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Abstract: The thermal load that occurs during grinding can be reduced with the aid of an optimized
metalworking fluid (MWF) supply. In previous work, mainly the free jet was considered for the
determination of the conditions required for an optimized MWF supply. An investigation of the
interaction area between the MWF and the grinding wheel has not yet been carried out due to the
lack of suitable measurement techniques. In the presented work, both the free jet and the interaction
area are analyzed with the aid of new metrological analysis and evaluation methods based on high-
speed records (shadowgraphy and shadogram imaging velocimetry) in order to assess the free jet
geometry and velocities, as well as the velocity distribution and the MWF amount in the interaction
area. Using this approach, the following main results were derived: (1) The free jet velocity remains
approximately constant in a defined free jet cross-section even at high distances from the nozzle
outlet. (2) The velocity distribution in the interaction area is mainly influenced by the flow rate. (3) A
new image parameter (black pixel fraction) was derived for the evaluation of the MWF supply to the
contact zone.

Keywords: metalworking fluids; supply conditions; grinding; shadowgraphy; velocimetry

1. Introduction

Grinding processes are characterized by a thermomechanical load, whereby the ther-
mal load is generally more dominant [1,2]. Thus, grinding involves an increased risk of
thermal damage to the machined workpieces due to high temperatures and larger contact
zones compared to other manufacturing processes. The thermal damage, commonly re-
ferred to as grinding burn, leads to the formation of tensile residual stresses or a drop in
hardness in the surface layer of the ground workpieces [3–6]. Numerous approaches at
minimizing the thermal effects during the grinding process can be found in the literature.
Metalworking fluids (MWF) reduce the thermal load by (i) lubricating the contact zone
between the grinding wheel and workpiece, thus reducing the amount of generated heat as
well as (ii) cooling the tool and the workpiece by dissipating generated heat. In addition
to the selection of a suitable metalworking fluid, an approach that is easy to implement
even in an industrial environment and yet very effective is the optimization of the MWF
supply [7–11]. With the help of an optimized MWF supply, a sufficient MWF supply in the
contact zone should be ensured. As shown in Figure 1, a number of influencing parameters,
such as the nozzle geometry, e.g., [12–14], the nozzle position, e.g., [15–17], the selected
flow rate QMWF, e.g., [18–20], and the velocity ratio between the MWF free jet vjet and the
grinding wheel velocity vs, e.g., [21–23], have to be taken into account in order to realize an
optimized MWF supply.
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Figure 1. MWF supply during grinding.

The nozzle geometry determines the shape and coherence of the free jet. The free
jet shape in conjunction with the free jet velocity vjet has a considerable influence on the
fluid’s interaction with the grinding wheel and thus on the amount of MWF delivered to
the contact zone [8]. It was shown that laminar, or at least coherent free jets, are particularly
advantageous for the supply of MWF during grinding [24,25]. In order to generate such
free jets, the nozzle design should avoid abrupt cross-sectional changes within the nozzle or
sharp edges at the nozzle outlet [13,14]. A nozzle geometry that meets such requirements
and can be used as a basis for the nozzle design was introduced by Rouse [14]. With the
so-called Rouse nozzles, laminar and coherent free jets are ensured over a large distance
from the nozzle outlet. The velocity of the free jet vjet depends on the nozzle geometry
(outlet cross-section A), but also on the selected flow rate QMWF:

vjet =
QMWF

A
(1)

In industrial practice, high flow rates are predominantly used [20,22]. However, as
shown in [26,27], an increase in the flow rate at a constant jet velocity has no significant
influence on the grinding process. According to [20], the highest possible minimization
of the contact zone temperature is partly achieved independently of the flow rate, but
above all by the correct selection of the free jet velocity. Thus, in view of increasingly
strict ecological and economic requirements, significantly lower flow rates can be selected
without endangering process reliability and a possible loss of workpiece quality. In general,
the free jet velocity should be selected in such a way that the free jet can break through the air
barrier caused by the rotation of the grinding wheel [27–31]. The literature does not provide
a clear indication of the optimal free jet velocity or the velocity ratio between the free jet and
the grinding wheel velocity, which shows that a large number of influencing parameters
does not allow for any respective general statement. The differences in the velocity ratios
determined in the work of [19,21,22,32], at which breakthrough of the air barrier can be
ensured, are based on the specific approaches to determine the free jet velocities.

Due to the lack of suitable measuring techniques for quantifying the MWF supply, the
free jet velocity was estimated according to Equation (1) directly at the nozzle outlet in the
past. The velocity differences within the free jet or a drop in velocity from a certain distance
from the nozzle outlet could not be determined up to now but is essential for understanding
the interaction with the grinding wheel and the amount of MWF delivered into the contact
zone. In the recent past, first measurement attempts for observing and quantifying the
MWF supply were reported. Geilert et al. used the shadowgraphy method to visualize
and compare the free jet shape during grinding. With this approach, the influence of the
nozzle geometry on the flow in the free jet was investigated and it was found that a nozzle
with the most coherent jet leads to better grinding results with regard to the occurrence of
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grinding burn [24]. Nevertheless, there is still a great need for research regarding the aim
of velocity field measurement in the MWF supply. In order to obtain the first quantitative
statements, the existing knowledge from flow metrology should be used to measure the
velocity within flows. One established method for the quantitative measurement of flow
velocity fields is particle image velocimetry (PIV). It was shown that this technique can be
used to measure the velocity field in a single-phase free jet, which has many parallels to
the MWF supply [33]. The first investigations of velocity field measurements during MWF
supply in a grinding machine were carried out by Espenhahn et al. with particle image
velocimetry (PIV) and the shadowgraph imaging velocimetry (SIV) [34].

Although there are numerous investigations on the MWF supply, these are mainly
focused on the free jet. Up to now, the consideration of the interaction of the free jet with the
grinding wheel and the resulting MWF supply to the contact zone is limited. In particular,
the influence of parameters relevant to the MWF supply, such as flow rate, free jet velocity,
and grinding wheel velocity, has not been clearly validated. Therefore, the whole path of
the MWF starting from the nozzle to the contact zone is considered here. The aim is to use
new metrological analysis methods to yield a better understanding of the interaction of
the free jet with the grinding wheel and thus derive conclusions with regard to the most
decisive factors in MWF supply.

2. Approach and Procedure

A highly systematic approach considering the path of the MWF from the nozzle
outlet to the contact zone of the grinding wheel and the workpiece with the aid of new
metrological analysis methods was chosen. The aim of this approach is to confirm already
established knowledge regarding the MWF supply during grinding, extend it where
necessary on the basis of valid data, and interpret new observations scientifically. For
this purpose, not only the free jet but also the interaction area is to be examined more
closely, as shown in Figure 2.
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Figure 2. Procedure for analyzing and characterizing the coolant supply.

High-speed images of the free jet and the interaction area are taken under varying
conditions regarding the nozzle geometry, the flow rate QMWF, and the grinding wheel
velocity vs, while the distance and the orientation of the nozzle to the grinding wheel are
kept constant. In a first step, the high-speed images are used to characterize the shape
of the free jet and thus verify the desired coherence of the free jet. In the interaction
area, possible statements on the MWF supply and distribution are derived. Based on the
high-speed images, the next step is an in-depth analysis of the free jet and the interaction
area using shadowgram imaging velocimetry (SIV) and shadowgraphy. In particular, the
SIV measurement method has already been sufficiently investigated by Espenhahn et al.
for the observation of the MWF flow during grinding and has shown the reliability with
regard to the determination of the velocity field in the free jet and in the interaction area
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by comparison with PIV measurements [34]. By using SIV, the velocity distribution in the
free jet and in the interaction area are evaluated in this paper depending on the varied
parameters. Based on the shadowgraphy, the free jet geometry in the top and side view is
determined. Furthermore, a suitable parameter for the evaluation of the MWF supply in the
interaction area is derived by also using shadowgraphy. In order to assess the informative
value of the derived parameter with regard to the MWF supply in a real grinding process,
a test rig is used with which the efficiency of the MWF supply is evaluated on the basis of
the temperature in the contact zone between the grinding wheel and the workpiece.

2.1. Experimental Setup
2.1.1. Setup for the High-Speed Recordings

The experimental investigations are carried out on the grinding machine type Micro-
Cut A8 Unicon (Elb-Schliff Werkzeugmaschinen GmbH, Aschaffenburg, Germany). The
oil-based MWF is a type PAO 2 cST (Synfluid) with a flash point of 256 ◦C, so that boiling
of the MWF can be excluded for common grinding operations. The experimental setup is
shown schematically in Figure 3. It should be noted that no workpiece is used here. The
visualization of the MWF is realized by the effect of light refraction or reflection. The MWF
is illuminated by the diffuse light source (LED panel in the background) and a camera on
the opposite side records the resulting shadow.
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Figure 3. Experimental setup for high-speed records.

The additively manufactured nozzles are aligned horizontally in the direction of the
grinding wheel. A distance of 100 mm is selected between the nozzle outlet and the impact
point at the grinding wheel. The grinding wheel used is a ceramic-bonded corundum grinding
wheel with the specifications 9A60H16VCF2 and the dimensions of 20 × 125 × 400 mm.
Images are taken with the high-speed camera Motion Pro (Imaging Solutions GmbH, Eningen,
Germany), which is positioned in front of the grinding machine. In addition to the camera, a
105 mm F2.8 Ex macro lens (Sigma GmbH, Rödermark, Germany) is used.

2.1.2. Nozzle Design

To generate laminar and coherent free jets, the Rouse profile is used for the nozzle
design [14]. An example of a nozzle with a Rouse profile and the essential geometric
parameters is shown in Figure 4. L represents the entry length, H the height of the inner
profile, h the height, and b the width of the nozzle outlet.
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Figure 4. Parameter of the nozzle design.

The nozzle geometry is determined by systematically varying the entry length L, the
contraction ratio CR (Equation (2)), and the aspect ratio AR (Equation (3)) while maintaining
the Rouse profile.

CR =
H
h

(2)

AR =
b
h

(3)

When designing the nozzles, a value of 20 mm is chosen for the width b of the nozzle
outlet, as this corresponds to the width of the used grinding wheel. The selection of
the parameters AR, CR, and L is motivated by the limiting boundary conditions of the
grinding machine.

A velocity ratio of 1.0 between the free jet velocity at the nozzle outlet and grinding
wheel velocity is aimed for, with a maximum grinding wheel velocity of 35 m/s. Using
Equation (3), an aspect ratio is calculated. Subsequently, a suitable outlet area is determined
using Equation (1). With the constant width b, an aspect ratio of AR = 16 results. In order
to estimate the influence of this parameter, higher and lower values are also chosen.

In the case of the contraction ratio, the interface used for the nozzle integration to
the MWF supply system is the limitation. In this case, the maximum contraction ratio is
CR = 16. Smaller values are selected to achieve two other values for CR.

Finally, the entry length L and thus the nozzle length is examined. Additionally, three
different values are used here. A length of 100 mm is selected as the standard size.

Table 1 gives an overview of the values calculated with Equations (2) and (3) for
AR and CR as well as the values chosen for L. Note that when varying the value of one
parameter, the other parameters are kept constant.

Table 1. Varied parameters of the nozzle geometry.

Height H of the
Inner Profile

Outlet Height h of
the Nozzle

Outlet Width b of
the Nozzle Entry Length L Contraction Ratio

CR Aspect Ratio AR

10 mm 0.83 mm 20 mm 50 mm 8 8
15 mm 1.25 mm 20 mm 100 mm 12 16
20 mm 1.67 mm 20 mm 150 mm 16 24

2.1.3. Setup for the Evaluation of the Cooling Capacity of the MWF Supply

The evaluation of the cooling capacity of the MWF supply is carried out by measuring
the temperature in the contact zone between the grinding wheel and the workpiece in a
special test rig. The test rig is shown schematically in Figure 5.
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Figure 5. Setup for the evaluation of the cooling effect of the MWF supply.

The grinding wheel is fed into an electrically heated plate. As soon as the contact zone
is generated, the tangential feed speed is stopped while the grinding wheel continues to
rotate at a constant velocity vs of 35 m/s. A thermocouple is located in the area of the
contact zone of the heated plate to detect temperature changes. With a constant heating
power, the thermocouple is able to record the temperatures resulting from varying MWF
supply conditions. Note that the temperatures in the test rig are not the same as those in the
real grinding process. Nevertheless, various previous studies have shown that the test rig
is suitable for assessing the cooling performance under varying MWF supply [33,35–38].

2.2. Methods of Analysis
2.2.1. Shadow Image Velocimetry

The high-speed records are used to evaluate the flow characteristics of the MWF
supply. Part of the analysis is to determine the velocity distribution in the free jet and in
the interaction area by correlating interrogation windows from two successive images, i.e.,
shadowgraph imaging velocimetry (SIV) is used here. A detailed description of SIV can be
taken from [39].

SIV is an optical measurement method in which the motion of image patterns is
visualized and tracked over several images to derive the velocities in the free jet. By using
a cross-correlation for the interrogation windows across the different images, the distances
traveled by the image patterns in each interrogation window are determined. The resulting
distances are then divided by the time difference between the images to obtain the MWF
velocity distribution. The cross-correlations are performed for interrogation windows with
an overlap of 75% for a query area of 32 pixels × 32 pixels. Indeed, the basic idea of the
SIV method is very similar to that of PIV. The differences are to be found especially in the
fact that with SIV no depth information is recorded and a superposition of inhomogeneous
structures in the flow from different depths can not be separated. This is not a problem in the
present work since no significant depth information is required. Furthermore, Espenhahn
et al. have shown that the results from the SIV have a good agreement with those from the
PIV [39], which holds for both the free jet and the interaction area.

2.2.2. Processing of the Shadowgraphy Recordings

Figure 6 shows the example images of the free jet and the interaction area as well as
the individual steps for the evaluation of the images. The left side of Figure 6 shows the
evaluation of the free jet (Figure 6a–c) and the right side the evaluation of the interaction
area (Figure 6d–f). For both the free jet and the interaction area, about 1000 images are taken
with the high-speed camera at the beginning of a process. Then, these images are averaged
over their greyscale value to remove random events (Figure 6b,e). In the interaction area,
an image without liquid is additionally subtracted from the averaged image with MWF to
eliminate the influence of the background and especially the grinding wheel (Figure 6e).
Depending on the evaluation object, different strategies are followed after averaging. In the
further evaluation of the free jet, the area enclosed by the edges of the free jet is determined.
For this purpose, edge detection based on the Canny algorithm is applied to the averaged
image of the MWF [40]. The detected edges of the free jet are used to calculate the area
covered by the MWF. Here, an integral approach is used in which the areas below the edges
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are determined. The calculation uses a fixed distance from the nozzle outlet to 100 mm of
the free jet. This constant distance ensures the comparability of the varied parameters. The
calculated areas below the edges are then subtracted from each other, resulting in the area
covered by the MWF (Figure 6c). This evaluation procedure is used to determine the area
for the top view Atop as well as for the side view Aside (Figure 7). Finally, an evaluation
range is defined for the interaction area, which allows a threshold analysis to be carried
out. Here, only certain grey values in the selected interval are mapped (Figure 6f).
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3. Results
3.1. Free Jet—Geometry

As already described in the literature, the free jet widens with increasing distance from
the nozzle outlet (Figure 7). In addition to the widening of the free jet, Figure 7 shows the
images taken using shadowgraphy in the area of the free jet in the top view Atop and in
the side view Aside. The evaluation of the jet geometry from the shadowgraphy is carried
out as described in Section 2.2. The influences of the entry length L, the contraction ratio
CR, and the aspect ratio AR on the free jet surface area are shown in Figure 8 over the flow
rate QMWF.
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aspect ratio.

A noticeable influence on the area from the side view Aside can not be detected even
with increasing flow rates. This means that the free jet fans out laterally and not vertically.
A slight influence can only be observed with a variation of the aspect ratio. The almost
constant area from the side view confirms that, as intended, a laminar and coherent free jet
has formed due to the Rouse profile used. With regard to the area from the top view Atop,
an influence of the aspect ratio can be determined. This is due to the fact that a change in
the aspect ratio means a change in the nozzle outlet geometry (see Equation (3)) and thus,
according to Equation (1), a change in the free jet velocity, which has a direct influence on
the jet expansion. However, an influence of the entry length and the contraction ratio can
also be determined, although both parameters should have no significant influence on the
free jet velocity due to a constant nozzle outlet geometry. In the case of the contraction ratio
(see Equation (2)), this can be explained by the varying inner channel height H compared
to a constant outlet height h. This results in different Reynolds values inside the nozzle.
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As a result, varying Reynolds values are present at different places in the nozzle, which
in turn represent a measure of the turbulence. Thus, the Reynolds values decrease with
increasing inner channel height, which in turn leads to lower turbulence inside the nozzle
and to lower free jet expansion. In addition, the results allow the assumption that a larger
contraction leads to a better laminarization of the free jet [25]. The influence of the entry
length can be explained by the friction loss. Due to the longer nozzle entry, energy is lost
due to friction at the wall [25]. This energy loss causes the jet to break up earlier, since less
energy is available for the cohesion of the jet, which results in a noticeable jet expansion.

3.2. Free Jet—Velocity Distribution

With the help of the high-speed recordings, not only the free jet geometry but also the
velocity distribution within the free jet was determined by means of SIV. An example of
a high-speed image, and the velocity distribution calculated from it for a flow rate QMWF
of 35 L/min, are shown in Figure 9. The velocities within the free jet are indicated by the
different colors and the flow direction by the arrows. Up to a distance sjet of 20 mm from
the nozzle outlet, the velocity distribution could not be fully evaluated for the entire free jet
width due to the lack of traceable image patterns in the free jet, which are essential for the
SIV principle (see Section 2.2).
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Free jet expansion occurs with increasing distance sjet. Due to the free jet expansion
and the interaction of the free jet with the ambient air, the velocities at the free jet edge are
lower than in the free jet’s core. For the following evaluation of the mean velocity in the free
jet, a free jet width of 20 mm is referred to, since a grinding wheel with a width of 20 mm
was also used for the investigations and therefore the velocity of the free jet in this area is of
particular interest (see Figure 9). Especially after a distance of 100 mm, the increase in the
free jet width and the lower velocities at the free jet edge are clearly visible. Nevertheless, it
appears that at distances lower than 100 mm, there is an approximately constant jet velocity
in the relevant free jet area. To verify this, the jet velocity in the relevant free jet area and
over the entire free jet width is determined at different distances. The obtained results for
a flow rate of 35 L/min are shown in Figure 10. In addition, the jet velocity calculated
according to Equation (1) is plotted.
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distances from nozzle outlet sjet.

Despite the expansion of the free jet visible in Figure 9, the jet velocity in the relevant
free jet area remains approximately constant with increasing distance from the nozzle
outlet. Likewise, no significant deviation between the measured and the calculated free
jet velocity is detected. Based on these results, it is concluded that the free jet velocity
at the point of impact of the grinding wheel corresponds approximately to the free jet
velocity at the nozzle outlet. In comparison, the velocities determined over the entire free
jet width are lower, beginning from a distance of 60 mm. This is due to the decreasing jet
velocity in the edge area of the free jet (see Figure 9). Here, the influence of the approach on
the determination of the free jet velocity becomes clear. It is therefore not surprising that
different values can be found in the literature [19,21,22,39] for the velocity ratio between
the grinding wheel and the free jet velocity, at which an optimized MWF supply into the
contact zone is present, since different free jet velocities were determined according to the
selected approach.

As a result of Figure 10, a sufficient estimation of the free jet velocity can be made with
the aid of Equation (1) for the present conditions. In order to verify this for different nozzle
geometries and supply conditions, the influences of the entry length L, the contraction ratio
CR, and the aspect ratio AR, as well as a varying flow rate QMWF on the free jet velocity at
a distance sjet of 100 mm from the nozzle outlet, are shown in Figure 11. In addition, the jet
velocity calculated with Equation (1) is plotted.

Both the entry length and the contraction ratio have no discernible influence on the free
jet velocity. This confirms the assumption that the influence of these parameters on the free
jet expansion found in Figure 8 is due to the occurrence of turbulence and friction within the
nozzle. The velocity determined with the help of the SIV corresponds approximately to the
calculated free jet velocity. In contrast, a noticeable and expected influence is observed when
varying the aspect ratio. As already described, this is due to the change in the nozzle outlet
geometry (see Equation (3)), which influences the free jet velocity according to Equation (1).
However, even here there are only minor differences between the measured and calculated
velocities, with the biggest deviation at an aspect ratio of 24. This could indicate that if the
outlets are too thin, other effects such as an increasing influence of friction affects the exit
velocity. The good agreement between the calculated and measured values proves that the
applied measuring method and the evaluation can accurately represent the conditions in
the free jet, although the observed effects such as the free jet expansion are not taken into
account in Equation (1). Hence, the calculated free jet velocity corresponds to the actual
free jet velocity in the relevant free jet area, while the overall mean velocity across the jet
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width deviates, see Figure 10. This important finding follows from the free jet shape shown
in Figure 9. There are no significant velocity changes in the relevant free jet area since
deviations from a coherent jet occur at a distance of 120 mm from the nozzle outlet. Note,
however, that the observations made here can not be applied without restrictions to other
nozzle geometries or free jet shapes.
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3.3. Interaction Area—Velocity Distribution

As with the free jets, the high-speed recordings from the interaction area serve as the
basis for further analyses. An example of a high-speed recording is shown in Figure 12.
According to the high-speed recordings, a variation in the flow rate QMWF has a significant
influence on the shape of the fluid’s distribution within the interaction area. An increase
in the flow rate seems to lead to an increased amount of MWF in the interaction area.
Furthermore, the impression is that an increasing flow rate leads to a displacement of
the MWF.

In order to derive more than just qualitative conclusions about the interaction area,
an analysis of the velocity distribution in the interaction area is carried out using SIV. The
results for a varying flow rate QMWF and a constant grinding wheel velocity vs of 35 m/s
are shown in Figure 13. The velocities within the interaction area are again indicated by
the different colors and the flow direction by the arrows. Regardless of the selected flow
rate or free jet velocity, dark blue areas or very low MWF velocities are observed near the
grinding wheel surface. This does not mean that MWF accumulates in this area at very low
velocities but rather that, in this area, determination of the velocities is challenging with
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the selected measurement technique. At the impact point of the free jet, a brief decrease
in the MWF velocity is observed. After this point, the MWF is entrained by the grinding
wheel rotation and is accelerated independent of the initial flow rate or free jet velocity.
At very low free jet velocities, only a limited part of the MWF at the lowest point of the
grinding wheel is accelerated to velocities higher than the initial vjet. With increasing free
jet velocities, the amount of accelerated MWF becomes larger. There are areas where the
MWF velocity is higher than the free jet velocity.
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In addition to the flow rate, the influence of the grinding wheel velocity on the velocity
distribution in the interaction area is studied in Figure 14 for a constant flow rate of
25 L/min. An increase in the grinding wheel velocity leads to higher MWF velocities.
However, compared to the increase in flow rate, the velocity increase only occurs in a
limited area near the grinding wheel. Outside this range, the MWF velocity remains
constant and corresponds approximately to the free jet velocity. It is thus concluded that
the velocity distribution within the interaction area is mainly influenced by the flow rate
and the free jet velocity.
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Figure 14. Velocity field in the interaction area under different grinding wheel velocities.

The measured velocity fields also enable initial explanatory approaches to describe the
influence of the velocity ratio between grinding wheel velocity and MWF velocity on the
MWF supply. For this purpose, the grinding wheel velocity vs = 25 m/s is selected in such
a way that, according to Heinzel et al. [19], there is an almost “optimal” velocity ratio of
approximately 0.8 during grinding. Furthermore, the other grinding wheel velocities were
chosen in such a way that additional deviations from the “optimal” velocity ratio could
be realized for a first comparison. The investigations showed that at the most promising
velocity ratio, the maximum velocity of the MWF already occurs before the lowest point of
the grinding wheel and then remains constant. With the other velocity ratios, a more or
less large velocity gradient appears at the lowest point of the grinding wheel, which then
only reached its maximum velocity after the lowest point of the grinding wheel.

3.4. Analysis of the MWF Supply with Shadowgraphy

On the basis of the velocity distribution within the interaction area, no conclusions can
be derived about the MWF supply in the interaction area. Remember that a sufficient MWF
supply must be ensured, as this reduces the temperatures during the grinding process and
thus keeps the risk of thermal damage to the workpiece to a minimum. Therefore, the
evaluation of the MWF distribution and the MWF supply is carried out with the aid of
shadowgraphy (see Section 2.2). Figure 15 shows exemplary results for three different flow
rates and two different thresholds.
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Figure 15. Evaluation of the shadowgraphy records with two different thresholds, (a–c) high-speed-
records, (d–f) shadowgraphy records for threshold A, (g–i) shadowgraphy records for threshold B.

As expected, an increase in flow rate leads to an increase in the amount of MWF in the
interaction area (Figure 15d–i). Therefore, there is a proportional relationship between the
flow rate and the MWF amount in the interaction area. Further, it can be seen that more
MWF is pushed away from the grinding wheel by higher flow rates. Especially, this is
observable when comparing a flow rate of 25 L/min and 35 L/min (Figure 15e,f,h,i). This
effect is explained by the increasing velocities within the interaction area when increasing
the flow rate (see Figure 13). Due to the high velocities, a part of the MWF does not adhere
to the grinding wheel and is pushed away. Furthermore, it seems that there is no MWF
in the area shortly after the lowest point of the grinding wheel. This effect is particularly
noticeable at a flow rate of 35 L/min (Figure 15f,i). This is also due to the high velocities
in this part of the interaction area, see Figure 13. Due to the acceleration caused by the
grinding wheel rotation, the velocities in this area are partly above the free jet velocity,
which leads to the MWF being pushed away. Because of the lower amount of MWF in
this area in conjunction with the threshold value selected for the image analysis of the
shadowgraphs, a visualization of the MWF in this area is not possible, although MWF can
be seen there in the high-speed records. An appropriate adjustment of the threshold would
enable the visualization of the MWF in this area.

To demonstrate the effects of adjusting the imaging threshold, the imaging results of
two different threshold values A and B are shown in Figure 15. Note that B is a higher
threshold than A. As expected, more MWF is taken into account with the higher threshold
value B. Especially with higher flow rates from 25 L/min, however, the disadvantages of a
threshold value that is too high become apparent. Because of the increased amount of MWF
and the too high threshold value, isolated flow phenomena are superimposed, which leads
to a loss of information. Nevertheless, a threshold value that is too low can also contribute
to a loss of information, as it does not take sufficient MWF into account.

In order to derive more than just qualitative conclusions about the amount of MWF
within the interaction area, the fraction of black pixels within the evaluation area is de-
termined. The evaluation area used for this purpose is shown in Figure 15 as a red box.
The left border is defined by the point of impact of the free jet with the grinding wheel.
The right border is at the lowest point of the grinding wheel. The results of the black pixel
fraction analysis for different thresholds are shown in Figure 16. With increasing flow rates
the amount of MWF and also the black pixel fraction increase. There is a proportional
relationship between the MWF amount in the interaction area and the black pixel fraction.
Furthermore, the figure shows that the black pixel fraction always converges towards a
maximum value independent of the chosen threshold. This supports the thesis that there is
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a limit on MWF supply. Thus, the black pixel fraction is a suitable parameter for evaluating
the MWF supply and offers the possibility of determining the required flow rate. However,
it must first be defined at which black pixel fraction a sufficient amount of MWF is conveyed
into the contact zone in order to keep the temperature and the risk of thermal workpiece
damage as low as possible.
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3.5. Evaluation of the Cooling Capacity Depending on MWF Supply Conditions

In order to assess the informative value of the black pixel fraction with regard to a
sufficient MWF supply to the contact zone, the test rig described in Section 2.1 is finally
used. With this experimental setup, the temperature in the contact zone can be measured
for different MWF supply conditions, while lower temperatures correspond to an improved
and favorable MWF supply.

The results obtained with the aid of the test rig are shown in Figure 17. The black pixel
fractions determined in advance at the different flow rates are taken from Figure 16 (light
grey line). As expected, the temperature decreases with increasing black pixel fraction or
flow rate. A minimum occurs at a black pixel fraction of 45,000 or at a flow rate of 25 L/min.
This is due to the geometric limitation of the contact zone between the grinding wheel and
the workpiece. Furthermore, the amount of MWF supplied to the contact zone is limited by
the available space within the pores of the grinding wheel. Thus, only a pre-determined
amount of MWF is conducted to the contact zone and consequently, the temperature can
not be further reduced [35,41,42]. These findings demonstrate that the black pixel fraction
is a suitable parameter for evaluating the MWF supply and can be used to avoid excessive
flow rates. In the future, such black pixel fraction graphs (black pixel fraction against flow
rate) could be determined once for an existing MWF supply system with little metrological
effort. With graphs of this kind, it is possible to choose a suitable flow rate even before
grinding and to avoid over-supply of the contact zone with MWF. This not only reduces
the risk of thermal damage but also saves operating costs for the MWF supply system.
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4. Conclusions and Outlook

In this work, the entire path of the MWF, starting from the nozzle outlet to the con-
tact zone between the grinding wheel and the workpiece, was studied using the analysis
methods shadowgram imaging velocimetry (SIV) and the shadowgraph technique (shad-
owgraphy). With the aid of both methods, not only the free jet but also the interaction area
was analyzed in more detail. In the following, the main conclusions are presented:

(1) For the applied MWF nozzle, the jet velocity remains approximately constant in
a defined free jet cross-section, even at high distances from the nozzle outlet. This
confirmed that a valid estimate of the jet velocity in the relevant free jet area is obtained
with the aid of Equation (1).

(2) Despite constant velocities, the free jet geometry can differ significantly when the
entrance length L and contraction ratio CR are varied.

(3) The velocity distribution in the interaction area is mainly influenced by the flow
rate. The grinding wheel velocity has an influence limited to an area below the
grinding wheel.

(4) The new parameter black pixel fraction was derived for the evaluation of the MWF
supply to the contact zone.

(5) The informative value of this new image parameter was verified with the aid of a
suitable test rig.

In future investigations, it should be clarified how the black pixel fraction, at which
sufficient MWF supply to the contact zone is given, can be determined. In this context, the
definition and influence of the evaluation area should also be investigated more closely
and adapted if necessary. For example, a radial section parallel to the circumference of
the grinding wheel can also be used as the evaluation surface. At the same time, further
evaluation approaches are to be pursued in the future in order to generate a higher gain in
knowledge. As an example, Figure 18 shows the first investigations of the influence of the
nozzle position on the MWF supply with an alternative evaluation approach. Here, a so-
called false-color image is generated on the basis of the grey values by shadowgraphy. The
further subdivision into different areas should provide more information and contribute
to a better understanding of the MWF flow in the interaction area. In addition to the
evaluation approaches, other parameters and their influence on the MWF supply are to be
investigated. In the tests carried out, the grinding wheel topography was kept constant.
By varying the dressing condition and the porosity (amount of pores) of the grinding
wheel, the influence of these parameters on the MWF supply in the interaction area is to be
investigated in the future. The knowledge gained will be used to predict the supply to the



J. Manuf. Mater. Process. 2022, 6, 51 17 of 18

contact zone under different boundary conditions in order to ensure an optimum supply
of MWF.
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