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Abstract: In a recent study, we observed a rapid decline of the boxwood blight pathogen Calonectria
pseudonaviculata (Cps) soil population in all surveyed gardens across the United States, and we
speculated that these garden soils might be suppressive to Cps. This study aimed to characterize
the soil bacterial community in these boxwood gardens. Soil samples were taken from one garden
in California, Illinois, South Carolina, and Virginia and two in New York in early summer and late
fall of 2017 and 2018. Soil DNA was extracted and its 16S rRNA amplicons were sequenced using
the Nanopore MinION® platform. These garden soils were consistently dominated by Rhizobiales
and Burkholderiales, regardless of garden location and sampling time. These two orders contain
many species or strains capable of pathogen suppression and plant fitness improvement. Overall,
66 bacterial taxa were identified in this study that are known to have strains with biological control
activity (BCA) against plant pathogens. Among the most abundant were Pseudomonas spp. and
Bacillus spp., which may have contributed to the Cps decline in these garden soils. This study
highlights the importance of soil microorganisms in plant health and provides a new perspective on
garden disease management using the soil microbiome.

Keywords: disease suppressive soil; soil bacterial community; urban garden; boxwood; biological
control agents; Nanopore MinION sequencing

1. Introduction

Bacterial communities are important components of soil health in general and soil
suppressiveness in particular. Soil disease suppression refers to the capacity of a soil that
maintains low disease severity or incidence despite the presence of pathogen inoculum
and conducive conditions [1–3]. There is an increasing body of evidence recognizing the
importance of microorganisms in soil disease suppression [4–9]. For example, fluorescent
Pseudomonas spp. are key players in the decline of take-all disease by producing the
antibiotic 2,4-diacetylphloroglucinol [10]. The populations of Burkholderia and Streptomyces
were enriched in healthy banana rhizosphere soils compared with those infested with
Fusarium species [11].

Soil suppression can be either general or specific in terms of soil microorganism
interaction with target pathogens [10]. General suppression refers to soil microorganisms
as a whole competing with pathogens for nutrients and niche habitats [10,12]. It implies
the collective and non-discriminating activities of soil microbial communities against
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pathogens. The microbial composition of such suppressive soils is distinct from that
of disease conducive soils [8,11] or the microbial diversity is positively correlated with
disease suppression [13]. Specific suppression refers to certain soil microorganisms being
antagonistic against pathogens [10,14]. These antagonistic microbes or biocontrol agents
(BCAs) protect plants through various mechanisms, including antimicrobial compounds,
competition, hyper-parasitism, and/or induced plant resistance [15]. Hence, soil microbial
community features and certain antagonistic microbial populations could be indicative of
soil suppressiveness [16,17].

Among the most studied soil microbial taxa are bacteria in agricultural crop sys-
tems [18–21]. Many bacterial species and strains from the genera Bacillus, Pseudomonas, and
Streptomyces have been shown to have biological control activities against a wide range
of fungal plant pathogens and have been subsequently developed into biofungicides for
disease management [22]. There have also been studies examining how farming practices,
such as soil organic amendment and crop rotation, may change soil bacterial communities
and consequently improve soil suppressiveness and plant productivity [23–26]. Soil sup-
pressiveness is also transferable, alleviating disease pressure in treated soils, although it
depends on many biotic and abiotic factors in the soil environment [9,27–29].

Comparatively, the garden soil microbiome has been largely neglected. One of the
most comprehensive studies was recently done by LeBlanc and Crouch, sampling soil of
82 individual curated boxwood accessions at the U.S. National Arboretum, demonstrating
that bacterial diversity was significantly different in soil from distinct types of boxwood [30].
Although this work was done in the absence of boxwood disease, it demonstrated the
potential for improving boxwood health by planting different species or cultivars in the
landscape to manipulate the soil microbiome. In a more recent study, we demonstrated
that the soil population of Calonectria pseudonaviculata (Cps), a destructive fungal pathogen
of boxwood crops and plantings [31,32], declined sharply within the first year of blighted
boxwood removal and fell to an almost undetectable level at the end of year 2 or 3 in
all selected gardens across the United States [33]. We speculated that soil bacteria in
these gardens may have contributed to the Cps decline, as has been shown for other
plant pathogens [34].

The primary objective of this study was to characterize the bacterial communities in
these garden soils using the MinION® platform (Oxford Nanopore Technologies, Oxford,
UK). Specifically, we profiled the bacterial communities, identified beneficial members that
included potential pathogen antagonists, and evaluated their variation across gardens and
sampling times.

2. Materials and Methods
2.1. Boxwood Gardens

As described previously [33], private gardens included in this study represented five
geographic regions of the United States: California (San Mateo County) for Pacific West,
Illinois (Cook County) for North Central, New York (Long Island) for Northeast, South
Carolina (City of Florence) for Southeast, and Virginia (Powhatan County) for the Mid-
Atlantic region. Five gardens, one in each state, were sampled four times, twice per year in
2017 and 2018. A second New York garden also on Long Island was sampled twice, once
per year in 2017 and 2018, and included in the analysis for New York samples.

2.2. Soil Sampling

Soil samples were collected in three replicates from individual gardens in early summer
(ES) and late fall (LF) of 2017 and 2018 using the same protocol in a coordinated fashion [33].
Briefly, the top 6 cm of soil including limited leaf debris was taken using a soil sampler and
placed in a new Ziploc® bag (Bay City, MI, USA). Virginia samples were transported in a
cooler to the lab, while samples of non-Virginia origin were sent overnight via a commercial
carrier to Virginia Tech for processing and analyses. The soil samples were placed at 4 ◦C
for short-term storage or −80 ◦C for long-term storage.
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2.3. DNA Extraction and PCR Amplification

The soil samples were first equilibrated to room temperature before DNA extraction.
Because moisture levels were different among samples, volume was used instead of weight
to facilitate comparison across locations. For each replicate sample, 0.4 cc of soil was
used for DNA extraction. Soil DNA extraction was carried out using Qiagen PowerLyer
PowerSoil kits (Qiagen, Germantown, MD, USA) according to the manufacturer’s protocol
with a few modifications. Specifically, soil was first added to a PowerBead Pro tube filled
with 750 µL of PowerBead solution and 60 µL of Solution C1. Second, DNA was cleaned
using the Maxwell RSC cartridge (Promega Mad-74, Madison, WI, USA) for automation
and eluted with 60 µL of the elution buffer. DNA concentration was determined using the
QuantiFluor ONE system (Promega, Madison, WI, USA).

The 16S rRNA gene was used as the DNA marker to identify bacterial members in each
sample and was amplified using primer pair 27F (5′-AGAGTTTGATCCTGGCTCAG-3′)
and 1492R (5′-GGTTACCTTGTTACGACTT-3′) [35]. The primer pair was attached to the
tail of the ONT overhand sequences (5′-TTTCTGTTGGTGCTGATATTGC-project specific
forward primer sequence-3′, 5′-ACTTGCCTGTCGCTCTATCTTC-project specific reverse
primer sequence-3′). The PCR conditions were 94 ◦C for 2 min, followed by 30 cycles of
94 ◦C for 30 s, 65 ◦C for 45 s, and 72 ◦C for 1 min, and then 72 ◦C for 10 min. PCR products
were cleaned using magnetic beads from the MagBio HighPrepTM PCR protocol (MagBio
Genomics Inc., Gaithersburg, MD, USA).

2.4. Nanopore Library Preparation and Sequencing

Multiplex Nanopore libraries were prepared using an SQK-LSK 109 ligation kit (Ox-
ford Nanopore Technologies, Oxford, UK). Amplicons of the DNA fragments for bacteria
were pooled in 0.5 µg. Fifty fmol samples were used and the volume was adjusted to
48 µL with nuclease-free water. A PBC001 barcode kit (Oxford Nanopore Technologies,
Oxford, UK) and the LongAmp® Tag 2x master mix (New England Biolabs, Ipswich, MA,
USA) were used to barcode each sample. Thermal conditions for barcoding followed the
ONT protocol. Twelve barcoded samples were then subjected to cleanup with MagBio
HighPrepTM beads and pooled in equal molar concentration of 100 fmol per sample to a
final of 1 µg in 47 µL nuclease-free water. The barcoded DNA library was prepared for
ligation using the NEBNext® FFPE DNA Repair module and NEBNext® Ultra II End Repair
module (New England Biolabs, Ipswich, MA, USA). Following cleanup with AMPure XP
beads (Beckman Coulter Life Sciences, Indianapolis, IN, USA), the library was ligated to the
ONT adapters with NEBNext Quick T4 ligase (New England Biolabs, Ipswich, MA, USA).
Short fragment buffer (SFB) (Oxford Nanopore Technologies, Oxford, UK) was selected
in the following cleanup to retain all fragments. The library was then quantified and ap-
proximately 50 µg was loaded into a Nanopore MinION R9.4 flow cell following the ONT
priming and loading protocol. Fast basecalling was selected in the MinKNOW software
(GUI version 3.4.5, Oxford Nanopore Technologies, Oxford, UK), and the Nanopore propri-
etary software Guppy (CPU version 3.0.4) was also installed and coupled with MinKNOW
to facilitate basecalling on a Windows 10 system.

2.5. Database Construction

The SILVA database and the complete bacterial genome database from the National
Center for Biotechnology Information (NCBI) were used separately for chimera removal
and taxonomy assignment. The SILVA 138.1 SSU NR99 [36,37] was downloaded from the
official repository. The raw reference sequences and taxonomy information were processed
in the quantitative insights into microbial ecology (QIIME2) [38] environment with the
REference Sequence annotation and CuRaIon Pipeline (RESCRIPt) [39] for curation. Briefly,
the low-quality reference sequences, i.e., those with ambiguous bases (default minimal 5)
and homopolymers (default minimal 8), were first removed. The reference sequences
were then filtered by length to retain a minimum length of 1200 bp for the SILVA database.
Dereplication followed to keep the unique sequences with different taxonomies (set p-mode
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“uniq”). After curation, the SILVA database contained 438,119 sequences, representing
90 bacterial phyla, 245 bacterial classes, 657 bacterial orders, 1203 bacterial families, and
4333 bacterial genera, or 23,511 bacterial species. The software centrifuge was used to
compile the reference database for taxonomy assignment, retrieved automatically from the
NCBI complete genome database [40].

2.6. Bioinformatics

An in-house Python package (Nanoprep, https://github.com/xpli2020/NanoPrep,
accessed on 20 October 2021) was developed to facilitate the implementation of various
bioinformatics tools and file navigations. All quality fastq reads (≥Q 10) were first demulti-
plexed by the attached barcodes using qcat (Oxford Nanopore Technologies, Oxford, UK).
The NanoPlot [41] program was then used to visualize the quality of all reads. The NanoFilt
function [41] filtered the reads with the minimum quality set at 10 and the length between
1000 bp and 2000 bp (-l 1000, -maxlength 2000, -q 10, -headcrop 50, -tailcrop 50). The fastq
reads were converted to fasta using seqtk (https://github.com/lh3/seqtk, accessed on
20 October 2021). Minimap2 [42] and Yacrd [43] were used to remove chimeras. The “clean”
reads were then re-aligned to the reference database using Minimap2. The reads with the
best alignment score were retained. An operational taxonomic unit (OTU) table was con-
structed based on the alignment output of Minimap2 using custom R scripts. The OTU
table, the taxonomy table, and the metadata were all imported into an R environment [44]
for downstream statistical analyses using the phyloseq package [45].

2.7. Data Analyses and Statistics

Kingdoms and phyla that contained “NA” values and non-bacteria were removed.
Taxa that contained more than 10 reads and samples that contained more than 20,000 reads
were retained to reduce bias from the singletons or error reads. Sample coverage was
calculated using the metagMisc package [46] with singleton correction [47]. The significance
level for all statistical tests was set at 5%.

2.7.1. Community Diversity and Structure

Observed OTU and Shannon’s index were used to estimate the alpha diversity with
the estimate_richness function from the phyloseq package [45]. Samples were rarefied
at 24,400 reads. Two-way analysis of variance (ANOVA) was used to assess season and
location effects on the alpha diversity indices, followed by mean separation according to
Tukey honest significant difference (HSD) at p = 0.05. Effect size was evaluated using the
anova_stats function from the sjstats package [48]. Small (η2 = 0.01), medium (η2 = 0.06),
and large (η2 = 0.14) effect sizes were defined by Cohen [49].

Bray–Curtis dissimilarity [50] was used to analyze the community structure, and
the visualization of the matrix was based on the principal coordinates analysis (PCoA)
ordination. To determine which factor drove the community structure in 2017 and 2018, the
Bray–Curtis dissimilarity was analyzed using the adonis function of the vegan package [51]
with 10,000 permutations: Bray–Curtis dissimilarity ~ State + Season + State × Season.
Dispersion was evaluated using the Vegan betadisper function and the statistics were
obtained from an ANOVA test.

2.7.2. Identification of Major Bacterial Orders

The OTU table was first agglomerated to the order level. Relative abundance was
calculated, and the bar plot was produced using ggplot2 [52]. All bacterial orders were
further analyzed individually using the Kruskal–Wallis test [53] to assess the level of
variation in their abundance among five states and between two seasons. p-values were
adjusted using the false discovery rate (FDR) procedure.

https://github.com/xpli2020/NanoPrep
https://github.com/lh3/seqtk


Microorganisms 2022, 10, 1514 5 of 17

2.7.3. Identification of Bacterial Species with Biological Control Potential

This began with compiling a list of bacterial species known to have strains with
antagonistic activities against plant pathogens based on literature reviews [54–58] and the
SMARTBIOCONTROL database (http://www.smartbiocontrol.eu/en/database-effects-of-
biocontrol-agents/, accessed on 10 May 2022). The OTU table was first agglomerated to
the species level and then evaluated against the list to identify bacterial species known to
have biological control potential in sampled garden soils. Subsequently, the most abundant
species were analyzed individually using the Kruskal–Wallis test to assess the level of
variation in their abundance among soil samples from five states and between two seasons.
p-values were adjusted using the FDR procedure.

3. Results
3.1. Sequencing Summary

A total of 32,129,795 raw reads were generated in eight runs using five nanopore
MinION R9.4 flow cells. After demultiplexing using qcat, approximately 30 million quality
reads were obtained, averaging 4.3 million per run. With further filtering using Nanofilt,
eight million reads were retained, averaging about 1.2 million reads per run (Table S1).
The quality of the sequencing reads was at least 10, suggesting the accuracy was over
90%. After further filtering (the minimum number of reads for each sample was at least
20,000 and minimum number of reads for each taxon was at least 10) in an R environment,
about 7.5 million reads were retained (Table 1). Most of the samples reached a reasonable
sequencing depth, although not all were saturated (Figure S1).

Table 1. Summary of quality bacterial sequence reads and sample coverage by year and season.

Year Season Sequence Reads Sample Coverage

2017
Early summer 1,788,962 0.991

Late Fall 2,127,058 0.991

2018
Early summer 1,871,473 0.995

Late Fall 1,732,272 0.990

∑ 7,519,765 Avg = 0.992

3.2. Garden Soil Bacterial Community Diversity

A total of 1,788,962 reads were identified for samples collected in early summer with
sample coverage at 0.991, while 2,127,058 reads were identified for late fall in 2017 with
sample coverage at 0.991 (Table 1). Likewise, 1,871,473 reads were identified for the samples
collected in early summer with sample coverage at 0.995, while 1,732,272 were identified
for late fall in 2018 with sample coverage at 0.990 (Table 1). Overall, the sample average
was 0.992. The observed richness and Shannon index in the bacterial community varied
significantly among the five states (p < 0.0001) and between the two seasons (Table 2 and
Figure 1). The only exception was that the Shannon index did not differ between early
summer and late fall samples of 2018 (Table 2). The lowest OTU number was observed in
Virginia samples across all sampling times from early summer of 2017 to late fall of 2018
(Figure 1). The greatest variation in OTU number was observed in the New York samples
with the highest in late fall of 2018 (p = 0.0014) and the lowest in early summer of 2017
(Table S2). The second greatest variation was seen in the California samples, followed by
those collected from South Carolina. The most consistent OTU richness across all sampling
times was observed in the Illinois samples. Similarly, the most variation in the Shannon
index was observed in the New York samples in 2017 (p = 0.0247) and 2018 (p = 0.0279)
(Table S2).

http://www.smartbiocontrol.eu/en/database-effects-of-biocontrol-agents/
http://www.smartbiocontrol.eu/en/database-effects-of-biocontrol-agents/
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Table 2. Analysis of variance on two alpha diversity indices among five states and between two
seasons and their interactions by year.

Year Variable
Observed OTU Richness Shannon Index

F p-Value F p-Value

2017
State 20.60 <0.0001 27.72 <0.0001

Season 12.97 0.0013 5.45 0.0273
Season × State 4.53 0.0063 8.56 0.0001

2018
State 15.06 <0.0001 31.35 <0.0001

Season 11.72 0.0019 0.54 0.4704
Season × State 5.42 0.0023 4.23 0.0084

Significant p-values are shaded in gray.
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hoc test at p = 0.05.

3.3. Garden Soil Bacterial Community Structure

Soil microbial community structure was measured using the Bray–Curtis dissimilarity
index and ordinated for visualization using principal coordinates analysis (PCoA). Overall,
the first axis explained 26.1% and 25.5% of the variation in 2017 and 2018, respectively
(Figure 2). VA samples appeared separated from those collected from other states (Figure 2
and Figure S3). The centroids of IL, CA, and NY were closely gathered and samples
from those states overlapped in 2017 (Figure S3a), while the centroids spread out in 2018,
with CA samples separate from the rest (Figure S3b). In contrast, samples annotated by
season were overlapped in both 2017 and 2018 (Figure 2). The PERMANOVA test on the
Bray–Curtis dissimilarity indicated a strong state effect on the dissimilarity variances in
both 2017 (p < 0.0001) and 2018 (p < 0.0001) (Table 3). A significant season effect also was
observed in the bacterial community structure, accounting for 6% and 5% of the variance
in 2017 and 2018, respectively (Table 3). Additionally, strong interactions between state and
season were observed in the community structure, accounting for 22% and 13% of the total
variation in 2017 and 2018, respectively (Table 2).
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Table 3. PERMANOVA and dispersion analyses of bacterial beta diversity in soil samples collected
from the five states during early summer and late fall of each year.

Year Variable
PERMANOVA † Dispersion ‡

R2 p-Value F p-Value

2017
State 0.33 <0.0001 5.07 0.0028

Season 0.06 0.0006 0.41 0.5268
State × Season 0.22 <0.0001 - § -

2018
State 0.38 <0.0001 4.89 0.0033

Season 0.05 0.0026 0.45 0.5063
State × Season 0.13 0.0004 - -

†: Permutational multivariate analysis of variance at 10,000 permutations; ‡: analysis of multivariate homogeneity
of group variances; §: not tested; significant p-values are shaded in gray.

3.4. Relative Abundance of Bacterial Orders in Sampled Garden Soil

The ten most abundant bacterial orders in these garden soils were Rhizobiales, ac-
counting for 16.8% of the relative abundance, followed by Burkholderiales at 16.0%, Vici-
namibacterales at 6.9%, Chitinophagales at 3.8%, Xanthomonadales at 2.8%, Gaiellales at 1.9%,
Sphingomonadales at 1.8%, Bacillales at 1.8%, Acidobacteriales at 1.7%, and Gemmatimonadales
at 1.6% (Table 4).

Similar bacterial dominance was observed in both sampling seasons. In the early sum-
mer of 2017, the most abundant order was Rhizobiales at 16.0%, followed by Burkholderiales at
14.8%, Vicinamibacterales at 5.5%, Chitinophagales at 5.1%, Xanthomonadales at 4.4%, Acidobac-
teriales at 3.8%, and Bacillales at 3.0% (Figure 3a). In the late fall of 2017, the most abundant
order was Burkholderiales at 17.0%, followed by Rhizobiales at 16.7%, Vicinamibacterales at
8.2%, and Chitinophagales at 3.2% (Figure 3b). In the early summer of 2018, among the
most abundant orders were Burkholderiales at 17.3%, Rhizobiales at 15.5%, Vicinamibacterales
6.3%, Chitinophagales 4.0%, and Xanthomonadales at 3.5% (Figure 3c). In the late fall of 2018,
among the most abundant orders were Rhizobiales at 19.1%, Burkholderiales at 14.6%, and
Vicinamibacterales at 7.5% (Figure 3d). Notably, Rhizobiales and Burkholderiales were the two
orders with over 10% relative abundance across all years, seasons, and states (Table S3).
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The relative abundance of the other eight orders varied with state and season from 12.9%
to 1.9% in 2017, and from 11.4% to 2.0% in 2018 (Table S3).

Table 4. Kruskal–Wallis test on the relative abundance of the ten most abundant bacterial orders
among the five states/gardens by season and year and between two seasons by state and year.

Order
Relative

Abundance (%)

Season State

2017 2018 2017 2018

χ2 p-Adj χ2 p-Adj χ2 p-Adj χ2 p-Adj
Rhizobiales 16.8 1.64 0.5751 3.84 0.7027 9.59 0.0741 15.63 0.0117

Burkholderiales 16.0 0.02 0.9482 0.31 0.9372 21.70 0.0020 22.51 0.0022
Vicinamibacterales 6.9 1.34 0.6096 0.003 0.9893 15.52 0.0103 19.41 0.0041

Chitinophagales 3.7 5.80 0.2555 2.78 0.7787 18.55 0.0043 20.48 0.0032
Xanthomonadales 2.8 2.81 0.4531 1.17 0.8771 18.23 0.0048 26.25 0.0000

Gaiellales 1.9 0.06 0.9288 9.24 0.2309 21.51 0.0021 9.56 0.0812
Sphingomonadales 1.8 0.68 0.6814 1.30 0.8643 25.69 0.0011 24.69 0.0015

Bacillales 1.8 10.44 0.0993 0.09 0.9836 1.65 0.8147 14.05 0.0184
Acidobacteriales 1.7 3.92 0.3257 0.77 0.9372 13.58 0.0197 13.40 0.0224

Gemmatimonadales 1.6 0.004 0.9715 0.01 0.9893 14.99 0.0124 15.26 0.0131

Significant p-values are shaded in gray.
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The relative abundance of identified bacterial orders varied with state, but not with
season (Table 4 and Figure 3). Overall, the relative abundances of 226 and 209 bacterial
orders (total = 397) were significantly affected by state in both 2017 and 2018 (Table 4 and
Figure 3).
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3.5. Bacterial Species with Biological Control Potential

A total of 66 bacterial species known to have strains with biological control potential
(BCA candidates) were identified from these garden soils, and the diversity of these BCA
candidates differed among the states, but not between two seasons within each year and
state. Specifically, the richness and the Shannon’s index were different among the states in
2017 (PRichness = 0.0033, PShannon = 0.0396) and 2018 (PRichness = 0.0004, PShannon < 0.0001).
The interaction between state and season was also significant for the richness and the
Shannon’s index in 2018 (PRichness = 0.0439, PShannon = 0.0002). Comparatively, the location
effect (η2) was large for the richness (η2

2017 = 0.367, η2
2018 = 0.418) and Shannon’s index

(η2
2017 = 0.245, η2

2018 = 0.502), while the interaction effect was medium to large: 0.097
and 0.163 for the richness and 0.127 and 0.266 for the Shannon’s index in 2017 and 2018,
respectively.

Together, the 66 BCA candidates accounted for 1.4% of the total bacterial species
(n = 4636) identified in this study. The most abundant species were Pseudomonas sp. at
0.32%, Bacillus sp. at 0.31%, Rhizobium sp. at 0.21%, Lysobacter sp. at 0.16%, Paenibacillus sp.
at 0.15%, and Arthrobacter sp. at 0.10% (Figure 4).
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Figure 4. Kruskal–Wallis test on the relative abundance of the six most abundant bacterial BCA
candidate species found from the California (CA), Illinois (IL), New York (NY), South Carolina (SC),
and Virginia (VA) samples collected in early summer (ES) and late fall (LF) of 2017 (a) and 2018 (b).

The BCA candidates identified belonged to 12 orders (Figure S4a) and 21 genera
(Figure S4b). At the order level, Pseudomonadales accounted for 24.8% (n = 2400), followed
by Bacillales at 19.4% (n = 1875), Enterobacterales at 10.9% (n = 1050), Rhizobiales at 10.1%
(n = 975), Xanthomonadales at 7.8% (n = 750), Streptomycetales at 7% (n = 675), Paenibacillales
at 6.2% (n = 600), and Burkholderiales at 4.7% (n = 450) (Figure S4a). At the genus level,
Pseudomonas was at 36.4% (n = 24), followed by Streptomyces at 12.1% (n = 8), Bacillus at
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9.1% (n = 6), Pantoea at 6.1% (n = 4), Paenibacillus at 4.5% (n = 3), and Burkholderia at 3%
(n = 2) (Figure S4b).

In general, the 66 BCA candidate species were distributed evenly among the states
(Table 5). The average relative abundances were 2.03% and 1.09% in ES and LF sea-
sons of 2017, respectively, and 2.14% and 1.87% for the same sampling times of 2018.
Their relative abundances were generally consistent among the five states and between
the two seasons in 2017 with a few exceptions. Seasonal differences were observed in
Bacillus sp. (p.adj = 0.0001), Rhizobium sp. (p.adj = 0.0361) (Figure 4a), and Pantoea ag-
glomerans (p.adj = 0.0361, data not shown). Location differences were seen in Bacillus sp.
(p.adj = 0.0001) (Figure 4a) and Lysobacter enzymogenes (p.adj = 0.0412, data not shown).
Variations were observed in the relative abundance of 26 BCA candidates among the
states/gardens in 2018, including the most abundant Pseudomonas sp. (p.adj = 0.0020), Bacil-
lus sp. (p.adj < 0.0001), Rhizobium sp. (p.adj = 0.0066), and Arthrobacter sp. (p.adj = 0.0001)
(Figure 4b). No seasonal variation was observed in 2018.

Table 5. Total abundance of 66 bacterial species with potential biological control activities against
plant pathogens by year, season, and garden/states.

Year Season State
Total BCA
Sequence

Reads

Total
Sequence

Reads

BCA
Abundance

(%)

2017

Early
summer

California 6893 409,612 1.68
Illinois 8048 396,132 2.03

New York 5529 315,309 1.75
South Carolina 8077 315,116 2.56

Virginia 7514 352,793 2.13

Late fall

California 1266 174,912 0.72
Illinois 1503 136,271 1.10

New York 8937 668,827 1.34
South Carolina 5590 467,264 1.20

Virginia 7254 679,784 1.07

2018

Early
Summer

California 7313 429,281 1.70
Illinois 13,630 346,078 3.94

New York 9419 386,764 2.44
South Carolina 4166 249,726 1.67

Virginia 4330 459,624 0.94

Late fall

California 6020 349,274 1.72
Illinois 5644 251,778 2.24

New York 4282 143,548 2.98
South Carolina 2933 215,495 1.36

Virginia 8226 772,177 1.07

4. Discussion

This study characterized the bacterial communities in urban garden soils where the
boxwood blight pathogen Calonectria pseudonaviculata (Cps) population declined rapidly [33].
We reported two important discoveries. First, Rhizobiales and Burkholderiales were the dominant
bacterial orders across all five states/gardens and the two sampling times in both 2017 and 2018.
Second, 66 bacterial species known to have strains with antagonistic activities against plant
pathogens (BCA candidates) were also identified. The bacterial orders and BCA candidates
observed resemble those in the suppressive soils from other environments [21,59–62]. They are
important components of a healthy soil microbiome [3,4,63,64], and likely have contributed
to the decline of the Cps population in these garden soils [33]. These results highlight the
importance of microbiome components in garden soil health and provide a new perspective
from which to undertake ornamental plant disease management in gardens and other public
spaces in the future.
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There are several lines of evidence supporting that the most abundant bacterial orders
and BCA candidate species may have contributed to the decline of the boxwood blight
pathogen population in all of the gardens surveyed [33]. First, Burkholderiales, one of
the most dominant orders identified in this study, is known to have species and strains
with biological control and other beneficial activities. Specifically, Burkholderia strain SSG
isolated from boxwood has been demonstrated to be highly effective as a biocontrol agent
against boxwood blight [65] and other diseases caused by a variety of pathogens including
bacteria, oomycetes, other fungi, and one virus [66], as well as acting as a biofertilizer and
plant defense inducer [65,67]. These broad-spectrum biological activities are supported
by the many antibiosis genes and clusters on the Burkholderia sp. SSG genome [68]. The
identification of another predominant order, Rhizobiales, a key taxon in the boxwood soil
microbial network [30], suggests that this mostly root-associated bacterial order may be
specifically recruited by boxwood to carry out multiple functions, such as nitrogen-fixing
and root growth promotion [69,70]. Third, other BCA candidates including some well-
known genera are also dominant. For instance, Pseudomonas spp., Bacillus spp., Rhizobium
spp., Lysobacter spp., Paenibacillus spp., and Arthrobacter spp. have all been reported
extensively for their capacity to control plant pathogens [71–79]. Specifically, Pseudomonas,
Bacillus, Paenibacillus, and Streptomyces species are well known to inhibit the formation and
germination of microsclerotia by Verticillium spp. or increase their mortality [80–83], by
producing volatile organic compounds [81] or chitin lysis enzymes [62,79]. Some of the
same genera identified in this study likely have contributed to the decline of Cps, which
also produces microsclerotia for survival in soils [84]. Fourth, all of the BCA candidates
found in this study were rather abundant in these garden soils, accounting for 0.72 to 3.94%
of the total sequence reads across all gardens, sampling years, and seasons (Table 5). In a
culture-based study, Berg et al. [85] found that about 3.3% of the soil bacteria isolated had
antagonistic activity, which is similar to the abundance level of BCA sequence reads in this
study. However, it is worth noting that certain bacterial groups are often over-represented
in culture-based studies [86].

The consistent identification of extremely diverse BCA candidates (with some having
the potential to be highly potent) at a great abundance level across all the gardens once
again highlights the importance of the microbial community as a whole in improving
soil disease suppressiveness and soil health, as has been shown previously [9,12]. The
traditional approach focusing on individual antagonistic microorganisms often results in
inconsistent performance and/or encounters transferability issues between cropping sys-
tems [17,87]. This is, in part, because of the fact that these microorganisms are challenged
by competition from resident microbes already in soils [12]. To circumvent this limitation,
a new approach, referred to as synthetic microbial communities (SynComs), constructs
consortia of microorganisms to increase their adaptability and overall community stabil-
ity [88,89]. It is not known at this point (1) whether the identified BCA candidates are all
antagonistic against the blight pathogen, Cps; (2) whether and how they may work together
as a consortium along with other microbes to act directly against Cps, and/or enhance
boxwood immunity; and (3) whether these BCA candidates could be used in SynComs and
work in boxwood gardens as well as other soil systems. Further investigations into these
questions are warranted to harness the power of the boxwood microbiome for better plant
health in production and in the landscape.

Several gardening practices may have led to the similar soil bacterial compositions
across all five states/gardens. First, all gardens sampled in this study had well-established
English boxwood (Buxus sempervirens ‘Suffruticosa’), thus similar bacterial community
composition in their root zone was expected as plant–microbial relationships are often
plant species-specific [90–92]. Second, as an iconic landscape plant, there is a set of standard
cultural practices for boxwood [93]. These include the following: (1) soils must be well
drained; (2) soil pH is maintained between 6.5 and 7.0; (3) soil amendment with organic
matter needs to be less than 20%; and (4) the recommended fertilizer is a 12–5–9 formulation
to supply N–P–K [93]. These standard practices followed by home gardeners may have
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favored particular bacterial groups in boxwood garden soils, as microbial composition is
highly associated with soil properties [94,95]. Boxwood is also considered a low mainte-
nance woody shrub plant once it is established [96]. This relatively low maintenance may
have further contributed to the stability of the bacterial composition in these gardens and,
consequently, to the improved soil suppressiveness, in contrast to intensively managed
agricultural soils [97–100]. Yet, two questions of practical importance remain: (1) how ap-
plicable are the results of the present study to other private gardens; and (2) whether these
results also are applicable to public gardens, which likely utilize rather different cultural
practices than private gardens. The answers to these questions could have a profound
impact on future plant health management in private or public gardens and landscapes.

The overall soil bacterial diversity varied across the five states and seasons, while Cps
consistently became undetectable in those gardens [33], suggesting that bacterial diversity
may not be as important as composition in soil suppressiveness. Similar observations were
reported previously by Peralta et al. [24], and supported by a meta-analysis of 25 inde-
pendent studies where bacterial diversity did not differ between the disease suppressive
and conducive soils [8]. In this study, the observed variations in bacterial community
diversity among the selected gardens and between the two seasons could be due in part
to environmental factors, as shown in a previous study [101]. Soil properties, such as soil
pH, moisture, and soil type, impact the physiochemistry of microorganisms colonizing
the soil [102–104]. Other environmental factors such as precipitation [105] and tempera-
ture [106] could also have contributed to the variations seen in the soil bacterial community
diversity from different locations and seasons. There is a need to elucidate the relation-
ship between the soil microbial community and environmental factors in these gardens to
materialize the findings of this study for improved boxwood health and growth.

5. Conclusions

By surveying soil from selected boxwood gardens, this study uncovered a variety
of bacterial groups and species known to have broad biological activities ranging from
nitrogen fixing to plant immunity enhancement, as well as antagonistic activity against
diverse plant pathogens. These included two dominant bacterial orders—Rhizobiales and
Burkholderiales—and an abundant population of 66 biological control agent candidate
species. These discoveries help us to better understand the decline of the boxwood blight
fungal pathogen in these garden soils, and more broadly, the low maintenance nature of
boxwood as a long-lived landscape plant. This study is the first step towards harnessing
the power of a garden soil microbiome or a consortium of microorganisms for improved
health and growth of ornamental plants. Specifically, this study provides important leads
for selecting desirable bacterial taxa that may be employed to enhance boxwood health by
direct application or by improving the microbiome through strategic soil amendments or
other cultural practices.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms10081514/s1, Table S1: Samples and sequencing
metadata; Table S2: Mean differences of alpha diversity measurements between two seasons by year
and state. Tukey HSD was used to test the significance of each pairwise comparison; Table S3: The
five most abundant bacterial orders in garden soils by state, year, and season; Figure S1: Rarefaction
curve of sequencing depth and OTU numbers for samples collected from California, Illinois, New
York, South Carolina, and Virginia in early summer and late fall on the left and right, respectively;
Figure S2: Shannon index of the early summer and late fall season samples collected from California
(CA), Illinois (IL), New York (NY), South Carolina (SC), and Virginia (VA) in 2017 (a) and 2018 (b).
Boxes topped by completely different letter(s) within each year and season differed according to
Tukey HSD post hoc test at p = 0.05; Figure S3: PCoA plots showing dispersion of Bray–Curtis
distance among the 2017 (a) and 2018 (b) samples from different states—California (CA), Illinois (IL),
New York (NY), South Carolina (SC), and Virginia (VA). Sample centroids are labeled; Figure S4. Pie
chart showing the relative abundance of twelve bacterial orders (a) and twenty-one genera (b) to
which the 66 identified species with biocontrol potentials belong, respectively.
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