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ABSTRACT

The flow past a circular cylinder in the transitional regime at Re = 2000 has been thoroughly investigated via well resolved direct numer-
ical simulation with a spectral element code. Spanwise periodic boundary conditions of at least Lz ≥ 2.5D are required to properly
reproduce first and second order turbulent statistics in the cylinder wake. A Kelvin–Helmholtz instability can already be detected at this
relatively low Reynolds number at the flapping shear layers issued from either side of the cylinder. The instability, with a frequency
f KH ≃ 0.84 that is in excellent agreement with published experimental results, arises only occasionally and the associated spanwise vor-
tices are subject to spanwise localization. We show that while Kármán vortices remain predominantly two-dimensional, streamwise vortical
structures appearing along the braids connecting consecutive vortices are mainly responsible for rendering the flow three-dimensional.
These structures may appear in isolation or in vortex pairs and have a typical spanwise wavelength of around λz ≃ 0.20–0.28 at a loca-
tion at (x, y) = (3, 0.5), as measured via Hilbert transform along probe arrays with spanwise orientation. In line with experimental and
numerical results at higher Re = 3900, the size of the structures drops in the very near-wake to a minimum at x ≃ 2.5 and then steadily
grows to asymptotically attain a finite maximum for x ≳ 20. A time-evolution-based stability analysis of the underlying two-dimensional
vortex shedding flow, which happens to be chaotic, shows that the fastest growing perturbations in the linear regime have a spanwise
periodicity λz ≃ 0.3 and are located in the very near-wake, right within the braid that connects the last forming Kármán vortex with
the previous one, thus hinting at a close relation with the fully developed vortical structures observed in full-fledged three-dimensional
computations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011311., s

I. INTRODUCTION

The incompressible viscous flow around a circular cylinder
constitutes a canonical problem for the study of separated flow
past bluff bodies.1 A wealth of experimental and numerical studies
have been conducted on this geometry over many decades, cover-
ing a wide range of flow regimes,2 so as to analyze a variety of flow
phenomena including laminar and turbulent boundary layer sep-
aration,3,4 detached shear layer and wake instabilities,5 or vortex
shedding.6

The steady symmetric wake behind the cylinder destabilizes
supercritically at Re ≳ 47 (Re = UD/ν is the Reynolds number
based on cylinder diameter D, upstream flow velocity U, and fluid
kinematic viscosity ν) into a periodic space-time-symmetric flow

regime named after von Kármán and characterized by alternate
shedding of counter-rotating vortices from either side of the cylin-
der.7,8 This unsteady regime and further transitions retaining some
of its features are a source of mean aerodynamic drag increase,9,10

fluid–structure resonant interaction,11,12 structural vibration,13 and
acoustic noise.14,15

The periodic two-dimensional vortex-shedding state has been
observed to persist up to Re ≲ 190, beyond which point three-
dimensionality sets in.16 Two distinct three-dimensionalmodes have
been reported in the range Re ∈ [180, 260] in the so-called wake-
transition regime, namely, mode A and mode B. Mode A is char-
acterized by the onset of vortex loops that are stretched by shear
into streamwise vortex pairs with a spanwise wavelength of around
3 to 4D. Observation of mode A has been reported from as low as
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Re ≳ 180 such that it coexists with two-dimensional vortex shed-
ding within a small Re-range, the flow behavior being hystereti-
cal and, accordingly, the spanwise-invariance-breaking bifurcation
being slightly subcritical.17 Mode B occurs at a slightly higher Re
≳ 250 with the characteristic wavelength in the order of 1D18 and
is related to a second spanwise-invariance-breaking bifurcation of
the already unstable two-dimensional periodic vortex-shedding state
that occurs at Re ∼ 259.10 The transition from mode A to mode B
involves intermittency (the flow dynamics keeps switching between
the two modes) and a gradual transfer of the time-fraction of occur-
rence of A and B from the former to the latter. At Re ≃ 260,
mode B is already the dominant structure and exhibits remark-
able spanwise coherence. Besides the remarkably different span-
wise wavelength, the two modes possess also distinct symmetries
that tell them apart (which points at unrelated triggering instabil-
ity mechanisms) and their inception is responsible for discontin-
uous leaps in vortex shedding frequency and characteristic slope
discontinuities in the dependence of the base pressure coefficient
with Re.16

On top of the small-scale structure of modes A and B, the
wake transition regime also involves vortex local phase-dislocations
or defects that result in intermittent large-scale spot-like struc-
tures that dominate the wake as they are advected downstream.19,20

These structures are responsible for low frequency irregular fluctu-
ations in the wake21 and a discontinuous drop of vortex shedding
frequency.

The shear layers resulting from boundary layer separation at
either side of the cylinder are subject to turbulent transition at
sufficiently high Re.22 This transition follows a Kelvin–Helmholtz
instability that is essentially two-dimensional and only becomes
noticeable from Re ≳ 1200.20,23 The resulting vortices accumu-
late downstream and are subdued into the von Kármán vortices
that dominate the cylinder wake.24 Based on outer velocity and
boundary layer thickness at separation, a rough estimate pre-
dicts that the Kelvin–Helmholtz instability frequency must scale as
f KH/f vK ∼ Re1/2,20 where the subindices in f KH and f vK stand for
Kelvin–Helmholtz and von Kármán, respectively. A best fit to a
collection of existing experimental data,20,25–27 together with phys-
ical arguments as to the dependence of shear layer velocity and
length scales on Re, suggests that the scaling should rather follow
f KH/f vK ∼ Re

0.67.23,28

The shear layers in the cylinder wake remain fairly planar only
within a finite extent that is limited by the inception of the wake
instability and the onset of von Kármán vortices. As a result, the
Kelvin–Helmholtz instability only becomes mensurable at Re suffi-
ciently high for the vortices to reach a sufficient amplification within
the limited extent for their spatial development, which can be esti-
mated to happen for Re ≳ 1200.29 The instability, however, must be
at play from much lower Re, and the frequency scaling suggests that
a resonance with the von Kármán instability is to be expected at
Re ≃ 260.23 As a matter of fact, this resonance has been put forward
as a plausible argument for the high spanwise coherence that wake
structures possess at precisely this value of Re.

It is a well established fact that both the aspect ratio and span-
wise boundary conditions have an impact on the vortex shedding
past a circular cylinder.30,31 A systematic analysis of spanwise cor-
relations in the three dimensional near-wake behind the cylinder
reveals that structures with considerable dispersion of spanwise

wavelengths in the range λz ∈ [3, 5]D occur in the early wake transi-
tion regime,24,32–35 dominated by mode A, in accordance with linear
stability analyses.17,36 The dispersion is significantly reduced when
data involving dislocation are systematically discarded so that fil-
tered measurements follow closely the maximum growth-rate mode
predicted by Floquet analysis, starting at λAz = 3.96D at onset. In the
late transition regime, where mode B becomes dominant, the dis-
persion is much lower and wavelengths λz ≃ 1D are observed in the
near-wake (x/D < 3), close enough to the second linear instability
of the already unstable two dimensional vortex shedding flow, with
λBz = 0.82D. The vortical structure spanwise size scaling in this region
can be estimated as decreasing with 1/√Re,24 which is confirmed
by experiments in the range Re ∈ [300–2200].33 In the far wake
(x/D > 10), however, the same experiments report that the spanwise
wavelength becomes fairly independent of Re and remains of order
λz/D ∼ O(1).

33

The variation of the spanwise wavelength of streamwise vor-
tices along the wake at fixed Re has been analyzed both experimen-
tally,33,37 using both flow visualization and two-probe cross corre-
lation, and numerically,38 through the use of the Hilbert transform.
The crossflow sampling location has a large impact on the near-wake
structure length scale, which renders any comparison impractical.
Sufficiently far downstream away from the cylinder, in the far wake,
this effect is less noticeable and the typical wavelength is observed to
clearly saturate at a fairly constant value.

There exists ample experimental evidence, backed by sound
theoretical arguments, that turbulence in spatially developing flows
depends, even asymptotically, on upstream conditions (i.e., the par-
ticulars of the turbulent flow generator).39,40 This holds true for pla-
nar wakes41 and, in particular, for the turbulent wake past a cylinder.
Planar wakes past blunt bodies of characteristic blockage size D can
be split in four distinct regions, namely, the near wake (x/D ≲ 4),
the mid-wake (4 ≲ x/D ≲ 50), the far wake (50 ≲ x/D ≲ 1000), and
the asymptotic wake (x/D ≳ 1000).42 The near wake is subject to
direct interaction with the wake generator and bears strong corre-
lation with aerodynamic parameters such as the base pressure coef-
ficient or the aerodynamic forces on the body. Beyond this wake
formation region, which contains the mean recirculation bubble, no
action or perturbation has any mensurable effect whatsoever on the
flow field around the body. The mid-wake is different from the far
wake in that shed vortices remain detectable, while the mean flow
becomes self-similar in the far wake. A certain universality devel-
ops in the asymptotic wake, if only for conveniently scaled (with
the local centerline velocity deficit and the local length scale) mean
velocity profiles.Meanwhile, spreading rates and higher order turbu-
lent moments, including Reynolds stresses, can, in principle, depend
on upstream conditions.40 In the case of the cylinder wake, complete
self-preservation has been established experimentally at Re = 2000
beyond x/D ≳ 260.43

While mean flow statistics are fairly independent of Re in the
far wake behind a cylinder once within the shear-layer transition
regime (Re ≳ 1200), second order flow statistics (Reynolds stresses)
only become so for Re ≳ 10 000.44

There is considerable consensus as to the mid-wake flow topol-
ogy within the early shear-layer transition regime, as evidenced by
the good agreement across a wide range of experimental45–49 and
numerical49–56 studies of crossflow distribution of mean velocity
components at varying flow rates. Higher order flow statistics also
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show reasonable agreement provided that sufficiently close Re are
considered.

In the near wake, besides the fact that statistics are no longer
expected to be independent of Re, results are at odds among the var-
ious experimental and numerical studies, even at coincident Re. In
trying to shed light on the cause for disagreement, the flow at Re
= 3900 has become a recurrent benchmark case since the experi-
ments of Lourenco and Shih45 and Ong and Wallace.47 Two distinct
flow states have been reported, named U- and V-type after the out-
line of the mean streamwise velocity crossflow profile in the very
near-wake of the cylinder at x/D = 1. The U-state is characterized
by a longer recirculation bubble Lr (not to be confused with wake
formation length); a slightly higher vortex shedding frequency f vK; a
lower base pressure suction coefficient −Cpb = 2(p∞ − pb)/(ρU2

∞);
lower aerodynamic forces (mean drag CD and root-mean-square

of lift CLrms =

√⟨C2
L⟩); lower Reynolds stresses ⟨u′u′⟩, ⟨u′v′⟩, and⟨v′v′⟩; and characteristic double-peak distributions of ⟨u′u′⟩ both

in the streamwise direction along the wake centerline and in the
near-wake cross-stream direction.49–51,53–56,62–64 The V-state, in con-
trast, features a smaller Lr ; slightly lower f vK; higher −Cpb , CD, CLrms ,
and ⟨u′u′⟩, ⟨u′v′⟩ and ⟨v′v′⟩; and inflection plus single-peak stream-
wise and four-peak cross-stream distributions of ⟨u′u′⟩.45,53,54,56,62–65
Table I summarizes a number of experiments, along with relevant

experimental conditions and a bunch of flow parameter results that
allow characterization of the corresponding type of solution. The
experiments, run at several Re ∼ O(103) on experimental setups
of different spanwise extent, include Particle Image Velocimetry
(PIV), Laser Doppler Velocimetry (LDV), and Hot Wire Anemom-
etry (HWA) measurements, and varying levels of free-stream tur-
bulence (Tu). Statistics have been collected over variable counts of
vortex shedding cycles. It becomes clear from the flow parameter
values that V-type solutions are favored at large Re or in the pres-
ence of higher Tu, U-type profiles being ubiquitous for sufficiently
low Re and low Tu experiments. These studies also seem to point at
a gradual transition from one state to the other as Re is increased
in the same experimental setup with all other parameters kept
constant.

Table II contains an extensive list of numerical simulations of
the flow past a circular cylinder at Reynolds numbers relevant to the
regime under scrutiny. Summarized alongside the main results (to
be compared with the experimental results of Table I) are the most
significant simulation parameters such as the numerical method
used, the spanwise periodic extent of the domain, the in-plane
and spanwise resolutions (and order of the discretization), and the
number of vortex shedding cycles collected for statistics. The in-
plane domain size and the time discretization method and order

TABLE I. Literature review of experimental results for the flow past a circular cylinder. Reported are, when available, the flow measurement method (HWA: hot wire anemometry;
PIV: particle image velocimetry; LDV: laser Doppler velocimetry), preturbulence level Tu, Reynolds number Re, cylinder span size Lz , number of vortex shedding cycles recorded
for statistics Ns, von Kármán frequency f vK, Kelvin–Helmholtz frequency f KH, wake instability frequency f w, recirculation bubble length Lr , mean drag coefficient CD and rms
fluctuation C′D, lift coefficient rms fluctuation C′L, base pressure coefficient −Cpb , and location of the boundary layer separation θsep.

Experimental

Author (references) Method Tu (%) Re Lz Ns fvK fKH fw Lr CD C′D C′L −Cpb θsep

Norberg27 HWA 0.1 2 000 240 ? 0.213
0.1 3 000 80 0.213 1.65 0.98 0.84
1.4 3 000 80 0.209 1.44 1.03 0.89
0.1 8 000 80 0.204 0.99 1.13 1.05
1.4 8 000 80 0.199 0.90 1.20 1.12

Lourenco and Shih45 PIV ? 3 900 21 29 1.18 0.98 85 ± 2
Ong and Wallace47 HWA 0.67 3 900 84 7680 0.21
Norberg48 LDV <0.1 1 500 65 1350 1.79

<0.1 3 000 65 1.66
<0.1 5 000 65 1.40
<0.1 8 000 65 1.17
<0.1 10 000 65 1.02

Norberg57 LDV <0.1 1 500 105 ? 0.212 0.045
<0.1 4 400 105 0.210 0.100

Konstantinidis et al.58 LDV 3.3 1 550 10 ?
3.3 2 150 10 0.215 1.77
3.3 2 750 10
3.3 7 450 10

Konstantinidis et al.59 PIV 3.3 2 160 10 ?
Konstantinidis and Balabani60 PIV 3 2 150 10 ? 0.215 1.58
Dong et al.61 PIV ? 4 000 8.78 ? 1.47
Parnaudeau et al.49 PIV <0.2 3 900 20 250 1.51

HWA <0.2 3 900 20 2856 0.208
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TABLE II. Literature review of numerical results for the flow past a circular cylinder. Besides some of the parameters reported in Table I, listed are the numerical method employed
(DNS: direct numerical simulation; LES: Large Eddy simulation; FVM: Finite Volume Method; FDM: Finite Difference Method; SEM: Spectral Element Method; SDM: Spectral
Difference Method), the spanwise periodic extent of the domain Lz , the in-plane Nxy and spanwise Nz resolutions (the superindex indicates discretization order, F for Fourier),
and near wake solution topology Sol (U: U-state; V: V-state; UV: mixed; ?: inconclusive).

Numerical

Author (references) Method Re Lz Nz Nxy Ns f vK f KH f w Lr CD −Cpb θsep Sol.

Present results: Case 1 DNS SEM 2000 1.5 64 4 0408 66 0.218 1.237 1.50 1.015 0.88 92.0 U
Case 2 2 64 4 0408 58 0.212 1.121 1.58 0.987 0.83 90.3 U
Case 3 2.5 128 5 4848 55 0.215 0.839 1.66 0.975 0.80 90.0 U
Case 4 π 96 5 4848 22 0.211 1.71 0.961 0.79 90.0 U

Lehmkuhl et al.56 DNS FVM 3900 π 128 72 700 858 0.215 1.34 0.0064 1.36 1.015 0.935 88 UV
L:250 0.218 1.55 0.979 0.877 87.8 U
H:250 0.214 1.26 1.043 0.98 88.3 V

2π 256 330 0.214 1.363 1.019 0.933 UV
Gsell et al.38 DNS FVM 3900 10 300 150 000 3–4 0.21 1.365 0.92 86.8
Kravchenko and LES FDM 3900 π 48F 27 780S 7 0.21 1.35 1.04 0.93 88 UV
Moin54

8 0.193 1.00 1.38 1.23 V
48 10 570 0.206 1.04 1.07 0.98 V

π/2 24 27 780 0.212 1.30 1.07 0.97 UV
Ma et al.53 DNS SEM 3900 π 128F 90210 ? 0.219 1.59 0.84 U

1.5π 64F 90210 0.206 1.00 1.04 V
2π 256F 9028 0.203 1.12 0.96 V

(cs = 0.032) LES SEM 1.5π 64F 9028 0.213 1.28 0.898 UV
(cs = 0.196) 1.5π 64F 9028 0.208 1.76 0.765 U
Mittal66 LES FDM 3900 π 48 39 900 7 ∼0.21 1.1 1.15 88 U?

32 900 1.2 1.28 89 U?
Mittal51 LES FDM 3900 π 48F 48 120 12 1.40 1.0 0.93 86.9 UV?

1.36 1.0 0.95 85.8 UV?
Breuer52 LES FVM 3900 π 64 27 225 >22 0.215 ∼0.007 1.372 1.016 0.941 87.4 UV

0.215 1.043 1.097 1.069 88.5 V
32 0.215 1.686 0.969 0.867 86.7 U
32 0.215 1.115 1.099 1.049 87.9 V

2π 64 0.215 1.114 1.089 1.036 87.9 V
Franke and Frank55 LES FVM 3900 π 33 35 584 42 0.209 1.64 0.978 0.85 88.2 U
Dong et al.61 DNS SEM 3900 π 128F 9028 40–50 0.21? 1.539 1.36 UV

1.5π 192F 9028 0.208 1.18 0.93 V
128F 0.210 1.12 0.96 V
64F 0.206 1.00 1.04 V

Chen et al.64 iLES FVM 2580 π 56 70 000 50 0.22 1.66 0.95 0.73 U
20 12 500 50 0.22 1.13 1.03 0.88 V

Mohammad et al.67 iLES SDM 2580 π 183 11 1443 20 U
182 7 8802 20 V
123 7 8803 20 U

Lodato and iLES SDM 2580 3.2 103 1 8473 300 U
Jameson68

Lodato and DNS FVM 3300 4 512 416 556 10 0.214 87.3 U
Jameson69

256 63 336 0.216 90.3 V
8 1024 416 556 0.216 87.4 U

Beaudan and Moin50 DNS FDM 3900 π 485 19 5845 6 0.216 1.56 0.96 0.89 85.3 U
Tremblay65 DNS FVM 3900 π 112 419 364 60 0.22 1.3 1.03 0.93 85.7 UV
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have been deemed appropriate for all cases and are therefore not
reported. In the case of large eddy simulations (LESs), the model
and/or subgrid-scale dissipation parameter cs are also reported.
The last column indicates whether the reported results feature a
U-type or V-type cross-stream velocity profile in the near wake
and/or the statistically averaged results are compatible with one or
the other. UV indicates results that appear to be halfway between
U- and V-type states, while the question mark denotes inconclusive
results.

There has been much controversy as to whether there naturally
exists a unique near wake topology or if both states may occur, under
what circumstances should one or the other be expected.

Based on Lr and Cpb as indirect indicators, a gradual tran-
sition from the U-state toward the V-state with the increase in
Re has been reported by several experimental studies.27,70–72 The
U-state would seem to dominate at Re ∼ 2000, while the V-state
has completely taken over from Re ≳ 10 000. This trend has been
later confirmed by direct measurement of mean and second order
flow statistics in the near wake of the cylinder.48 Increased pre-
turbulence levels Tu have been shown to shift the gradual tran-
sition to slightly lower Re-values,27 while an insufficient cylinder
aspect ratio Lz/D, such that the spanwise boundary conditions drive
the flow, has a stabilizing effect for the U-state.31 This suggests
that the spanwise size of near-wake structures might be playing
an important role in near-wake flow statistics as numerics seem
to substantiate.53,61,69 Simulations are usually undertaken with peri-
odic boundary conditions in the spanwise direction, and an insuf-
ficient spanwise domain size (Lz/D ≤ π at Re = 3900) has been
shown to favor the U-state, with all other parameters kept constant.
The V-state can however be artificially recovered in small domains
when the spanwise direction is under-resolved51,52,54,62,63,66 allegedly
due to insufficient viscous dissipation of turbulent kinetic energy.
The same applies to overly coarse in-plane resolutions, which also
result in V-state selection.54,64 In the case of LES simulation, over-
dissipative subgrid scale models also tend to induce the U-state
even in domains of allegedly sufficient spanwise extent,53,64 while
under-dissipative models induce V-type profiles in short spanwise
domains.62–64

The large scatter of results, which yield conflicting values for
most of the mean integral quantities, has occasionally been ascribed
to unconverged statistics due to exceedingly short time series of data
(insufficient sample size),55,62 although this alone cannot explain all
of the observed discrepancies. A statistical analysis of near wake
velocity time series from direct numerical simulation, spanning over
800 vortex shedding cycles, detected a very low frequency of about
3 of the Strouhal number that was traced back to an instability of
the mean recirculation bubble size.56 Conditional and phase averag-
ing revealed that the mean statistics might be in fact the weighted
mean of two modes, a high and a low energy mode, correspond-
ing to the V-state and U-state, respectively. In this light, the scat-
ter of inconsistent results would be a consequence of averaging
too short time series at different phases along the low frequency
cycle. The low-pass filtered signals do not consist of memoryless
intermittent switching between the two so-called modes such that
the scenario of two strange saddles linked by heteroclinic connec-
tions can be discarded altogether. The temporal dynamics would
rather correspond to an instability of a unique state, although fur-
ther inquiry shall be required to test this hypothesis. In any case, the

physical mechanism underlying the low frequency evolution of the
near wake remains unaccounted for. The loopback mechanism by
which the high energy short recirculation bubble should progress
toward a lower energy longer bubble and then back remains a mys-
tery. Even though the unconverged statistics issue might apply to
almost all preceding numerical studies and a few of the experi-
ments,45 most experimental studies analyze sufficiently long data
series that the low frequency could have been detected and the
mean state obtained.27,48,49,58,61 Instead, U-type near wake statistics
are reported in most cases.

All things considered, it would seem that there is in fact a grad-
ual shift fromU- to V-type near wake statistics as Re is increased and
that the former is still dominant at Re = 3900. Observation of V-type
short recirculation bubbles would therefore be an artifact of either
biased statistics or, in the case of numerical simulation, too coarse a
resolution to capture the dissipative length scales.

We shall focus here on the cylinder shear layers and wake
regime at Re = 2000, with the intention of probing the occurrence
of the U- and V-states when the Kelvin–Helmholtz instability is per-
ceptible but sufficiently weak that turbulent statistics are modest
in the near wake. The reason for this choice of Reynolds number
is threefold. To begin with, the experiments by Norberg provide
the most accurate experimental results at the lowest Re at which
the shear layer instability has been consistently reported. It was
our intention to get as far down from Re = 3900 as possible to
avoid the low frequency wake oscillation reported by Lehmkuhl
et al.56 but still guarantee the detection of the shear layer instabil-
ity. Finally, the stability analysis of the underlying two-dimensional
chaotic flow to three-dimensional perturbations could not be pushed
much further beyond Re = 2000, as pseudo-modal growth becomes
so fast that the methods used become unsuitable. Procuring the
fastest-growing three-dimensional pseudo-modes for comparison
with fully resolved computational results requires that Re be kept
sufficiently low. Comparison with Re = 3900 will be established once
the simulation has been calibrated against experimental23,27,48,57–59,73

and numerical64,67–69 data at Re ∈ [1500–3000] ∼ 2000, with the
objective of gaining some insight on the effects of Reynolds num-
bers on near-wake turbulent statistics in the early transitional flow
past the cylinder.

The outline of the manuscript is as follows. The mathematical
formulation is presented in Sec. II alongside the numerical approach
undertaken to solve the equations. Section III reports the numer-
ical results in terms of global quantities first, followed by near-
and mid-wake turbulent statistics. The instability of the shear layers
that flap in the near-wake is investigated in Sec. IV, together with
the characterization, in terms of location and spanwise size, of the
vortical structures that are responsible for the three-dimensionality
of the cylinder wake. The stability analysis of the underlying two-
dimensional flow is also undertaken in order to determine the nature
of the fastest growing perturbations for comparison against the
vortical structures observed in full three-dimensional simulations.
Finally, the main findings are summarized in Sec. V.

II. PROBLEM FORMULATION AND NUMERICAL
APPROACH

The incompressible flow around an infinitely long spanwise-
aligned circular cylinder is governed by the Navier–Stokes
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equations, which, after suitable nondimensionalization with cylin-
der diameter D and upstream flow velocity U, read as

∂u

∂t
+ (u ⋅ ∇)u = −∇p + 1

Re
∇

2
u,

∇ ⋅ u = 0,
(1)

where u(r; t) = (u, v, w) and p(r; t) are the nondimensional velocity
and pressure, respectively, at nondimensional location r = (x, y, z)
and advective time t. x (u), y (v), and z (w) denote the stream-
wise, crossflow, and spanwise coordinates (velocity components),
respectively. Re = UD/ν is the Reynolds number. The domain in
the streamwise-crossflow plane takes (x, y) ∈ [−20, 50] × [−20, 20]
(see Fig. 1), while periodic boundary conditions [u, p](r + Lzk̂; t)
= [u, p](r; t) are assumed in the spanwise direction with period-
icity length Lz = 1.5, 2, 2.5 and π. The spanwise domain extent
has been chosen to fit a minimum of three typical spanwise struc-
tures (streamwise vortex pairs) in the near wake, as estimated by
the empirical scaling λz ∼ 20Re

−0.5 at x = 3.33 The size of the struc-
tures is known to grow along the wake33,47 but not as much as to
not fit in the computational domain. The boundary conditions for
velocity are unitary Dirichlet at the upstream boundary u(−20, y, z)
= î, non-slip on the cylinder wall uw = 0, slip wall on the upper
and lower boundaries ∂yu(x, ±20, z) = v(x, ±20, z) = ∂yw(x, ±20, z)
= 0, and homogeneous Neumann at the downstream boundary (∇u⋅
n̂)(50, y, z) = 0. For pressure, high-order homogeneous Neumann
boundary conditions are applied everywhere except for the down-
stream boundary, where homogeneous Dirichlet conditions p(50,
y, z) = 0 are imposed. The high-order pressure Neumann bound-
ary conditions are designed consistent for the splitting scheme used
in the time-discretization.74 Convective-type boundary conditions
were considered for the downstream boundary, but as they slowed
down the computations while producing no measurable impact
on the cylinder wake dynamics, they were discarded altogether
on account of the sufficient streamwise extent of the downstream
domain.

The flow has been evolved in time using the incompressible
Navier–Stokes solver of the tensor-product-based spectral/finite ele-
ment package Nektar++.74 Spatial discretizations of K = 4040 and
5484 high-order quadrilateral elements have been employed in the

streamwise-crossflow plane, with Lagrange polynomial expansions
up to order P − 1 = 7. A continuous Galerkin projection has
been enforced across element boundaries. A particularly refined
mesh has been set up in the vicinity of the cylinder, as shown in
the inset of Fig. 1, to properly resolve boundary layers and sep-
aration, as well as in the near wake, where turbulent fluctuations
may have significant impact on the flow field topology around the
cylinder. Fourier expansions with resolutions ranging from Nz =
±64 to ±128 modes have been deployed in the periodic spanwise
direction along with Orszag’s 3/2 rule for dealiasing. In order for
the discrete operators to preserve the symmetries of their contin-
uous counterparts, the advection term has been written in skew-
symmetric form. For the time discretization, a second order velocity-
correction splitting scheme with a time step Δt = 0.0002 has been
adopted as providing sufficient time-integration accuracy. Larger
time steps might have sufficed accuracy-wise, but the discrete oper-
ators resulting from the second order implicit–explicit (IMEX)
splitting-scheme employed are stiff and trigger numerically insta-
bility for Δt beyond that used. Fully implicit time-discretization
schemes might be used with much larger time steps at the cost of
having to solve extremely large nonlinear systems of equations at
every time step, which renders the time evolution extremely slow
and, in our case, unfeasible from a memory storage requirement
perspective.

The instantaneous velocity field has been split following

u(r; t) = ū(r2) + u
′

2(r2; t) + u3(r; t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
u
′(r; t)

, (2)

where r2 = (x, y) and ū = (ū, v̄) = ⟨u⟩zt is the spanwise- and
time-averaged two-dimensional mean velocity field. u′ = (u′, v′,w′)
is the time-dependent (fluctuating) velocity field. The von Kármán
spanwise vortex shedding mode is represented by

u
′

2(r2; t) = u2(r2; t) − ū(r2), (3)

with u2(r2; t) = ⟨u⟩z as the spanwise-averaged instantaneous two-
dimensional velocity field. Finally, u3 = u − u2 represents the purely
three-dimensional perturbation velocity field. The Reynolds stress

FIG. 1. Sketch of the computational domain and mesh. The
streamwise-crossflow x–y plane is discretized in high-order
spectral quadrilateral elements, while the spanwise direc-
tion uses a Fourier expansion. The inset shows a detail of
the mesh around the cylinder and in the near wake.
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tensor is defined to include fluctuations both due to von Kármán
vortex shedding and the three-dimensional deviation away from it,

− ⟨u′ ⊗ u
′⟩ = −⎛⎜⎝

⟨u′u′⟩ ⟨u′v′⟩ ⟨u′w′⟩
⟨v′v′⟩ ⟨v′w′⟩

⟨w′w′⟩
⎞⎟⎠. (4)

III. RESULTS

A. Global quantities

The most salient global quantities that result from our numer-
ical simulations are listed in Table II. The statistics are deemed suf-
ficiently converged for cases 1 through 3, while case 4 may require
longer runs. Partial analysis of increasingly long time-samples shows
that a bare minimum of 30–40 vortex shedding cycles are required
for converged turbulent statistics. This is true of our computations
at Re = 2000 but cannot be extrapolated to higher Reynolds num-
bers, which may require somewhat longer simulation times. Cases
3 and 4 have enhanced in-plane resolution with respect to 1 and
2 (5484 against 4040 seventh-order spectral elements), while span-
wise resolution is highest for case 3 (∼50 Fourier modes per spanwise
unit), followed by case 1 (∼42), case 2 (∼32), and case 4 (∼31). The
lowest resolutions used here qualify as broadly adequate in view of
the published literature, and all other parameters being kept con-
stant, only further coarsening had an observable effect on statistics.
On the other hand, increasing the spanwise size of the domain from
Lz = 1.5 (case 1) to 2.5 (case 3) does have a noticeable impact on
all global quantities, while further increase to Lz = π has little to
no effect. We will therefore focus the analysis on case 3 as it gath-
ers the highest resolution, seemingly adequate spanwise extent, and
the sufficiently long time integration that is required to produce well
converged statistics.

Vortex shedding frequency f vK = 0.215 stands in perfect agree-
ment with experiments both at the same or nearby Reynolds
number27,58,60 and at noticeably higher Re,27,47,49,57 given that the
evolution of the Strouhal number in this regime is rather flat.31

Themean drag coefficient has not often been reported in exper-
iments, but our result CD = 0.975 is in very close agreement with
the few cases where it has.27,45 Consistency with numerical simula-
tions at similar Re is also good,64 and the somewhat higher values
reported at the very common Re = 3900 are entirely compatible with
the slightly increasing trend expected in this regime. The lift coeffi-
cient rms fluctuations CL

′ = 0.102 fall within the range reported in
the only experiments where these have been measured.57

The distribution of the mean pressure coefficient Cp(θ) (solid
line) along the cylinder wall is shown in Fig. 2(a). The stagnation
point, clearly identifiable with Cp(0) = 1 at θ = 0○, is followed by
a quick descent of Cp as the flow accelerates and reaches a mini-
mum at θ ≃ 70.7○. Here, recompression starts and separation occurs
shortly after at θsep = 90.0○, as indicated by the null mean fric-
tion coefficient Cf = 2τw/(ρU∞) (dashed line; τw is the wall shear
stress). Beyond the mean separation point, Cp keeps increasing but
quickly saturates at the cylinder base value Cpb = −0.80 such that the
distribution becomes flat. Meanwhile, Cf quickly recovers beyond
separation except that friction acts in the upstream direction and
then decreases non-monotonically down to null at the base of the
cylinder. The Cp distribution compares favorably with experiments.
The numerical results closely follow those of Norberg,31 measured

FIG. 2. (a) Mean pressure coefficient Cp (left axis, solid) and skin friction Cf (right
axis, dashed) coefficient distributions on the cylinder surface. Also shown are
experimental distributions of Cp by Ref. 31 (black circles: Re = 1500, aspect ratio
50) and Ref. 27 (dark gray circles: Re = 3000). (b) rms fluctuation of the pressure
coefficient Cp

′. Circles indicate the experimental results by Ref. 57 at Re = 1500
(black), 4400 (light gray), and 5000 (white).

at Re = 1500, while the boundary layer remains attached. The com-
puted flat Cp distribution in the detached region falls precisely in
between experiments at Re = 150031 and Re = 3000.27 The higher
values reported at Re = 3900 obey the known increasing trend of
−Cpb beyond Re ≳ 2000.1,31 The rms fluctuation of the pressure
coefficient Cp

′ is shown in Fig. 2(b). Fluctuations are almost imper-
ceptible at the stagnation point and rise steadily along the front
surface of the cylinder. They peak at θ ≃ 82○, just ahead of the
boundary layer separation point. Beyond this point, they remain
fairly high although a slight decreasing trend is observed as the
cylinder base is approached. Comparison with the experiments by
Norberg57 is fair. The functional shape is closely mimicked by our
numerical results, and a quantitative comparison places our Re =
2000 results in between the experimental results at Re = 1500 (black
circles) and Re = 5000 (empty circles). Very close agreement is
achieved with experiments at Re = 4400 (light gray circles), but
whether this is a result of experimental or numerical inaccuracies
or reveals actual physics consisting of a Cp

′ plateau in the range Re
∈ [2000–4400] is a question that cannot be elucidated from existing
data.

The separation point, at θsep = 90.0○, is slightly retarded with
respect to numerical simulations at Re = 3900 reported in the liter-
ature (see Table I). The only experimental attempt at measuring it
produced a value θsep = 85 ± 2 at Re = 3900, while no numerical or
experimental study has ever reported it for Re = 2000 to the authors’
knowledge.

B. Near-wake topology and statistics

The near-wake mean velocity field ū(r2) consists in a
closed recirculation bubble, as illustrated by the mean flow-field
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FIG. 3. Near-wake mean flow topology. Velocity magnitude contour plot, with
∥ū∥ ∈ [0.0, 1.3] (darker shading for higher velocity) in steps Δ∥ū∥ = 0.1, and
streamlines.

streamlines in Fig. 3. Within the enclosed recirculation bubble,
delimited at the rear by a stagnation point, a symmetric vortex pair
is clearly discernible. The streamline distribution compares favor-
ably with the PIV measurements by Konstantinidis and Balabani60

[Fig. 2(a)] for a steady cylinder at Re = 2150, as also do the time-
averaged velocity magnitude contours. The high cross-stream gradi-
ents of the velocity magnitude along the top and bottom boundaries
of the recirculation bubble indicate the presence of strong shear lay-
ers. The statistical symmetry with respect to the wake centerline is
clear, which constitutes a good indicator that the data samples are
sufficiently large.

Contour plots of second-order flow statistics are shown in
Figs. 4(a)–4(c). The normal-streamwise [⟨u′u′⟩, Fig. 4(a)] and
streamwise-cross-stream Reynolds stresses [⟨u′v′⟩, Fig. 4(c)] have
symmetric and anti-symmetric extrema, respectively, away from
the wake centerline. While ⟨u′u′⟩max occurs at the rear part but
still within the recirculation bubble, ⟨u′v′⟩min falls right outside the
bubble closure. Both Reynolds stresses peak right in the vortex for-
mation region, and their contours extend upstream along the shear
layers separated from either side of the cylinder. The maximum
cross-stream normal Reynolds stress [⟨v′v′⟩, Fig. 4(b)] occurs on the
wake centerline just beyond the downstream boundary of the recir-
culation bubble. Qualitative agreement with the PIV measurements
by Konstantinidis and Balabani60 [Fig. 4(a)] is fair. The statistical
symmetry of Reynolds stress distribution is also accomplished. The
maximum spanwise normal Reynolds stress (⟨w′w′⟩, not shown)
occurs also on the wake centerline.

Table III reports extrema and streamwise location of near-wake
flow-field statistics along the wake centerline, corresponding to cur-
rent simulations and several experimental and numerical published
results.

Cases 1 and 2, corresponding to rather short spanwise domains,
feature rather small maximum velocity defect (1 − ūmin) along
the wake centerline at a location relatively close to the cylin-
der base, comparable to that reported in the literature at higher
Reynolds numbers of Re ≃ 3900–4000.48,49,54,61 Cases 3 and 4 have

FIG. 4. Near-wake Reynolds stresses. (a) ⟨u′u′⟩ ∈ [0.0, 0.32] in steps Δ⟨u′u′⟩
= 0.02, (b) ⟨v′v′⟩ ∈ [0.0, 0.85] in steps Δ⟨v′v′⟩ = 0.05, and (c) ⟨u′v′⟩ ∈ [−0.2,
0.2] in steps Δ⟨u′v′⟩ = 0.02. Solid (dotted) lines correspond to positive (negative)
contours. The black thick line delimits the recirculation bubble.

instead xū at locations perfectly compatible with experiments at
nearby Reynolds numbers,48 although |ūmin| seems to be a lit-
tle low. Centerline streamwise normal Reynolds stresses (⟨u′u′⟩)
show the expected double-peak distribution, with the first peak
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TABLE III. Peak values of flow field statistics along the wake centerline. Double-valued streamwise normal Reynold stress columns (⟨u′u′⟩max and x⟨u′u′⟩) denote double-peak

or inflection plus peak distribution. Inflection points are given in parentheses.

Author (references) Case Re ūmin xū ⟨u′u′⟩max x⟨u′u′⟩ ⟨v′v′⟩max x⟨v′v′⟩ ⟨w′w′⟩max x⟨w′w′⟩

Present results Case 1 −0.242 1.520 (0.084)/0.108 (1.466)/2.016 0.392 2.267 0.081 1.832
Case 2 −0.266 1.580 (0.083)/0.108 (1.466)/2.027 0.401 2.245 0.083 1.867
Case 3 −0.318 1.672 0.082/0.082 1.523/2.027 0.409 2.187 0.085 1.764
Case 4 −0.302 1.718 0.086/0.087 1.504/2.004 0.373 2.245 0.093 1.764

Norberg48 1 500 −0.4 1.75 0.09/0.1024 1.51/2.23 0.1521 1.61
3 000 −0.44 1.65 0.1089/0.1156 1.45/2.09 0.1296 2.08
5 000 −0.45 1.42 0.1225/0.1296 1.23/1.83 0.1521 1.86
8 000 −0.35 1.17 (0.1369)/0.2025 (1.02)/1.62 0.1521 1.41
10 000 −0.38 1.04 (0.1369)/0.1849 (0.96)/1.50

Konstantinidis et al.58 1 550 0.1089 2.1 0.2809 2.1
2 150 0.1024 2.1 0.2916 2.1
2 750 0.0961 2.1 0.3136 2.1
7 450 0.1225 1.5 0.4761 1.5

Parnaudeau et al.49 3 900 −0.34 1.59 0.087 1.372
Lourenco and Shih45 3 900 −0.24 0.72
Beaudan and Moin50 3 900 −0.33 1.00
Kravchenko and Moin54 Nz = 48F 3 900 −0.37 1.4−1.5

location and height in excellent agreement with experiments.48,58

The location of the second peak is also within a reasonable dis-
tance of the experimental results, but the height appears slightly
low. The same occurs with the single-peak location and value of
crossflow (⟨v′v′⟩) and spanwise (⟨w′w′⟩) normal Reynolds stresses.
The location is correctly predicted, but the peak height is somewhat
off.

Absolute in-plane peak values for ⟨u′u′⟩, ⟨v′v′⟩, and ⟨u′v′⟩,
reported in Table IV, are in reasonably good agreement with the
experiments by Konstantinidis et al.59,60

Figure 5(a) shows the mean streamwise velocity distribution
along the wake centerline ū(x, 0). Starting from rest at the cylin-
der base (corresponding to x = xb = 0.5), ū initially decreases into

negative, reaches a minimum at about x ∼ 1.5, and then quickly
recovers in the near-wake, leaving a velocity deficit of around
1− ū(x, 0)∼ 0.3 that is very slowly further recovered in the mid- and
far wakes. The region where ū(x, 0) < 0 delimits the streamwise
extent of the mean recirculation bubble such that the recircula-
tion bubble length Lr is obtained from ū(xb + Lr , 0) = 0. This
is not to be confused with wake formation length, defined as
Lf ≡ argmaxx[⟨u′u′⟩(x, 0)] − xb. Our numerical results (case 3) fol-
low a trend that is fully compatible with the experiments by Nor-
berg,48 except that their minima seem to reach fairly lower values
(see Table III). The location of the minimum for our Re = 2000 com-
putation occurs precisely within the range set by the experiments at
Re = 1500 and 3000. The experiment by Konstantinidis et al.58 at

TABLE IV. Peak values of off-centerline near-wake flow field statistics.

Author (references) Case Re ūmin xū ⟨u′u′⟩max x⟨u′u′⟩ ⟨v′v′⟩max x⟨v′v′⟩ ⟨u′v′⟩max x⟨u′v′⟩ ⟨w′w′⟩max x⟨w′w′⟩

Present results Case 1 2000 0.211 1.691 0.392 2.267 −0.106 2.112 0.081 1.832
Case 2 0.206 1.751 0.401 2.245 0.108 2.146 0.083 1.867
Case 3 0.180 1.736 0.409 2.187 0.1059 2.269 0.085 1.764
Case 4 0.177 1.803 0.373 2.245 0.111 2.215 0.093 1.764

Konstantinidis et al.59 2160 0.15 0.32 0.09
Konstantinidis and Balabani60 2150 0.16 0.33 0.09
Parnaudeau et al.49 0.114 ??
Dong et al.61 PIV 4000 −0.252 1.5 0.2025 1.55 0.11 2.05

DNS 3900 −0.291 1.35 0.1806 1.72 0.14 1.90
Lehmkuhl et al.56 Mean 3900 −0.261 1.396 0.237 1.576 0.468 2.00 −0.125 1.941

L −0.323 1.590 0.223 1.723 0.441 2.105 −0.126 2.107
H −0.233 1.334 0.270 1.489 0.520 1.922 −0.136 1.941
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FIG. 5. Recirculating region characteristics along the wake centerline: (a) mean
streamwise velocity (u) profile and (b) Reynolds streamwise normal stress (⟨u′u′⟩)
profile along the wake centerline. Shown are case 3 (solid line); experiments by

Norberg48 (circles: full black: Re = 1500, dark gray: Re = 3000, empty: Re = 5000),

Konstantinidis et al.58 (squares: 2150) and Parnaudeau et al.49 (triangles: Re =
3900).

Re = 2150, instead, features minima very close to our numerical
results, although the data display significant scatter and the veloc-
ity defect recovery appears unusually slow. It must be borne in
mind that preturbulence levels were particularly high in these exper-
iments. The experiment by Parnaudeau et al.49 at Re = 3900 shows
also minimum ū(x, 0) and a recovery rate similar to those in our
numerics, while at the same time, the minimum is located halfway
between the minima of Norberg48 for Re = 3000 and 5000.

The comparison of the streamwise distribution of the
streamwise velocity fluctuation autocorrelation [streamwise nor-
mal Reynolds stress ⟨u′u′⟩(x, 0)] along the wake centerline, shown
in Fig. 5(b), is somewhat less straightforward. While Norberg48

reported two-peak distributions, typical of U-type wake states, that
shift to lower x and higher maxima as Re is increased, Konstantinidis
et al.58 presents the inflection plus peak distribution that is char-
acteristic of V-type states. The recovery tails of the latter are also
longer, possibly due to high preturbulence levels. The distal peak in
the double-peak distributions of Norberg48 is higher than the prox-
imal peak, the dissymmetry being larger at the lowest Re = 1500.
Parnaudeau et al.49 also observed a double-peak distribution at
Re = 3900, but the first peak rises slightly above the second in this
case. The ⟨u′u′⟩(x, 0) distribution in our numerical simulations on
the two largest spanwise domains employed (cases 3 and 4) seems
closer to that of Parnaudeau et al.49 than that of Norberg48 or Kon-
stantinidis et al.,58 even though the latter explored Reynolds num-
bers closer to ours. When shorter spanwise domains are used, how-
ever, the distributions tend to the inflection plus peak characteristic
shape. This is in overt contradiction with prior observations that the
U-type state is favored by smaller spanwise domains. The issue
remains unexplained.

The agreement with experiments is fair in the mid-wake
and beyond as cross-stream profiles of velocity components and
Reynolds stresses at various locations x ≥ 3 confirm (not shown).
Computationally obtained profiles overlap reasonably with experi-
mentally measured47,59 and numerically computed50,53,64,69 distribu-
tions.

The categorization of the near-wake state into U- or V-type
is based on the cross-stream profile of streamwise velocity at a
precise streamwise location: ū(1, y). As already stated in Sec. I,
every shape ranging from a clear-cut U to a sharp V has been
reported in the literature. Figure 5 points at a gradual evolution
of wake statistics as Re is increased but at the same time unveils
high sensitivity to experimental conditions. While the size of the
recirculation bubble in the near wake seems to evolve smoothly
with Re for a given experimental setup, different experiments report
dissimilar bubble sizes at the same exact Re such that compar-
ing cross-stream velocity distributions at a fixed location is at
the very least deceptive. The effect of experimental conditions or
numerical details can, to a great extent, be accounted for with an
offset in Re. Comparison at a location defined in relative terms
appears thus as a much sounder approach. The results compared
in this way cannot be expected to match exactly since not only
the size but also the topology of the recirculation bubble evolves
with Re. Accordingly, the transformation from one experiment and
Reynolds number to another can only partially be explained in
terms of a mere streamwise scaling or shift. We choose here to
scale the x coordinate to align the location xū of the minimum ūmin

of ū.
Figure 6 shows cross-stream velocity profiles of streamwise (ū)

and cross-stream (v̄) velocities at x = 1, 1.5, 2 for Ref. 48 and Ref.
59 and at nearby locations x = 1.06, 1.54, 2.02 for Ref. 49. Statisti-
cally averaged profiles are expected to be reflection-symmetric with
respect to the wake centerline: [ū, v̄](x, y) = [ū,−v̄](x,−y). Fail-
ure to preserve this symmetry would indicate lack of symmetry in
the experiment (or in the measurement probe locations) or, alter-
natively, poorly converged statistics due to insufficient data. In this
sense, the degree to which the symmetry is accomplished acts as a
metric for the quality of the results. Although the degree of asym-
metry in the raw simulation data was already small, we have chosen
here to symmetrize numerically obtained profiles as a means of dou-
bling the data sample size. The cross-stream profiles of streamwise
velocity ū evolve from a U shape very close to the cylinder base
(x ≃ 1) toward a V shape as we move backward within the near-
wake (x ≃ 2). This alone illustrates how U- or V-shaped profiles
can be obtained at will by adequately shifting the sampling loca-
tion.Wakes that are topologically identical but have slightly different
recirculation bubble lengths will produce very different results if the
same location is chosen for comparison. As a matter of fact, our
raw data feature slightly flatter profiles at x = 1 and x = 1.5 and
somewhat lower velocities at x = 2 when compared with those of
Parnaudeau et al.49 When sampling locations are corrected for recir-
culation bubble size, the agreement is remarkable despite the signifi-
cant disparity in Reynolds number (Re = 2000 here against Re = 3900
for the experimental data). Remaining discrepancies can be safely
ascribed to this fact and also to mild experimental inaccuracies, as
evidenced by a slight asymmetry in the profiles. Something similar
occurs when analyzing cross-stream velocity profiles v̄ in Fig. 6(b).
The significant deviations observed at x = 1 and 1.5, with much
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FIG. 6. Cross-stream profiles of mean
(a) streamwise u and (b) cross-stream
v̄ velocities in the near wake. Sampling
locations are x = 1 (top), x = 1.5 (mid-
dle), and x = 2 (bottom). Shown are
case 3 (solid line); experimental results

by Konstantinidis et al.59 (squares,

Re = 2160), Norberg48 (dark gray cir-
cles: Re = 3000, 3500; open circles: Re

= 5000), and Parnaudeau et al.49 (tri-
angles, Re = 3900, at nearby locations
x = 1.06, 1.54, and 2.02); numerical

results corrected for Norberg48 (gray
dashed-dotted line, Re = 3000, 3500;
gray dotted line Re = 5000) and for

Parnaudeau et al.49 (gray dashed line).

flatter profiles, are fully resolved upon correction. At x = 2, the agree-
ment was already good prior to correction and scaling weakens the
agreement. The different wake topologies are to be held responsible
for this.

Taking Ref. 48 as a baseline for comparison, bubble length cor-
rection of simulation results yields fairly good recovery of ū profiles
at both Re = 3000 and 5000, while no experimental data are avail-
able for v̄. Finally, the numerical bubble size is sufficiently close to

FIG. 7. Cross-stream profiles of Reynolds stresses (second-order moments) in the near wake. (a) Streamwise ⟨u′u′⟩ and (b) cross-stream ⟨v′v′⟩ velocity fluctuation
self-correlations. (c) Streamwise-cross-stream velocity fluctuation cross correlations ⟨u′v′⟩. Styles and symbols as in Fig. 6.
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that obtained at Re = 2160 by Konstantinidis et al.59 so that the cor-
rection to be applied is almost imperceptible. The agreement is fair
at all locations for ū and all but x = 2 for v̄, where the experiments
produced a slightly flatter profile than observed in the numerics.

Cross-stream profiles of second-order moments, i.e., Reynolds
stresses, are shown in Fig. 7. Streamwise velocity fluctuation self-
correlations ⟨u′u′⟩ display the double-peak shape (with nearly
fluctuation-free wake core) at x = 1 that is characteristic of the U-
type wake state. Two distinct phenomena are responsible for these
peaks, which are located on the top and bottom boundaries of the
recirculation bubble. On the one hand, the shear layers resulting
from boundary layer detachment at either side of the cylinder flap
synchronously due to the von Kármán instability and the associ-
ated shedding of alternate counter-rotating vortices. On the other
hand, these same shear layers are subject to turbulent transition, with
the ensuing occurrence of turbulent fluctuations. As we progress
downstream within the near-wake, the amplitude increase of the
shear layer flapping results in the diffusion of Reynolds stresses
such that the peaks broaden and drift toward the wake centerline as
fluctuations gradually penetrate the recirculation bubble core. The
⟨u′u′⟩ profile shape compares favorably with the experiments by
Parnaudeau et al.,49 but the levels are significantly lower for the
numerical data, particularly so in the very near-wake. Correction
for recirculation bubble size acts in the right direction by lifting the
plateau around the wake centerline to comparable levels, but peak
values remain low. Contrasting with the experimental data by Nor-
berg48 at Re = 3000 (x = 1) and Re = 3500 (x = 2), the numerics
also qualitatively capture the right functional shape but quantita-
tively fall short of experimental values. In this case, correction does
not improve the situation as the minimum of ū for numerics and
experiments is already aligned and the scaling factor is very close to
unity. Nonetheless, while it is not surprising that turbulent fluctu-
ation levels are higher at the higher Re at which the experiments
were done, the outline of the profiles is properly captured by the
numerics. The exact same reasoning applies to cross-stream veloc-
ity self-correlations [Fig. 7(b)] and streamwise-cross-stream cross
correlations [depicted in Fig. 7(c)], for which only the experimen-
tal data of Parnaudeau et al.49 are available. Once again, qualita-
tive agreement is excellent, while quantitative match is improved
by correction but remains elusive. There is a reasonable explana-
tion to the level mismatch in second-order statistics. Peak values of
Reynolds stresses occur within the shear layers developing at either
side of the cylinder, and turbulence levels in this region are natu-
rally dependent on shear layer thickness, which in turn scales with
the Reynolds number. Quantitative agreement is therefore not to be
expected.

IV. DISCUSSION

A. Shear layer instability

Planar steady shear layers may be subject to the Kelvin–
Helmholtz instability. In the case of the transitional flow past a cylin-
der, the shear layers resulting from boundary layer separation are
neither planar nor steady. The Kármán instability induces a flap-
ping motion of the wake, and a secondary instability of the von
Kármán street introduces a spanwise modulation that propagates
upstream in the wake and reaches, to some degree, the immediate

vicinity of the cylinder. Notwithstanding this, shear layer instabil-
ity has been observed in the cylinder near wake. The precise critical
value ReKH (or ReSL) for the inception of the Kelvin–Helmholtz (or
shear layer) instability is largely dependent on extrinsic factors such
as end boundary conditions, background disturbance intensity, and
preturbulence levels.28 For an experimental setup favoring parallel
shedding conditions, the instability might occur as early as ReKH =
1200, while oblique shedding pushes the shear layer instability to
ReKH = 2600. The instability, when present, emerges as a spatially
developing train of small scale vortices characterized by velocity
fluctuations of a frequency that is substantially higher than that of
Kármán vortices. Kelvin–Helmholtz vortices are continuously being
generated early on in the shear layer and grow as they are advected
downstream.When they reach the Kármán vortex formation region,
a number of them accumulate, coalesce, and are swallowed into the
forming wake vortex. Using theoretical scaling arguments for the
separating boundary layer on the cylinder walls and the ensuing
shear layers to fit experimental data from several sources, Prasad
and Williamson23 suggested a power law f KH/f vK = 0.0235Re0.67,
relating the shear layer f SL ≡ f KH and von Kármán f vK shedding
frequencies.

A velocity probe strategically located in the shear layer at
(x, y, z) = (0.8, 0.6, 1.25) clearly detects the flapping motion of the
wake for most of the time, as shown by the low-frequency-low-
amplitude oscillation of the cross-stream velocity v in the inset of
Fig. 8. The signal, however, experiences occasional sudden bursts
of much higher frequency and amplitude. Averaging the individual
spectra of 64 velocity signals measured for a time lapse in excess of
20–25 vortex shedding cycles along a probe array at (x, y) = (0.8,
0.6) results in the average spectrum shown in Fig. 8. Alongside the
distinct vortex shedding fundamental frequency peak f vK and its
first harmonic, a broad-band low amplitude peak f KH is discernible.
This peak corresponds to the shear layer instability, and although
the associated velocity fluctuations are large, its moderate amplitude
results from the phenomenon occurring only occasionally. The peak
is located at f KH ≃ 3.902f vK, which falls right on top of the power law
advanced by Prasad and Williamson.23

In order to suppress the von Kármán-related oscillation from
the probe array readings and thus isolate the shear layer oscilla-
tion, the signals have been processed with a high-pass fifth-order

FIG. 8. Average spectrum of the crossflow velocity signals along a probe array
located in the shear layer at (x, y) = (0.8, 0.6). The inset shows one such signal for
the probe at (x, y, z) = (0.8, 0.6, 1.25).
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FIG. 9. Space–time diagram of filtered crossflow velocity v at (x, y)=(0.8, 0.6). (a) Full time series. (b) Detail of the interval t ∈ [158, 172] [indicated with dashed lines in panel
(a)] showing the passage of Kelvin–Helmholtz vortices. The horizontal and vertical dashed lines indicate the (z, t) coordinates drawn in Fig. 10. Labels 1, 2, 3, and 4 indicate
stripes that correspond to consecutive shear-layer vortices traversing the location of the probe array.

Butterworth filter with cutoff frequency f c = 0.7. The filtered sig-
nals are displayed as space–time diagrams in Fig. 9. While there are
no traces of the von Kármán frequency, which has been effectively
filtered, occasional velocity oscillations are clearly observed as rip-
ples that are elongated, albeit localized, in the spanwise direction.
Very low amplitude ripples are perceptible here and there, but only
a few grow to remarkably high amplitude. These oscillations are con-
sistent with the passage of small spanwise vortices resulting from
a Kelvin–Helmholtz instability of the shear layer, but the incipi-
ent three-dimensionality of the flapping shear layer restrains their
spanwise extent, which remains always well below 1D. This does
not preclude that, at higher Reynolds, shear layer vortices become
more elongated in the spanwise direction, thus preserving better
two-dimensionality, as observed by Prasad and Williamson.23 The
intensification of the Kelvin–Helmholtz instability renders it per-
ceptible further upstream on the shear layers, out of reach of the
wake three-dimensionalization occurring downstream. The inter-
mittency factor at the probe location, defined as the fraction of the
time that high frequency oscillations are present, is γ ≃ 6, although
much longer time series would be required to obtain converged
values.

Figure 10 depicts cross-sectional streamlines at z = 1.25 of the
instantaneous velocity field at t = 165.7, showing four consecutive
shear-layer vortices duly numbered and labeled in Fig. 9. Vortices 1,
2, and 3 have already traversed the sampling probe location (cross
sign), while vortex 4 is headed toward it.

B. Secondary instability of Kármán vortices

The cylinder wake is three-dimensional from Reynolds num-
bers as low as Re ≲ 19016 following well established secondary insta-
bilities of von Kármán vortices.10,17 Here, we are interested in the
remnants of these instabilities at a much higher Reynolds number
Re = 2000, for which von Kármán vortices remain the dominant
structure in the wake but are perturbed by spanwise modulation and
superimposed spatiotemporal turbulent fluctuations.

In order to analyze the three-dimensional nature of the flow,
we have followed Mansy et al.33 in decomposing the flow field in a
primary [two-dimensional, u2(r2; t) = ū(r2) + u′2(r2; t)] and a sec-
ondary [three-dimensional, u3(r; t)] component. In the restricted
spanwise extent of the computational domains employed, there
is no room for the development of oblique shedding or vortex

dislocation such that this decomposition does indeed properly sepa-
rate all three-dimensional effects from primary vortex shedding.

Figure 11(a) shows the spacetime diagram of streamwise veloc-
ity u for a probe array located beyond the vortex formation region

FIG. 10. Kelvin–Helmholtz instability in the shear-layer. (a) Streamlines of the
instantaneous velocity field at z = 1.25 and t = 165.7, as indicated in Fig. 9. The
cross indicates the location of the probe. The labels indicate consecutive shear-
layer vortices. (b) Visualization of shear-layer vortices using the Q-criterion with
value 5; coloring by spanwise vorticity ωz ∈ [−10, 10].
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FIG. 11. Spacetime diagrams of streamwise velocity at (x, y) = (3, 0.5) for (a) the
total (primary and secondary combined) u = u2 + u3 and (b) the secondary flow u3.

at (x, y) = (3, 0.5). A vertical-banded pattern, associated with vor-
tex shedding, is clearly distinguishable. The effect of subtracting
the primary flow from the total flow, yielding the secondary flow
in isolation, is shown in Fig. 11(b). It is clear from the alternate
homogeneous and inhomogeneous stripes that three-dimensionality
is concentrated at certain phases along the vortex shedding
cycle.

The spectra of the total, primary u2, and rms secondary

urms
3 ≡

√⟨u23⟩z streamwise velocity signals are shown in Fig. 12(a).
As expected, the primary signal has a clear peak at the Strouhal
frequency, and two higher harmonics are also discernible. The sec-
ondary signal is somewhat flatter, but protrusions at the Strouhal
frequency and a couple of harmonics are still visible, which indi-
cates that the signals are coupled. The cross-spectral-density S23
of the primary and secondary signals is shown in Figs. 12(b) and
12(c) to analyze the cross correlation or coherence between the sig-
nals. There is a clear peak of the cross-spectral-density modulus
(A23 ≡ |S23|, top panel) at precisely the Kármán frequency, indicat-
ing that the energy contents at this frequency of both signals are
correlated. The cross-spectral-density phase [φ23 ≡ arg(S23)] reveals
an associated phase lag φ23(f vK) ≃ 225○. Since the primary signal
peaks upon the crossing of the Kármán vortex through the sampling
location, the detected phase lag implies that three-dimensionality is
maximum in the trailing portion of the braid region that connects
counter-rotating consecutive vortices.

Figure 13 illustrates the location of maximum three-
dimensionality with two snapshots of the spanwise vorticity field
that are apart by exactly φ23(f vK) along one vortex shedding cycle.
The first one corresponds to a maximum of the primary signal as
recorded at the sampling location (cross), which is being traversed
by a Kármán vortex. The second one, taken φ23(f vK) later, shows that
the sampling location is right at the braid region in between consec-
utive vortices. This is consistent with the short-wavelength mode B
observed in the cylinder wake at much lower Reynolds numbers, as
the instability leading to it is known to nucleate at the braid shear
layers,10,75 while Mode A results from the instability of the vortex
core regions. Strong counter-rotating streamwise vortex pairs can
be detected in the braid regions every now and then, but the span-
wise periodic pattern of mode B has long been disrupted such that
vortices appear in isolation or with irregular spacing at best. The
streamwise coherence of mode B streamwise vortices at onset, which

FIG. 12. Spectra of the total (u, black), primary (u2, dark gray), and rms secondary
(urms

3 , light gray) flow components of the streamwise velocity signal at (x, y) = (3,
0.5). (b) Cross-spectral-density S23 of the primary u2 and secondary urms

3 signal
pair [top: cross-modulus A23 ≡ |S23|, bottom: cross-phase φ23 = arg(S23)].

Q2

accounted for a characteristic symmetry from one braid to the next
of opposite sign, is lost once turbulence sets in. Two-dimensional
(time and z-coordinate) cross correlation of u3 signals taken along
probe arrays at (x, y) = (3, 0.5) and (x, y) = (3, −0.5) fail to pro-
duce the clear peak one would expect for space–time drifts (ζ, τ)
= (0, π/f vK) if mode B symmetry was preserved. The effect of turbu-
lent transition is that of decorrelating any two signals separated by
relatively short time or streamwise distance.

C. Spanwise length scale of large coherent
three-dimensional structures

Quantification of the spanwise length scale of the large coherent
three-dimensional structures that are present in the wake requires
monitorization of some quantity along spanwise lines. Particularly
useful are signals that cancel out exactly for two-dimensional vortex-
shedding as their mere deviation from zero is a sign of three-
dimensionality. Fourier spectral differentiation has been employed

along spanwise probe arrays to compute ω̃y =
∂u

∂z
, as an indicator

of cross-stream vorticity. The usual approach of computing span-
wise self-correlation or performing Fourier analysis works fine for
spanwise(-pseudo)-periodic flow structures but fails whenever the
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FIG. 13. Instantaneous spanwise vorticity ωz field snapshots at (a) a maximum of
the primary signal u2 as measured by the sampling probe at (x, y) = (3, 0.5) and
(b) a phase φ23(f vK) = 225○ later corresponding to a maximum of the secondary
signal urms

3 .

structures appear in isolation or show some localization features.
The reason is that self-correlation and Fourier transforms act glob-
ally on the signal and provide global information such that struc-
ture spacing rather than size can be detected. A powerful tool for
analyzing the local spectral features of a signal is the Hilbert trans-
form. Spectrograms, wavelet transforms, and the Hilbert–Huang
transform are alternative means, but the simplicity and versatility
of the Hilbert transform make it more suitable for the analysis of
spanwise length scales in the cylinder wake.38 The Hilbert trans-
form of a real-valued function f (z) is defined by its convolution
with 1/(πz) as

H[ f (z)] = 1

π ∫
∞

−∞

f (ζ)
z − ζ

dζ,

where the improper integral must be understood in the Cauchy
principal value sense. The complex-valued function fa(z) = f (z)
+ iH[f (z)] is the analytic representation of f (z), and its modulus
and argument, advisedly named local (instantaneous if the inde-
pendent variable is time) amplitude and phase, respectively, pro-
vide insight into the local (instantaneous) properties of the original
signal.

Thus, the analytic signal ω̃a
y(z, t) is obtained from ω̃y(z, t) and

Hω̃y(z, t) as the complex function,

ω(z, t) ≡ ω̃a
y(z, t) = ω̃y(z, t) + iHω̃y(z, t) = Aω(z, t)eiφω(z,t).

Its modulus Aω ≡ |ω| and argument φω ≡ arg(ω) contain informa-
tion on the local amplitude (envelope) and phase, respectively, of
ω̃y. The instantaneous local spanwise wavelength of the signal is then
recovered from

2π

λz(z, t) =
dφω

dz
.

The probability density function (PDF) of λz has been computed
via Normal/Gaussian kernel density estimation with a bandwidth
Δz = 0.04 and scaled by the mean instantaneous envelope ⟨Aω⟩z(t)
so as to account for the energy level contained in the most predomi-
nant three-dimensional structures.

Figure 14 presents the time evolution of the ⟨Aω⟩z-scaled λz-
PDF instantaneous distributions as processed from the readings
obtained using the probe array located at (x, y) = (3, 0.5). The shad-
ing denotes the instantaneous probability distribution of λz , with
darker regions corresponding to the most recurrent length scales of
energetic spanwise structures. Long wavelength structures are rare,
as evidenced by the predominance of white for large λz . Meanwhile,
shaded regions appear for relatively low λz in the form of time-
localized spots with a certain (pseudo-)periodicity. Energetic span-
wise structures occur intermittently, with characteristic frequency
(that of vortex shedding) and spanwise size distribution. The CL sig-
nal has been superimposed to the colormap to illustrate the existing
correlation between the occurrence of spanwise flow structures and
the vortex shedding process. As already anticipated by the secondary
flow spacetime diagram of Fig. 11, three-dimensionality occurs pre-
dominantly at certain phases of the vortex-shedding cycle, which
translates into precise streamwise locations along the vortex street,
namely, the braid regions in between opposite sign vortices.

The CL signal has been used to uniquely define a phase
along the vortex-shedding cycle. The Hilbert transform has been
used again, this time to turn CL into an analytical time signal
Ca
L(t) = CL(t) + iHCL(t) such that the phase can be obtained

as θ(t) ≡ arg (Ca
L(t)). The right panel of Fig. 14 zooms into a

full vortex-shedding cycle and indicates eight equispaced phases
θi = 2πi/8 (i ∈ [0, 7]) along it. Four distinct stages can be clearly

FIG. 14. Time evolution of the lift coefficient CL (right axis) and PDF of the instantaneous spanwise wavelength λz distribution at (x, y) = (3, 0.5), scaled by the mean
instantaneous envelope ⟨Aω⟩z (left axis). (a) Full time-series. (b) Detail of t ∈ [75, 82]. The vertical dashed lines indicate the time instants for eight equispaced CL signal
phases θi = 2πi/8 (i ∈ [0, 7]).
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identified during the cycle. For around one quarter of the cycle,
represented by phases θ6 through θ8 = θ0, the wake has no per-
ceptible three-dimensionality at the sampling location. Later on,
three-dimensional spanwise structures of very small size start being
observed at the probe array with increasing probability that peaks
between phases θ1 and θ2. Beyond this first probability peak, the
recurrence of the structures declines to some extent, reaching a
local minimum in between phases θ3 and θ4. Past this stage, span-
wise structures regain presence and their probability of occurrence
reaches a second peak at phase θ5. The spanwise extent of the
three-dimensional structures progressively grows as their recurrence
declines from the first probability peak and bounces back toward
the second peak. The most probable structures are therefore slightly
larger, although still rather small, for the second peak than for the
first. Beyond the second peak, three-dimensionality quickly vanishes
before the cycle starts anew.

In order to substantiate the cyclic nature of the spanwise flow
structuresmeasured at a fixed (x, y)-location in the wake, phase aver-
aging of the flow field has been undertaken. The data comprised
in the interval θ ∈ [θi − π/8, θi + π/8] (i ∈ [0, 7]) of all avail-
able vortex-shedding cycles have gone into averaged phase θ̄i. The
resulting phase-averaged ⟨Aω⟩z-scaled PDF distributions at the off-
centerline sampling location (x, y) = (3, 0.5) are shown in Fig. 15.
Direct time-averaging of the ⟨Aω⟩z-scaled PDF distributions (black
solid line) already detects the presence, at the sampling location, of
three-dimensional structures of size distributed around λz = 0.234.
Furthermore, the evolution of the phase-averaged spanwise size dis-
tributions corroborates the observations made for the particular
vortex-shedding cycle of Fig. 14. Three-dimensionality is scarce at
phase θ̄0, but spanwise structures start appearing with quickly grow-
ing probability that peaks at θ̄2 with prevailing spanwise size λz
≃ 0.204. Structures become less abundant and/or less energetic for
phases θ̄3 ∼ θ̄4 as they grow in typical size to λz ≃ 0.219. As the cycle
progresses, spanwise structures are fast re-energized and become

FIG. 15. Time-averaged (solid line) and phase-averaged (dashed lines, coloring
as indicated in the legend) ⟨Aω⟩z-scaled PDF distributions at phases θi = 2πi/8.
Normal/Gaussian kernel density estimation with a bandwidth Δz = 0.04 has been
employed.

more recurrent until reaching a new probability peak at phase θ̄5
with spanwise size distributed around λz ≃ 0.280. Beyond this point,
ubiquity of three-dimensional structures sharply drops until becom-
ing almost imperceptible at phase θ̄6. Three-dimensionality remains
insignificant for the rest of the cycle.

Spanwise-averaged flow vorticity snapshots taken at phases
θ0, θ2, and θ5 are shown in Fig. 16 to identify the location along
the wake where three-dimensional structures occur. Phase-averaged
snapshots [Fig. 16(b)] are shown alongside instantaneous snap-
shots [Fig. 16(a), for the particular vortex-shedding cycle depicted in
Fig. 14(b)] to convey the general recurrence of three-dimensionality
at the same locations in the wake. The leading front of the Kármán
vortex and the nearly quiescent flow field immediately downstream
(top panel, which corresponds to phase θ0) preserve a markedly
two-dimensional character. In the downstream portion of the braid
region, immediately at the vortex trailing front (middle panels, θ2),
is where the smallest highly energetic three-dimensional structures
are to be identified. At the upstream part of the braid region, where
it connects with the next Kármán vortex of opposite sign (bot-
tom panels, θ5), high energy spanwise structures of a slightly larger
spanwise extent thrive. In between, in the mid-section of the braid
region, three-dimensionality appears to be somewhat weaker. As a
matter of fact, this is the result of the curved nature of the braid
region such that its core sheet crosses the sampling location, at a
fixed cross-stream coordinate, twice. It is natural to assume that the
three-dimensional structures extend in fact along the braid region
pretty much unaltered, just with a mild propensity to grow from the
leading to trailing region. The apparent weakening would therefore
be a result of the curvature of three-dimensional structures along
the braids. This scrutiny of spanwise flow structures confirms the
notion, already anticipated by the analysis of the primary and sec-
ondary flows, that three-dimensionality is suppressed by the strong
spanwise vorticity of Kármán vortices but thrives in the trailing braid
regions at a phase of 225○ later, the precise phase lag that separates
the most energetic spanwise structures (θ5) from the weakest (θ0).
The inquiry into the spanwise length scale of three-dimensionality
further reveals that the structures are of rather small spanwise extent
and that their size experiences a periodic evolution along the vortex
street.

Figure 17 shows instantaneous streamwise cross sections of
cross-stream vorticity ωy(3, y, z), containing the probe array (dashed
line), at the very same times as in Fig. 16(a). The probe clearly reg-
isters quasi-two-dimensional flow at θ0 (left panel), although three-
dimensional structures are clearly visible at the symmetric y-location
as a lower braid traverses the cross section at the time. At θ2 (center
panel), the upper braid downstream region traverses the cross sec-
tion. In this case, a couple of vortex pairs are spotted at precisely
the probe-array location. Note that a Fourier transform or signal
autocorrelation along the probe would have provided the spacing
between the vortex pairs rather than the local size of each one of
them. The Hilbert transform works locally and will in fact produce
the characteristic size of every strong vortex traversing the probe
array. It must be realized that the sizes given by theHilbert transform
will correspond to that of a compact vortex pair. If, for whatever
reason, the vortex pair splits into two counter-rotating vortices that
drift apart, the Hilbert transform will measure the size of the origi-
nal vortex pair as though the vortices had remained packed together.
We thus measure double the size of individual vortices, regardless of
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FIG. 16. Spanwise-averaged vorticity
fields at phases θ0 (top), θ2 (mid-
dle), and θ5 (bottom) along the vortex-
shedding cycle. Vorticity is in the range
ωz ∈ [−2, 2], clear for positive and
dark for negative. The cross indicates
the sampling location of the signals in
Fig. 14. (a) Instantaneous snapshots cor-
responding to the vortex-shedding cycle
of Fig. 14(b). (b) Phase-averaged snap-
shots.

whether they appear in pairs or in isolation. At θ5 (right panel), it
is the upstream region of the braid that traverses the cross section.
Once more, both vortex pairs and isolated vortices can indistinctly
be detected at the probe array height.

At the same height but below the wake center plane (i.e., the
mirror image of the probe location), three-dimensionality is weaker
and less structured than in the braid core, where the strongest vor-
tical structures of clear-cut characteristic size happen to be. We sur-
mise that it is these latter vortices that extract energy from the main
shear and constitute the primal instability that then breaks down
into the featureless lower-intensity turbulence that dominates the
trailing region left behind by the braids in their downstream advec-
tion. The low-intensity turbulent region in the bottom half of the θ2
and θ5 panels would therefore correspond to the region just cleared
by a lower braid and waiting to be reached by the leading front of an
oncoming Kármán vortex. A couple of final considerations regard-
ing structure size measurement need to be mentioned at this point.
First, if we consider vortex pairs as embedded inside an envelope,
the instantaneous horizontal size of this envelope as measured at the

probe array will oscillate as the vortex, which has a certain stream-
wise tilt due to the braid slope and curvature, traverses it. From the
probe, the vortex pair will be seen as either rising or descending and
the correct size will only be measured when the vortex cores are
at exactly the probe height. This introduces a bias in size measure-
ment toward somewhat smaller-than-actual structures. A spanwise
tilt of a vortex pair will entail a similar effect. We have employed ω̃y

instead of the real vorticity ωy for computing structure size. There is
no guarantee that the sizes measured will remain the same if differ-
ent signals are used. Trading some vorticity component for another
or for any velocity component might produce different results. Devi-
ations should not be enormous, but the definition of structure size
is somewhat loose and can of course depend on the field used for its
measurement.

In order to characterize the typical spanwise size of three-
dimensional flow structures, the mode (peak) of the time-averaged
⟨Aω⟩z-scaled λz-PDF distribution, rather than the mean, has been
taken as the most probable wavelength λ̄z . Due to the skewed
shape of the size distributions, the mean is not a particular good

FIG. 17. Colormaps on a streamwise cross section, containing the probe array, of instantaneous cross-stream vorticity ωy (3, y, z) at phases θ0, θ2, and θ5. The probe array
is indicated with a dashed line.
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FIG. 18. Typical spanwise size λz of three-dimensional structures along the wake
measured off-centerline at cross-stream locations y = 0.5 (solid lines) and y = 1
(dashed lines). Shown are our numerical results (circles) along with the numerical

results by Gsell et al.38 at Re = 3900 (squares) and experimental results by Mansy

et al.33 at Re = 600 (crosses) and Chyu and Rockwell37 at Re = 10 000 (plus
signs). The error bars denote the range for which the probability remains above
half the peak probability.

indicator of the most probable spanwise sizes. To provide a mea-
sure of distribution spread or variability, a range [λmin

z , λmax
z ] has

been defined by picking the interval where the PDF remains above
50 of its maximum. Thus, typical positive and negative devia-
tions have been defined as δ+λz = λmax

z − λ̄z and δ−λz = λ̄z − λmin
z ,

respectively.
Figure 18 shows the evolution of the typical spanwise size of

three-dimensional structures along the wake. The measurements
have been taken off-centerline at y = 0.5 and y = 1. The trends for
y = 0.5 observed by Gsell et al.38 at Re = 3900 using a similar analysis
are recovered in the present results at Re = 2000, although the typical
sizes were notably larger in the former study. In our case, the span-
wise size of structures decreases from λ̄z ≃ 0.35 in the immediate
vicinity of the cylinder along the shear layers until reaching a mini-
mum λ̄z ≃ 0.25 at about x ≃ 2–3 in the vortex formation region. The
size gradually recovers afterward, asymptotically tending to λ̄z ≃ 0.4
by x = 20. In Ref. 38, the sizes are off by over 0.4. At y = 1, we observe
the same trends as for y = 0.5 and very close values from x ≳ 2.5
on. In contrast with the observations by Gsell et al.38 at the larger
Re = 3900, the sizes of the structures in the very near wake at
this cross-stream location are meaningless as three-dimensionality
is barely noticeable. This can be ascribed to the lower Re employed
in our simulations. Three-dimensionality (and turbulence, for that

matter) seems to have a hard time diffusing upstream and cross-
stream at Re = 2000 but not so much at Re = 3900. Comparison with
the experimental results by Mansy et al.33 at Re = 600 and Chyu and
Rockwell37 at Re = 10 000 is hindered by the exceedingly different
flow regimes considered and by the methodology employed, which
we assess adequate for estimating spanwise structure spacing but not
size. To any rate, Mansy et al.33 reported a spanwise size λ̄z ≃ 0.45 at
(x, y) = (3, 0.5), which is larger but not overly far from our values at
the same location.

D. Spanwise spacing of streamwise vortices
in the near-wake

If the three-dimensional structures were to appear in a
(pseudo-)periodic spanwise pattern, one would expect to observe
Nvp ≃ Lz/λz equispaced vortex pairs filling the entire spanwise extent
of the domain. As we have seen, this is not the case and vortex
pairs appear entirely decorrelated from one another and vortices in
isolation are oftentimes observed. Figure 19(a) shows the instanta-
neous count of vortex pairs Nvp as a function of time. Vortices are
counted whenever cross-stream pseudo-vorticity exceeds a certain
threshold ∣ω̃y∣ ≥ 8 at the designated location, here (x, y) = (3, 0.5).
In some periods, corresponding to the traversal of Kármán vortices,
no streamwise vortices are observed at all. Along the braids, isolated
streamwise vortices and vortex pairs are regularly detected instead.
Up to 4–4.5 simultaneous vortex pairs have been detected occasion-
ally such that the average spanwise spacing between side-by-side
pairs is Lz/Nvp = 0.56–0.63. This minimum average spacing is well
above the typical vortex-pair spanwise size λmax

z reported above such
that not even in these rare occasions do the three-dimensional struc-
tures appear in anything remotely resembling a periodic pattern
like that observed for the A and B modes at much lower Reynolds
numbers. Figure 19(b) presents in a histogram, the fraction of time
XNvp that the probe array at (x, y) = (3, 0.5) detects so many (Nvp)
simultaneous vortex pairs. Note that the unit is the vortex pair such
that a vortex in isolation is counted as 1/2 and Nvp must necessar-
ily take values that are a natural multiple of 0.5. Isolated vortices
(Nvp = 0.5) cross the probe array just over 15 of the time and close
to another 15 of the time a vortex pair (or two isolated vortices,
Nvp = 1) is being detected. Larger amounts of simultaneous vor-
tices are detected with decreasing probability. We are interested here
in the continuous probability distribution of vortex spanwise spac-
ing lz in the case of the infinitely long cylinder, which is related to

FIG. 19. Count of vortex pairs traversing the probe array at (3, 0.5). (a) Time evolution of the vortex pair count. The threshold for counting the occurrence of a vortex is
∣ω̃y∣ ≥ 8. (b) Histogram of time fraction XNvp

≡ tNvp
/T of observation of Nvp vortex pairs. Half values result from the detection of isolated vortices.
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the number of vortices in a sufficiently extended cylinder of span-
wise size Lz by lz ≡ Lz/(2Nvp). While the maximum of the PDF for lz
(lmax
z ) is expected to be independent of Lz for sufficiently long cylin-

ders, the maximum of the Nvp-PDF (Nmax
vp ) is instead foreseen as

inversely proportional to the domain size. To properly reproduce the
continuous distribution of lz with a finite-span domain, one would
naturally require that Lz is large enough so that the discrete dis-
tribution of Nvp contains the maximum Nmax

vp and the probability
tails drop sufficiently at either side. The maximum can be inter-
preted as the preferred spanwise spacing of three-dimensional struc-
tures in the cylinder wake and, as such, acts as a threshold to how
many streamwise vortices can comfortably be packed together per
unit span. Below this spacing, streamwise vortices tend to repel each
other by whatever mechanism, possibly unaccounted for large-scale
motions. In this sense, a strict minimum Lz should at the very least
fit lmax

z = Lz/(2Nmax
vp ). In our domain Lz = 2.5, the probability of

observation of simultaneous vortices is a strictly decreasing func-
tion of the number considered, with Nmax

vp = 0.5 corresponding to
maximum probability. This would in principle point at an insuf-
ficient domain size, but, as it happens, Lz = 2.5 seems to be about
the minimum that captures the probability distribution correctly up
to the maximum, as the saturating value of XNvp for Nmax

vp = 0.5
seems to indicate. Larger domains would therefore properly capture
the probability maximum and part of the decreasing trend toward
lower Nvp, while smaller domains would be forcing the maximum
to be at lower spacing values than the cylinder wake would naturally
select. We believe that this may be among the reasons why insuffi-
cient spanwise domain sizes produce wrong turbulent statistics, here
and in published literature results. The spanwise spacing of vortical
streamwise structures, rather than their size, would therefore dic-
tate the minimum computational domain extent. The spacing being
a function of Reynolds number, no definite trend can be extracted
from our computations, all of which correspond to the same unique
Re = 2000.

E. Fastest growing three-dimensional structures

The Floquet stability analysis of the time-periodic two-
dimensional flow around the cylinder has been successfully
employed in the past to pinpoint the Re-regime at which three-
dimensionality kicks in Refs. 17 and 36. The leading eigenmodes
found are consistent with mode A observed in experiments, and
the hysteresis can be ascribed to the subcritical character of the
bifurcation. Meanwhile, the existence of mode B has been tracked
down via Floquet analysis to a secondary bifurcation of the already
unstable two-dimensional periodic vortex-shedding regime.10 These
bifurcations introducing three-dimensionality to the flow occur in
the range Re ∈ [188.5, 260]. If forced computationally to preserve
two-dimensionality, vortex-shedding remains time-periodic for still
some range of Re. At Re = 2000, however, periodicity has long
been disrupted and two-dimensional vortex-shedding has become
chaotic. It is highly debatable whether the Floquet analysis of the
Kármán periodic solution at this regime can capture any of the fea-
tures of the three-dimensional structures observed in experiments
and in fully three-dimensional numerical simulations. Nonetheless,
we have chosen here to undertake what we call pseudo-Floquet sta-
bility analysis of the underlying two-dimensional solution, which
happens to be a pseudo-periodic chaotic state, to compare the fastest

growing modes with the structures that arise in direct numerical
simulation. Long two-dimensional time integration has been per-
formed to characterize the chaotic state, with velocity and pres-
sure fields [u2D2 , p2D2 ](r2, t). Random three-dimensional perturba-
tions ũ of wavenumber βz = 2π/λz (λz is the fundamental wave-
length), scaled to very low amplitude by a factor ǫ ∼ 10−12, have been
added to u2D2 at several randomly picked time-instants and evolved
in time using a single spanwise Fourier mode in order to avoid
spanwise mode interaction and, thus, allow straightforward anal-
ysis, through direct time evolution, of the modal growth/decay in
the linear regime. Since Q3[u2D2 , p2D2 ] exactly satisfy the Navier–Stokes
equations, introducing the perturbed field

[u, p](r; t) = [u2D2 , p2D2 ](r2; t) + ǫ[ũ, p̃](r; t)
results in

∂ũ

∂t
+ (u2D2 ⋅ ∇)ũ + (ũ ⋅ ∇)u2D2 = −∇p̃ + 1

Re
∇

2
ũ,

∇ ⋅ ũ = 0,

where the nonlinear term (ũ ⋅ ∇)ũ has been dropped as negligible
from its appearing scaled by ǫ2.

If [u2D2 , p2D2 ] were exactly periodic, Floquet theory’s modal
ansatz would establish that, after some initial transients t0, the
perturbation field should evolve as

[ũ, p̃](r; t0 + kT) = [ũ0, p̃0](r) exp(σkT), k ∈ N,

where T is the period of the two-dimensional periodic base flow and
μ ≡ exp(σT) is the leading multiplier, associated with the leading
eigenmode [ũ0, p̃0].

Here, the base flow is not periodic but chaotic and the evolu-
tion of the perturbation field cannot be expected to be exactly modal.
However, since two-dimensional chaotic vortex shedding retains a
high degree of periodicity, the time evolution of the perturbation
happens to be quasi-modal. Figures 20(a)–20(c) show an example of
the growth of the single Fourier mode with βz = 20.94 on top of the
chaotic two-dimensional base flow. A pseudo-periodic chaotic solu-
tion as we have has no unique period so that we choose to define it as
the flight time between consecutive crossings of a purposely devised
Poincaré section: Tk = tk − tk−1. In our case, the Poincaré section is
pierced by the phase map trajectory every time CL = 0 and dCL/dt
< 0, as indicated by the dashed line and the circles in Fig. 20(a). The
kinetic energy Eβz contained in the unique spanwise Fourier mode
employed in the simulation is shown in Fig. 20(b). After some initial
transients with a slight decrease, the modal energy starts increasing,
following an exponential trend for t ≳ 10 until nonlinear saturation
occurs for t ≳ 30. The Q4energy levels of the unique spanwise mode of
wavenumber βz at the Poincaré crossings are marked with circles,
and the multipliers μk estimated at crossing k from the energy ratio
between consecutive crossings k − 1 and k as

Ek
βz

Ek−1
βz

=
∥ũk∥2L2
∥ũk−1∥2L2

= exp(2σTk) ≡ μ2k,

where ∥⋅∥L2 denotes the L2 norm, are plotted in Fig. 20(c). As
expected for an unstable base flow, the multiplier is greater than
unity, but unlike what happens for an exactly periodic base flow,
its value is variable along the evolution. In the case of our chaotic
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FIG. 20. Quasi-modal evolution of a perturbation with βz = 2π/λz = 20.94 (λz = 0.3) on two-dimensional chaotic vortex shedding at Re = 2000. (a) Time evolution of CL as
used to define a Poincaré section (Poincaré crossing marked with circles). (b) Evolution of the perturbation field kinetic energy. (c) Evolution of the multiplier as computed for
every two consecutive Poincaré crossings. (d) Value of the multiplier μ as a function of spanwise wavenumber βz . Seven different initial conditions for the chaotic base flow
result in the multiple sets of data for each βz (gray). All seven are gathered in a unique curve (black line). Error-bars indicate the variability of the multiplier in time.

two-dimensional vortex shedding, the variability of the multiplier is
rather large.

Up to seven different initial base state conditions along the two-
dimensional chaotic vortex shedding evolution have been taken and
tested for spanwise wavelengths in the range λz ∈ [0.1, 10], corre-
sponding to wavenumbers βz ∈ [0.628, 62.8]. The results for the
seven individual samples are shown in Fig. 20(d) as gray crosses
with error-bars, which indicate the mean and standard deviation of
the multiplier along the time evolution, respectively. In some cases,
the fluctuation is small, corresponding with initial conditions at a
stage of the time evolution where vortex-shedding is particularly
well behaved. In others, the variability is huge. Averaging the prob-
ability distribution of μ across samples reduces the variability in the
multiplier to some extent and produces a softer dependence of the
multiplier on the wavenumber. The maximum growth of infinites-
imal three-dimensional perturbations seems to occur for spanwise
wavenumbers βz ≃ 20.94, which corresponds to a spanwise wave-
length of λz = 2π/βz ≃ 0.3. This wavelength is in good agreement with

FIG. 21. Spanwise vorticity (ωz) colormaps at the Poincaré section defined by
CL = 0 and dCL/dt < 0 of (a) the two-dimensional chaotic vortex shedding solution
(ωz ∈ [−2, 2]) and (b) the leading eigenmode (arbitrary symmetric ωy range) for βz

= 20.94.

the spanwise size of the structures we observe in the wake region in
fully three-dimensional turbulent simulations, particularly so in the
very near-wake region at (x, y) = (0.5, 0.5).

A snapshot of the fastest growing (leading) eigenmode, taken
at the time of a Poincaré crossing within the linear regime, is
depicted in Fig. 21(b), while Fig. 21(a) shows the instantaneous two-
dimensional state at the exact same time. The spanwise vorticity
(ωz) colormap indicates that the mode is at its strongest along the
braid region that connects the newly forming Kármán vortex core
in the immediate vicinity of the cylinder and the preceding vortex
of the same sign. The instability is local in the sense that expo-
nential growth occurs only at a very precise location within the
wake formation region and does not extend to the region where the
wake is already in place and the Kármán vortex street is well devel-
oped. Infinitesimal perturbations of spanwise wavelength λz = 2π/βz
= 0.3 therefore exponentially grow only within the most recently
generated braid at all times. There is no guarantee that the pertur-
bation reaches nonlinear saturation unaltered and thus constitutes
the origin of the three-dimensional structures observed in experi-
ments and direct numerical simulation, but they certainly have the
right spanwise size and are located in the precise flow regions where
the structures thrive. This gives an indication that the structures
observed in the wake at these transitional regimes might bear a
strong connection with the fastest growing mode on the underlying
two-dimensional base flow.

V. CONCLUSIONS

A comprehensive numerical study of the transitional flow past
a circular cylinder at Re = 2000 has been performed in order to
characterize the three-dimensional flow structures that appear in
the wake. Domains smaller than Lz < 2.5 in the spanwise direction
fail to yield correct flow statistics, possibly due to the existence of
unaccounted-for large-scale motions that are precluded by a limited
size.

By thoroughly analyzing flow statistics and wake topology, we
settle the controversy regarding the U- vs V-shaped streamwise
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velocity mean profile in the near-wake and explain the observa-
tion of one or the other as the result of taking measurements at
a fixed streamwise location. Correcting the probe location accord-
ing to recirculation bubble size allows recasting the same results for
comparison with experiments at different Reynolds numbers. Very
good agreement with literature results is thus found across a range
of Reynolds numbers within the transitional regime for all sorts of
flow statistics.

Sufficiently long time series have allowed for the detection
of the occasional manifestation of a Kelvin–Helmholtz instability
within the shear layers that originate from the detachment of the
boundary layers at either side of the cylinder and flap synchronous to
the generation of Kármán vortices. At Re = 2000, Kelvin–Helmholtz
vortices have been observed from time to time, with a frequency
of f KH ≃ 0.84 that closely matches experimental observation and
the trends derived from first principles and scaling/dimensional
analysis. The instability appears as a broad band peak in the spec-
trum of any velocity signal measured in the cylinder near-wake, and
the associated spanwise vortices feature a certain spanwise local-
ization in contrast with the spanwise-independent nature of the
inviscid Kelvin–Helmholtz instability of a perfectly parallel shear
layer.

As a first approach to characterizing the three-dimensionality
in the wake, the flow has been decomposed into a primary two-
dimensional signal and a secondary signal containing the remaining
three-dimensional structure. This has led to the observation that
three-dimensionality occurs primarily in the braid region and attains
its maximum with a phase lag of approximately 5/8 rad with respect
to the maximum of the primary flow at any given location along the
wake, which corresponds to the passage of a Kármán vortex.

To further investigate the features of the three-dimensional
structures that appear in the wake, the Hilbert transform of a signal
along a spanwise probe array has been employed to derive instan-
taneous spanwise size distributions of vortical structures and phase-
averaging has been conducted to analyze the evolution of the dis-
tributions along the vortex-shedding cycle. We have found that the
most energetic spanwise-localized structures correspond to the pas-
sage of a braid through the probe location. The maximum occurs
twice along a vortex-shedding cycle due to the arched shape of the
braid, and the most probable size of the structures is found to be
around λz ≃ 0.20–0.28 at (x, y) = (3, 0.5), the smaller sizes corre-
sponding to the leading and the larger sizes corresponding to the
trailing regions of the braid, respectively.We havemeasured the typ-
ical structure size at different locations along the wake and found
that after a fast drop in the very near wake, the sizes start growing
progressively for x > 2.5 and asymptotically reach a maximum of
λz = 0.4 for λz > 20. While the sizes are found to be significantly
smaller than those reported in experimental and numerical results
at Re = 3900, the trends are similar. No difference has been found
between measurements with probes at y = 0.5 and y = 1, except
that the latter does not register significant three-dimensionality
for x < 3.

By analyzing the typical spanwise spacing among streamwise
vortices, we have observed that the most frequent vortex-pair count
in our Lz = 2.5 domain is Nmax

vp = 0.5 (an isolated vortex), followed
closely by 1 (two vortices or a vortex pair), corresponding to most
probable average spacings lmax

z ≃ 2.5 and 1.25, respectively. This
seems to indicate that our domain properly captures the spacing

distribution up to its maximum and that shorter domains would
tend to artificially squeeze the three-dimensional structures into
spanwise extents that would not be selected naturally in the limit of
very long cylinders. We believe that this might be one of the reasons
behind the failure of small spanwise domains to produce correct tur-
bulent wake statistics, but the ultimate culprit, possibly related to
the existence of large-scale motions of this length scale, remains a
mystery.

To try and understand the origin of the three-dimensional
structures observed in the wake, we have analyzed the growth, in the
linear regime, of quasi-modal perturbations added to the underlying
two-dimensional chaotic vortex-shedding flow. The fastest grow-
ing perturbations happen to be localized in the braid region that
connects the last forming Kármán vortex with the immediately pre-
ceding one, and they have a spanwise wavelength of λz ≃ 0.3. The
close coincidence in the size and location of these quasi-modal per-
turbations with the three-dimensional structures observed in direct
numerical simulation points at a close relation. We surmise that
the latter are the result of the nonlinear saturation of the former,
although the interactions among the full range of unstable leading
eigenmodes as well as the distance from the critical Reynolds num-
ber at which the instabilities occur in the first place render it difficult
to establish a direct connection between the linear and nonlinear
regimes.
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