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1. Introduction 

Glycerol-3-phosphate acyltransferase (GPAT) is a crucial 
enzyme related to plant cold resistance (Sakamoto et al., 
2004; Yan et al., 2008). Previous studies have demonstrated 
that resistance could be improved by importing GPAT 
cDNA (Yokoi et al., 1998; Sui et al., 2007; Gupta et al., 
2013; Mizoi and Yamaguchi-Shinozaki, 2013), but current 
studies are mostly focused on individual genes that can 
improve cold resistance in plants (Macková et al., 2013; Van 
Houtte and Vandesteene, 2013; Wang et al., 2014; Yadav 
et al., 2014), while associations between the promoters 
of these genes and resistance have not yet been reported. 
Plant promoters play an important role in the regulation 
of gene expression in plants (Kim et al., 2013; Reynolds et 
al., 2013). Promoters are located on the 5’-�anking region 

of structural genes, recognized by RNA polymerase and 
combined with template DNA, ensuring that transcription 
starts e�ectively and accurately. �e promoter consists of 
two parts: the core region and upstream regulator region 
(Zhu and Li, 2002). �ere are abundant cis-acting elements 
that participate in gene regulation in the promoter 
(Razdan et al., 2013; Sarvestani et al., 2013). Transient 
transformation and histochemical staining can contribute 
to promoter functional analysis (Koia et al., 2013). Cloning 
and functional studies related to the promoters of the 
key genes in improving resistance of plants will aid us in 
understanding its signal transduction pathways and gene 
expression patterns. 

According to gene expression, promoters can be divided 
into two categories: constitutive promoters and speci�c 
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promoters. Constitutive promoters can be transcribed at 
any time in all cells. Speci�c promoters can be divided 
into the tissue speci�city of the promoter and the induced 
promoter (Watanabe et al., 2014). Induced promoter 
transcriptional activity is restricted and very low, but the 
activity is signi�cantly improved under the stimulus of 
signals from adverse stress (Wang et al., 2013). Transgenic 
plants that were imported with constitutive promoters 
have excessive exogenous gene expression, which causes 
accumulation of metabolites that could limit the growth 
and lead to cell death (Su and Wu, 2004). �erefore, it is 
best to clone and use induced promoters to cultivate stress-
tolerant crops. Analyzing inducible promoters contributes 
to understanding the mechanism of gene expression and 
regulation. �e application of inducible promoters has 
important implications for improving the resistance of 
Lilium pensylvanicum. 

2. Materials and methods

2.1. Plant materials and pretreatment

Lilium pensylvanicum bulbs, which had been domesticated 
from wild species over 3 years, were kindly provided by 
Daxinganling Forestry Bureau, Inner Mongolia Province, 
China. L. pensylvanicum possesses strong cold tolerance; it 
was stored under 10 cm of soil in winter and could survive 
at temperatures from 50 °C to below 0 °C. �e bulbs from 
L. pensylvanicum were separated and washed by running 
water, then soaked in 75% ethanol for 30 s and then placed 
in 0.1% HgCl

2
 solution for 10 min. Subsequently, they 

were rinsed with sterilized water three times. Finally, they 
were placed on dry sterile �lter paper for further use. �e 
sterile bulbs were cultured on MS medium supplemented 
with agar powder (7 g L–1) and sucrose (30 g L–1), pH 5.8. 
�e �uorescent light was set at 14 h every day with a light 
intensity of 1000–1200 lx. �e temperature was adjusted 
from 23 to 26 °C. Two months later, the adventitious 
buds were removed from the bulbs and placed at 4 °C 
for 12 h; they were later used for DNA extraction or were 
immediately frozen in liquid N

2
 and stored in an ultralow-

temperature freezer at –80 °C until needed. 

2.2. Construction of DNA library

Total DNA was extracted from leaf samples by the 
cetyltrimethylammonium bromide method (Barzegari et 
al., 2010). �e genomic DNA was digested with restriction 
endonucleases DraI, EcoRV, StuI, and PvuII, followed by 
puri�cation with 3 M NaOAc (pH 4.5), respectively. A�er 
that, they were ligated separately to the adaptor protein 
(GW-AP1, GW-AP2) to construct genomic walking 
libraries according to the procedure described in the 
Genome Walker Universal Kit User Manual (Clontech, 
Palo Alto, CA, USA).

2.3. Amplification of GPAT promoter and bioinformatics 

analysis

Two speci�c primers (GPATpR1 and GPATpR2) were 
designed and synthesized (Shanghai Sangon, Shanghai, 
China) based on the GPAT coding sequences, and 
the adapter primers (AP1 and AP2) were synthesized 
according to the user manual (Clontech). �e primers used 
are shown in Table 1. �e GPAT promoters were cloned 
with nested PCR (Jones et al., 1993). GPATpR1, AP1, and 
the constructed DNA libraries were used in the �rst step 
of PCR ampli�cation with the following conditions: 94 
°C for 5 min, followed by 7 cycles of ampli�cation at 94 
°C for 30 s and 72 °C for 3 min, followed by 32 cycles of 
ampli�cation at 94 °C for 30 s, 67 °C for 3 min, and at 72 °C 
for 10 min. �e product was diluted 50-fold and then used 
in nested PCR using the AP2 and GPATpR2 primers under 
the same conditions as in the �rst step. PCR products were 
resolved on 1.2% agarose gel electrophoresis. �e second 
PCR product was puri�ed, cloned into the pMD18-T 
vector (TaKaRa, Dalian, China), and sequenced. �e DNA 
sequences obtained were con�rmed using BLAST tools 
(http://blast.ncbi.nlm.nih.gov/) and sequenced (Shanghai 
Sangon). �ese sequences were analyzed using the plant 
cis-acting regulatory DNA elements database (http://www.
dna.a�rc.go.jp/htdocs/NewPLACE/) (Higo et al., 1999).

2.4. Construction of GPAT promoter deletion-GUS 

vectors 

�e transcriptional fusion of the GPAT promoter and 
the GUS gene was achieved using the pCAMBIA1301 

Table 1. Primers used in the ampli�cation of promoter.

Name Sequence (5’-3’)

GW-AP1 GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGT

GW-AP2 PO4-ACCAGCCC-H2N

AP1 GTAATACGACTCACTATAGGGC

AP2 ACTATAGGGCACGCGTGGT

GPATpR1 TGAATATAAGAGAGCAGTTCTT

GPATpR2 GTCCCCTCCGCCGGCTCCGCCA
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GUS vector. �e GUS reporter gene expresses under 
the control of the CaMV35S promoter in the vector. To 
construct GPAT promoter–GUS expression vectors, �ve 
5’-fragments were isolated from the cloned promoter and 
ampli�ed by PCR using �ve forward primers with the 
BamHI site and a reverse primer with the BglII site (Table 
2), and the T-vector was ligated with GPAT promoter 
regions as a template. PCR ampli�cation was done using 
the following program: predenaturation at 94 °C for 5 
min, followed by 32 cycles of denaturation at 94 °C for 
30 s, annealing at 58 °C for 1 min, and extension at 72 °C 
for 90 s followed by a �nal extension at 72 °C for 10 min. 
�e CaMV35S promoter was removed by BamHI/BglII 
digestion in pCAMBIA1301, followed by the insertion 
of �ve successfully ampli�ed fragments, respectively. �e 
vectors were named GPATp(1–5)::GUS-pCAMBIA1301, 
and PCR ampli�cation by GPATpQF(1–5) and GPATpQR 
con�rmed the validity of the recombinant vectors. PCR 
products were resolved by 1.2% agarose gel electrophoresis.

2.5. Agrobacterium transformation of tobacco leaf disks

Tobacco (Nicotiana tabacum L. variety K326) leaf disks 
were transformed with Agrobacterium tumefaciens 
LBA4404 (Marton et al., 1979; Bevan, 1984; Valvekens et 
al., 1988) containing the �ve constructs GPATp(1–5)::GUS-
pCAMBIA1301. �e tobacco leaves were cocultivated with 
bacteria on solid medium (1/2 MS + 2.0 mg/L 6-BA + 
0.1 mg/L NAA) at 28 °C for 2 days, transferred onto the 

same solid medium containing 400 mg/mL cefotaxime to 
exclude bacteria, and cultivated in dark conditions at 28 
°C.
2.6. GUS enzyme assays

GUS (β-glucuronidase) activity was assayed using the 
method of transient transformation with a chromogenic 
substrate X-Gluc (5-bromo-4-chloro-3-indyle-β-D-
glucuronide) (Je�erson et al., 1987). �e leaves were placed 
in 8 mL of solution containing 50 mM sodium phosphate 
bu�er (pH 7.0), 10 mM EDTA-Na

2
, 0.1% (v/v) Triton 

X-100, and 0.1% β-mercaptoethanol, supplemented with 
160 µL of X-Gluc solution (50 mg/mL of X-Gluc dissolved 
in N,N-dimethylformamide). �e reaction was incubated 
at 37 °C for 16 h. A�er that, the leaves were immersed 
in 75% ethanol to remove chlorophyll, until the negative 
control turned white, and photographed with a camera 
(Battraw et al., 1990). �e experimental groups are shown 
in Table 3.

3. Results and discussion

3.1. Cloning of the 5’-�anking region of the GPAT gene 

from Lilium pensylvanicum by chromosome walking and 

sequences analysis

Chromosome walking is a cloning technology commonly 
used to clone �anking sequences of a known fragment 
(Siebert et al., 1995). �is method can be divided into three 
categories: inverse PCR, ligation-mediated PCR such as 

Table 2. Primers used in the vector construction. 

Name Sequence (5’-3’)

GPATpQF1 AGCGGATCCTGAAGAGGATATACACC

GPATpQF2 CACGGATCCCTTGAAAAACAGACATTCTG

GPATpQF3 AGCGGATCCCGCCTTATATTACTATGGAG

GPATpQF4 AGAGGATCCACTCTCTACCACCACCTC

GPATpQF5 GATTGGATCCATCTTAGCTGGCCATGATCG

GPATpQR CGCAGATCTACTAACACGTACAATCCTT

Note: Restriction site sequences are underlined.

Table 3. Groups used for GUS staining.

Temperature Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Low temperature 
(4 °C)

GPATpQ1::GUS GPATpQ2::GUS GPATpQ3::GUS GPATpQ4::GUS GPATpQ5::GUS 35s::GUS
Negative 
control

Room temperature 
(25 °C)

GPATpQ1::GUS GPATpQ2::GUS GPATpQ3::GUS GPATpQ4::GUS GPATpQ5::GUS 35s::GUS
Negative 
control
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adaptor/linker ligation PCR, and randomly primed PCR 
such as tail PCR (Yan et al., 2003). In this study, the adapter 
PCR method was used to clone the GPAT promoter. Nested 
PCR is a method to amplify speci�c sequences of DNA. 
Two pairs of PCR primers were used in the reaction: the 
�rst pair ampli�ed the desired sequence, while the second 
pair bonded with the �rst PCR product and yielded a 
shorter product than the �rst. �is method could increase 
the sensitivity and reliability of the PCR (Antal et al., 2004; 
Shimano et al., 2009). 

�e full length of GPAT has been previously isolated 
(GenBank ID: JX524741). In this study, chromosome 
walking and nested PCR were performed on the DNA 
library that was digested with restriction endonuclease 
PvuII. A 5’-�anking fragment of the GPAT gene was 
ampli�ed including 1494 bp upstream of the initiation 
codon (ATG) and named as GPATp, which is shown in 
Figure 1. �e nucleotide sequence of this product is shown 
in Figure 2.

Using the NewPLACE database, the transcription start 
site was predicted based on the structure of promoter 
in eukaryotes (Figure 3). �ere are various cis-acting 
regulatory elements upstream of the translation initiation 
site (Figure 3). �eir functions and locations in the 
promoter are listed in Table 4.

�e GPAT promoter sequence contains several 
important cis-regulatory elements, such as TATA-box, 
CAAT-box, GATA-box, and I-boxes. Bioinformatic 
analysis revealed 7 TATA-boxes in the promoter region. It 
was usually located 25–30 bp upstream of the transcription 
start site, combined with RNA polymerase II, a�ecting the 
rate of transcription (Smale and Kadonaga, 2003; Hapala 
and Trifonov, 2013; Murakami et al., 2013; Bushnell et 
al., 2014). In the GPAT promoter, the nearest TATA-box 
from the forecasted transcription initiation site was 24 bp 
upstream. Another cis-element, CAAT-box, usually occurs 

75–80 bp upstream of the initial transcription site, which is 
also the binding site for the RNA transcription factor and 
typically accompanied by a conserved consensus sequence. 
It controls the transcription initiation frequency and 
impacts the conversion rates of the target gene (Edwards 
et al., 1998; Hogekamp et al., 2011; Singh et al., 2013). 

In addition to the essential cis-acting elements, other 
corresponding stress-related cis-elements in the promoter 
region were also predicted by the NewPLACE database, 
such as I box, MYB-Core, MYC-Core, W-box, DRE-
Core, ABRE, and others. MYB-core binding sites (T/
CAACNA/G) and MYC-core recognition sites (CANNTG) 
were noted in the region. Both have been shown to play 
important roles in plant responses to salt, low temperature, 
and drought (Miura et al., 2012; Yang et al., 2012; Feng et 
al., 2013; Su et al., 2014). Furthermore, several hormones 
could in�uence the relevant promoter element (Li et al., 
2013). For example, the ABA motif was induced by ABA, 
a classical phytohormone that plays a crucial role in plant 
growth and in stress or drought tolerance (Redman et al., 
2002; Nakashima et al., 2014). �e W-box (TGAC-motif) 
is a GA-responsive element and binds to WRKY proteins 
to regulate target gene expression. It can be induced by 
pathogens, wounds, signal molecules, or senescence, 
and it also participates in various biological processes or 
metabolism (Eulgem et al., 2000; Tripathi et al., 2013). 
DRE/CRT is a cold-induced element and binds to CBF 
transcriptional activators, followed by the expression 
of CBF-targeted genes that increase freezing tolerance. 
Repeated domains containing the conserved sequence 
CCGAC have been found in the regulation of all the cold-
induced genes (Kasuga et al., 1999; Morran et al., 2011; 
Hudson, 2013; Li et al., 2014). 

�e cold-related elements in the promoter, such 
as MYB, MYC, and DREB, also demonstrate that the 
regulation of the promoter is induced by temperature; 
some light-responsive elements were found in the 
promoter, such as I-box and GATA-box. Researchers 
demonstrated that photoperiod was connected with plant 
stress tolerance (Van Huystee et al., 1967; Maibam et al., 
2013). CaM can combine with Ca2+, which is a messenger 
in multiple signaling pathways and activates or regulates 
gene expression. �e mechanism of Ca2+ has been a 
popular research subject in recent years.

3.2. Deletion analysis of GPAT promoter and construction 

of recombinant expression vectors for GPAT promoter–

GUS gene

�e current method to study promoter activity is focusing 
on a reporter gene coding GUS or green �uorescent 
protein (GFP) (Chiu et al., 1996; Peach and Velten, 1996; 
Ducrest et al., 2002). �e pCAMBIA1301 vector displays 
a hygromycin gene and a GUS gene driven by a double 
35S gene from the cauli�ower mosaic virus. �e promoter 

Figure 1. Agarose gel electrophoresis of 5’-�anking regions of 
GPAT gene. Products are marked by a red arrow.
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controls the GUS reporter gene and a NOS terminator 
(Chalfun-Junior et al., 2003). �e activity of the GPAT 
promoter was studied using this vector by replacing 
the CaMV35S promoter with the GPAT promoter. �is 
recombinant expression vector and the empty plasmid 
were used for Agrobacterium-mediated transformation 
and infection of tobacco plants.

Sequential deletions of the promoter were cloned and 
sequences were 1494 bp, 1194 bp, 894 bp, 594 bp, and 
294 bp in length. �e schematic map of the �ve deleted 
constructs are shown in Figure 4. �e constructed �ve 
GUS gene expression vectors of sequential segments 
of promoter linked with the GUS gene were as follows; 
GPATpQ1::GUS (–1494 to 28), GPATpQ2::GUS (–1194 
to 28), GPATpQ3::GUS (–894 to 28), GPATpQ4::GUS 
(–594 to 28), and GPATpQ5::GUS (–294 to 28). PCR 
ampli�cation of recombinant expression vectors using 
primer GPATpQF(1–5)/GPATpQR is shown in Figure 5. 
PCR results indicated that the gene has probably been 
integrated into the vector.

3.3. Transient expression of the GUS gene 

Histochemical GUS staining on young transgenic 
tobacco leaves revealed GUS activity. It indicated that 
the GUS gene, driven by the GPAT promoter, showed 
expression and that there was a positive correlation 
between the depth of shade and gene expression 
quantity. �us, GUS activity increased with deeper 
color, which illustrated that the activity of the promoter 
was stronger (Figures 6A–6N). In Figures 6C–6J, the 
color normally darkens along with the elongation of 
fragment. In some cases, however, such regularities 
were not observed (Figures 6A and 6B). In Figures 
6A–6L, the color shows di�erent depths at di�erent 
temperatures. �e color at low temperatures was deeper 
than at room temperature. �e level of GUS activity 
obtained with the 35S-GUS fusion gene was slightly 
lower than those obtained with the GPATpQ-GUS 
fusion gene (Figures 6K and 6L). �ese results indicate 
that the GPAT promoter has higher activity than 35S in 
response to cold temperatures. 

Figure 2. Nucleotide sequences of GPAT promoter (1–1494 bp). �e translational start codon ATG is underlined and part sequences 
are on a gray background (1495–1637 bp).
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Figure 3. Sequence analysis of the GPAT promoter. �e transcription start site is de�ned as +1; numbers indicate the positions relative 
to the transcription start site. �e putative TATA-box, CAAT-box, and other elements are boxed. �e start codon ATG is underlined 
and on a gray background.



CHEN et al. / Turk J Biol

558

Table 4. Putative cis-acting regulatory elements identified in the promoter region of GPAT using the NewPLACE database.

Element Signal sequence* Expected function Position

MYB T/CAACNA/G
Regulates the transcription in the abiotic stress 
response, related to CBF gene expression

+4/–240/–417/–785

MYC CANNTG
Regulates the transcription in the cold and 
dehydration response

–299/–351/–694/–1168/–1353

ABRE ACGTGG/TC Response to dehydration and high-salinity stresses –1271

DRE CCGAC Core motif of DRE/CRT –528

CaM VCGCGB
Ca2+ DNA-binding protein in multiple signaling 
pathways

–516

I-box GATAA Light-regulated element –628/–981/–1104

W-box TGAC
WRKY-binding site involved in pathogenesis 
activation and negative regulatory elements

–650/–1071/–1254

ABA-Core WAACCA Transcriptional activators in abscisic acid signaling –801

Dof-Core AAAG Transcriptional activator. –39/–113/–176/–191/–902/–928/–1178

GATA-box GATA Light-regulated and tissue-speci�c expression –338/–961/–956/–1312/–1459

A-box CCGTCC Confers elicitor or light responsiveness –535

TATA-box TATA
Core promoter element around –30 of transcription 
start

–24/–827/–843/–870–1057/–1212/–1449

CAAT-box CAAT
Common cis-acting element in promoter and 
enhancer regions

–58/–126/–778/–1459

*N indicates A, C, G, or T; W indicates A or T; V indicates A, C, or G.

Figure 4. Deletion analysis of the GPAT promoter fused to the GUS gene. It shows a schematic map of the promoter deletion 
constructs. �e elements are marked by di�erent graphics.
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GUS staining is darker with a stronger promoter (Liu 
et al., 2013). In this study, the darkest GUS staining was 
1194 bp, while the lightest was 294 bp. Comparing the 
two species, there was no DRE element that was directly 
linked to clod resistance in the latter. �is suggests that 
the DRE element is crucial to start the downstream gene 
transcription under cold treatment. �e quantity of the 
cis-element was gradually increased, along with sequence 
length. Concerning the color of leaves in transfer of 
GPATpQ1::GUS and GPATpQ2::GUS, the color of the 
former was lighter, which showed that the activity of the 
larger fragment was not the strongest. �ere might exist 
negative regulatory elements in the 300 bp or upstream, 
which stems gene expression. GPAT gene expression 
might be regulated by the positive and negative control; 
the mechanism of regulation should be further studied.

�e constitutive promoter 35S is widely used as a 
strong promoter in plant genetic engineering, but this 
promoter may cause metabolic waste in the plant, because 
it comes from the cauli�ower mosaic virus. Researchers 
have put forward the biological safety of this promoter. 
�e application of a promoter from plants themselves 
was spontaneous (Battraw et al., 1990; Ho et al., 1999; 
Rezazadeh et al., 2013). �is promoter from Lilium 
pensylvanicum could safely activate the gene, and GPAT 
promoter activity was slightly higher than that of the 35S 
promoter under low temperature. �is promoter could 
replace the 35S promoter in executive function and could 
reduce the negative e�ects on plants.

Promoter function analysis methods include other 
experimental analyses, such as dot mutation, gel 
retardation assay, yeast one-hybridization, transient 
expression transformation, and stable expression 
transformation (Su et al., 2014). In this study, the promoter 
validation was carried out with tobacco; however, more 
detailed experimental veri�cation is needed to understand 
the role of various cis-regulatory elements present on it. 
Fluorogenic quantitative PCR is a more powerful way to 
verify the accuracy of the present study. �is study would 
provide a preliminary validation of the GPAT promoter.

In this study, a GPAT promoter was successfully cloned 
and analyzed using the NewPLACE database. Transient 
expression and histochemical staining of the GUS gene 
suggests that the GPAT promoter of Lilium pensylvanicum 
is a cold-inducible promoter that can regulate expression 
under low temperature. �e deletion of a –294 bp region 
suggested that the DREB-motif was a functionally essential 
element for cold induction, and the deletion of –1494 
bp and –1194 bp regions suggests that there is negative 
regulation in the region of 300 bp or upstream. �e results 
of this work will help to understand the relationship 
between promoters and genes.
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Figure 5. Agarose gel electrophoresis of PCR ampli�cation of recombinant expression vectors. A) Products from GPATpQ1::GUS, 
marked at 1500 bp with a red arrow; B) products from GPATpQ2::GUS, marked at 1200 bp with a red arrow; C) products from 
GPATpQ3::GUS, marked at 900 bp with a red arrow; D) products from GPATpQ4::GUS, marked at 600 bp with a red arrow; E) 
products from GPATpQ5::GUS, marked at 300 bp with a red arrow.
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Figure 6. Histochemical analysis of GPAT promoter regulating GUS expression in leaves of Nicotiana tabacum. A) 4 °C, 
GUS staining result of GPATpQ1::GUS; B) room temperature, GUS staining result of GPATpQ1::GUS; C) 4 °C, GUS staining 
result of GPATpQ2::GUS; D) room temperature, GUS staining result of GPATpQ2::GUS; E) 4 °C, GUS staining result of 
GPATpQ3::GUS; F) room temperature, GUS staining result of GPATpQ3::GUS; G) 4 °C, GUS staining result of GPATpQ4::GUS; 
H) room temperature, GUS staining result of GPATpQ4::GUS; I) 4 °C, GUS staining result of GPATpQ5::GUS; J) room 
temperature, GUS staining result of GPATpQ5::GUS; K) 4 °C, GUS staining result of 35s::GUS; L) room temperature, GUS 
staining result of 35s::GUS; M) 4 °C, GUS staining result of negative control; N) room temperature, GUS staining result of 
negative control.
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