutational burden, we counted the total
numbers of non-synonymous mutations. The somatic alterations in HNSC driver genes were evaluated
for the high or low ICI score. The HNSC driver genes were accessed through the “maftool” R package [27].
The top 25 driver genes with the highest alteration frequency were selected for further analysis.

Gene expression data with immunotherapy
Two independent datasets were downloaded and analyzed to determine the predictive value of the ICI
score. For the IMvigor210 data set, we used a fully documented software and data package that is freely
available under the Creative Commons 3.0 license and can be downloaded from http://research-
pub.gene.com/IMvigor210CoreBiologies. For the TCGA-SKCM cohort, the expression pro�les and related-
clinical information were downloaded from the UCSC Xena browser (GDC hub: https://gdc.xenahubs.net).
To determine the ICI score, we considered a total of 298 urothelial cancer cases with complete clinical
information and 80 skin melanoma cases who received immunotherapy.

Statistical analyses
All statistical analyses were conducted on the GraphPad Prism version 7.0 or SPSS version 21.0 (IBM
Corporation, Armonk, NY, USA) software. We performed the Kruskal–Wallis tests to compare more than
two groups and the Wilcoxon test to compare two groups. The X-tile software, which iteratively tests
possible cut points to select the one with the maximum rank statistic, was used to classify patients into
two subtypes in each data set to reduce the computational batch effect [28]. The Kaplan–Meier plotter
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was used to generate survival curves for the subgroups in each dataset. The log-rank test was used to
determine the statistically signi�cant differences. Correlations between the ICI score subgroups and
somatic mutation frequency were analyzed by using the Chi-square test. The Spearman analysis was
used to compute the correlation coe�cient. Two-tailed P-values < 0.05 were considered as statistically
signi�cant.

Results

The landscape of immuno-cell in�ltrating in TME of HNSC
Firstly, we performed the CIBERSORT and ESTIMATE algorithm to quantify the activity or enrichment
levels of immune-cells in HNSC tumor tissue (Additional �le 4: Supplementary Table 1) [20, 21]. On the
basis of 1029 tumor samples with matched ICI expression pro�les from meta-cohort (GSE41613,
GSE42743, GSE65858, TCGA-HNSC, E-MTAB-1328), unsupervised clustering was performed using
ConsesusClusterPlus package of R software to classify the HNSC patients into distinct subtypes.

We identi�ed three independent ICI subtypes with signi�cant survival differences (Log-rank test, P = 0.018;
Additional �le 1: Supplementary Figure S1b, Fig. 1a-b). To further clarify the intrinsic biological
differences that led to distinct clinical phenotypes, we compared the immune cell composition of the
tumor microenvironment (TME). Among the three main immune subtypes, the ICI cluster-A was
associated with a favorable prognosis with a median survival of 2064 days. It was marked by high naïve
B cells, M1 and M2 macrophages, plasma cell, memory CD4 T cells, CD8 T cells, and gamma delta T cells
in�ltration. The median survival time of ICI cluster-B was 1762 days, and patients in ICI cluster-B were
characterized by a signi�cantly higher density of resting dendritic cells, activated NK cells, and follicular
helper T cells. The subjects in the ICI cluster-C witnessed a shorter OS (median survival 1281 days), and
exhibited a signi�cant increase in the in�ltration of activated dendritic cells, activated mast cells,
neutrophils, resting NK cells, memory resting CD4 + T cells, and T regulatory cells. The Kruskal-Wallis test
was used to detect the signi�cant differences between the immune cells in three distinct ICI subtypes
(Fig. 1c). Additionally, the correlation coe�cient heat map was generated to visualize the universal
landscape of immune cell interaction in TME (Fig. 1d).

Identi�ed immune gene subtype
To unravel the occurrence of distinct immunophenotypes, we performed differential analyses to
determine the transcriptome variations among these subtypes by limma packages of R software. In the
subsequent analysis, primary emphasis was laid on the TCGA-HNSC cohort, which had the most
exhaustive clinical information. We performed the unsupervised clustering of 1089 DEGs (Additional �le
4: Supplementary Table 2), obtained by previous differential analyses, which classi�ed the TCGA cohort
into three genomic clusters, namely gene clusters A-C (Additional �le 2: Supplementary Figure S2a-b).The
588 gene signatures that were positively correlated with the gene cluster were termed as the ICI gene
signature A and the rest of DEGs were named as the ICI gene signature B (Additional �le 4:
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Supplementary Table 3). Concurrently, in order to reduce the noise or redundant genes, we used the
Boruta algorithm to perform dimension reduction in the ICI gene signature A-B [25]. The heatmap
delineates the transcriptome expression pro�le of 276 most abundant DEGs across the genomic cluster
(Fig. 2a), which were annotated by the “clusterPro�ler” R package [24]. The signi�cantly enriched
biological processes are summarized in Fig. 2c-d, and the detail description is provided in the Additional
�le 4: Supplementary Table S4.

Furthermore, we explored the prognostic implications of the ICI gene clusters by integrating them with
survival information. The analysis was performed by using the Kaplan-Meier plotter, and we found that
patients in the gene cluster A had a better prognosis while patients in the gene cluster B and C had the
unfavorable outcome (Log-rank test, P = 0.0065; Fig. 2b). Interestingly, we found that gene clusters A and
C were associated with a signi�cantly high immune score. Multiple studies have shown that the immune
system may have favorable, as well as adverse outcomes, which could be exhibited in the form of pro or
anti-tumor activity, as observed in our analysis [13, 16]. As depicted in Fig. 2e, we observed that the gene
cluster C showed an escalated stromal component in�ltration and immunosuppression-associated M2
Macrophages, and decreased dendritic cell in�ltration, which was characterized as the “immune
exhausted phenotype” by the previous studies [13, 29]. The gene cluster A exhibited the highest CD8 + T
cell in�ltration. The active immune phenotypes were characterized by the presence of plasma cells and
memory activated CD4 + T cell,. Taken together, the consistency between the immune pro�le and
prognostic pro�le in different gene clusters implied that our classi�cation method is scienti�c and
reasonable.

Construction of the ICI score
To obtain quantitative indicators of ICI landscape in HNSC patients, we used PCA to compute two
aggregate scores: (1) the ICI score A from ICI signatures gene A; and (2) the ICI score B from ICI
signatures gene B. The ISA and ISB of each patient in this investigation were computed as the sum of
individual relevant individual scores. Finally, we acquired the prognostic signature score that was de�ned
as the ICI score. The patients in the TCGA cohort were strati�ed into two groups as the high or low ICI
scores by using the optimal cut-off value acquired by the X-tile software. The distribution of patients in
three gene clusters is represented in Fig. 3a. We analyzed the immune activity and tolerance condition of
each group in the TCGA cohort before determining the prognostic value of the ICI score in the TCGA
cohort and other independent datasets. To evaluate this, �rstly, we selected the CD274, CTLA4, HAVCR2,
IDO1, LAG3, and PDCD1 as immune-checkpoint-relevant signatures, and CD8A, CXCL10, CXCL9, GZMA,
GZMB, IFNG, PRF1, TBX2, and TNF as immune-activity-related signatures [18, 30]. We observed that most
of the immune-checkpoint-relevant genes and immune-activity-relevant genes except CD274, TBX2,
HAVCR2, and TNF were signi�cantly overexpressed in the high ICI group as demonstrated by the
Wilcoxon test (Fig. 3b-c). Besides, the Gene set enrichment (GSEA) analysis revealed that the WNT
signaling pathway and the TGF BETA signaling pathway were signi�cantly enriched in the low ICI score
group; natural killer cell-mediated cytotoxicity, B cell receptor signaling pathway, and T cell receptor
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signaling pathway were enriched in the high ICI group (Fig. 3d-e; Additional �le 4: Supplementary Table
S5).

The subsequent analysis involved the evaluation of the prognostic implications of the ICI scores, ICI score
subgroups analysis done using the Kaplan-Meier plotter showed that the patients in the high ICI score
group (median survival time 1972 days) had signi�cantly better OS rate than the low ICI score group
(median survival time 1972 days; Log-rank test, P < 0.0001; Fig. 3f). Moreover, the prognostic e�ciency of
the ICI score was validated in GSE41613 (N = 97), GSE65858 (N = 270), and the total HNSC cohort (N = 
940; Log-rank test, Additional �le 3: Supplementary Figure S3a-d). However, due to inadequate clinical
data, we were not able to establish a statistically signi�cant correlation in GSE42743 (N = 79). We also
evaluated the effect of adjuvant therapy on the prognosis of each ICI subgroup. We found that the
survival advantage in the low ICI score group was evident in the patients who received adjuvant
radiotherapy (Log-rank test, Fig. 3g-h).

The correlation between the ICI score and somatic variants
A myriad of evidence has demonstrated that tumors harboring high mutation burden (non-synonymous
variants) were associated with increased CD8 + T cell in�ltration in tumor tissue. It facilitates the
recognition and elimination of such tumors by the immune system and implies that tumor burden
mutation (TMB) might determine the individual’s response to cancer immunotherapy [31, 32]. An
increased TMB has been correlated to an improved response to PD-1 blockades and prolonged PFS in
KEYNOTE 012 clinical trial [3, 33]. Considering the signi�cant clinical implications of TMB, we sought to
explore the intrinsic correlation between the TMB and ICI scores to elucidate the genetic imprints of each
ICI sub-group. To execute this, we �rst compared the TMB of patients with high- and low-ICI score group.
As shown in Fig. 4a, patients in the high ICI score subgroup showed a signi�cantly higher TMB than
patients in the low ICI score subgroup (Wilcoxon test P < 0.001). Further correlation analyses con�rmed
that the ICI score was signi�cantly and positively correlated with the TMB (Spearman coe�cient: R = 
0.1227, P = 0.0065; Fig. 4b). Next, we categorized the patients into discrete subgroups based on the
immune set point of TMB determent by the previous study [33]. As demonstrated in Fig. 4a, we found that
patients with low TMB showed better OS than the high TMB (Log-rank test, P = 0.0667). Taking into
account the contraindicatory prognostic value of TMB and ICI score, we next evaluated the synergistic
effect of these scores in prognostic strati�cation of HNSC. As represented in Fig. 4d, the analysis done
using the Kaplan-Meier plotter revealed that the ICI score was independent of TMB (Log-rank test, HH
versus LH, P < 0.0001; LH versus LL, P = 0.0203). Collectively, these �ndings indicate that the ICI score
might serve as an underlying predictive indicator that is independent of TMB and effectively measures
the response to immunotherapy.

Furthermore, we assessed the distribution of somatic variants in HNSCS driver genes between the low
and high ICI subgroup. The HNSC driver genes were accessed by using the maftools [27]. The top 25
driver genes with the highest alteration frequency were selected for further analysis (Fig. 4e). Analysis of
the mutation annotation �les of the TCGA cohort revealed that the alteration frequency of TP53, NSD1,
CSMD3, SYNE1, PKHD1L1, USH2A, PIK3CA, CASP8, FLG, PCLO, AHNAK, COL11A1, and RYR2 was
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signi�cantly different between the low and high ICI score groups (Chi-square test, Additional �le 4:
Supplementary Table S6). These outcomes might provide novel ideas for investigating the mechanism of
tumor ICI composition and gene mutation in immune checkpoint blockade therapy.

The role of ICI scores in the prediction of
immunotherapeutic bene�ts
Emerging immune checkpoint blocking therapy, which is used in cancer treatment to block the T cell
inhibitory molecules in cancer treatment, has shown astounding outcomes with the potential in improving
diseased conditions in advance cancers, but it is not effective in all the patients [3, 4]. In the subsequent
analysis, we examined the utility of the ICI score in speculating the therapeutic bene�t in patients. To
conduct this, the patients who received anti-PD-L1 immunotherapy in the IMvigor210 cohorts were
assigned the high or low ICI score groups. Notably, patients with high ICI score signi�cantly outlived
patients with low ICI scores in the IMvigor210 cohort (Log-rank test, P = 0.0017; Fig. 5a). The objective
response rate of anti-PD-L1 therapy was higher in the high ICI score group than the low ICI group in the
IMvigor210 cohort (Chi-square test, P = 0.0143; Fig. 5b). We also found that higher ICI scores are
correlated with objective response to anti-PD-L1 therapy in the IMvigor210 cohort (Wilcoxon test, P < 
0.0001; Fig. 5c). A similar outcome was observed in the TCGA-SKCM cohort, which received distinct
immunotherapies such as cytokines, vaccines, and checkpoint blockers (Log-rank test, P = 0.0470, Fig. 5d;
Chi-square test, P = 0.0143, Fig. 5e; Chi-square test, P = 0.1520, Fig. 5f). Collectively, these data indicate
that ICI score could be correlated to response to immunotherapy.

Discussion
The early clinical trials of immunotherapy have demonstrated its high e�cacy in tumorigenic growth
eradication and improvement in the quality of life in patients with advanced HNSC. Due to these factors,
the US Food Drug Administration and the European Medicines Agency has approved pembrolizumab as
the front-line treatment in subjects with unresectable recurrent/metastatic HNSC [3]. A signi�cant
limitation of immunotherapy is that only a minority of patients are bene�ted from it. Even the Society for
immunotherapy of Cancer who issued the �rst guidelines on immunotherapy for the treatment of HNSC
has appealed the need to identify appropriate patients for immunotherapy [34]. In this study, we
established a methodology to quantify the comprehensive tumor immune milieu of HNSC patients. The
outcome of our study revealed that the ICI score is an e�cient prognostic biomarker and predictive
indicator in assessing the response to immunotherapy.

Mounting evidence has identi�ed that the immune cell dysfunction within the HNSC-TME promotes
immunosuppression and so the associated tumor survival and progression, which later demands
therapeutic intervention to counteract this process [35, 36]. In this study, we analyzed the immune cell
in�ltration in a meta-cohort of 1029 HNSC samples and categorized the HNSC into three distinct immune
subtypes.Our analysis indicated that density of CD4 + T cells, CD8 + T cells, plasma cells, and M1
Macrophages cells along with the higher immune score were correlated to the patient’s prognosis, which
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is in line with the previous studies [37, 38]. This emphasizes the fact that the pre-existing immune
response has an anti-tumor effect and positively affects the response to immunotherapy. A few
pioneering clinical and genomic studies [17, 20, 39] reported that HNSC is one of the most highly
immune-in�ltrated tumors, however, less than 20% of HNSC patients respond to immunotherapy or even
lower than types of tumors with low immune in�ltration. [3, 40]. This insinuates that even the immune
phenotypes in the tumor cannot absolutely predict the response to immunotherapy. The molecular
analysis of HNSC has identi�ed a series of cytokines, chemokines, and other TME components that
determine the host’s ability to exercise anti-tumor immune response. These molecular alterations during
the tumorigenesis may disturb the intercellular communication between the in�ltrating immune cells, and
thus tip the balance between immunity tolerance and activity [16].

In the current study, we hypothesized that the comprehensive characterization of the ICI pro�les and
immune-related gene expression pattern would be a novel approach in strategizing the patient-speci�c
tailored therapy. Our primary concern was the molecular characterization of HNSC-TME that modulates
the immune system, and so we �rst fetched the immune-related genes based on previous and present
novel ICI gene clusters. Within these gene clusters, we found that ICI gene cluster B had the lowest
immune score, stromal score, and other immune response-related cells, which suggests an immune-cold
phenotype. Conversely, the ICI gene clusters A and C exhibited relatively high immune score and
in�ammatory cell density. Also, we observed that a higher stromal score enhanced the in�ltration of
tumor-associated macrophages and resting DCs in ICI gene clusters C, implying a humoral immune
response in this cluster [29, 41]. Additionally, the ICI gene clusters A had a more favorable immune-
activated phenotype with the highest density of CD8 + T cells, activated CD4 + T cells, and plasma cells
[42, 43]. On the other hand, the impact of the TME on patients’ overall survival was well documented by
the previous studies [13, 44]. In line with these �ndings, our results revealed that the humoral immune
response in the ICI gene clusters C and immune-cold phenotype in ICI gene clusters B was associated
with a poor prognosis that could trigger tumor cell evasion from the immune system and impart
resistance to immunotherapy. The anti-tumor immune response in the ICI gene clusters A was associated
with favorable prognosis, and we speculated that the patients in ICI gene clusters A might likely be
bene�tted from immunotherapy. The outcome of our analysis is in line with the previous studies, which
indicates that the gene clusters in the current study might lead to the development of more precise
immunotherapy.

The individual-based model derived from tumor subtype-speci�c biomarkers has been well established in
breast and colorectal cancer to improve outcome prediction [45, 46]. In the current study, with the help of
the Boruta algorithm, we obtained potential “subtypes biomarkers” and established an ICI score to
quantify the immune cell in�ltration pattern. Through GSEA analysis, we found genes that were involved
in the immunosuppressive pathways such as TGF-BETA and WNT signaling pathway, and these genes
were enriched explicitly in the low ICI scores groups. Recently, the preclinical reports have identi�ed an
association between the gene mutations and response or tolerance to immunotherapy [47, 48]. An
integrated ICI score at the genome level revealed the signi�cant variant frequency differences in multiple
genes between the high and low ICI scores, and few of these genes were explicitly associated with
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sensitivity or resistance. Besides, we also detected that the TMB, which is more sensitive to
immunotherapy, was signi�cantly reduced in patients with low ICI scores. The correlation between the ICI
score and TMB was found to be 0.1227. The strati�ed analysis revealed that the prognosis value of ICI
scores was independent of TMB in HNSC. The lack of correlation, coupled with the observed individual
predictive values and GSEA analysis outcome, implies that the ICI score and TMB represent distinct
aspects of tumor immunobiology and can predict patient response to immunotherapy independently of
TMB.

The patients receiving immunotherapy were assessed by the IMvigor210 and TCGA-SKCM, and we found
that the ICI score was signi�cantly elevated in patients responding to immunotherapy, which validated its
predictive value. Overall, this suggests that single-agent immunotherapy might be bene�cial in the
patients with the high ICI score, whereas TGF-BETA inhibition plus immune checkpoint blockade might be
bene�cial in patients with low ICI scores. In this context, previous preclinical studies [49, 50] have
con�rmed that the synergistic therapeutic of TGF-BETA inhibitor and immune checkpoint inhibitor more
e�cient than the single-agent immunotherapy for solid tumors. Moreover, there is an ongoing phase-1b/2
clinical trial (NCT02423343) to test the therapeutic effects of the combined application of TGF-BETA and
nivolumab in advanced solid tumors. Furthermore, the �ndings of the current investigation need to be
validated in a larger HNSC cohort receiving immunotherapy.

Conclusions
The comprehensive analysis of tumor ICI has unraveled the mechanism by which the tumors respond to
immunotherapies, which might promote the development of novel drug combination strategies for
human cancers and the identi�cation of ideal candidates for immunotherapy.
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Supplementary Figure Legends
Figure S1. Overview of study design and Consensus matrixes of all HNSC samples (a) Overview of study
design; (b) Consensus matrixes of all HNSC samples for each k (k = 2–5), displaying the clustering
stability using 1000 iterations of hierarchical clustering.

Figure S2. Consensus clustering of TME cell in�ltration in the ACRG cohort and DEGs among the ICI
phenotypes (a)-(d) Consensus matrixes of TCGA-HNSC cohorts for each k (k = 2–5), displaying the
clustering stability using 1000 iterations of hierarchical clustering; (e) Unsupervised clustering of 1089
DEGs among three ICI cluster groups to classify patients in TCGA-HNSC into three groups; (f) Venn
diagram illustrating the number of DEGs among the three ICI clusters.

Figure S3. Prognostic value of ICI score in HNSC cohorts. (a) Kaplan–Meier curves for patients with high
and low ICI scores in the GSE65858 cohort. Log-rank test P=0.002; (b) Kaplan–Meier curves for patients
with high and low ICI scores in the GSE41613 cohort. Log-rank test P=0.0052; (c) Kaplan–Meier curves
for patients with high and low ICI scores in the GSE42743 cohort; (d) Kaplan–Meier curves for patients
with high and low ICI scores in the all HNSC cohort. Log-rank test P<0.0001.

Figures
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Figure 1

The landscape of immuno-cell in�ltrating in TME of HNSC. (a) Unsupervised clustering of Tumor-
in�ltrating immune cells in �ve independent HNSC cohort. Rows represent Tumor-in�ltrating immune
cells, and columns represent samples; (b) Kaplan-Meier curves for overall survival (OS) of all HNSC
patients with immune cell in�ltrating classes. Log-rank test showed an overall P=0.018; (c) The fraction
of Tumor-in�ltrating immune cells in three ICI clusters. We also plotted the Immune score and Stromal
score of three ICI clusters. The statistical difference of three ICI clusters was compared through the
Kruskal-Wallis test. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; (d) Cellular interaction of the Tumor-
in�ltrating immune cell types.



Page 17/21

Figure 2

Identi�ed immune gene subtype. (a) Unsupervised clustering of common DEGs among three ICI cluster
groups to classify patients into three groups: Gene clusters A–C; (b) Kaplan–Meier curves for the three
groups of patients. Log-rank test showed an overall P=0.0065; (c) and (d) GO enrichment analysis of the
two ICI relevant signature genes—ICI signature genes (C) A and (D) B. The x-axis indicates the number of
genes within each GO term; (e) The fraction of Tumor-in�ltrating immune cells in three Gene clusters. We
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also plotted the Immune score and Stromal score of three ICI clusters. The statistical difference of three
ICI clusters was compared through the Kruskal -Wallis test. *, P<0.05; **, P<0.01; ***, P<0.001; ****,
P<0.0001.

Figure 3

Construction of the ICI score (a) Alluvial diagram of ICI gene cluster distribution in groups with different
ICI cluster, ICI score, and survival outcome; (b) Immune-checkpoint-relevant genes (IDO1, CD274, HAVCR2,
PDCD1, CTLA4, and LAG3) and Immune activation-relevant genes (CD8A, CXCL10, CXCL9, GZMA, GZMB,
PRF1, IFNG, TBX2, and TNF) expressed in high and low ICI score subgroups; (c) Enrichment plots
showing Ecm receptor interaction, Focal adhesion, Tgf-beta signaling pathway, Tight junction, and Wnt
signaling pathway in the Low ICI score subgroup; (d) Enrichment plots showing T cell receptor signaling
pathway, B cell receptor signaling pathway, natural killer cell mediated cytotoxicity, drug metabolism other
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enzymes, and arachidonic acid metabolism in the High ICI score subgroup; (e) Kaplan–Meier curves for
high and low ICI score patient groups in the TCGA-HNSC cohort. Log-rank test, P<0.001; (f) Kaplan–Meier
curves for patients in the TCGA-HNSC cohort stratified by both receipt of adjuvant chemotherapy (Ct) and
ICI score. Log-rank test P=0.7521, High ICI score No Ct vs Ct; Log-rank test P=0.7384, Low ICI score No Ct
vs Ct; (g) Kaplan–Meier curves for patients in the TCGA-HNSC cohort stratified by both receipt of
adjuvant radiotherapy (Rt) and ICI score. Log-rank test P=0.2545, High ICI score No Rt vs Rt; Log-rank test
P=0.0307, Low ICI score No Rt vs Rt.

Figure 4

The correlation between the ICI score and somatic variants (a) TMB difference in the high and low ICI
score subgourps. Wilcoxon test P<0.0001; (b) Scatter plots depicting the positive correlation between ICI
score and mutation load in the TCGA-HNSC cohort. The Spearman correlation between ICI score and
mutation load is shown (P=0.0058); (c) Kaplan–Meier curves for high and low TMB groups of the TCGA-



Page 20/21

HNSC cohort. Log-rank test P=0.0067; (d) Kaplan–Meier curves for patients in the TCGA-HNSC cohort
stratified by both TMB and ICI score. Log-rank test P<0.001. (e) The oncoPrint was constructed by those
with high ICI scores on the left (red) and those with low ICI scores on the right (blue). Individual patients
represented in each column.

Figure 5

The role of ICI scores in the prediction of immunotherapeutic bene�ts (a) ICI scores in groups with
different anti–PD-1 clinical response status. Wilcoxon test P<0.0001; (b) Kaplan–Meier curves for
patients with high and low ICI scores in the IMvigor210 cohort. Log-rank test P=0.0017; (c) Rate of clinical
response (complete response [CR]/ partial response [PR] and stable disease [SD]/ progressive disease
[PD]) to anti–PD-L1 immunotherapy in high or low ICI score groups in the IMvigor210 cohort; (d).
Distribution of ICI score in different response status to immunotherapy in TCGA-SKCM cohort. Wilcoxon
test P=0.041; (e) Kaplan–Meier curves for patients with high and low ICI scores in the TCGA-SKCM
cohort. Log-rank test P=0.047; (f) Rate of clinical response (complete response [CR]/ partial response [PR]
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and stable disease [SD]/ progressive disease [PD]) to various immunotherapy in high or low ICI score
groups in the TCGA-SKCM cohort.
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