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Abstract

This paper deals with the characterization of two classes of monotonic and neu-

tral (MN) aggregation operators . The first class corresponds to (MN) aggregators
which are stable for the same positive linear transformations and present the or-
dered linkage property. The second class deals with (MN)-idempotent aggregators
which are stable for positive linear transformations with same unit, independent
zeroes and ordered values. These two classes correspond to the weighted ordered

averaging operator (OWA) introduced by Yager in 1988. It is also shown that the
OWA aggregator can be expressed as a Choquet integral.

Keywords : aggregation functions; interval scale; invariance; ordered weighted ave-
raging operator.

1 Introduction

The ordered weighted averaging aggregation operator (OWA) was proposed by Yager
in 1988 [19]. Since its introduction, it has been applied to many fields as neural networks
(Yager [17, 21]), data base systems (Yager [18, 22]), fuzzy logic controlers (Yager [20, 23])
and group decision making (Yager [19], Cutello and Montero [5]). The OWA operator
can also be used in decision making under uncertainty to modelize the anticipated utility
(Quiggin [10], Segal [14]).

Its structural properties (Skala [15]) and its links with fuzzy integrals (Grabisch [7])
were also investigated.

Synthesizing judgments is an important part of multiple criteria decision making
methods. The typical situation concerns individuals which form quantitative judgments
about a measure. In order to obtain a consensus of these jugdments, classical operators
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are proposed : arithmetic means, geometric means, root-power means, quasi arithmetic
means, fuzzy integrals and among them the OWA aggregators.

We study the OWA operator under several natural properties like monotonicity,
neutrality, and its stability in the sense of the theory of measurement (Roberts [13]).

We first characterize the OWA operator under the properties of monotonicity, neu-
trality, stability for the same interval scales and some kind of associativity called “ordered
linkage”.

We then reexamine the characterization of OWA operators under the properties of
monotonicity, neutrality, idempotency and stability for positive linear transformations
with the same unit, independent zeroes and ordered values.

We also prove that an OWA operator can be expressed under the form of a Choquet
integral.

2 Basic definitions

We consider a vector (x1, . . . , xm) ∈ Rm, m > 1, and we are willing to substitute
to that vector a single value M (m)(x1, . . . , xm) ∈ R using the aggregation operator
(aggregator) M .

The aggregator presents the property of

• monotonicity (non negative responsiveness) if

x′
i > xi implies M(x1, . . . , x

′
i, . . . , xm) ≥ M(x1, . . . , xi, . . . , xm)

• neutrality (symmetry, commutativity, anonimity) if

M (x1, . . . , xm) = M(xi1, . . . , xim) for all (x1, . . . , xm) ∈ Rm,

when (i1, . . . , im) = σ(1, . . . , m), where σ represents a permutation operation.

• idempotency (agreement, unanimity, identity, reflexivity) if

M(x, . . . , x) = x , for all x ∈ R

• associativity if

M(M (x1, x2), x3) = M(x1, M(x2, x3)) = M(x1, x2, x2)

M(M(x1, . . . , xm−1), xm) = M(x1, M(x2, . . . , xm))

for all (x1, . . . , xm) ∈ Rm.

• decomposability (Kolmogorov [9], Nagumo [12]) if

M (m)(x1, . . . , xk, xk+1, . . . , xm) = M (m)(x, . . . , x, xk+1, . . . , xm)

when x = M (k)(x1, . . . , xk), for all (x1, . . . , xm) ∈ Rm.

2



• linkage if

M (m+1)(M (m)(x1, . . . , xm), M (m)(x2, . . . , xm+1), . . . , M
(m)(xm+1, . . . , x2m))

= M (m)(M (m+1)(x1, . . . , xm+1), M
(m+1)(x2, . . . , xm+2), . . . , M

(m+1)(xm, . . . , x2m))

for all (x1, . . . , x2m) ∈ R2m.

• ordered linkage if M (m) presents the property of linkage for the ordered values
x(1) ≤ x(2) ≤ · · · ≤ x(2m).

• stability for the same positive linear transformations (SPL) if

M (m)(rx1 + t, . . . , rxm + t) = rM (m)(x1, . . . , xm) + t,

for all (x1, . . . , xm) ∈ Rm, all r > 0, all t ∈ R.

• stability for positive linear transformations with same unit and independent zeroes
(SPLU)

M (m)(rx1 + t1, . . . , rxm + tm) = rM (m)(x1, . . . , xm) + T (m)(t1, . . . , tm)

for all (x1, . . . , xm) ∈ Rm, all r > 0, all (t1, . . . , tm) ∈ Rm.

3 Ordered weighted averaging aggregation opera-

tors (OWA)

An OWA aggregator M (m) associated to the m non negative weights (ω
(m)
1 , . . . , ω(m)

m )

such that
∑m

k=1 ω
(m)
k = 1 corresponds to

M (m)(x(1), . . . , x(m)) =
m∑

i=1

ω
(m)
i x(i), x(1) ≤ · · · ≤ x(i) ≤ · · · ≤ x(m).

ω
(m)
1 is linked to the lowest value x(1), . . . , ω(m)

m is linked to the greatest value x(m).
This class of operators includes

• min(x1, . . . , xm) if ω
(m)
1 = 1.

• max(x1, . . . , xm) if ω(m)
m = 1.

• any order statistics x(k) if ω
(m)
k = 1, k = 1, . . . , m.

• the arithmetic mean if ω
(m)
1 = · · · = ω(m)

m = 1
m .

• the median (x(m/2) + x(m/2)+1)/2 if ω
(m)
(m/2) = ω

(m)
(m/2)+1 = 1

2 and m is even.

• the median x(m+1)/2 if ω
(m)
(m+1)/2 = 1 and m is odd.

3



• the arithmetic mean excluding the two extremes if ω
(m)
1 = ω(m)

m = 0 and ω
(m)
i =

1
m−2 , i 6= 1, m.

Well known and easy to prove properties of the OWA aggregators are the following
(see Yager [19], Cutello and Montero [5]) :

Any OWA aggregator is neutral, monotonic, idempotent and compensative (min ≤
M (m) ≤ max) and presents stability for the same positive linear transformations.

However the OWA operator is generally not associative nor decomposable.

Proposition 1 The OWA aggregator presents the ordered linkage property.

Proof . Obviously

M (m)(x(i), . . . , x(m−1+i)) ≤ M (m)(x(i+1), . . . , x(m+i)), i = 1, . . . , m

M (m+1)(x(j), . . . , x(m+j)) ≤ M (m+1)(x(j+1), . . . , x(m+j+1)), j = 1, . . . , m − 1

because M (m) and M (m+1) are OWA aggregators.
Let us first consider

M (m+1)(M (m)(x(1), . . . , x(m)), . . . , M
(m)(x(i), . . . , x(m+i−1)), . . . , M

(m)(x(m+1), . . . , x(2m))

=
m+1∑

i=1

ω
(m+1)
i M (m)(x(i), . . . , x(m+i−1))

=
m+1∑

i=1

ω
(m+1)
i

m∑

j=1

ω
(m)
j x(i+j) (1)

Let us now consider

M (m)(M (m+1)(x(1), . . . , x(m+1)), . . . , M
(m+1)(x(j), . . . , x(m+j−1)), . . . , M

(m+1)(x(m), . . . , x(2m)))

=
m∑

j=1

ω
(m)
j M (m+1)(x(j), . . . , x(m+j−1))

=
m∑

j=1

ω
(m)
j

m+1∑

i=1

ω
(m+1)
i x(j+i) (2)

It is clear that equation (1) is identical to equation (2).

Proposition 2 Any OWA aggregator M (m) can be expressed in an equivalent way
as a Choquet integral.

Proof . Let us consider an OWA aggregator M (m)(x1, . . . , xm). We first introduce

e
(m)
i = M (m)(0, . . . , 0︸ ︷︷ ︸

(i) zeroes

, 1, . . . , 1︸ ︷︷ ︸
(m−i) ones

) , i = 0, . . . , m (3)
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We obviously have that (M (m) being monotonic and idempotent)

0 = e(m)
m ≤ e

(m)
i ≤ e

(m)
0 = 1 , i = 1, . . . , m (4)

e
(m)
i−1 − e

(m)
i = ω

(m)
i , i = 1, . . . , m (5)

Equation (5) indicates the equivalence between the knowledge of (ω
(m)
i ,

∑
ω

(m)
i =

1, i = 1, . . . , m) and (e
(m)
i , i = 1, . . . , m − 1).

Finally,

M (m)(x1, . . . , xm) =
m∑

i=1

ω
(m)
i x(i) =

m∑

i=1

(e
(m)
i−1 − e

(m)
i )x(i) (6)

=
m∑

i=1

e
(m)
i−1(x(i) − x(i−1)) (7)

if x(0) = 0, by definition.
Let us now consider the subsets Aj = {x(j), . . . , x(m)}, j = 1, . . . , m, Am+1 = φ, and

a fuzzy measure µ defined on these subsets :

µ(Aj) = e
(m)
j−1.

We have
µ(A1) = µ(x(1), . . . , x(m)) = e

(m)
0 = 1

Aj ⊃ Aj+1 and µ(Aj) ≥ µ(Aj+1) , j = 1, . . . , m

µ(Am+1) = µ(φ) = e(m)
m = 0

and (6) can be rewritten as

M (m)(x1, . . . , xm) =
m∑

i=1

µ(Ai)(x(i) − x(i−1))

which corresponds to the definition of a Choquet integral (see Choquet [4], Sugeno and
Murofushi [15], Grabisch and Sugeno [8]).

4 Characterization of the OWA aggregator

A foundational paper of Aczél, Roberts and Rosenbaum [3] shows that the general
solution of a functional equation related to the stability for the same positive linear
transformations (case ]5) :

M (m)(rx1 + t, . . . , rxm + t) = rM (m)(x1, . . . , xm) + t, r > 0, (8)

where M is a mapping from Rm → R given by

M (m)(x1, . . . , xm) = S(x)f

(
x1 − A(x)

S(x)
, . . . ,

xm − A(x)

S(x)

)
+ aA(x) + b if S(x) 6= 0
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or ax + b if S(x) = 0 (⇔ x1 = x2 = · · · = xm = x)

if S2(x) =
∑

i(xi − A(x))2 and A(x) represents the arithmetic mean; f is an arbitrary
function from Rm to R.

It is also true that the weighted mean corresponds to monotonic and idempotent
aggregators which satisfy the (SPLU)-property (see [3], case ] 9).

From results obtained by Marichal and Roubens [11], we know that neutral, contin-
uous, stable for the same positive linear transformations and associative (resp. decom-
posable) operators are characterized by the min or max operators (resp. min or max or
A(x)).

Weaker property than associativity or decomposability is needed to be able to cha-
racterize the OWA operators which include min, max and the arithmetic means. This
intermediate property is related to the ordered linkage property.

Proposition 3 Associativity with neutrality or decomposability with neutrality and
idempotency imply the linkage property. The reciprocal is not true.

Proof . The fact that associativity and neutrality imply linkage is trivial.
Let us now consider decomposability. We know that (see Kolmogorov [9], Fodor and

Roubens [6])

M (m)(x1, . . . , xm) = M (m.n)(x1, . . . , x1︸ ︷︷ ︸
n times

, . . . , xm, . . . , xm︸ ︷︷ ︸
n times

) = M (m.n)(n.x1, . . . , n.xm)

when M (m) is decomposable, neutral and idempotent. Let us now prove that the linkage
property is satisfied.

M (m+1)(M (m)(x1, . . . , xm), M (m)(x2, . . . , xm+1), . . . , M
(m)(xm+1, . . . , x2m))

= M (m(m+1))(m.M (m)(x1, . . . , xm), . . . , m.M (m)(xm+1, . . . , x2m)), (decomposability)

= M (m(m+1))(x1, 2.x2, . . . , m.xm, m.xm+1, . . . , 2.x2m−1, x2m), (decomposability

and neutrality)

= M (m(m+1))((m + 1).M (m+1)(x1, . . . , xm+1), . . . , (m + 1).M (m+1)(xm, . . . , x2m)),

(decomposability)

= M (m)(M (m+1)(x1, . . . , xm+1), . . . , M
(m+1)(xm, . . . , x2m)), (decomposability).

The fact that the converse is not true in general can be observed when considering the
arithmetic mean (which presents linkage but is not associative) or the product (which
presents linkage but is not decomposable).

We will now characterize the OWA operators.

Proposition 4 The class of the ordered weighted averaging aggregators corresponds
to the operators which satisfy the properties of neutrality, monotonicity, stability for the
same positive linear transformations and ordered linkage.

6



Proof . We already know that OWA aggregators satisfy the properties mentioned in
the Proposition.

We will now prove that under the assumptions of monotonicity, neutrality, stability
for the same positive linear transformations (SPL) and ordered linkage, an aggregator
M (m)(x1, . . . , xm) can be written under the form given in Equation (6).

(SPL) implies obviously idempotency.
Consider first m = 2.

M (2)(x1, x2) = M (2)(x(1), x(2)) = x(1) + (x(2) − x(1))M
(2)(0,1) (neutrality and SPL)

= x(1)(e
(2)
0 − e

(2)
1 ) + x(2)(e

(2)
1 − e

(2)
2 ) (see (3) and idempotency).

Due to monotonicity (e
(2)
0 − e

(2)
1 ) ≥ 0 and (e

(2)
1 − e

(2)
2 ) ≥ 0.

Consider m = 3.

M (3)(x1, x2, x3) = M (3)(x(1), x(2), x(3)) (neutrality)

= x(1) + (x(3) − x(1))M
(3)

(
0,

x(2) − x(1)

x(3) − x(1)
, 1

)
(SPL)

We pose

M (2)(0, 1) = e
(2)
1 =

x(2) − x(1)

x(3) − x(1)
, (M(0, 0) ≤ M(0, 1) ≤ M(1, 1))

and we apply ordered linkage property to the following boolean case :

M (3)(e
(2)
2 , e

(2)
1 , e

(2)
0 ) = M (2)(e

(3)
2 , e

(3)
1 )

M (3)(x1, x2, x3)

= x(1) + (x(3) − x(1))M
(3)(M (2)(0, 0), M (2)(0, 1), M (2)(1, 1))

= x(1) + (x(3) − x(1))M
(2)(e

(3)
2 , e

(3)
1 )

= x(1) + (x(3) − x(1))
[
e
(3)
2 (e

(2)
0 − e

(2)
1 ) + e

(3)
1 (e

(2)
1 − e

(2)
2 )

]
(from case m = 2)

= x(1) + (x(3) − x(1))

[
e
(3)
2

(
1 −

x(2) − x(1)

x(3) − x(1)

)
+ e

(3)
1

(
x(2) − x(1)

x(3) − x(1)

)]

= x(1)(e
(3)
0 − e

(3)
1 ) + x(2)(e

(3)
1 − e

(3)
2 ) + x(3)(e

(3)
2 − e

(3)
3 )

In an iterative way, let us consider the case m > 3.

M (m)(x1, . . . , xm) = M (m)(x(1), . . . , x(m)) (neutrality)

= x(1) + (x(m) − x(1))M
(m)

(
0, . . . ,

x(i) − x(1)

x(m) − x(1)

, . . . , 1

)
(SPL).

We consider

e
(m−1)
m−i =

x(i) − x(1)

x(m) − x(1)

(
e
(m−1)
m−i ≤ e

(m−1)
m−i−1

)

7



M (m)(x1, . . . , xm) = x(1) + (x(m) − x(1))M
(m)

(
e
(m−1)
m−1 , . . . , e

(m−1)
m−i , . . . , e

(m−1)
0

)
.

Due to the ordered linkage property, applied to the boolean case

M (m)(x1, . . . , xm) = x(1) + (x(m) − x(1))M
(m−1)

(
e
(m)
m−1, . . . , e

(m)
1

)

= x(1) + (x(m) − x(1))
m−1∑

i=1

(
e
(m−1)
i−1 − e

(m−1)
i

)
e
(m)
m−i (by iteration)

= x(1) +
m−1∑

i=1

(x(m−i+1) − x(m−i))e
(m)
m−i

=
m∑

i=1

x(i)

(
e
(m)
i−1 − e

(m)
i

)
.

Another characterization of OWA operators corresponds to the following proposition.

Proposition 5 The class of ordered weighted averaging operators corresponds to the
aggregators which satisfy the properties of neutrality, monotonicity, idempotency and
stability for positive linear transformations with the same unit, independent zeroes and
ordered values.

Proof . The conditions introduced in the proposition are trivially fulfilled by an OWA
operator. To prove the converse, we start from the functional equation :

M(rx(1) + t(1), . . . , rx(m) + t(m)) = rM(x(1), . . . , x(m)) + T (t(1), . . . , t(m)) (9)

where x(1) ≤ · · · ≤ x(m) and t(1) ≤ · · · ≤ t(m).
Due to idempotency, it is obvious that :

M (0, . . . , 0) = 0

and
M(t(1), . . . , t(m)) = T (t(1), . . . , t(m)).

For solving Equation (9) with M = T , consider the case r = 1 :

M (x(1) + t(1), . . . , x(m) + t(m)) = M (x(1), . . . , x(m)) + M (t(1), . . . , t(m)) (10)

which expresses the ordered additivity of M .
Choosing particular values x(1) = · · · = x(m−1) = t(1) = · · · = t(m−1) = 0, x = x(m) ≥

0, t = t(m) ≥ 0, Equation (10) implies

M (0, . . . , 0, x + t) = M(0, . . . , 0, x) + M(0, . . . , 0, t) , x ≥ 0, t ≥ 0.

By introducing the function

f1(x) = M (0, . . . , 0, x) , x ≥ 0
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one of the four basic Cauchy equations follows from f1 :

f1(x + t) = f1(x) + f1(t) , x ≥ 0, t ≥ 0.

Due to monotonicity, the only solution is given by

f1(x) = c1x , c1 ≥ 0

(see Aczél [1], Theorem 1, p. 34).
In a similar way, we can introduce f2, . . . , fm such that :

fi(x) = M( 0, . . . , 0︸ ︷︷ ︸
(m−i) times

, x, . . . , x︸ ︷︷ ︸
i times

) , i = 2, . . . , m.

We obtain the same Cauchy equation for each fi, i = 2, . . . , m and

fi(x) = cix , ci ≥ 0, i = 1, . . . , m.

Idempotency implies cm = 1 and monotonicity induces

c1 ≤ c2 ≤ · · · ≤ cm = 1.

The value of M(x(1), . . . , x(m)) = M (x1, . . . , xm) (neutrality) is obtained now in a
recursive way using Equation (10).

M (0, . . . , 0, x(m−1), x(m)) = M(0, . . . , 0, x(m−1), x(m−1)) + M (0, . . . , 0, x(m) − x(m−1))

= c2x(m−1) + c1(x(m) − x(m−1))

= (c2 − c1)x(m−1) + c1x(m)

M (x(1), . . . , x(m)) = (cm − cm−1)x(1) + (cm−1 − cm−2)x(2) + · · · + c1x(m).

Denoting ω
(m)
i = cm−i+1 − cm−i , i = 1, . . . , m − 1

ω(m)
m = c1,

we obtain that M(x(1), . . . , x(m)) =
∑

i

ω
(m)
i x(i), ω

(m)
i ≥ 0,

∑

i

ω
(m)
i = 1, for 0 ≤ x(1) ≤

· · · ≤ x(m).
We now consider any m-uple x(1) ≤ · · · ≤ x(m). Suppose that the first k values are

negative, the others being non negative. In that case, it is always possible to consider :

(y(1) = −x1) ≤ (y(2) = −x2) ≤ · · · ≤ (y(k) = −xk) ≤ (y(k+1) = xk+1) ≤ · · · ≤ (y(m) = xm).

From Equation (9), it comes that :

M(y(1), . . . , y(k), y(k+1), . . . , y(m)) = M (0, x1−x2, . . . , x1−xk, x1+xk+1, . . . , x1+xm)−x1.

Using the preceding result for non negative reals, we obtain that

M(y(1), . . . , y(m)) =
m∑

u=1

ω
(m)
i y(i).

9



5 Decomposable quasi-OWA aggregators

The quasi-arithmetic mean was first considered and characterized by Kolmogorov [9]
and Nagumo [12]. It corresponds to the aggregator

M (m)(x1, . . . , xm) = f−1

[
1

m

∑

i

f(xi)

]

where f is a continuous strictly monotonic function.
It is natural to consider the quasi-OWA operators

M (m)(x1, . . . , xm) = f−1

[
∑

i

ω
(m)
i f (x(i))

]
. (11)

These aggregators have still to be characterized but we can prove the following Propo-
sition.

Proposition 6 Any decomposable quasi-OWA operator corresponds to the min or
max or quasi-arithmetic mean.

Proof . Min, max and quasi-arithmetic mean operators are obviously decomposable
quasi-OWA operators. Let us now consider Relation (11) where M is supposed to be
decomposable; we will prove that

F (x1, . . . , xm) = f
[
M({f−1(x1), . . . , f

−1(xm)}
]

=
∑

i

ω
(m)
i x(i)

is also decomposable.
Indeed,

F (F (x1, . . . , xk), . . . F (x1, . . . , xk)︸ ︷︷ ︸
k times

, xk+1, . . . , xm)

= f
[
M{M(f−1(x1), . . . , f

−1(xk)), . . . , M(f−1(x1), . . . ,

f−1(xk)), f
−1(xk+1), . . . , f

−1(xm)}
]

= f
[
M(f−1(x1), . . . , f

−1(xm))
]

by decomposability of M)

= F (x1, . . . , xm) (by definition).

F is decomposable but also continuous, neutral, monotonic and presents stability
for the same positive linear transformations (obvious properties of OWA). From a result
obtained by Marichal and Roubens [11], we know that an operator having such properties
corresponds to min, max or A(x) and

(ω
(m)
1 , . . . , ω(m)

m ) = (1, 0, . . . , 0), (0, . . . , 0, 1) or
(

1

m
, . . . ,

1

m

)
.

Finally, decomposable M defined by (11) corresponds to min, max and the quasi-
arithmetic mean.
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