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Abstract 

For bacterial cells to enlarge and divide, peptidoglycan must be cleaved by specific 

hydrolases so that new subunits can be incorporated into the mature cell wall. The most 

important murein hydrolase of the opportunistic human pathogen Staphylococcus 

aureus is ATL, a 137.5 kDa bifunctional protein with two domains: AM and GL  that 

are extracellularly processed and bind to the staphylococcal surface at precise locations 

of the equatorial surface rings. Based on observations that showed that atl mutants, 

constructed in different S. aureus genetic backgrounds, are not all impaired in biofilm 

formation, and that the GL-DNA interaction impacts biofilm formation in a strain 

specific way, we hypothesized that the physiological roles of ATL may be strain-

specific. Different approaches were used to characterize ATL in different S. aureus 

strains: (i) the atl gene was sequenced to identify amino acid differences in the protein 

that could change its activity or undergo different proteolytic cleavage; (ii) the size of 

the different ATL processed forms and the cell compartment where they accumulate 

was assessed; (iii) the expression of ATL was analyzed over time by western blotting; 

(iv) the impact of DNA on GL lytic activity was determined for heat-inactivated cells, 

cell wall and peptidoglycan, through lytic assays with the GL purified protein. 

The results obtained allowed to identify distinct patterns of ATL protein expression and 

of proteolytic cleavage that may be the basis for the primary phenotypic differences. 

Keywords: Autolysin; Staphylococcus aureus; lytic activity; ATL; Glucosaminidase; 

protein expression. 
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Resumo 

Para as células bacterianas crescerem e se dividirem, o peptidoglicano sofre clivagem 

por hidrolases específicas de modo a que novas subunidades possam ser incorporadas 

na parede celular. A hidrolase mais importante de Staphylococcus aureus, um agente 

patogénico humano oportunista, é a proteína bifuncional ATL composta por dois 

domínios, AM e GL, que são processados extracelularmente e se ligam à superfície da 

bactéria em locais precisos da superfície equatorial. Com base em observações que 

mostraram que para mutantes de atl, construídos em diferentes linhagens de S. aureus, a 

formação de biofilme não é em todos prejudicada, colocou-se a hipótese de que os 

papéis fisiológicos da ATL podem ser específicos da estirpe. Diferentes abordagens 

foram usadas para caracterizar a proteína ATL em diferentes estirpes de S. aureus: (i) o 

gene atl foi sequenciado com o intuito de encontrar diferenças de aminoácidos na 

proteína que poderiam alterar a atividade ou sofrer clivagem proteolítica diferente; (ii) 

analisou-se o tamanho das diferentes formas processadas do ATL, bem como o 

compartimento da célula em que o mesmo ocorre; (iii) a expressão de ATL foi analisada 

ao longo do tempo por Western Blot; (iv) determinou-se o impacto do DNA na 

atividade lítica do GL em células inativadas, na parede celular e no peptidoglicano, 

através de ensaios de lise com a proteína purificada GL. 

Os resultados obtidos permitiram identificar padrões distintos de expressão da proteína 

de ATL e clivagem proteolítica que pode ser a base para as diferenças fenotípicas 

primárias. 

Palavras-chave: Autolisina; Staphylococcus aureus; atividade lítica; ATL; 
Glucosaminidase; expressão de proteínas. 
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Chapter I - Introduction 

 

1.  Staphylococcus aureus 

Staphylococcus aureus are Gram-positive cocci with low DNA G+C content that 

usually occur as grape-like clusters, and form a fairly large yellow colony on rich 

medium and are often hemolytic on blood agar. Staphylococci are facultative anaerobes 

that grow by aerobic respiration or by fermentation that yields principally lactic acid. 

These bacteria are catalase-positive (converts hydrogen peroxide to water) and oxidase-

negative, and can grow at a temperature range of 15 to 45 degrees and at NaCl 

concentrations as high as 15 percent. They are coagulase positive, a marker that allows 

the distinction between S. aureus and other Staphylococcus (Kloos, 1997).  

1.1. Pathogenicity  

S. aureus are frequently found as a commensal in the respiratory tract of humans 

(Kluytmans et al, 1997) but can also act as an opportunistic human pathogen. They are 

the major cause of nosocomial infections worldwide (Pfaller et al, 1988). 

In colonization, the relationship with the host is benign and asymptomatic, but break 

of the cutaneous barrier allows the bacteria to internalize and cause diseases such as 

skin and soft tissue infections (noninvasive infections). As a pathogen, it is considered 

versatile bacteria, as it can cause a wide spectrum of infections from impetigo and 

folliculitis to life-threatening invasive infections, such as bacteremia, pneumonia or 

endocarditis. In addition, intake of toxins from food products colonized by S. aureus, 

can cause acute gastroenteritis (Boucher et al, 2010; Lee, 2003; Projan & Novick, 

1997). 

1.2. Virulence  

S. aureus expresses many potential virulence factors including toxins, immune-

modulatory factors, and exoenzymes (Watkins et al, 2012). 

Most of these virulence factors are cell-surface-associated, helping to avoid 

phagocytosis and consequently allowing the evasion of host defenses. They usually are 

involved in one of the following processes: i) adherence of S. aureus to surfaces, such 

as adhesins, coagulase, fibrinogen-binding proteins, clumping factor, and biofilm 
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polysaccharides; ii) escaping of the host immune system, such as enterotoxins, protein 

A and leukocidins; and iii) damage of the host including hemolysins, phospholipase C 

and α-toxin. Toxins, proteases and superantigens, prevent the development of a strong 

antibody response by promoting the bacterial attack of the host, preventing the 

development of an antibody response, compromising the immune memory (Foster, 

2005; Projan et al, 1997).  

S. aureus is also insensitive to lysozyme (peptidoglycan hydrolase), a bactericidal 

protein produced by the innate immune system that is present in most human body 

fluids such as saliva, sweat and tears, and which production is increased during 

infection (Bera et al, 2005;  Levy , 2000; Schindler et al, 1997). 

The fact that S. aureus has the ability to easily acquire genetic information also 

contributes to virulence, mainly through the acquisition of mobile genetic islands that 

carry virulence determinants.  

1.2.1. Multi-drug resistance 

S. aureus, the paradigm among the bacteria of this natural phenomenon, has always 

been a challenge for anti-microbial chemotherapy (Chambers, 2001).  

Initially, staphylococci infections were treated with penicillin, a β-lactam antibiotic 

discovered in 1928 improving the prognosis of patients with staphylococcal infections, 

decreasing the extremely high mortality rate. β-lactams inhibit the last step of the cell 

wall peptidoglycan biosynthesis, inactivating the penicillin binding proteins (PBPs) due 

to the similarity to their substrate – peptidoglycan terminal D-ala-D-ala. The acquisition 

of a plasmid encoding for a β-lactamase protein (penicillinase) led to penicillin 

resistance (Abraham and Chain, 1940); this β-lactamase hydrolyzes the β-lactam ring 

and consequently inactivates the antibiotic (Ghuysen, 1991). In order to overcome the 

acquired resistance to this natural antibiotic, semi-synthetic compounds (derivatives of 

penicillin), modified to resist to β-lactamase action, were developed to combat S. aureus 

penicillin resistant infections: methicillin and its derivatives oxacillin, nafcillin, among 

others (Plata et al, 2009; Moellering, 2012).  

Methicillin was introduced clinically in 1959, however only two years later, the first 

strains of methicillin resistant S. aureus (MRSA) were identified, carrying the 
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exogeneous mecA gene (Jevons, 1961). The MRSA phenotype is a multifactorial 

process that occurs by the acquisition of a staphylococcal chromosome cassette 

(SCCmec) and the expression of several housekeeping auxiliary genes. Besides β-

lactams antibiotics (penicillins, cephalosporin and carbapenems), MRSA strains also 

developed resistance to virtually all other classes of antibiotics that were introduced into 

clinical practice, such as macrolides, chloramphenicol and tetracycline, that target 

protein synthesis or fluoroquinolones and rifampicin, that target nucleic acid synthesis 

(Bambeke et al, 2003).  

The major resistance element of SCCmec is the mecA gene. This gene codes for an 

extra PBP, PBP2a (Reynolds & Brown, 1985). PBP2a has a very low affinity to β-

lactams, allowing cell wall biosynthesis to proceed in the presence of the antibiotic 

(Hartman and Tomasz, 1984).  The mecA gene is not native to S. aureus but was 

acquired from another species, most probably S. sciuri (Couto et al 1996; Rolo et al 

2013), by an unknown mechanism. (Beck et al, 1986) Although mecA is the main 

genetic determinant for methicillin resistance, recently, a highly divergent mecA gene, 

mecC, was identified with relatively low prevalence rates (Shore et al, 2011). 

The methicillin-resistant phenotype also depends on the expression of more than 32 

housekeeping genes - auxiliary factors, frequently associated with the cell wall 

peptidoglycan biosynthesis and degradation (Roemer et al, 2013; Berger-Bächi et al, 

1992; de Lencastre et al, 1999). 

1.2.2. MRSA epidemiology 

There are several predominant clonal lineages of S. aureus; each clonal lineage is 

defined as a result of its specific genetic background and to the geographic site of its 

first identification (Johnson et al, 2005). Studies based on the genetic analysis of MRSA 

isolates from different countries revealed that most cases of Hospital-acquired MRSA 

(HA-MRSA) infections are caused by a small group of epidemic MRSA (EMRSA) 

clones, which are highly disseminated worldwide (Tomasz & de Lencastre, 1997; 

Oliveira et al, 2002). Each MRSA clonal lineage received a designation and some of the 

most successful and well disseminated are the Iberian, Brazilian, Hugarian, New 

York/Japan, Pediatric and epidemic clones: EMRSA-16, EMRSA-15 and Berlin. 
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In contrast to MRSA infections at hospital settings, in which infected patients have 

predisposing risk factors such as an immunocompromised immune system, specific 

MRSA clones emerged in the community, in the mid and late 1990’s, in healthy 

individuals without hospitalization history – the community acquired MRSA (CA-

MRSA) (DeLeo et al, 2010; David & Daum, 2010). CA-MRSA strains are usually more 

virulent and more transmissible, however less resistant to antibiotics in comparison with 

HA-MRSA. Moreover, CA-MRSA strains carry the smaller SCCmec elements of types 

IV and V which were associated with lower fitness costs, thus promoting increased 

toxin production and thereby increased virulence (Chambers & DeLeo 2009; DeLeo et 

al. 2010; Otto 2012). 

Several CA-MRSA backgrounds emerged and spread differently in separate 

geographical areas, however, nowadays CA-MRSA are not restricted to a specific 

geographic region. USA400 clone is present in Asia, Europe and the USA, USA300 in 

the USA and Europe, the Southwest Pacific clone in Australia, Europe and South 

America, the ST59-V clone in Asia and the USA, the European clone in Europe, Asia 

and the Middle East, and ST398 clone, first associated with colonization in pigs in 

France, is currently disseminated worldwide, not only in animals but also in humans 

(Mediavilla et al, 2012; Monecke et al, 2011; Uhlemann et al, 2012). 

The expanding community reservoir of CA-MRSA has led to the inevitable 

infiltration of CA-MRSA into hospitals. This phenomenon has become a major public 

health threat and it is postulated that CA-MRSA will become the dominant MRSA 

strain in hospitals, with competitive exclusion of the traditional HA-MRSA strain 

(Seybold et al, 2006). 

2.  Cell Wall 

One of the crucial bacterial structures is the cell envelope and its integrity has to be 

guaranteed.  

The Gram-positive cell envelope consists of two functional layers: a cytoplasmic 

membrane, surrounded by a thick cell wall. The cell wall is a complex and a highly 

organized structure that allows bacteria to interact with the environment but also 

protects them against hostile insults. The Gram-positive cell wall is composed by 
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diverse structures, being the peptidoglycan their major component (up to 50%)  and  the 

teichoic acids (TAs) the key multi-functional components of the cell wall. Many Gram-

positive bacteria, such as S. aureus, contain two types of TAs; wall teichoic acids 

(WTA), which are covalently linked to the peptidoglycan layer and lipoteichoic acids 

(LTA), which are embedded in the membrane via a lipid anchor (Reichmann & 

Grundling, 2011; Xia et al 2010). Besides peptidoglycan and teichoic acids, the cell 

wall harbors a variety of different polysaccharides, polymers and proteins, like the 

PBPs. 

2.1. Peptidoglycan Biosynthesis 

Peptidoglycan, also called murein, is a polymer that consists of long glycan chains 

of alternated disaccharide units (N-acetyl-glucosamine and N-acetyl-muramic acid) that 

are cross-linked via flexible peptide bridges to form a strong but elastic structure that 

protects from lysis due to the high internal osmotic pressure (Ehlert & Holtje, 1996; 

Holtje, 1998; Nanninga, 1998; Schleifer & Kandler, 1972) (Figure 1). 

 

Figure 1 - Chemical structure of S. aureus peptidoglycan: disaccharide units cross-linked through 

an inter-peptide bridge consisting of five glycines to connect the ε-amino group of L-Lys in the third 

position of one stem (bridge-link, highlighted) to the D-Ala in the fourth position of the connected stem 

(cross-link) with the concomitant cleavage of the terminal D-Ala. (Zhou & Cegelski, 2012) 

Peptidoglycan and its biosynthetic pathway is the target of several antibiotic classes 

including β-lactams and glycopeptides (Plata et al. 2009). 
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In S. aureus, peptidoglycan synthesis begins in the cytoplasm where the precursor 

UDP-MurNAc-pentapeptide is assembled. It consists of a unit of N-acetyl-muramic acid 

(MurNAc) that is attached to a pentapetide chain L-alanine-D-glutamate-L-lysine-D-

alanyl-D-alanine (Vollmer et al, 2008). Then, UDP-MurNAc-pentapeptide is transferred 

to a membrane-bound lipid carrier by the action of MraY, forming lipid I. UDP-GlcNAc 

is added to lipid I by the action of MurG, leading to the formation of lipid II (van 

Heijenoort, 2007), that is transported through the membrane by the action of FtsW 

flippase and is polymerized through transglycosylation (to extend the glycan chains) 

and transpeptidation (crosslinking between stem peptides of different glycan strands). In 

S. aureus most of the pentapeptide chains of adjacent macromolecules are linked by 

pentaglycine interbridges between the penultimate D-alanine of one peptide chain and 

the free amino group of the lysine of the other chain. This is achieved through the 

transpeptidation activity of the so-called penicillin-binding proteins (PBP’s), which also 

catalyze the transglycosylation reaction. (Goffin et al, 1998) The peptidyltransferases 

(FemX, FemA and FemB) are responsible for the addition of the five glycine residues of 

the bridge, in a reaction catalyzed at the membrane level. (Figure 2) 

 Additional modifications to the peptidoglycan structure occur in many bacterial 

species including modifications to the glycan chains, modifications to the stem peptide, 

such as the amidation of the glutamate residue by the proteins MurT and GatD, and 

incorporation of cell wall polymers (Figueiredo et al, 2012). 

The thickness of the murein layer, in S. aureus, varies between 20 to 400 nm 

(50% of the cell wall).  It is a dynamic macro-molecule that suffers permanent 

biosynthesis, maturation, recycling, assembly and disassembly in order to maintain the 

cell shape, and allow for cellular growth and division. (Figure 2)  
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Figure 2 – Schematic representation of coordinated cell wall biosynthesis and cell division in S. 

aureus (adapted from Roemer et al, 2013). 

 

2.2. Hydrolases 

Synthesized peptidoglycan units are incorporated into the intact cell wall layer after 

cleavage by peptidoglycan hydrolases. A proper balance between peptidoglycan 

synthesis and degradation during bacterial growth is essential. In general, peptidoglycan 

hydrolases are thought to play an important role in cell wall turnover, cell division, and 

cell separation, and in the lysis of bacteria induced by the β-lactam antibiotics (Biswas 

et al, 2006).  

S. aureus produces several peptidoglycan hydrolases, such as N-

acetylglucosaminidases, N-acetylmuramidases, N-acetylmuramyl-L-alanine amidases, 

lytic transglycosylases and endopeptidases. Only the genes atl, sleI and lytM and their 

products have been characterized (Figure 3). 
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Figure 3 – Murein hydrolases targets within S. aureus peptidoglycan. The arrows indicate the 

cleavage sites (adapted from Szweda et al, 2012). 

 

SleI is a 32kDa protein with N-acetylmuramyl-L-alanine activity and is involved in 

cell separation after division in S. aureus (Heilmann et al, 2005). LytM is a 32 kDa 

protein with glycylglycine endopeptidase activity, being able to hydrolyse the glycyl-

glycine bonds of S. aureus cross bridges. Ramadurai (1997 and 1999) reported that 

LytM plays a role in cell growth as it is distributed on the cell surface uniformly. Other 

peptidoglycan hydrolases with N-acetylmuramyl-L-alanine amidases activity were 

described in S. aureus, including LytA (23 kDa), LytH (33kDa) and LytN (46kDa).  

2.3. ATL – The major autolysin of Staphylococcus aureus 

The most prominent murein hydrolase of S. aureus is ATL, a 137.5 kDa 

bifunctional protein (Oshida, 1995). ATL protein consists of a signal peptide, a pro-

peptide, a catalytic domain with N-acetylmuramyl-L-alanine amidase activity (AM), 

three repeats (R1-R3), and a C-terminal catalytic domain with N-acetylglucosaminidase 

activity (GL). After secretion, the precursor protein is processed extracellularly to yield 

the mature amidase (AM) and glucosaminidase (GL) proteins. (Figure 4) 
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Figure 4 – Domain arrangement of the bifunctional ATL precursor protein. Arrows (lightning) 

indicate the post-translational cleavage sites. SP- signalpeptide; PP- propeptide; cat- catalytic domains; 

R1 R2 R3- repeat domains.  

The amidase (63.3 kDa) cleaves the amide bond between the N-acetyl muramic 

acid in the glycan backbone and L-alanine in the stem peptide, contains an enzymatic 

domain and two repeat domains involved in localization and substrate recognition (R1 

and R2, that can each be further divided into an a-type and a b-type subunit) (Biswas, 

2006; Marino et al, 2002). The amidase repeats R1R2 are responsible for attaching the 

enzyme to the cell wall and do not contribute to lytic activity (Oshida, 1995; Biswas, 

2006). The structure of AM from Staphylococcus epidermidis is already determined 

(Figure 5). This domain, without repeats, adopts a globular, mixed α/β fold, with six 

stranded, central β-sheet surrounded by seven α-helices (Zoll et al, 2010). In the center 

of the recessed area is a zinc ion. R2ab resembles a half-open β-barrel formed by a 

semi-circular, four stranded β-sheet, and the two subunits are arranged in a similar 

orientation. 

 

  

 

 

 

 

Figure 5 – (A) Structure of the catalytic domain of AmiE amidase (without repeats R1,2) of S. 

epidermidis AtlE. Helices and strands are shown in green and pink respectively. (B) Structure of the Atl 

repeats R2ab. R2a and R2b have a similar β-structure that is connected with a flexible linker with R1a. 

(Götz et al, 2013) 

B 
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GL (53.6 kDa) hydrolyzes the bond between N-acetyl-β-D-glucosamine and N-

acetyl muramic acid and contains an enzymatic domain and a single repeat domain (R3) 

(Oshida, 1995). The structure of GL domain has not been elucidated yet. 

The differences in structure of the repeat domains of these two enzymes might 

reflect the differences of the recognition sites on staphylococcal cell walls. The atl gene 

was probably developed through fusion of AM and GL genes (Oshida, 1995). 

2.3.1. Role of ATL in Cell Division 

S. aureus is known to occur singly, in pairs, in short chains, and in irregular clusters 

(Bergey's Manual, 8th ed.), dividing in an unusual way, as it switches division plane in 

three consecutive perpendicular orientations in successive division cycles (Tzagoloff & 

Novick, 1977). S. aureus cells divide by forming a septum which is split, becoming the 

new hemisphere of each daughter cell (Giesbrecht et al, 1976; Amako & Umeda, 1997). 

The binding of both AM and GL to the staphylococcal surface occurs at precise 

locations of the equatorial surface rings, not only at the septum of dividing cells but also 

at a perpendicular surface ring that marks the future cell division site (Sugai et al, 1997; 

Baba and Schneewind, 1998). 

The mechanism by which ATL-hydrolase is targeted to the equatorial surface ring is 

based on an avoidance strategy by WTAs, which prevents binding of ATL. As WTAs 

are abundant in the cell wall but not at the cross-wall region, ATL is able to bind to this 

region. There are at least two possible mechanisms for the specific localization of ATL 

at the septal sites of the cell surface. One is that ATL protein is synthesized, 

translocated at the cell division site, and localized with an anchoring component. The 

other is that ATL is secreted into the culture medium and reabsorbed to an anchoring 

component via ligand-receptor interaction (Schlag et al, 2010; Yamada et al, 1995). 

(Figure 6)  

The ring structure of the localization of the atl gene products raises many interesting 

questions such as the identification of the components of the cell wall that interact with 

ATL domains and also the regulation of ATL different enzymatic activities.  
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Deletion mutants of atl form large cell clusters in which the walls of individual cells 

appear to be interlinked with other cells, indicating a severe defect in cell separation 

(Biswas et al, 2006). 

 

Figure 6 - Model for the function of atl gene products in cell-cell separation. Localization of atl gene 

products at the cell surface for the different cell division phases; 1 – beginning of septum formation; 2 – 

septum invagination; 3 – complete septum formation; 4 – detail of murein hydrolysis at the septum limits; 

5 - ATL localizes at the future cell division site; 6- cell division (adapted from Yamada et al, 1995).  

 

2.3.2. Role of ATL in Biofilm formation 

Colonization of human nares, among other surfaces, with S. aureus usually involves 

the establishment of biofilms (Iwase et al, 2010). These aggregates occur in natural and 

industrial environments, but also in hospital settings. Biofilm formation begins with the 

initial adhesion of bacteria to the host epithelial surfaces; subsequent release of bacterial 

polysaccharides, proteins and DNA leads to the formation of an extracellular matrix that 

involves the biofilm community. After biofilm growth and maturation, shedding and 

release of bacterial cells, promotes invasive disease and dissemination into host tissues 

(Sadykov, 2012; Archer, 2011). Cell death and lysis is a necessary and, apparently, 

controlled process during the development of S. aureus biofilm (Rice et al, 2007).  

A link between ATL hydrolase and the formation of biofilm has been recurrently 

reported. The disruption of the atl gene caused a dramatic decrease in the ability to form 
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biofilm (Bose et al, 2012; Houston et al, 2011; Boles et al, 2010; Heilman et al, 1996) 

and the adhesion characteristics of the deletion mutants resembled those of DNase I-

treated samples (Das et al, 2010). The currently accepted model for the role of ATL in 

biofilm formation defends that this protein is directly involved in cellular autolysis and 

genomic DNA (an important building block of the biofilm matrix) release (Boles et al, 

2010). S. aureus biofilms may include bacterial DNA as part of the extracellular matrix 

(Kaplan et al, 2012; Mann et al, 2009) which its released through the activity of ATL 

(Houston et al, 2011; Rice et al, 2007). On the other hand, ATL directly contributes to 

the attachment of cells to the surface during the early stages of biofilm formation 

(Houston et al, 2011). The repeat domains of ATL have been shown to bind various 

host extracellular matrix proteins, including vitronectin and fibronectin (Heilmann et al, 

2005; Heilmann et al, 1997; Hell et al, 1998).  

The recently reported DNA-binding capacity of the catalytic GL domain of ATL 

may confer another function for this hydrolase in biofilm development: GL could 

provide an attachment point between the cell surface and the biofilm matrix (Grilo et al, 

2014).  

2.3.3. ATL-DNA association 

Recently, Grilo et al (2014) reported that ATL is able to bind DNA molecules, 

suggesting multiple possible roles for such activity. This DNA-binding activity is not 

sequence specific and does not require interaction with other proteins. It is present in the 

unprocessed ATL protein, in the catalytic region of the GL domain and in the repeat 

domains as well. The GL catalytic domain showed DNA-binding activity independent 

of the presence of the R3 repeat unit, and DNA-binding activity of the AM domain is, in 

contrast to the GL domain, restricted to the repeat regions. It is speculated that this 

binding capacity is primarily related to the capture and/or anchoring of extracellular 

DNA molecules. 
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3. Thesis objectives 

Preliminary observations (Grilo et al, unpublished) showed that atl mutants, 

constructed in different S. aureus genetic backgrounds, are not all impaired in biofilm 

formation. Also, a role for GL-DNA binding capacity in biofilm formation was 

observed for some strains, while not for others (see results in annex 1). 

Facing these observations, we hypothesized that the physiological roles of ATL 

protein are strain-specific. 

The main objective of this thesis is to characterize ATL protein regarding strain 

specificity: 

1- The different processed forms and the cell compartment where the 

cleavage occurs, in different S. aureus backgrounds (MRSA and MSSA 

strains). 

2- Analyze the expression of ATL along time in the different strains. 

3- Analyze the impact of DNA on GL lytic activity on the peptidoglycan of 

several S. aureus lineages. 

4- Characterize GL-DNA interaction by NMR. 
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Chapter II - Materials and Methods 

 

1. Strains 

In this study, S. aureus strains COL, NCTC 8325, WIS, HDE 288, MW2, 

UAMS-1 and JE2 were grown at 37ºC with aeration in Tryptic Soy Broth or Agar 

(TSB/TSA) (Difco Laboratories, USA), and Escherichia coli strains were grown at 

37ºC in Lysogeny Broth or agar (LB/LA) (Difco Laboratories). These strains and their 

genotype are listed in Table 1. 

Table 1 – Strains and plasmids used in this study. 

Strain or plasmid Genotype or Description Source or 

reference 

Strains   
Staphylococcus 

aureus 

  

COL HA-MRSA; archaic clone, SCCmec type I 
Tetr, Strepr 

 

Rockefeller 
University 
Collection 

 
NCTC 8325 MSSA Novick, 1991 

WIS Taiwan clone, SCCmec type V CA-MRSA O’brien et al, 1999 

HDE 288 HA-MRSA; Pediatric clone, SCCmec type 
VI AMSr, Cftr, Oxar, Penr 

Sá-Leão et al, 1999 

JE2 CA-MRSA; USA 300 clone Diep et al, 2006 

 MW2 CA-MRSA; USA400 clone, SCCmec type 
IV 

CDC, 1999 

UAMS-1 MSSA Gillaspy et al, 1995 

Escherichia coli   
BL21(DE3) F–ompT gal dcm lon hsdSB(rBmB) k(DE3 

[lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) 
Invitrogen 

Plasmids   
pET28a(+) E. coli expression vector Novagen 

pET-GL pET28a(+) expressing GL as a N-terminal 
His-tag fusion (fragment amplified with 

Pexp3 and Pexp4) 

Grilo et al, 2014 

pET-AM pET28a(+) expressing AM as a N-terminal 
His-tag fusion (fragment amplified with 

Pexp1 and Pexp5) 

Grilo et al, 2014 
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2.  DNA Methods 

Chromosomal DNA from strains was extracted using Wizard Genomic DNA 

Purification kit (Promega, USA) as suggested by the manufacturer, with some 

modifications, namely, an initial cell lysis step, performed in Tris pH8 supplemented 

with 10 mg/ml of lysostaphin (AMBI PRODUCTS LLC, USA) and 30 µg/ml of RNase 

(SIGMA, USA). 

2.1.  PCR and sequencing 

Routine PCR (polymerase chain reaction) amplification was performed with 

NZYTaq DNA polymerase (Nzytech, Portugal). The primers used are listed in Table 2. 

PCR products were purified with DNA Clean & ConcentratorTM-5 (Zymo Research, 

USA).  

Table 2 – Primers used for PCR amplification. 

Primer Sequence nt 

PAM fw BamHI CCAGGATCCGCTTCAGCACAACCAAGATCAG 31 
pGL rv XhoI CCACTCGAGTTTATATTGTGGGATGTCG 28 
PreAM fw ATGAATGCCCAATGTCATGC 20 

AM rv AGTAGTTACTTTAGGTGTCGC 21 
PcompATL fw SalI CGAGTCGACGATTTGTCACGTCACC 25 

PAMR2 rv SalI CCAGTCGACTTAGGTAGTTGTAGATTGCG 29 

PR1R2R3GL fw NcoI GCTCCATGGCTCCTACTACACCATCAAAACC 31 

PAM rv SalI CCAGTCGACTTATTTTACAGCTGTTTTTGG 30 

PR2R3GL fw NcoI GCACCATGGCTCCTACACCAACACCTAAGCC 31 
pGLSH3 rv SalI CCTGTCGACTTAATGCTTAACATCATTAAAGTTAG

C 
36 

PGL fw BamHI CGTGGATCCGCTTATACTGTTACTAAACC 29 

PGL rv SalI CCAGTCGACTTATTTATATTGTGGGATGTCG 31 

PGLSH3fw GATGTTAAGCATGCAATGGATACG 24 
PosGL rv ACGTTGCGAATTGATTGAAGC 21 

 

PCR products were sequenced at STAB VIDA (Portugal), and the sequence 

traces were analyzed using the software DNAstar Lasergene SeqMan Pro (Version: 

7.1.0). 
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3. Fractionation of culture contents 

Culture samples were taken over time corresponding to the following OD620nm: 

0.1, 0.2, 0.4, 0.6, 1, 2, 3, 4, 6 and at late stationary phase (≈24h). Cells were harvested 

by centrifugation (10 000g, for 10 minutes at 4ºC) and the supernatant and the pellet 

were separately stored at -20ºC and later processed as follows. 

Supernatant 

The supernatant protein precipitation was performed using 1/10 volume of 

TCA, during 17h, at -20ºC. The protein fraction was collected by centrifugation at 

13 000 rpm 4ºC, 10 minutes (SIGMA 3-16K, 12155 rotor, Sartorius, Germany). The 

protein pellet was rinsed with ice-cold acetone and centrifuged at 13 000 rpm 4ºC for 

10 minutes. The supernatant was discarded and the dried pellet ressuspended in 

500µl PBS 1x. 

Pellet 

In order to obtain the same cell number, different volumes of culture were 

used, as showed in Table 3. The pellet was washed in 1ml of ice-cold 50mM Tris-

HCl (pH7.5)-150mM NaCl and centrifuged at 10 000 rpm, 4ºC for 10 minutes. Then, 

the membrane-associated proteins were extracted by ressupending the pellet in 100µl 

of 4% SDS and incubating at room temperature (RT) for 30 minutes with stirring. 

The SDS suspensions were centrifuged at 13 000 rpm (Biofuge Pico Heraeus), for 15 

minutes at RT. The supernatants were stored in aliquots at -20ºC. 

Table 3 – Culture volumes taken at different OD’s620nm. 

 

 

 

 

 

 

 

OD620nm Volume (mL) 

0.1 50 
0.2 25 
0.4 12.5 
0.6 8.3 
1 5 
2 2.5 
3 1.7 
4 1.25 
6 0.83 
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3.1.  Protein analysis by SDS-PAGE and Western Blot 

To verify the integrity of the protein extracts, protein samples were analyzed 

under denaturing conditions using SDS-polyacrylamide gel electrophoresis (PAGE), 

with the mini-PROTEAN system (BIO-RAD, USA). Before electrophoresis, the 

samples were mixed in a ratio of 1:2 with 19:1 (Laemmli: β-mercaptoethanol) solution, 

incubated at 95ºC for 5 min and then 10 min on ice. Electrophoresis was performed in 

running buffer (24 mM Tris-base, 191 mM Glycine, 3.46 mM SDS) at 30 mA for 1-1.5 

h. Samples were analyzed in 10% SDS-PAGE along with molecular weight marker 

(ColorBurst Electrophoresis Marker, Sigma or Precision Plus ProteinTM All Blue 

Standards, BIO-RAD).  

Proteins were transferred to a nitrocellulose membrane (Amersham Hybond 

ECL Nitrocellulose, 0.45 µm from GE Healthcare, UK) using the Mini Trans-blot 

electrophoretic transfer cell (BIO-RAD) and transfer solution (25 mM Tris-base, 192 

mM Glycine, 10% Ethanol). Blotting was performed at 4ºC for 90 min at 100 V with 

agitation. After blotting, the membrane was incubated overnight in blocking solution 

(PBS-Tween and 5% w/v low-fat milk), washed with PBS-Tween and probed with the 

primary antibody anti-GL or anti-AM (Grilo et al, unpublished), in a ratio of 1:1500 for 

2 h and 1:1000 for 5h, respectively. The membrane was then washed, immersed in fresh 

blocking buffer and incubated with secondary antibody (anti-rabbit IgG) (Perkin Elmer, 

USA) in a ratio of 1:20000 for 30min. After a final washing step, the membrane was 

incubated with chemiluminescence detection solution for 1 min (Western Lightning 

Plus-ECL, PerkinElmer, USA) and exposed to autoradiographic film (Amersham 

HyperfilmTM ECL GE Healthcare) for appropriate periods of time. The film was 

processed manually by immersion in developing and fixing reagents. 

4. GL-mediated Lysis Assays 

Three different substrates were used to analyze the lytic activity of GL: (i) heat-

inactivated cells, (ii) cell wall, and (iii) peptidoglycan. Samples were prepared as 

described in the next sections (4.1 – 4.3). Heat-inactivated cells were diluted to an 

OD600≈ 0.4 in Tris pH7.5. Cell wall and purified peptidoglycan were prepared Tris 

pH7.5 to an initial concentration of 4mg/mL. Low-molecular weight salmon sperm 

DNA (Sigma) (0.5 and 0.05 mg/mL) and purified protein ATL-C (GL domain without 
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the repeat region, Grilo et al, 2014) (5ng/µl) were added to the wells, as needed. 

Mutanolysin (5µg/mL) and lysostaphin (5µg/mL) were used as positive controls for 

lytic activity.  

Lysis assays were performed in sterile nontreated 96-well microplates 

(Brandplates®, Brand, Portugal) at 37ºC with shaking for 10h, taking readings (600nm) 

with 10 minutes interval in a microplate reader Sprectra Max190 (Molecular devices, 

USA).  

4.1.  Purification of heat-inactivated cells 

S. aureus strains were grown at 37°C with stirring to an OD of ≈0,3 and cells were 

harvest by centrifugation at 10 000 rpms at 4ºC for 10 minutes (Sorvall RC-5C 19 Plus, 

SLA-150 rotor, Kendro Laboratory Products Newtown, USA). The pellets were 

ressuspended in cold water and cells were boiled in SDS (to a final 4% SDS 

concentration) for 30 minutes. The cultures were kept at RT O/N. The SDS was 

removed by washing the cells with hot water until no SDS is detected in the 

ressuspended pellet through the Hayashi method. The pellet cells were kept in H2O with 

0,05% NaN3. 

4.2.  Cell wall extraction 

To extract the cell walls, the procedure of section 4.1. was performed and 

subsequently the cells were broken by glass beads (Glass beads, acid-washed, 425-600 

μm, Sigma) using the Fastprep apparatus (Fastprep FP120, Bio 101 Savant, France), 3 

times, 40 seconds at speed 6. The samples were cooled on ice between runs. Glass 

beads were removed by filtration using a vaccum filter (porosity 3). The filtrate was 

centrifuge in corex tubes for 5 minutes at 2 000 rpm, RT, to remove unbroken cells and 

large cellular debris. The supernatant was centrifuged for 15minutes at 15 000 rpm, RT. 

Pellets were ressuspended in 100mM Tris (pH 7.5). 

 To purify the cell walls, the samples were incubated with MgSO4 (20 mM), 

DNAse and RNAse (10 and 50 µg/ml, respectively) at 37ºC for 2h. Afterwards, CaCl2 

(10 mM) and trypsin (100µg/ml) were added and the samples were incubation 

proceeded O/N with agitation. To inactivate the enzymes, SDS was added to a final 

concentration of 1% and the samples boiled for 15minutes.  
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SDS was removed by 2 washes with H2O, centrifuging at 15 000rpm for 15 

minutes. The pellet was incubated in 8M LiCl2, for 30 minutes at 37ºC and centrifuged 

for 15 minutes at 15 000 rpm at RT. The pellet was incubated in 0.1M EDTA (pH 7.0), 

for 30 minutes at 37ºC and again centrifuged. After 4 washings with H2O the pellet was 

lyophilized O/N in Speedvac (SavantTM SpeedvacTM Concentrator, USA). 

4.3.  Purification of Peptidoglycan 

Peptidoglycan purification was performed following the procedures of sections 

4.1. and 4.2.. The lyophilized pellet (section 4.2) was treated with 48% hydrofluoric 

acid, for 48h at 4ºC with agitation. After incubation, H2O was added and a pellet was 

obtained by centrifugation (45min at 20 000 rpm, 4ºC). This step was repeated. The 

pellet was ressuspended in 10mM Tris (pH 7.0), followed by centrifugation. Three H2O 

washing steps were performed. The pellet was lyophilized O/N in Speedvac. 

5. Protein expression and purification 

ATL-C protein (GL domain without the repeat region) (Grilo et al, 2014) was 

expressed using two different procedures, according to the final objective: i) protein for 

the lysis assays, and ii) protein for the NMR assays.  

5.1.  Expression of ATL-C protein in complex medium for digestion 

assays  

ATL-C protein was expressed in E. coli BL21(DE3)+PET28a-ATL-C. Cells 

transformed with the appropriate recombinant plasmid were grown in LA medium 

supplemented with Kanamycin (30 μg/ml of Km) at 37ºC.  

A colony was inoculated in 500mL of auto-induction medium (LB medium 

supplemented with 2mM MgSO4, 10mL 50x5052 (0.5% glycerol, 0.05% glucose and 

0.2% lactose), 25mL 20xNPS (see annex 3) and Kanamycin 30µg/ml), grown at 

37ºC for 17h and cells were harvested (12000 rpm for 10 min) (Sorvall RC-5C 19 

Plus) and ressuspended in 20mL lysis buffer (50mM Na2HPO4; 300mM NaCl; 

10mM Imidazole; pH8) and 10 UmL-1 benzonase (Novagen, Germany) (4µL). 

After cell disruption performed with a French Press (FA-032 (40k) standard 

cell at 12000 psi from Thermo Electron Corporation), and removal of cellular debris 
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and membranes by centrifugation (12000 rpm for 1 h), the lysate was subsequently 

purified as described in the next section. 

5.1.1. Manual protein purification using Ni-NTA matrix  

The column was charged with Ni-NTA agarose (Qiagen, USA) and equilibrated 

with 20mL of water and 20mL of lysis buffer. The lysate was loaded onto the column 

and an aliquot was collected (flow-through). 20mL of wash buffer (50mM Na2HPO4; 

300mM NaCl; 30mM Imidazole; pH8) was used for the washing steps and 2mL of 

Elution Buffer (50mM Na2HPO4; 300mM NaCl; 250mM Imidazole; pH8) for collecting 

5 elutions. Finally, the column was washed with water and 30% ethanol and stored at 

4ºC. Aliquots were collected at each step. 

To verify the protein purity level, the protein samples were analyzed under 

denaturing conditions using SDS-polyacrylamide gel electrophoresis (PAGE), as 

described before, in section 3.1.  

5.2.  Expression of ATL-C protein in Minimal Medium for NMR analysis 

ATL-C protein was expressed in E. coli BL21(DE3)+PET28a-ATL-C. To test 

the expression conditions, the assays were performed in small-scale, using 200 ml of 

bacterial culture, while, to obtain high quantities of protein, expression was performed 

in large-scale, using 500mL to 1L of bacterial culture. The method of cell disruption 

adopted was mechanical disruption with French Press as before.  

Small-scale: 

A colony was inoculated in 10mL of non-induction minimal medium (50mM 

Na2HPO4, 50mM KH2PO4, 5mM Na2SO4, 50mM NH4Cl, 2mM MgSO4, 0.2x trace 

metals (see annex 3), 0.5% glucose) and grown at 37ºC for 7h. Subsequently, 2% of the 

volume was inoculated in 25 mL of fresh non-induction minimal medium and the 

culture was grown at 37ºC for 17h. Then, 2% of the culture was transferred to 200mL of 

induction minimal medium (50mM Na2HPO4, 50mM KH2PO4, 5mM NaSO4, 50mM 

NH4Cl, 2mM MgSO4, 0.2x trace metals, 200µL 50x5052). After 24 h of incubation at 

37ºC, cells were harvested (12000 rpm for 10 min) (Sorvall RC-5C 19 Plus) and 

ressuspended in 20mL lysis buffer and 10 UmL-1 benzonase (adapted from Studier, 

2005). 
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After cell disruption performed using a French Press and removal of cellular 

debris and membranes by centrifugation, the lysate was subsequently purified as 

described in 5.1.1 section and analyzed by SDS-PAGE as described in section 5.1.2.. 

Large-scale: 

The procedure was the same as for small-scale, with the corresponding volumes 

scalled-up for 1L of bacterial culture. 

5.2.1.  Expression of ATL-C protein in Minimal Medium for 
15

N NMR 

analysis  

The protein expression procedure was performed as optimized for minimal medium 

(section 5.2), with the exception that instead of 50mM NH4Cl, labeled 15NH4Cl (Sigma) 

was added to the same concentration, with the corresponding volumes scalled-up for 

500mL of bacterial culture.  

 

5.3.  Desalting and protein concentration  

Desalting and buffer exchange were performed using PD-10 desalting columns (GE 

Healthcare) to 100mM Tris (pH7.5).  PD-10 Desalting Columns contain Sephadex G-25 

Medium, which allows separation of high molecular weight substances from low 

molecular weight substances; small molecules like salt and other impurities are 

efficiently separated from the high molecular weight substances of interest. 

 The samples were concentrated using Amicon® Ultra-4 (10 k) Centrifugal Filter 

Units (Merck Millipore, USA).  This device provides efficient concentration and 

desalting of macromolecules by ultrafiltration using Millipore’s Ultracel® YM 

regenerated cellulose anisotropic membranes. Centrifugal force drives solvents and low 

molecular weight solutes through the membrane while the macromolecules remain 

inside the sample reservoir.  

5.4.  Protein quantification  

The total amount of protein present in each fraction collected was estimated by 

UV absorption at 280 nm (NanoDrop ND-1000, Fisher Scientific, Spain), using 

extinction coefficient and protein molecular weight calculated with the online tools 
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ProtParam and Compute pI/MW (ExPASy, Bioinformatics Resource Portal) specific for 

the target protein (ATL-C: ε= 64860 cm-1/M; MW = 39639.6641 Da). 

Protein concentration from the extracts (section 3) was measured with BCA assay 

(Pierce) in a microplate reader. 

6. NMR analysis  

NMR experiments were performed at 298 K in a Avance II+ 600-MHz spectrometer 

(Bruker, Germany) equipped with 5-mm TCI cryoprobe. Proton chemical shifts were 

referenced against external DSS while nitrogen chemical shifts were referenced 

indirectly to DSS using the absolute frequency ratio. Data was processed using the 

Topspin 3.1 package (Bruker). 

A 1 mM solution of 15N-labeled ATL-C in 25mM Tris-DCl buffer (10% 2H2O, 

pH=7.5) 75mM NaCl, was titrated.  
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Chapter III – Results 

 

Preliminary results (see annex1) suggest that the physiological roles of ATL 

autolysin and in particular, its association with DNA (Grilo et al, 2014) is dependent on 

the genetic background of S. aureus. Thus, with the purpose of characterize the S. 

aureus ATL protein, regarding strain specificity, different approaches were designed 

and different genetic backgrounds were used, namely strains COL (HA-MRSA, archaic 

clone), WIS (CA-MRSA, Taiwan clone), HDE288 (HA-MRSA, pediatric clone), 

UAMS-1 (MSSA, , JE2 (CA-MRSA, USA300), NCTC8325 (MSSA, laboratory strain) 

and MW2 (CA-MRSA, USA400).  

1. Determination of atl gene SNPs  

In order to compare the nucleotide sequence of atl gene of the different strains, the 

atl gene was fully sequenced for strains for which the genome sequence was still 

undetermined, namely WIS, HDE288 and JE2. 

The sequence length of atl gene, including the promoter region, is approximately 

4000 bps; amplification of this region was performed in 6 separate DNA fragments 

(fragments A to F), as shown on Table 4 and Figure 7. 

Table 4 – atl gene fragments amplified and primers used for PCR amplification. 

DNA fragment Primers Length (bps) 

A PcompATLfwSalI + PAMR2rvSalI 1431 

B PR1R2R3GLfwNcoI + PAMrvSalI 1053 

C PR2R3GLfwNcoI + pGLSH3rvSalI 1392 

D PGLfwBamHI + PGLrvSalI 1446 

E PreAM fw + AM rv 941 

F PGLSH3fw + PosGL rv 915 
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Figure 7 – atl PCR reactions scheme. The atl sequence, including the promoter was approximately 4500 
bps. Six fragments of approximately 1000 pbs, designated A to F, were amplified and sequenced.  

 

The PCR products were sequenced separately and the resultant full sequences were 

assembled and aligned, using DNASTAR Lasergene software, with the sequences 

already available in the databases for strains, COL (CP000046), UAMS-1 

(JTJK00000000), NCTC8325 (NC_007795) and MW2 (BA000033). Strain COL was 

used as reference. A high number of nucleotide differences and high diversity 

(nucleotide differences specific to one strain) was observed among the atl coding 

sequences of the different genetic backgrounds (Table 5). The three strains that showed 

higher nucleotide diversity were UAMS-1 (>100 nucleotide substitutions, 1 insertion 

and 3 deletion events), HDE288 (27 nucleotide substitutions and 1 deletion event) and 

JE2 (37 nucleotide substitutions and 1 insertion event). The two possible candidate 

promotor regions (Oshida et al, 1994) were identified upstream from the start codon and 

no nucleotide substitution was observed (Figure 8). 

  



27 

 

 

UAMS-1        TTTTACAGTGAAAATATAAATTAAGAGTATATTACAAATTGGTTAAATACGCACAGGTGT 1429 

HDE288        TTTTACAGTGAAAATGTAAATTAAGAGTATATTACAAATTGGTTAAATACGCACAGGTAT 1302 

JE2           TTTTaCAGTGAAAATGTAAATTAAGAGTATATTACAAATTGGTTAAATACGCACAGGTAT 1294 

COL           TTTTACAGTGAAAATGTAAATTAAGAGTATATTACAAATTGGTTAAATACGCACAGGTAT 1424 

WIS           TTTTACAGTGAAAATGTAAATTAAGAGTATATTACAAATTGGTTAAATACGCACAGGTAT 1424 

MW2           TTTTACAGTGAAAATGTAAATTAAGAGTATATTACAAATTGGTTAAATACGCACAGGTAT 1427 

NCTC8325      TTTTACAGTGAAAATGTAAATTAAGAGTATATTACAAATTGGTTAAATACGCACAGGTAT 1419 

              *************** ****************************************** * 

UAMS-1        ATAAAACAGGTACTATAATGAGATTAATAATTAATAAATGTTAGGAGTAATAAATAGAAT 1489 

HDE288        ATAAAACAGGTACTATAATGTTAGTAATAATTAATAAATGTTAGGAGTAATAAATAGAAT 1362 

JE2           ATAAAACAGGTACTATAATGTTAGTAATAATTAATAAATGTTAGGAGTAATAAATAGAAT 1354 

COL           ATAAAACAGGTACTATAATGTTAGTAATAATTAATAAATGTTAGGAGTAATAAATAGAAT 1484 

WIS           ATAAAACAGGTACTATAATGTTAGTAATAATTAATAAATGTTAGGAGTAATAAATAGAAT 1484 

MW2           ATAAAACAGGTACTATAATGTTAGTAATAATTAATAAATGTTAGGAGTAATAAATAGAAT 1487 

NCTC8325      ATAAAACAGGTACTATAATGTTAGTAATAATTAATAAATGTTAGGAGTAATAAATAGAAT 1479 

              ********************  * ************************************ 

 

 

Figure 8 - Alignment of the two promoter candidates sequences of ATL of S. aureus strains 
UAMS-1, HDE288, COL, WIS, MW2, NCTC8325 and JE2 (CLUSTAL Omega). In red are highlighted 
the Promotor 1 (-35 and -10 regions) and in blue the Promotor 2 (-35 and -10 regions). 

 

2. Determination of alterations in ATL protein sequence 

The atl nucleotide sequence of each strain was translated into the corresponding 

peptide sequence using Expasy Translate tool, and aligned with CLUSTAL Omega 

software (Figure 9).  

 In accordance with the differences identified in the nucleotide sequences, the ATL 

amino acid sequence of UAMS-1 strain was the one that showed less identity to COL, 

as well as to the other strains. Interestingly, for UAMS-1, most amino acid substitutions 

occurred in the region corresponding to the pro-peptide (PP). UAMS-1 has one insertion 

of 9 nucleotides which leads to an insertion of 3 amino acids (KPS) to the protein in the 

catalytic domain of AM. 

The ATL sequence of strain HDE288 showed 5 specific amino acid substitutions, 

two in the pro-peptide and the one in the R1 repeat, and 8 residues deletion in the PP. 

The sequence of JE2 showed 5 specific amino acid substitutions, two in the R1 repeat, 

two in the R2 repeat and the other in the GL domain. Regarding strain WIS, the ATL 

protein sequence was identical to strain COL, since the two SNPs did not alter the 

peptide sequence. For strains NCTC8325 and MW2, the ATL sequence was more 

conserved in comparison to COL: the moderate number of SNP's observed in the gene 

-35 (P1) -35 (P2) 

-10 (P2) 

-10 (P1) 
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sequence (4 and 6, respectively), resulted in a total of 6 amino acid substitutions, 

distributed among the PP, AM domain, repeats R3 and GL domain.  
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UAMS-1        MAKKFNYKLPSMVALTLVGSAVTAHQVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVK 60 

HDE288        MAKKFNYKLPSMVALTLVGSAVTAHQVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVK 60 

COL           MAKKFNYKLPSMVALTLVGSAVTAHQVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVK 60 

WIS           MAKKFNYKLPSMVALTLVGSAVTAHQVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVK 60 

NCTC8325      MAKKFNYKLPSMVALTLVGSAVTAHQVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVK 60 

MW2           MAKKFNYKLPSMVALTLVGSAVTAHQVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVK 60 

JE2           MAKKFNYKLPSMVALTLVGSAVTAHQVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVK 60 

              ************************************************************ 

 

UAMS-1        NPTQNISGTQVYQDPAIVQPKAA-NKTGNAQVNQKVDTTQVNGDTRATQSTTSNNAKPVT 119 

HDE288        NPTQNISGTQVYQDPAIVQPKTANNKTGNAQVSQKVDTAQVNGDTRANQSATTNNTQPVA 120 

COL           NPTQNISGTQVYQDPAIVQPKTANNKTGNAQVSQKVDTAQVNGDTRANQSATTNNTQPVA 120 

WIS           NPTQNISGTQVYQDPAIVQPKTANNKTGNAQVSQKVDTAQVNGDTRANQSATTNNTQPVA 120 

NCTC8325      NPTQNISGTQVYQDPAIVQPKTANNKTGNAQVSQKVDTAQVNGDTRANQSATTNNTQPVA 120 

MW2           NPTQNISGTQVYQDPAIVQPKTANNKTGNAQVSQKVDTAQVNGDTRANQSATTNNTQPVA 120 

JE2           NPTQNISGTQVYQDPAIVQPKTANNKTGNAQVSQKVDTAQVNGDTRANQSATTNNTQPVA 120 

              *********************:* ********.*****:********.**:*:**::**: 

 

UAMS-1        KSTNTTAPKTNNNVTSAGYSLVDDEDDNSENQINPELIKSAAKPAALETQYKAAAPKAT- 178 

HDE288        KSTSTTAPKTNTNVTNAGYSLVDDEDDNSEHQINPELIKSAAKPAALETQYKAAAP---- 176 

COL           KSTSTTAPKTNTNVTNAGYSLVDDEDDNSENQINPELIKSAAKPAALETQYKTAAPKAAT 180 

WIS           KSTSTTAPKTNTNVTNAGYSLVDDEDDNSENQINPELIKSAAKPAALETQYKTAAPKAAT 180 

NCTC8325      KSTSTTAPKTNTNVTNAGYSLVDDEDDNSENQINPELIKSAAKPAALETQYKTAAPKAAT 180 

MW2           KSTSTTAPKTNTNVTNAGYSLVDDEDDNSENQINPELIKSAAKPAALETQYKAAAPKAAT 180 

JE2           KSTSTTAPKTNTNVTNAGYSLVDDEDDNSENQINPELIKSAAKPAALETQYKTAAPKAAT 180 

              ***.*******.***.**************.*********************:***     

 

UAMS-1        PVAPKAKTEATPKVTTFSASAQPRSAAAAPKTSLPKYKPQVNSSINDYIRKNNLKAPKIE 238 

HDE288        ----KAKTEATPKVTTFSTSAQPRSVAATPKTSLPKYKPQVNSSINDYIRKNNLKAPKIE 232 

COL           TSAPKAKTEATPKVTTFSASAQPRSVAATPKTSLPKYKPQVNSSINDYIRKNNLKAPKIE 240 

WIS           TSAPKAKTEATPKVTTFSASAQPRSVAATPKTSLPKYKPQVNSSINDYIRKNNLKAPKIE 240 

NCTC8325      TSAPKAKTEATPKVTTFSASAQPRSVAATPKTSLPKYKPQVNSSINDYICKNNLKAPKIE 240 

MW2           TSAPKAKTEATPKVTTFSASAQPRSVAATPKTSLPKYKPQVNSSINDYIRKNNLKAPKIE 240 

JE2           TSAPKAKTEATPKVTTFSASAQPRSVAATPKTSLPKYKPQVNSSINDYIRKNNLKAPKIE 240 

                  **************:******.**:******************** ********** 

 

UAMS-1        STTTPTTPSKPSTPSKPSTPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNEVQK 478 

HDE288        STTTPTTPSKPTTPS---KPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNEVQK 469 

COL           STTTPTTPSKPTTPS---KPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNEVQK 477 

WIS           STTTPTTPSKPTTPS---KPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNEVQK 477 

NCTC8325      STTTPTTPSKPTTPS---KPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNEVQK 477 

MW2           STTTPTTPSKPTTPS---KPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNEVQK 477 

JE2           STTTPTTPSKPSTPS---TPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNEVQK 477 

              ***********:***   .***************************************** 

 

UAMS-1        TFAVSKTATLGNQKFYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKPGTKLYT 538 

HDE288        TFAVSKTATLGNQKFYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKSGTKLYT 529 

COL           TFAVSKTATLGNQKFYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKPGTKLYT 537 

WIS           TFAVSKTATLGNQKFYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKPGTKLYT 537 

NCTC8325      TFAVSKTATLGNQKFYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKPGTKLYT 537 

MW2           TFAVSKTATLGNQKFYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKPGTKLYT 537 

JE2           TFAVSKTATLGNQKFYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKPGTKLYT 537 

              ***************************************************** ****** 

 

UAMS-1        VPWGTSKQVAGSVSGSGNQTFKASKQQQIDKSIYLYGSVNGKSGWVSKAYLVDTAKPTPT 598 

HDE288        VPWGTSKQVAGSVSGSGNQTFKASKQLQIDKSIYLYGSVNGKSGWVSKAYLVDTAKPTPT 589 

COL           VPWGTSKQVAGSVSGSGNQTFKASKQQQIDKSIYLYGSVNGKSGWVSKAYLVDTAKPTPT 597 

WIS           VPWGTSKQVAGSVSGSGNQTFKASKQQQIDKSIYLYGSVNGKSGWVSKAYLVDTAKPTPT 597 

NCTC8325      VPWGTSKQVAGSVSGSGNQTFKASKQQQIDKSIYLYGSVNGKSGWVSKAYLVDTAKPTPT 597 

MW2           VPWGTSKQVAGSVSGSGNQTFKASKQQQIDKSIYLYGSVNGKSGWVSKAYLVDTAKPTPT 597 

JE2           VPWGTSKQVAGSVSGSGNQTFKASKQQQIDKSIYLYGSVNGKSGWVSKAYLVDTAKPTPA 597 

              ************************** ********************************: 

 

UAMS-1        PTPKPSTPTTNNKLTVSSLNGVAQINAKNNGLFTTVYDKTGKPTKEVQKTFAVTKEASLG 658 

HDE288        PIPKPSTPTTNNKLTVSSLNGVAQINAKNNGLFTTVYDKTGKPTKEVQKTFAVTKEASLG 649 

COL           PTPKPSTPTTNNKLTVSSLNGVAQINAKNNGLFTTVYDKTGKPTKEVQKTFAVTKEASLG 657 

WIS           PTPKPSTPTTNNKLTVSSLNGVAQINAKNNGLFTTVYDKTGKPTKEVQKTFAVTKEASLG 657 

NCTC8325      PTPKPSTPTTNNKLTVSSLNGVAQINAKNNGLFTTVYDKTGKPTKEVQKTFAVTKEASLG 657 

MW2           PTPKPSTPTTNNKLTVSSLNGVAQINAKNNGLFTTVYDKTGKPTKEVQKTFAVTKEASLG 657 

JE2           PTPKPSTPTTNNKLTVSALNGVAQINAKNNGLFTTVYDKTGKPTKEVQKTFAVTKEASLG 657 

              * ***************:****************************************** 
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UAMS-1        AVSGTGNQTFKATKQQQIDKSIYLYGTVNGKSGWISKAYLAVPAAPKKAVAQPKTAVKAY 778 

HDE288        AVSGTGNQTFKATKQQQIDKSIYLFGTVNGKSGWVSKAYLAVPAAPKKAVAQPKTAVKAY 769 

COL           AVSGTGNQTFKATKQQQIDKSIYLFGTVNGKSGWVSKAYLAVPAAPKKAVAQPKTAVKAY 777 

WIS           AVSGTGNQTFKATKQQQIDKSIYLFGTVNGKSGWVSKAYLAVPAAPKKAVAQPKTAVKAY 777 

NCTC8325      AVSGTGNQTFKATKQQQIDKSIYLFGTVNGKSGWVSKAYLAVPAAPKKAVAQPKTAVKAY 777 

MW2           AVSGTGNQTFKATKQQQIDKSIYLFGTVNGKSGWVSKAYLAVPAAPKKAVAQPKTAVKAY 777 

JE2           AVSGTGNQTFKATKQQQIDKSIYLYGTVNGKSGWISKAYLAVPAAPKKAVAQPKTVEKDY 777 

              ************************:*********:********************. * * 

 

UAMS-1        AVTKPQTTQTVSKIAQVKPNNTGIRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLL 838 

HDE288        TVTKPQTTQTVSKIAQVKPNNTGIRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLL 829 

COL           TVTKPQTTQTVSKIAQVKPNNTGIRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLL 837 

WIS           TVTKPQTTQTVSKIAQVKPNNTGIRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLL 837 

NCTC8325      TVTKPQTTQTVSKIAQVKPNNTGIRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLL 837 

MW2           TVTKPQTTQTVSKIAQVKPNNTGIRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLL 837 

JE2           TVTKPQTTQTVSKIAQVKPNNTGIRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLL 837 

              :*********************************************************** 

 

UAMS-1        NNTSHNIPLGWFNVKDLNVQNLGKEVKTTQKYTVNRSNNGLSMVPWGTKNQVILTGNNIA 898 

HDE288        NNTSHNIPLGWFNVKDLNVQNLGKEVKTTQKYTVNRSNNGLSMVPWGTKNQVILTGNNIA 889 

COL           NNTSHNIPLGWFNVKDLNVQNLGKEVKTTQKYTVNKSNNGLSMVPWGTKNQVILTGNNIA 897 

WIS           NNTSHNIPLGWFNVKDLNVQNLGKEVKTTQKYTVNKSNNGLSMVPWGTKNQVILTGNNIA 897 

NCTC8325      NNTSHNIPLGWFNVKDLNVQNLGKEVKTTQKYTVNKSNNGLSMVPWGTKNQVILTGNNIA 897 

MW2           NNTSHNIPLGWFNVKDLNVQNLGKEVKTTQKYTVNKSNNGLSMVPWGTKNQVILTGNNIA 897 

JE2           NNTSHNIPLGWFNVKDLNVQNLGKEVKTTQKYTVNKSNNGLSMVPWGTKNQVILTGNNIA 897 

              ***********************************:************************ 

 

UAMS-1        QGTFNATKQVSVGKDVYLYGTINNRTGWVNSKDLTAPTAVKPTTSAAKDYNYTYVIKNGN 958 

HDE288        QGTFNATKQVSVGKDVYLYGTINNRTGWVNSKDLTAPTAVKPTTSAAKDYNYTYVIKNGN 949 

COL           QGTFNATKQVSVGKDVYLYGTINNRTGWVNAKDLTAPTAVKPTTSAAKDYNYTYVIKNGN 957 

WIS           QGTFNATKQVSVGKDVYLYGTINNRTGWVNAKDLTAPTAVKPTTSAAKDYNYTYVIKNGN 957 

NCTC8325      QGTFNATKQVSVGKDVYLYGTINNRTGWVNAKDLTAPTAVKPTTSAAKDYNYTYVIKNGN 957 

MW2           QGTFNATKQVSVGKDVYLYGTINNRTGWVNAKDLTAPTAVKPTTSAAKDYNYTYVIKNGN 957 

JE2           QGTFNATKQVSVGKDVYLYGTINNRTGWVNAKDLTAPTAVKPTTSAAKDYNYTYVIKNGN 957 

              ******************************:***************************** 

 

UAMS-1        KYNQIGMTLNQVAQIQAGLQYKPQVQRVPGKWTDANFNDVKHAMDTKRLAQDPALKYQFL 1078 

HDE288        KYNQIGMTLNQVAQIQAGLQYKPQVQRVPGKWTDANFNDVKHAMDTKRLAQDPALKYQFL 1069 

COL           KYNQTGMALNQVAQIQAGLQYKPQVQRVPGKWTGANFNDVKHAMDTKRLAQDPALKYQFL 1077 

WIS           KYNQTGMALNQVAQIQAGLQYKPQVQRVPGKWTGANFNDVKHAMDTKRLAQDPALKYQFL 1077 

NCTC8325      KYNQTGMTLNQVAQIQAGLQYKPQVQRVPGKWTDAKFNDVKHAMDTKRLAQDPALKYQFL 1077 

MW2           KYNQTGMTLNQVAQIQAGLQYKPQVQRVPGKWTDANFNDVKHAMDTKRLAQDPALKYQFL 1077 

JE2           KYNQTGMTLNQVAQIQAGLQYKPQVQRVPGKWTDANFNDVKHAMDTKRLAQDPALKYQFL 1077 

              **** **:************************* *:************************ 

 

 

UAMS-1        SYVKAGQNTLYKMRWNPAHPGTHQYATDVDWANINAKIIKGYYDKIGEVGKYFDIPQYK 1257 

HDE288        SYVKAGQNTLYKMRWNPAHPGTHQYATDVDWANINAKIIKGYYDKIGEVGKYFDIPQYK 1248 

COL           SYVKAGQNTLYKMRWNPAHPGTHQYATDVDWANINAKIIKGYYDKIGEVGKYFDIPQYK 1256 

WIS           SYVKAGQNTLYKMRWNPAHPGTHQYATDVDWANINAKIIKGYYDKIGEVGKYFDIPQYK 1256 

NCTC8325      SYVKAGQNTLYKMRWNPAHPGTHQYATDVDWANINAKIIKGYYDKIGEVGKYFDIPQYK 1256 

MW2           SYVKAGQNTLYKMRWNPAHPGTHQYATDIDWANINAKIIKGYYDKIGEVGKYFDIPQYK 1256 

JE2           SYVKAGQNTLYKMRWNPAHPGTHQYATDVDXANINAKIIKGYYDKIGEVGKYFDIPQYK 1256 

              ****************************:* **************************** 

 

 

Figure 9 - Alignment of the amino acid sequence of ATL of S. aureus strains UAMS-1, HDE288, 
COL, WIS, MW2, NCTC8325 and JE2 (CLUSTAL Omega). In red are highlighted the amino acid 
deletions, in purple the insertions. Regarding amino acid substitutions, in orange are highlighted UAMS-
1, in purple are JE2. In blue are HDE288 and the remaining strains in green. 
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Table 5 – SNP’s, insertions and deletions in the atl gene from strains used in this study, and amino acid substitutions observed. 

  

 SNP’s Insertion Delection AA Substitution 

 Position Substitution Position Nucleotide Position Position  

NTCT 8325 

2039 CT - - - 230 RC 
4424 GA - - - 1025 AT 
4503 GA - - - 1051 GD 
4510 CA - - - 1053 NK 

MW2 

1868 AG - - - 173 TA 
4424 GA - - - 1025 AT 
4503 GA - - - 1051 GD 
5027 GA - - - 1126 VI 

UAMS-1 

(SNP’s >100 but 
only 24 cause 

amino acid 

substitution) 

1595 AG    82 TA 
    1660-1606 84 - 

1629 GA    93 SN 
1646 GA    99 AT 
1674 AC    108 NT 
1682 GA    111 AT 
1697 AG    116 TA 
1702 GA    120 AT 
1709 GA    125 SN 
1746 CA    133 TN 
1889 AC    137 NS 
1892 AG    174 TA 
1895 GA    179 AT 

- -   1893-1894 180 - 
1896 AC    181 TP 

- -   1897 182 SV 
1968 TC    206 VA 
2008 AG    209 TA 
2140 AT    252 TS 
2329 AC    256 KT 
3576 TA    742 FY 
4162 GT    752 VI 
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4221 AG    778 TA 
4416 GA    1022 TI 
4424 GA    1025 AT 

     1051 GD 
 2659 ACCATCAAC - 255 KPS 

WIS 
1109 AG - - - - - 
1197 GA - - - - - 

HDE288 

1802 AC - - - 152 NH 
1868 AG    174 TA 

  - - 1868-1992 176-184 - 
1946 GA    199 TA 
2942 CT - - - 531 PS 
3042 AT - - - 563 QL 
3147 CT - - - 599 TI 
3802 AG - - - 874 KR 
4133 GT - - - 928 AS 
4416 CT - - - 1022 TI 
4424 GA - - - 1025 AT 
4503 GA - - - 1051 GD 

   1071 G - - - 

JE2 

2619 CG - - - 252 TS 
2686 TA - - - 256 KT 
2743 AT - - - 597 TA 
2942 CT - - - 615 SA 
2998 TC - - - 742 FY 
3042 AT - - - 752 VI 
3147 CT - - - 773 AV 
4156 TC - - - 776 AD 
4424 GA - - - 1025 AT 
4503 GA - - - 1051 GD 
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3. ATL protein expression along growth 

In order to analyze the ATL protein expression over time and to determine if the 

expression pattern and the proteolytic profile varies from strain to strain, the relative 

amount of AM and GL was assessed by Western blotting, for strains COL, NCTC 8328, 

WIS, HDE288, JE2, UAMS-1 and MW2. Western blotting (or protein immunoblot) is 

an analytical technique that can be used to detect specific proteins in a complex extract, 

using specific antibodies. We used the previously available anti-GL and anti-AM raised 

antibodies raised against proteins GL-C (GL without repeats domain) and ATL-H (AM 

without repeats domain) respectively (Grilo et al, unpublished). The amount of ATL 

protein was assessed in the cell supernatant fraction (spent medium) (Figure 11, panel 

A) and also in the cell wall fraction (Figure 11, panel B). 

Culture samples were taken at discrete time points along the growth curve (Figure 

10).  

 

Figure 10 – Growth curve of strains COL, WIS, HDE288, UAMS-1, JE2, NCTC8325 and MW2 in 
complex medium at 37ºC. 
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3.1.Expression analysis using anti-GL antibody 

The protein extracts were separated by SDS-PAGE and transferred to a nitrocellulose 

membrane that was then hybridized with the anti-GL antibody. By analyzing the 

apparent molecular weight of the bands obtained, the anti-GL antibody was observed to 

hybridize with the full ATL protein (137.5 kDa), the ATL without the PP (121 kDa) and 

also with more than one processed form of the GL domain, the full form R3GL (53.6 

kDa), and GL (40.5 kDa).  
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Figure 11 – GL expression along time. Western blotting was performed for protein extracts from strains 
WIS, HDE288, JE2, UAMS-1, COL, NCTC8325 and MW2, using anti-GL specific antibody. (A) Cell 
supernatant; (B) Cell wall fraction. A- OD 0.2, B- OD 0.4, C- OD 0.6, D- OD 1, E- OD 2, F- OD 3, G- 
OD 4, H- OD 6, I- OD 11. 

 

Differences not only in the amount of ATL protein produced along time, but also in 

the number and molecular weight of the protein bands obtained, were observed between 

the 7 strains analyzed. 

Overall, for most strains, ATL protein (the unprocessed form or the AM-R1R2R3-

GL form) seemed to accumulate firstly in the supernatant (at OD~0.2-0.4) and only later 

was the processed GL domain targeted to the cell wall (starting at OD~0.4).  

WIS, HDE 288, JE2, UAMS-1, NCTC 8325 and MW2 showed a similar ATL 

expression pattern in the supernatant, with a gradual increase along time, while COL 

showed a constant ATL expression pattern. The ATL unprocessed form and the AM-
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R1R2R3-GL form were not observed in the cell wall fraction for the period of growth 

analyzed.  

Regarding GL domain, several processed forms accumulated together with the ATL 

full protein in the supernatant of most strains except COL. For strains HDE288 and JE2, 

GL domain began to accumulate in the supernatant during exponential phase (OD-0.1) 

and later (OD-4) for strains WIS, UAMS-1 and NCTC8325. For strain MW2, GL 

domain was only detected during late stationary phase (OD-11). At the cell wall level, 

GL domain was present in one single form (corresponding to one band) for strains 

HDE288 and MW2 or as several processed bands (corresponding to multiple bands) for 

strains WIS, JE2, UAMS-1, COL and NCTC8325. These distinct GL bands may 

correspond to different cleavage events of GL protein.  

Regarding the amount of GL domain present in the cell wall fraction, it was 

interesting to observe three different patterns: for strains WIS, HDE288, JE2 and 

UAMS-1, GL domain showed an accumulation peak at exponential phase (OD-1) 

followed by a rapid decrease at OD-2 and finally a steady increase; for strains COL and 

NCTC8325, GL domain only started to accumulate at late exponential phase (OD~3-4), 

while for strain MW2, it constantly accumulated along time.  

3.2. Expression analysis using anti-AM antibody 

The same protein extracts were separated in SDS-PAGE and transferred to a new 

nitrocellulose membrane that was hybridized with anti-AM antibody. By analyzing the 

apparent molecular weight of the bands obtained, we observed that the anti-AM 

antibody was not able to recognize the unprocessed form of ATL (137.5 KDa), only the 

AM domain (63.3 kDa). The Western blotting results are shown in Figure 12, panel A 

(supernatant fraction) and panel B (cell wall fraction). 
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Figure 12 – AM expression along time. Western blotting was performed for protein extracts from 
strains WIS, HDE288, JE2, UAMS-1, COL, NCTC8325 and MW2, using anti-AM specific antibody. (A) 
Cell supernatant; (B) Cell wall fraction. A- OD 0.2, B- OD 0.4, C- OD 0.6, D- OD 1, E- OD 2, F- OD 3, 
G- OD 4, H- OD 6, I- OD 11. 

 

Differences in the expression pattern of AM domain along time and amongst strains 

was even more striking than for GL domain. 

While WIS, COL and UAMS-1 showed low and poorly consistent amounts of AM in 

the supernatant, NCTC8325 and MW2 only showed AM presence at late stationary 

phase (OD 6 to 11). HDE288 did not present AM in the supernatant until late 

exponential phase (OD 1), and JE2 did not present AM in the supernatant in the 

stationary phase. 

Regarding the amount of AM domain present in the cell wall fraction, it was 

interesting to observe, as for GL domain, three different patterns: for strains WIS, 

HDE288 and UAMS-1, AM domain showed an accumulation peak at exponential phase 

(OD-1) followed by a rapid decrease at OD-2 and finally a steady increase; for strains 

COL, NCTC8325 and MW2, AM domain did not accumulate at the cell wall fraction; 

for strain JE2, it constantly accumulated along time.  

4. The association between DNA and GL lytic activity 

The interaction between DNA and GL seems to have an important role in the biofilm 

formation. In order to understand if the GL-DNA association also has importance in 

lytic activity, lytic assays were performed using heat-inactivated cells, cell wall fraction 

and purified peptidoglycan as substrate for GL in the presence of added DNA. To 

determine if the cell wall or the peptidoglycan composition of the strain would influence 

GL activity, these were tested for all the strains under study. 
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ATL-C recombinant His-tagged protein (GL domain without the repeat region) was 

expressed for the digestion assays, and then purified using a Ni-NTA column. The Ni-

NTA (nickel nitrile-triacetic acid) column co-purification is based in the high affinity 

between polyhistidine tagged proteins and the nickel ions present in the matrix of the 

Ni-NTA columns. Proteins bound to the resin are eluted by competition with imidazole.  

The protein purity level was verified by SDS-PAGE as shown at figure 13. 

 

 

Figure 13 - Purification of ATL-C recombinant His-tagged protein. Lane 1: total extraction lysate; 

Lane 2: flow-through; Lane 3 and 4: washes; Lane 5-9: elutions 1-5; Lane 10: protein marker (Low 

Molecular Weight Protein Marker).  Green arrows: ATL-C (GL without R3). 

 

In order to define the best lytic activity conditions, different buffers were tested 

(Sodium Phosphate Buffer pH 7.4; Sodium Phosphate Buffer pH 5.5; Tris-HCl pH 8; 

Tris-HCl pH 7.4; Tris-HCl pH 5.5) and different GL protein concentrations (5ng/µl; 

10ng/µl; 20ng/µl). The reaction conditions that retrieved higher GL peptidoglycan lytic 

activity levels were buffer Tris pH 7.5 and a protein concentration of 5ng/µl. The 

sample was incubated at 37ºC with agitation and the OD600 was monitorized for 2h with 

5 minute intervals reads. 

 As positive controls, mutanolysin (a muralytic enzyme that cleaves the N-

acetylmuramyl-β-N-acetylglucosamine linkage of the bacterial cell wall polymer 

peptidoglycan-polysaccharide) and lysostaphin (enzyme that cleaves the crosslinking 

pentaglycin bridges of S. aureus peptidoglycan) were used; both enzymes were able to 
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degrade the heat-inactivated cells, the cell wall fraction and the purified peptidoglycan 

samples. To determine if the salmon sperm DNA added to the samples would influence 

the measurements, controls were performed only with substrate and added DNA; no 

significant differences were observed when compared to the samples without DNA.  

Differences were observed in the lytic activity of GL when using substrates from 

different strains: purified peptidoglycan, cell wall and heat-inactivated cells (Figure 14). 

The following graphics are presented with representative values of time, the graphics 

with all time points are presented in annex 2. 

The lytic activity of GL was higher for the peptidoglycan of strains WIS, HDE288, 

UAMS-1 and MW2. In WIS and MW2 GL-DNA with 0.05 and 0.5 mg/mL, 

respectively, has a higher digestion of peptidoglycan. 

Regarding the cell wall, it is observed more lytic activity of GL in the strains 

HDE288 and MW2. There seems to be no significant difference in GL activity when 

associated with DNA. 

In the inactivated cells there is a gradual decrease in OD600 when GL is added, 

however no differences are observed in the presence of DNA. 

GL showed no lytic activity for the heat-inactivated cells of all seven strains. 

Furthermore, GL also did not show lytic activity for the cell fraction or the purified 

peptidoglycan of strain COL. The lytic activity of GL was higher for the cell wall 

fraction of strains MW2 and HDE288; accordingly, for their peptidoglycan fraction as 

well. For all other strains (WIS, UAMS-1, JE2 and NCTC8325), GL only showed lytic 

activity in the peptidoglycan fraction. 

Regarding the effect of DNA addition to the lysis reaction, contrary effects were 

observed for the lytic activity of GL against WIS and MW2 peptidoglycan: the 0.05 

mg/ml concentration was found to activate GL lytic activity on WIS peptidoglycan and 

inhibit the same activity on MW2 peptidoglycan. In contrast, the higher DNA 

concentration, 0.5 mg/mL, was responsible for inhibiting GL activity on WIS 

peptidoglycan and activates it on MW2 peptidoglycan. 
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Figure 14 – Lytic activity of GL protein and DNA-GL association in (A) COL; (B) WIS; (C) 

HDE288; (D) UAMS-1; (E) JE2; (F) NCTC8325; (G) MW2, when studied in heat inactivated cells 

(IC); cell wall (CW), and peptidoglycan (PG), along time. 

 

 

5. Expression of ATL-C protein in Minimum medium for NMR analysis 

In order to express and purify GL for NMR characterization, ATL-C protein (GL 

without repeat domain) was expressed in Minimum medium, in different volumes, and 

then purified using the manual Ni-NTA column. 

The protein purity level was verified by SDS-PAGE as showed at figure 15. 
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Figure 15 – (A) Purification of ATL-C 200mL. (B) Purification of ATL-C 1L. Lane 1: lysate total 

extraction; Lane 2: flow through; Lane 3 and 4: washes; Lane 5-9: Elutions 1-5; Lane 10: protein marker 

(Low Molecular Weight Protein Marker).  Green arrows: ATL-C (GL without R3). 

 

Under complete denaturing conditions, proteins migrate through an electric filed 

according to their molecular weight. When a protein has not been completely denatured 

and forms a dimeric structure an extra band appears in the SDS-PAGE, with the double 

value of its molecular weight. As the protein is completely denatured and not dimerized, 

this extra band didn’t appear. 

As shown in the gels above, the protein has expressed in minimum medium, so it was 

possible to continue with the same protocol in labeled minimum medium (15N) (Figure 

16). 
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Figure 16 – Purification of ATL-C 500mL 15N minimum medium.  Lane 1: lysate total extraction; 

Lane 2: flow through; Lane 3 and 4: washes; Lane 5-9: Elutions 1-5; Lane 10: protein marker (Low 

Molecular Weight Protein Marker).  Green arrows: ATL-C (GL without R3). 

 

6. NMR analysis 

In structural biology it is necessary to efficiently screen for the optimal conditions to 

obtain stable protein that can subjected to subsequent structure determination. In a 

globular folded protein the individual residues are packed into chemical environments, 

which are very different from the random coil situation.  

The HSQC-NMR spectrum of an unfolded protein is the sum of the random coil 

spectra of the amino acid residues in the proteins. 

In a HSQC-NMR spectrum of a folded protein the dispersion of signals is far beyond 

the envelope of signals seen in the spectrum of the unfolded protein, reflecting that 

nuclei in the folded form are subject to many different types of microenvironments of 

chemical screens. 

 

 

 

 



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 – 15N-HSQC spectrum 2D of GL domain in 25mM Tris-DCL and 75mM NaCl. Red circle: 

Asn and Gln groups; green circle: Trp groups; black circle: C-terminal groups; yellow circle: Arg groups. 

 

In the GL 15N-HSQC spectrum (Figure 17) we can observe a dispersion in the 

frequencies of the resonances, which demonstrates that the protein is folded. We can 

also observe the Asn and Gln side chain NH2 group peaks at the superior part of the 

spectrum (mark as red), the Trp side chain Hɛ-Hɛ on the left bottom (mark as green), 

the Arg side chain  Hɛ-Nɛ on the right bottom (mark as yellow) and the C-terminal 

amino acid (mark as black). 
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Chapter IV – Discussion and Conclusions 

 

The main objective of this project was to characterize the ATL protein regarding 

strain specificity. For this purpose, four tasks were proposed: (i) study the different 

processed forms and the cell compartment where the cleavage occurs, in different S. 

aureus backgrounds; (ii) analyze the expression of ATL along time in the different 

strains; (iii) analyze the impact of DNA on GL lytic activity on the peptidoglycan of 

several S. aureus lineages; (iv) characterize GL-DNA interaction by NMR.  

Staphylococcus aureus is a very clonal microorganism that is able to disseminate 

worldwide. Among the several clonal lineages of S. aureus, in this study we included 

strains representing MSSA, CA-MRSA and HA-MRSA clonal lineages that showed 

different ATL-dependent biofilm formation patterns. 

COL is a hospital acquired MRSA with a sccmec type I, member of the 

“archaic” clone of MRSA and perhaps the most studied MRSA strain. COL was 

isolated from a patient in Colindale, United Kingdom in 1960 (Jevons, 1961). This 

strain is a member of the most successful of all MRSA lineages, which nowadays not 

only includes hospital but also community-associated strains. NCTC 8325 and UAMS-1 

are both MSSA; NCTC 8325 was isolated from a corneal ulcer, and the original genome 

map of S. aureus was based on this strain (Novick, 1991), UAMS-1 was isolated from 

an osteomyelitis patient. MW2, a community acquired MRSA with sccmec type IV, was 

isolated in 1998 in the USA and caused fatal septicemia and septic arthritis (Baba, 

2002). It belongs to the USA400 clone, one of the most common lineages in the United 

States. WIS is a CA-MRSA with sccmec type V, isolated in Taiwan. HDE288 is a HA-

MRSA with sccmec type VI, a pediatric clone isolated in Nicaragua. JE2 is a CA-

MRSA that belongs to USA300 clone, isolated from skin and soft tissue infections in 

USA. 

 

1. atl gene SNPs affect the protein sequence 

Single nucleotide polymorphisms, frequently called SNPs, are the most common 

type of genetic variation. SNPs within a coding sequence do not necessarily change the 

amino acid sequence of the protein.  
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The SNPs observed in the atl region of the strains in this study provided interesting 

information. No alterations were observed in the promotor region, indicating that any 

expression differences between the strains do not result from mutations in this region. 

Some SNPs resulted in amino acid residue substitutions and only one was located in the 

vicinity of the active site of GL domain, E1128 (V1126I) in MW2 strain. The sequence 

of ATL protein of UAMS-1 showed more differences, mainly in the propeptide region, 

when compared with the other strains, suggesting an altered proteolytic cleavage 

pattern. The ATL sequence of HDE288 and JE2 also showed several amino acid 

substitutions, more dispersed along the ATL protein domains (PP, AM, R repeats and 

GL). The only ATL sequence that was identical to COL was the one of WIS strain.  

 

2. Differences in the expression of ATL protein along growth 

ATL is 137.5 kDa murein hydrolase, with two catalytic domains: AM (63.3 kDa), 

that contains an enzymatic domain and two repeat domains (R1 and R2), and GL (53.6 

kDa), containing an enzymatic domain and a single repeat domain (R3).   

To analyze the ATL protein expression over time and determine if the expression 

pattern varies from strain to strain, the relative amount of ATL was assessed by Western 

blotting, using specific antibodies against AM and GL domains. The anti-GL antibody 

was found to recognize the ATL complete protein while also recognizing GL domain. 

At the beginning of exponential phase, ATL protein was present only in the supernatant, 

suggesting that the protein accumulated in the cell exterior and only after a protein 

treshold limit it was then targeted to the cell wall, already in a cleaved form. The 

complete form of ATL (137 kDa) was not present in the cell wall fraction. 

The presence of GL was more evident in the pellet, suggesting that after cleavage, 

GL domain is targeted to the cell wall. These results support the recently described 

function for this hydrolase in biofilm development: GL may provide an attachment 

point between the cell surface and the biofilm matrix.  

Regarding AM domain, COL and NCTC8325 strains seem not to target AM domain to 

the cell wall. However, presence of AM at the cell wall was observed in the other 

strains, in accordance with the literature description of R1R2 repeats being responsible 
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for targeting AM domain to the pellet (Biswas, 2006; Marino et al, 2002). These 

observations demonstrate how different strains can have different levels of AM 

associated to the cell wall and raise two hypotheses: AM is not located at the cell wall in 

some strains, or AM is only targeted to the cell wall at a later growth phase. Two 

possible mechanisms are described for the specific localization of ATL at the septal 

sites of the cell surface. One is that ATL protein is synthesized, translocated at the cell 

division site, and localized with an anchoring component. The other is that ATL is 

secreted into the culture medium and reabsorbed to an anchoring component via ligand-

receptor interaction (Schlag et al, 2010; Yamada et al, 1995). Differences in the 

structure of the repeat domains of AM and GL might reflect the differences of the 

recognition sites on staphylococcal cell walls. Our results confirm that targeting of AM 

and GL occurs through independent mechanisms: GL was present in the cell wall of all 

strains, in contrast to AM. Furthermore, the fact that no AM was observed in the cell 

wall of some strains strengthens the second hypothesis that the ATL domains are 

secreted and subsequently reabsorbed. 

Different ATL, GL and AM expression patterns along the growth curve were 

observed for the different strains and also distinct proteolytic patterns, illustrated by the 

occurrence of bands of different sizes. However, no direct relation with the amino acid 

substitutions identified previously was possible to establish. For example, the ATL 

sequence of WIS and COL strains are identical, however, their ATL, GL and AM 

expression profiles were completely distinct. 

 

3. The impact of DNA on GL lytic activity 

ATL is the most predominant peptidoglycan hydrolase in staphylococci. Although 

several studies have focused on the function of ATL, the individual contributions of the 

AM and GL domains are not known. Recent studies reveal the importance of the 

interaction between DNA and GL in biofilm formation. This fact raises the question if 

the interaction between DNA and GL may also be important for the major function of 

ATL, the peptidoglycan lytic activity.  
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 The results obtained showed no significant differences in the lytic activity of GL 

when DNA is added, except for strains WIS and MW2. The effect of both DNA 

concentrations on the lytic activity of GL for the peptidoglycan of these two strains, was 

contradictory: it had apposite inhibitory and activating effects. Differences in the 

peptidoglycan composition of these strains may explain the different lytic activity of GL 

protein and the peptidoglycan of these strains should be analyzed in future experiments. 

Furthermore, all the assays were performed with GL protein from COL strain. It is 

interesting to observe no lytic effect against COL inactivated cells, cell wall or even 

peptidoglycan, suggesting that GL may act as a weapon against other S. aureus strains, 

although not having lytic activity against its own surface polymers. 

Regarding the heat-inactivated cells, no effect of GL lytic activity was observed; 

as GL is expected to lyse the peptidoglycan mesh at discrete locations, this behavior 

was expected. Also, other cell surface associated factors/enzymes may also bind to 

DNA, in this way competing with GL. Concerning the results for the cell wall fraction, 

the presence of WTAs, which prevents S. aureus from autolysis (Schlag et al, 2010), 

can be, also, the explanation to the non-significant lytic activity. It is believed that 

targeting of amidase R1R2 repeat domains is rather based on an avoidance strategy by 

WTA, which prevents binding of ATL. As WTAs are abundant in the old cell wall but 

not at the cross-wall region, ATL can bind to the septal region.  

It would be interesting to analyze the lytic activity of AM-R1R2 in these strains, in 

the presence of added DNA, since the DNA-binding activity of the AM domain appears 

to be restricted to the repeats (Grilo et al, 2014). 

 

4. NMR 

Nuclear magnetic resonance (NMR) spectroscopy is a methodology that reveals the 

atomic structure of macromolecules in solution in highly concentrated samples (approx. 

1 mM) (Bharti and Roy, 2012).  The technique is based on the fact that certain atomic 

nuclei are intrinsically magnetic. Only a limited number of isotopes display this 

property, called spin (½), such as 1H, 15N, 13C.  A spinning protein in α state can be 

raised to an excited state (β state) applying a pulse electromagnetic radiation (a radio-



53 

 

frequency). The spin will change from α to β and resonance will be obtained. A 

resonance spectrum for a molecule can be obtained varying the magnetic field at a 

constant frequency of electromagnetic radiation or keeping the magnetic field constant 

varying electromagnetic radiation. With this technique, one, two and tree-dimension 

spectra (1H-spectrum, 1H-15N-spectrum and 1H15N-13C-spectrum) can be obtained in 

order to determine the protein structure (Montelione et al., 2000). To beat the low 

natural abundance of 15N and 13C for obtaining two and tree-dimension spectra, 

incorporation of such isotopes must be forced by expressing the protein in minimal 

media supplemented with the isotopes.  

In this study, ATL-C, GL domain without repeats, was expressed in 15N labeled  

minimal medium and then analyzed by NMR. The 15N-HSQC spectrum obtained 

revealed that the protein is folded since a high signal dispersion is observed. These 

results provided important contributions for the characterization of GL by NMR. The 

structure of GL domain has not been elucidated yet, in contrast with AM domain. It is 

necessary in the future to optimize the conditions of the expression of GL to obtain a 
13C spectrum essential for the study of the interaction between GL and DNA. 

 

5. Conclusion 

This study allowed to identify distinct patterns of ATL protein expression and 

proteolytic cleavage that may be the basis for the primary phenotypic differences 

associated to ATL protein. GL and AM expression varies from strain to strain, and GL 

and AM were shown to be the targeted to the cell wall through different mechanisms. 

Our results support the hypothesis of ATL being secreted into the culture medium and 

then retargeted to the cell wall. The effect of DNA-GL binding in lytic activity of GL 

was found to be, as already observed for biofilm formation, strain dependent. The 

structural characterization of GL-DNA association may clarify the mechanisms behind 

these observations. 

The hydrolysis of peptidoglycan by hydrolases results in a strong bactericidal effect 

which makes this group of enzymes an alternative antibacterial weapon, for example a 
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possible vaccination scheme with ATL-AM has been studied and this vaccine was 

shown to induce Th1 and Th2 immune response (Nair et al, 2015). 

Due to the importance already demonstrated of the ATL in Staphylococcus aureus 

and the possibility of being a potential weapon against this microorganism, it is 

important to study and characterize this protein. 
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Annex 

1. Impact of the GL-DNA association in biofilm formation. (Grilo et al, 2014) 

It has been shown that atl mutants do not form biofilm presumably due to the role of 

the autolysin in genomic DNA release and also in assisting the attachment of cells to the 

surface during the first phases of biofilm formation.  

1.1. Involvement of ATL in biofilm formation of strain MW2 

These preliminary studies tested the independent and combined roles of AM and GL 

domains in biofilm formation, using a S. aureus strain, MW2, that form biofilm.  

In order to understand biofilm forming capacity of the atl mutant, an assay with 

different recombinant ATL proteins was performed. (Figure 18) 

 

 

Figure 18 – Biofilm formation of strain MW2, its isogenic atl mutant MW2L9, and MW2L9 with 

added recombinant proteins. Atl refers to the AMR1-3GL recombinant protein, N-His-GL refers to 

R3GL, and AM refers to AMR1-2. Three experiments were performed, at least in duplicates. 

Protein AMR1-2 was able to complement the biofilm forming capacity of the 

mutant, owing to the increase of extracellular DNA present in the media due to the lytic 

activity of the added recombinant protein. When AMR1-2 and R3GL proteins were added 

together, as well the complete protein AMR1-3GL, the biofilm forming capacity was 

also complemented, although only for higher protein amounts. However, when R3GL 
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was added alone no complementation of biofilm formation occurred. In some cases, the 

biofilm forming capacity of the mutant with R3GL was lower than the mutant alone, and 

no concentration dependence was seen. 

 

1.2.  Involvement of ATL in biofilm formation in different strains. 

To analyze the importance of ATL in biofilm formation strains were chosen due to 

their high biofilm forming capacity and atl mutants were obtain (by transduction of the 

RUSAL9 transposition mutant with phage 80α). The resulting isogenic atl mutants were 

tested by Western Blot. Different patterns and amounts of GL protein were found 

between the different strains as shown at Figure 19. 

 

Figure 19 – Detection of GL protein performed by Western Blot using anti-GL raised antibody 

against cellular extracts of different strains and their respective isogenic atl mutants.  

 

When static biofilm assays were performed on these strains and their atl mutants, 

only MW2L9 and WISL9 showed a decrease in biofilm formation when compared to 

the respective parental strains (Figure 20).  

 

 

 

 



67 

 

 

Figure 20 – Biofilm formation by strains MW2, HDE 288, WIS and NCTC 8325 and their 

respective isogenic atl mutants. Values shown are average values referring to the percentage of biofilm 

when compared to MW2 strain. Two experiments were performed, at least in triplicates. 

These results were unexpected; the lack of atl is expected to result in a decrease in 

biofilm formation in S. aureus. However, this supports the importance of the genetic 

background on biofilm formation, and the different patterns found in the GL Western 

Blot could also justify the different impact that the lack of ATL has in biofilm 

formation, which is strain-dependent.  

Also, the strains without atl has a diminished biofilm (MW2 and WIS) and similar 

Western patterns, with many smaller bands perhaps corresponding to extensive 

processing of GL protein. 

1.3. Involvement of GL in biofilm formation in strain WIS 

To study the biofilm forming capacity of strain WIS and its atl mutant, different ATL 

recombinant proteins in different concentrations were added. The biofilm forming 

capacity of strain WIS was progressively restored, achieving full complementation at a 

protein concentration of 10 µg. The addition of AMR1-2 and R3GL recombinant 

proteins together showed a higher biofilm forming capacity when compared to the 

addition of only one of these proteins, suggesting that the two proteins may work 

synergistically in promoting biofilm formation. (Figure 21) 

Other variations were observed between WIS and MW2, showing that the different 

genetic background may be involved. 
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Figure 21 - Biofilm formation of S. aureus strain WIS and its isogenic atl mutant WISL9 with 

added recombinant proteins. Biofilms were grown with different amounts of extracellularly added 

recombinant GL domain (R3GL), AM domain (AMR1-2), and entire Atl recombinant protein lacking the 

SP and PP sequences (AMR1-3GL). 

1.3.1. ATL-DNA association 

 The addition of extracellular DNA was able to complete the partial complementation 

achieved when added a less protein concentration (5 µg), however, full restoration was 

not achieved until AMR1-2 was added. This is consistent with a critical role for 

extracellular DNA in the GL-dependent biofilm formation process. (Figure 22) 

 

Figure 22 - Biofilm formation of S. aureus strain WIS and its isogenic atl mutant WISL9 with 

added recombinant proteins. Biofilms were grown with 1 µg of the different recombinant proteins and 

complemented with 100 µg of low molecular weight salmon sperm DNA or 50 µg/ml of DNase I. 

 

Addition of complementing amounts of any of the recombinant proteins together 

with DNase I to the mutant resulted in an almost complete block of biofilm formation 
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(Figure 23). This effect was less distinct when only AMR1-2 was added, supporting the 

suggestion that the GL domain of ATL plays a more important role than the AM 

domain of this protein in the DNA-dependent formation of biofilm. 

 

Figure 23 - Biofilm formation of S. aureus strain WIS and its isogenic atl mutant WISL9 with 

added recombinant proteins. Biofilms were grown with 10 µg of the different recombinant proteins, 

and addition of DNase I at 50 µg/ml disrupted biofilm formation. The amount of biofilm produced was 

calculated as a percentage of the biofilm produced by the parental WIS strain. 
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2. Lysis assay  

 

The results obtained in the lysis assay of peptidoglycan are shown in the next 
graphics (Figure 24), there are no relevant differences in the lytic activity of GL when 
DNA is added.  
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Figure 24 – Lytic activity of GL protein in peptidoglycan and DNA-GL association in different 

strains. (A) COL; (B) WIS; (C) HDE288; (D) UAMS-1; (E) JE2 (F) NCTC8325;  (G) MW2. Purple: 

peptidoglycan without GL; Blue: peptidoglycan with GL 5ng/µl; Red: peptidoglycan with GL 5ng/µl and 

DNA(0,05mg/mL); Green: peptidoglycan with GL 5ng/µl and DNA(0,5mg/mL). 

 

The results obtained in the lysis assay of cell wall are shown in the next graphics 

(Figure 25), there are no relevant differences in the lytic activity of GL when DNA is 

added.  
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Figure 25- Lytic activity of GL protein in cell wall and DNA-GL association in different strains. (A) 

COL; (B) WIS; (C) HDE288; (D) UAMS-1; (E) JE2 (F) NCTC8325;  (G) MW2. Purple: peptidoglycan 

without GL; Blue: peptidoglycan with GL 5ng/µl; Red: peptidoglycan with GL 5ng/µl and 

DNA(0,05mg/mL); Green: peptidoglycan with GL 5ng/µl and DNA(0,5mg/mL). 
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The results obtained in the heat inactivated cells lytic assay are shown in the next 
graphics (Figure 26). 
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Figure 26- Lytic activity of GL protein in heat-inactivated cells and DNA-GL association in 

different strains. (A) COL; (B) WIS; (C) HDE288; (D) UAMS-1; (E) JE2 (F) NCTC8325;  (G) MW2. 

Purple: peptidoglycan without GL; Blue: peptidoglycan with GL 5ng/µl; Red: peptidoglycan with GL 

5ng/µl and DNA(0,05mg/mL); Green: peptidoglycan with GL 5ng/µl and DNA(0,5mg/mL). 
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3. Stock solutions 

 

3.1. 20xNPS (1 litre) 

 

Solution m (g) 

0.5M (NH4)2SO4 66 g 

1M KH2PO4 136 g 

1M Na2HPO4 142 g 

dd H2O 900 ml 
  

 

3.2. Trace metals 

 

Solution 
MM 

(g/mol) 
m (g) 

Volume 

(mL) 

1000x final 

volume 

(µL) 

1000x Final 

concentration 

(mM) 

1M CaCl2 - - - 20 20 
100 mM 

MnCl2 
197,91 0,1979 10 100 10 

20 mM 

H3BO3 
61,3 0,12366 10 100 2 

20mM 

Na2MoO4 

(2H2O) 

241,95 0,04839 10 100 2 

20 mM 

CoCl2 

(6H2O) 

237,93 0,04759 10 100 2 

20 mM 

CuCl2 

(2H2O) 

170,48 0,034096 10 100 2 

20 mM NiCl2 

(6H2O) 
237,69 0,04754 10 100 2 

20 mM 

Na2SeO3 
263,01 0,052602 10 100 2 

20 mM 

ZnSO4 
287,54 0,05751 10 100 2 

0,5 M FeCl3 
1

 

(6H2O) 
270,30 1,3515 10 100 50 

dd H2O - - - 80 - 

                                                           
1
 Dissolve in HCl (diluted 1/100) 
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