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Abstract. Estimates of snow microphysical properties ob-

tained by analyzing collections of individual particles are

often limited to short timescales and coarse time resolu-

tion. Retrievals using disdrometer observations coincident

with bulk measurements such as radar reflectivity and snow-

fall amounts may overcome these limitations; however, re-

trieval techniques using such observations require uncer-

tainty estimates not only for the bulk measurements them-

selves, but also for the simulated measurements modeled

from the disdrometer observations. Disdrometer uncertain-

ties arise due to sampling and analytic errors and to the dis-

crete, potentially truncated form of the reported size distri-

butions. Imaging disdrometers such as the Snowflake Video

Imager and 2-D Video Disdrometer provide remarkably de-

tailed representations of snow particles, but view limited pro-

jections of their three-dimensional shapes. Particle sizes de-

termined by such instruments underestimate the true dimen-

sions of the particles in a way that depends, in the mean,

on particle shape, also contributing to uncertainties. An un-

certainty model that accounts for these uncertainties is de-

veloped and used to establish their contributions to simu-

lated radar reflectivity and snowfall rate. Viewing geome-

try effects are characterized by a parameter, φ, that relates

disdrometer-observed particle size to the true maximum di-

mension of the particle. Values and uncertainties for φ are es-

timated using idealized ellipsoidal snow particles. The model

is applied to observations from seven snow events from the

Canadian CloudSat/CALIPSO Validation Project (C3VP), a

mid-latitude cold-season cloud and precipitation field exper-

iment. Typical total uncertainties are 4 dB for reflectivity and

40–60 % for snowfall rate, are highly correlated, and are sub-

stantial compared to expected uncertainties for radar and pre-

cipitation gauge observations. The dominant sources of er-

rors are viewing geometry effects and the discrete, truncated

form of the size distributions. While modeled Ze–S relation-

ships are strongly affected by assumptions about snow par-

ticle mass properties, such relationships are only modestly

sensitive to φ owing to partially compensating effects on both

the reflectivity and snowfall rate.

1 Introduction

Estimates of snow particle microphysical properties made

with surface observations have typically involved measure-

ments of individual particles (Nakaya and Terada, 1935;

Kajikawa, 1972; Mitchell et al., 1990). These methods pro-

vide highly detailed descriptions of particles, but the sam-

ples have necessarily been small in number and short in du-

ration due to the high amount of effort required. This makes

difficult the evaluation of the environmental distributions of

the microphysical properties of snowfall and of the temporal

evolution of these properties during snowfall events. This in-

formation, particularly regarding the environmental distribu-

tions, is essential for the development of snowfall retrievals

using Bayesian techniques, which generally require a priori

information about snow microphysical properties.

Disdrometer-based analyses have the potential to over-

come the shortcomings of manual, single-particle observa-

tions by providing larger sample sizes and longer-duration
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sampling at high time resolution. Specifically, disdrometer

observations of particle size distributions (PSDs) in concert

with observations of radar reflectivity or accumulated snow

mass have been used to estimate snow bulk and microphys-

ical properties. Brandes et al. (2007) used 2-D video dis-

drometer and snow accumulation observations to estimate

snow bulk densities. Huang et al. (2010) also used 2-D video

disdrometer observations, along with C-band radar reflec-

tivities, to estimate the parameters of snow particle mass–

dimension relations. In analyses such as these, the observed

PSDs are used to model radar reflectivity or snowfall accu-

mulation, and the modeled values are then fitted to observed

reflectivities or accumulations by adjusting snow microphys-

ical properties.

While uncertainties in the observed reflectivities or accu-

mulations contribute to uncertainties in the estimated micro-

physical properties, so too do uncertainties in the modeled

reflectivities or accumulations. These modeled quantities re-

quire integration of terms incorporating the observed PSDs,

and the disdrometers introduce particular uncertainties in

these observed PSDs. The sources of uncertainty include fac-

tors related to the integration itself (upper and lower bounds,

and the discrete, numerical treatment of the integral), and un-

certainties in the integrands. In this work, the contributions of

disdrometer uncertainties to uncertainties in models for near-

Rayleigh radar reflectivity and for snowfall rate are evalu-

ated. These uncertainty estimates are essential for use in re-

trievals that would use coincident ground-based observations

of radar reflectivity and snowfall rate or accumulations to es-

timate snow microphysical properties. The results are also

used to estimate the effects of these uncertainties on so-called

Ze–S relationships which relate radar reflectivity to snowfall

rate. Disdrometer uncertainties are specific to the measure-

ment techniques and sampling strategies used by a particu-

lar instrument, and this work focuses on measurements from

the Canadian CloudSat/CALIPSO Validation Project (C3VP,

Hudak et al., 2006); however, it is anticipated that the meth-

ods can be applied to other datasets which employ similar

instruments.

Section 2 describes the C3VP disdrometer observations

and the measurement methods for these instruments. Sec-

tion 3 describes models for simulation of snowfall rate and

Rayleigh radar reflectivity from the disdrometer observa-

tions. Uncertainties for simulated reflectivities and snowfall

rates are characterized in Sect. 4; then the results of applying

these forward models and uncertainty characterizations to the

C3VP observations are given in Sect. 5. Finally, Sect. 5 dis-

cusses the implications of these uncertainties for estimation

problems using modeled reflectivities and snowfall rates.

2 Snow particle observations

During Northern Hemisphere winter 2006/2007, an exten-

sive set of surface- and aircraft-based in situ and remote

sensing observations of clouds and precipitation was col-

lected in south-central Ontario as part of C3VP (Hudak et al.,

2006). An enhanced surface measurement site operated at the

Meteorological Service of Canada’s Centre for Atmospheric

Research Experiments (CARE) at Egbert, Ontario, approxi-

mately 80 km north of Toronto.

A number of instruments installed at CARE provided ob-

servations of snow particles, including the NASA Snowflake

Video Imager (SVI) (Newman et al., 2009) and Colorado

State University’s 2-D Video Disdrometer (2DVD) (Thurai

and Bringi, 2005). The SVI uses a video camera to capture

2-D images of particles. In each image frame, the SVI di-

rectly observes a 3-D volume defined by the camera’s 2-D

field of view and the depth of field (Newman et al., 2009).

For a single image frame, the discrete size distribution is

N(Di) =
1

1Di

j=Npi
∑

j=1

1

Ai,jLi,j

, (1)

where Di is the characteristic particle size for the ith bin, Ai,j

is the area of the camera field of view and Li,j is the depth of

field associated with the j th particle in the ith size bin. Npi

is the total number of particles in the size bin and 1Di is the

bin width. Both the field of view and depth of field vary with

particle size. Typically, multiple image frames contribute to

an observed size distribution, and the total sample volume

increases with each frame, giving

N(Di) =
1

Nf1Di

k=Nf
∑

k=1

j=(Npi )k
∑

j=1

1

AijkLijk

, (2)

where Nf is the number of frames and (Npi)k is the total

number of particles in the kth image frame and the ith bin.

The 2DVD uses two horizontal light sheets, parallel but

offset in the vertical, and each light sheet illuminates a hori-

zontal array of photodetectors in a line scan camera. As a par-

ticle falls through a light sheet, it shadows some of the pho-

todetectors, and the array is scanned rapidly to determine

which photodetectors are shadowed. A stack of horizontal

shadow images of the particle results from the scans and,

from this stack, information about the dimensions of the par-

ticle can be obtained. The light sheets are orthogonal, so par-

ticles are observed from two different directions (Hanesch,

1999; Kruger and Krajewski, 2002; Schönhuber et al., 2007).

If a particle is observed by both cameras and the corre-

sponding images can be matched, the time interval between

the two images can be used to determine the particle’s fall-

speed. The irregular shape of snow particles complicates im-

age matching, since the orthogonal views will see two dis-

tinct sides of a particle and the particle’s orientation may

change. Hanesch (1999) defined a matching algorithm which

applies a number of criteria to match particle images. The cri-

teria are based on the vertical extent of the particles, the ratio

of the widths observed by the two cameras, the ratio of max-

imum width to height, and an allowed range of fallspeeds.
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Huang et al. (2010) used similar criteria but applied weights

to each criterion, and the best match was chosen based on the

image whose weighted sum is a maximum. The 2DVD ob-

servations used in this work are the results of the analysis of

Huang et al. (2010). The observations report the character-

istics of individual particles for which matching succeeded.

These characteristics include fallspeed and several measures

of particle size, along with the time at which the particle fell

through the instrument.

Given particle sizes and fallspeeds, the 2DVD particle size

distribution can be determined as

N(Di) =
1

1t1Di

j=Npi
∑

j=1

1

Ai,jVi,j

, (3)

where i is the index of the size distribution bin, Di is the char-

acteristic particle size for the ith bin, 1t is the sampling time

interval, 1Di is the width of the ith size bin, Npi is the num-

ber of particles in the ith size bin, and Ai,j and Vi,j are re-

spectively the horizontal measurement area and the fallspeed

of the j th particle in the ith size bin. Note, however, that if

matching does not succeed, the unmatched particle cannot

be used in the size distribution calculation since fallspeed is

not known and the particle’s contribution to the size distribu-

tion via Eq. (3) cannot be determined (Hanesch, 1999; Huang

et al., 2010). The resulting data loss can lead to errors in the

estimated size distribution (Huang et al., 2010).

Because the SVI is not dependent on particle matching,

the SVI observations are taken as the primary measure of the

snow PSDs for this work. The SVI size distributions are re-

ported in discrete size bins of width 0.25 mm for sizes from

0 to 26 mm at 1 min resolution, but observations of parti-

cles smaller than 0.3 mm are discarded during the SVI image

processing (Newman et al., 2009). While incomplete match-

ing interferes with accurate determination of a PSD from the

2DVD data, it does not interfere with the measurement of

fallspeeds, so the 2DVD observations are used primarily for

particle fallspeed data. Also, because of differences in sam-

pling characteristics from the SVI, the 2DVD observations

are used to quantify some sources of uncertainty for the SVI.

The observations used in this work are from seven snow

events that occurred at CARE during C3VP (Huang et al.,

2010). Due to CARE’s location southeast of Georgian Bay,

it is subject to lake effect snow events. Five of the events

occurred during intensive observing periods (IOPs), and are

known to be synoptic or lake effect snow storms. While de-

tails of the two ex-IOP events are limited, they are expected

to also have been lake effect or synoptic. The averaged SVI

size distributions for each event (Fig. 1) show that the events

represent a range of slopes, indicating the degree of broaden-

ing, and particle number concentrations.
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Fig. 1. Averaged SVI size distributions for each C3VP snowfall

event.

3 Models for radar reflectivity and snowfall rate

At the wavelengths used by precipitation radars, scattering

by most cloud ice and snow particles is near Rayleigh, al-

though scattering by larger, precipitating ice particles may

deviate from the Rayleigh approximation (Matrosov et al.,

2009). For the uncertainty analyses presented here, particles

are assumed to scatter per the Rayleigh approximation for

spheres. The errors introduced by this assumption are treated

in a forthcoming work. Atlas et al. (1953) showed that low-

density, irregularly shaped dry snow particles can be treated

as equal volume spheres to calculate radar scattering prop-

erties with small error. Provided the radar reflectivity to be

simulated is taken to be in close proximity to the radar, atten-

uation by snow particles and gases under typical winter con-

ditions is negligible (Matrosov, 1998). Given snow particles

of sizes D with masses m(D), the effective radar reflectivity

factor is then (Battan, 1973)

Ze =
36

π2ρ2
ice

||Ki||
2

||Kw||2

Dmax
∫

Dmin

N(D) [m(D)]2 dD, (4)

where N(D) is the particle size distribution; Kw = (n2
liq −

1)/(n2
liq + 2), nliq is the complex refractive index of liquid

water; Ki = (n2
ice − 1)/(n2

ice + 2), nice is the complex refrac-

tive index of ice; and the density ρice is that of solid ice,

0.917 gcm−3. The particular choice of D, a characteristic di-

mension of the particles, is not significant provided a con-

sistent choice is used to define both the PSD and the mass–

dimension relationship, and the integration limits assert that

a finite range of particle sizes contribute to Ze.

Snowfall rate is

S =
1

ρliq

Dmax
∫

Dmin

N(D)m(D)V (D)dD, (5)
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where V (D) are the particle fallspeeds. In Eq. (5), S is in

depth units (e.g., mm h−1 of liquid water) and ρliq is liquid

water density. As was true for radar reflectivity, the particular

choice of D is not significant, provided a consistent choice is

used for defining size distribution, mass and fallspeed.

3.1 Particle dimension

For the mass and fallspeed terms in Eqs. (4) and (5), D is

often taken to be the maximum dimension of the particle,

DM, also sometimes referred to as particle diameter. Micro-

physical parameterizations describing the variation of parti-

cle mass and horizontally projected area with particle size are

typically expressed in terms of DM (e.g., Mitchell, 1996).

Further, explicit physical models for particle fallspeed de-

pend on a particle dimension which is generally taken to be

DM (Mitchell and Heymsfield, 2005). For irregularly shaped

objects like snow particles, however, the various dimensions

that can be extracted from the SVI and 2DVD images are dif-

ferent than DM (Fig. 2), since the disdrometer views a projec-

tion of the actual particle (Löffler-Mang and Blahak, 2001).

Assuming the observed D is DM can lead to substantial er-

rors in microphysical parameters determined using coinci-

dent radar observations (Appendix).

The expected differences between DM and the various D

were evaluated via simulations using idealized snow parti-

cles. Rather than using elliptical silhouettes (Battaglia et al.,

2010), the particles were modeled as scalene ellipsoids, and

their plane-projected shapes were evaluated. The ellipsoids

were defined using three distinct dimensions: a long dimen-

sion “a” lying nominally in the horizontal plane along the

x axis, a short dimension “b” also lying nominally in the hor-

izontal plane normal to “a” and along the y axis, and a short

vertical dimension “c” lying along the z axis normal to the x–

y plane. The true maximum dimension of the particle is 2a.

Particle orientation was varied by applying uniformly dis-

tributed rotations about the z axis and canting at two distinct

angles about the x and y axes. The canting angles were dis-

tributed over the range of ±21◦ and weighted per a normal

distribution with a standard deviation of 9◦ based on the es-

timates of Matrosov et al. (2005) for pristine particles.

These various measures of D (Fig. 2) were estimated from

the simulated particle images, obtained from the projection

of the particle shape onto the x–z plane, averaged over all

orientations and compared with DM for a range of particle

aspect ratios defined by b/a and c/a. The value of a was

fixed at 0.5, giving a true maximum dimension of 1.0, while

0.05 ≤ b ≤ a and 0.05 ≤ c ≤ b. These ranges produce par-

ticles that vary from column-like to plate-like to spherical.

Values for φ, the ratio of D to DM, range from 0.3 to 1.0

(Fig. 3). DSVI,ec is sensitive to both the vertical aspect ratio

c/a and the horizontal aspect ratio b/a, while DSVI,w and

DSVI,f are minimally sensitive to the vertical aspect ratio. Of

the latter, DSVI,f shows somewhat less sensitivity to the hor-

izontal aspect ratio than does DSVI,w, while D2DVD,w shows

D SVI,f

D
S

V
I,e

c
DSVI,w

is the largest of
these two dimensions

2DVD,wD

circle
Equal−area

2DVD primary image

SVI image or

2DVD orthogonal image

Fig. 2. Particle dimensions as measured by SVI and 2DVD disdrom-

eters: DSVI,ec, diameter of a circle with area equal to that of the

SVI particle image; DSVI,w, distance between horizontal extrema

of the SVI particle image; DSVI,f, distance between the two fur-

thest removed points on the SVI particle image (feret diameter); and

D2DVD,w, maximum of the distance between horizontal extrema

obtained from the two 2DVD particle images.

little sensitivity to both vertical and horizontal aspect ratios.

For this work, the SVI size distributions were based on DSVI,f

and the 2DVD fallspeeds on D2DVD,w. Taking a typical hor-

izontal aspect ratio of 0.6 (Korolev and Isaac, 2003) gives

φSVI ≈ 0.82 for DSVI,f with a range of about 0.65 to 1.0. For

D2DVD,w, φ2DVD ≈ 0.93 with a range of about 0.88 to 1.0.

Calculations using canting angles with a standard deviation

of 18◦ showed similar results, suggesting the variation in φ

is due mainly to the variation in particle shape rather than

canting angle, provided canting angles are not extreme.

Taking the D in Eqs. (4) and (5) to be DM, the transfor-

mation to use the size distributions, fallspeeds and particle

sizes based on DSVI,f and D2DVD,w proceeds by assuming

that φSVI and φ2DVD apply to the entire particle range. Trans-

forming the SVI size distributions is done by noting that

N(DM) = N(DSVI,f)
dDSVI,f

dDM
(6)

and, since DSVI,f = φSVIDM,

dDSVI,f

dDM
= φSVI. (7)

The reflectivity model Eq. (4) becomes

Ze =
36

π2ρ2
ice

||Ki||
2

||Kw||2

Dmax
∫

Dmin

N
(

DSVI,f

)

φSVI

[

m

(

DSVI,f

φSVI

)]2
dDSVI,f

φSVI
, (8)

where the φSVI terms in in the numerator and denominator

have been retained to show explicitly the transformation to
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Fig. 3. Values of φ, the ratio of D observed by SVI and 2DVD

disdrometers to true maximum dimension DM.

DM. The snowfall rate model Eq. (5) becomes

S =
1

ρliq

Dmax
∫

Dmin

N
(

DSVI,f

)

φSVI m

(

DSVI,f

φSVI

)

V

(

D2DVD,w

φ2DVD

)

dDSVI,f

φSVI
. (9)

Together, Eqs. (8) and (9) constitute the vector-valued for-

ward model F .

In practice, the predefined discrete SVI size bins based on

DSVI,f are converted to discrete bins based on DM as

DM,i =
DSVI,f,i

φSVI
, (10)

where i is the SVI bin index and the discrete SVI size distri-

bution values are transformed as

N(DM,i) = N(DSVI,f,i)φSVI. (11)

The particle sizes for the 2DVD single-particle fallspeed ob-

servations are transformed as

DM,j =
D2DVD,w,j

φ2DVD
(12)

for the j th particle observed during the SVI measurement

interval, after which the fallspeeds can be binned onto the

DM,i grid for further processing to obtain expected values

VM,i and variances s2
(

VM,i

)

. The subscript M indicates val-

ues evaluated as functions of particle maximum dimension.

Terms such as s2() and s(, ) are used herein to represent vari-

ances and covariances, respectively.

4 Sources of uncertainty for modeled reflectivity and

snowfall rate

The relationship between the observations simulated by

a forward model F and the actual observations y can be writ-

ten as

y = F (x, b̃) + ǫ, (13)

where x is the observed state and ǫ represents the total error.

The forward model has been written to show explicitly the

dependence on other parameters, b̃, where the tilde indicates

that these parameters may be known imperfectly. The total

error ǫ can be expanded as (Rodgers, 2000)

ǫ = ǫY + 1F (x,b) +
∂F

∂b
(b − b̃), (14)

where ǫY is the contribution from measurement error, the

second term on the right is the contribution due to the model’s

approximate formulation of the actual physical relationship,

and the third term on the right is the contribution due to errors

in the forward model parameters. These errors may consist of

both systematic biases and random components. Once recog-

nized biases have been corrected, the residual uncertainties

are characterized by the covariance matrix Sǫ :

Sǫ = Sy + SF + SB (15)

= Sy + SF + KbSbKT
b ,

where the definitions of the terms on the right parallel those

for ǫ. In the third term, which is the contribution due to un-

certainty in the model parameters, Kb is the Jacobian of the

model with respect to the parameters and Sb is the covariance

matrix for the parameters. The product KbSbKT
b is denoted

as SB . Uncertainties in the modeled Ze and S are contained in

SF and SB . Because Ze and S may range over several orders

of magnitude, their values and uncertainties were character-

ized in terms of dBZe and logS, where log is the common

logarithm.

4.1 Uncertainties due to parameters, SB

The parameters used by the models Eqs. (8) and (9) include

the binned, discrete values of DSVI,f,i , N(DSVI,f,i), and VM,i ,

along with φSVI, φ2DVD, the dielectric parameters ||Ki||
2 and

||Kw||2, and the densities ρice and ρliq. Since the models use

solid ice and liquid water densities and dielectric parameters,

these are not expected to be significant sources of uncertainty

and are neglected. In particular, the value of ||Ki||
2 is deter-

mined largely by the real part of nice. Uncertainties in nice

at X-band appear small (Warren and Brandt, 2008, and ref-

erences therein), and temperature sensitivities appear weak

(Mätzler, 2006). Since φ2DVD shows little uncertainty com-

pared to φSVI, its uncertainty is neglected as well. While the

particle mass–dimension relationship m(D) is likely a sig-

nificant source of uncertainty, this work focuses on other er-

ror sources. The objective here is to characterize the nec-

essary forward model uncertainties for use in a future re-

trieval which would estimate mass–dimensions relationships

and their uncertainties. The remaining sources of uncertainty

in SB are due to uncertainties in the disdrometer observations

and are evaluated here.

SB is in the form of a 2 × 2 error covariance ma-

trix for reflectivity in dBZe and logS. The covariances

www.atmos-meas-tech.net/6/3635/2013/ Atmos. Meas. Tech., 6, 3635–3648, 2013
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sB (dBZe, logS) result from the shared dependence of Ze

and S on N(DSVI,f,i), DSVI,f,i , and φSVI. Given these pa-

rameter dependencies, the corresponding parameter covari-

ance matrix Sb and Jacobian Kb are shown in Eqs. (16) and

(17), respectively, where the ellipses indicate extension over

all the discrete values of DSVI,f,i , N(DSVI,f,i), and VM,i . Er-

rors in φSVI, VM,i and the SVI observations are expected to

be uncorrelated, and thus covariances are set to zero. Note,

however, that in the following analysis of SVI uncertain-

ties, uncertainties in DSVI,f,i do contribute to uncertainties in

N(DSVI,f,i), but any resulting covariances are ignored in Sb.

This approach will produce somewhat worst-case estimates

of the uncertainties in SB .

Sb =



























s2(DSVI,f,1)

. . .

s2(N(DSVI,f,1))

. . .

s2(VM,1)

. . .

s2(φSVI)



























(16)

Kb =

[

∂dBZe
∂DSVI,f,1

· · · ∂dBZe
∂N(DSVI,f,1)

· · · 0 · · · ∂dBZe
∂φSVI

∂ logS
∂DSVI,f,1

· · ·
∂ logS

∂N(DSVI,f,1)
· · ·

∂ logS
∂VM,1

· · ·
∂ logS
∂φSVI

]

(17)

Uncertainties in DSVI,f,i and N(DSVI,f,i) can be separated

into analytic uncertainties and sampling uncertainties. Ana-

lytic uncertainties include uncertainties that arise in the anal-

ysis of SVI images to determine particle sizes, uncertainties

in the counted number of particles, and uncertainties in the

calculated depth of field and field of view (Newman et al.,

2009). In contrast, sampling uncertainties arise due to statis-

tical fluctuations in the number of particles counted by the

instrument. Because of the relatively small sample volumes

of these types of instruments, both sources of uncertainty

are likely significant. To estimate the total uncertainties in

N(DSVI,f,i) and DSVI,f,i required for SB , analytic and sam-

pling uncertainties were modeled separately and the resulting

variances added. Details of the uncertainty models are given

in Appendix B.

4.1.1 Uncertainties for VM,i and φSVI

Following Brandes et al. (2008), once the 2DVD fallspeeds

were binned to match the SVI bin definitions, the modal fall-

speed was determined for each binned sample and a filter

was applied. Fallspeeds departing from the modal values by

more than 0.5 ms−1 were discarded from the sample; then

the sample mean and variance of the mean were calculated.

For each bin, the standard error of the mean fallspeed was

used as the fallspeed uncertainty. Given the range of values

for φSVI in the lower left panel of Fig. 3, the uncertainty in

φSVI was estimated as 0.15.

4.2 Model formulation uncertainties, SF

Since size distributions are reported typically on discrete size

intervals, the integrals in Eqs. (8) and (9) are evaluated dis-

cretely. In addition, both the SVI and 2DVD have minimum

detectable particle number concentrations. These minimum

detectable concentrations are determined by the sample vol-

umes of the instruments, which are, in turn, determined by

the characteristics of the detectors and the sampling times.

Since particle number concentrations tend to decrease with

increasing particle size, the minimum detectable concentra-

tions lead to a truncation of the reported size distribution in

comparison to the true size distribution. These two factors

of discretization and truncation lead to errors in the modeled

Ze and S which are classified as model formulation errors

and are characterized by SF , a 2 × 2 error covariance matrix

for reflectivity in dBZe and logS. Covariances between logS

and dBZe arise due to both models’ dependence on these dis-

crete, truncated distributions.

For particles larger than 17 mm, the 2DVD can detect

smaller number concentrations than can the SVI, and the

maximum detectable size for the 2DVD is significantly larger

than that for the SVI (Fig. 4). The number concentration de-

tection limits were calculated as one particle per unit sam-

pling volume per unit size interval. Sampling volumes for the

2DVD depend on particle fallspeeds, which were calculated

per Mitchell and Heymsfield (2005) using particle mass and

area parameterizations from Mitchell (1996) for “aggregates

of side planes, columns and bullets”. These differences sug-

gest that, although the 2DVD size distributions may be dis-

torted by the matching process, the 2DVD individual particle

observations can be used to estimate the effects of discretiza-

tion and size distribution truncation on Ze and S modeled

from the SVI observations. Independent 5 min samples of the

2DVD individual particle observations were first binned into

the size intervals used by the SVI; then discrete size distribu-

tions were calculated using Eq. (3). Next, for size intervals at

which the calculated size distribution fell below the SVI min-

imum detectable value, the calculated distribution was set to

zero, forming the simulated discrete, truncated size distribu-

tions. A single case, then, consisted of the original 2DVD

single-particle data for the 5 min sample, a discrete size dis-

tribution, and a discrete-truncated size distribution (Fig. 5).

After modeling reflectivities and snowfall rates for each sam-

ple using the single particle, discrete and discrete-truncated

distributions, biases for the discrete and discrete-truncated

results were calculated by averaging differences versus the

single-particle results over all samples. Biases in the discrete

and discrete-truncated results were corrected, and then error

variances and covariances were calculated versus the single-

particle results.
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Fig. 4. Comparison of minimum detectable concentrations for the

SVI and the 2DVD, assuming 5 min samples, 0.25 mm size bins

and spherical particles which must be fully within the sensing area.

4.2.1 Radar reflectivity

Given an assumed mass–dimension relationship based on

DM, the reference radar reflectivity can be calculated directly

from a particular sample of 2DVD individual particle obser-

vations by summing the backscatter cross sections per unit

volume:

Ze =
36

π2ρ2
ice

||Ki||
2

||Kw||2

1

1t

j=Np
∑

j=0

(

m
(

D2DVD,w,j

φ2DVD

))2

AjVj

. (18)

Corresponding reflectivities can then be calculated from the

simulated SVI discrete and discrete-truncated size distribu-

tions using Eq. (8) evaluated using the trapezoidal method.

The differences between these two reflectivities and the refer-

ence reflectivity represent the model errors due to discretiza-

tion and due to combined discretization and truncation of the

size distribution.

A common assumption (e.g., Mitchell, 1996) is that the

mass–dimension relationship follows a power law of the

form

m(DM) = αD
β
M. (19)

Provided the mass–dimension relationship Eq. (19) is appli-

cable over the entire size distribution, differences in dBZe

will depend on β and not on α, since dBZe differences rep-

resent ratios of Ze. Particle mass is usually capped to be no

more than that of an ice sphere. This cap means that some

dependence on α may occur but is likely to be weak because

the cap affects only very small particles.

2DVD observations from the seven C3VP snow events

were used to evaluate these errors for a range of values for

α and β. Values for α (cgs units) ranged from 0.001 to

0.009 in 0.002 increments, while those for β ranged inde-

pendently from 1.4 to 2.4 in 0.2 increments. φ2DVD was set
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Fig. 5. Example of the processing of 2DVD size observations to

form discrete and discrete-truncated particle size distributions: top,

observed particle sizes over a 5 min sample; middle, transformation

to a discrete PSD based on SVI size bins; and bottom, application

of SVI detection limits to mask those bins undetected by the SVI.

to 1.0 for this analysis. To avoid biasing the results to fa-

vor frequently occurring samples with trace snow rates, the

samples were filtered to exclude those containing fewer than

100 particles. Of the 1273 original samples, this filtering re-

moved 383, 94 % of which had snowfall rates of less than

0.01 mmh−1 of liquid water when evaluated using α = 0.003

and β = 2.0. The statistical properties were largely indepen-

dent of α, as was expected (Table 1). The table shows errors

both for discretization with truncation and for discretization

only for comparison. Except as noted, this description fo-

cuses on the errors due to discretization plus truncation. The

reflectivity bias became more negative as β increased, rang-

ing from −0.85 to −1.32 dB, while the residual errors in-

creased from 0.74 to 2.24 dB.

4.2.2 Snowfall rate

The snowfall rate biases and covariances were evaluated fol-

lowing a similar procedure. The reference snowfall rates

were calculated directly from the 2DVD individual particle

observations as

S =
1

1tρliq

j=Np
∑

j=0

m
(

D2DVD,w,j

φ2DVD

)

Aj

. (20)

Snowfall rates were then calculated with the discrete and

discrete-truncated size distributions using Eq. (9) again eval-

uated via trapezoidal integration with φ2DVD = 1.0. These

differences between these rates and the reference rates should

scale linearly with α, again except for small departures due

to the cap on particle mass, and when evaluated in terms of

logS should have limited dependence on α.
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Table 1. Biases, standard deviations of errors and error correlations due to size distribution truncation and discretization for radar reflec-

tivity and snowfall rate. Numbers outside parentheses are due to both discretization and truncation, while those inside parentheses are for

discretization only.

Reflectivity, dBZe Snowfall rate, logS
Correlation

β Bias SD Bias SD coefficient

1.4 −0.85 (−0.72) 0.74 (0.46) 0.016 (0.018) 0.062 (0.060) 0.49 (0.47)

1.6 −0.90 (−0.71) 0.94 (0.46) 0.013 (0.016) 0.062 (0.060) 0.46 (0.39)

1.8 −0.98 (−0.73) 1.22 (0.50) 0.007 (0.010) 0.067 (0.064) 0.48 (0.35)

2.0 −1.08 (−0.74) 1.53 (0.53) −0.001 (0.003) 0.073 (0.070) 0.51 (0.32)

2.2 −1.19 (−0.76) 1.87 (0.56) −0.009 (−0.004) 0.081 (0.077) 0.54 (0.29)

2.4 −1.32 (−0.77) 2.24 (0.59) −0.017 (−0.011) 0.090 (0.085) 0.56 (0.26)

Bias decreased from 0.016 to −0.017 with increasing β,

while the residual errors ranged from 0.062 to 0.090 (Ta-

ble 1). Correlations between the reflectivity and snowfall rate

errors are 0.49 to 0.56. The snowfall rate errors proved to

be exceptionally sensitive to how VM,i was evaluated. Us-

ing a simple mean from a 2DVD sample centered on DM,i

and taken over a 0.25 mm size interval resulted in significant

positive biases (not shown), likely due to the effects of ex-

treme positive outliers which become increasingly common

at smaller particle sizes. To ameliorate these effects, the filter

of Brandes et al. (2008) described earlier was applied.

5 Results

The model described above was used to evaluate the contri-

butions of each of the error sources to the total uncertainties

in modeled reflectivity and snowfall rate. The model was ap-

plied to 1053 independent 5 min SVI samples from the C3VP

snow events. Samples were required to contain at least 100

particles. Additionally, since the uncertainty model requires

an estimate of the size distribution slope, each sample was

required to have at least three non-zero size distribution bins.

The modeled uncertainties are sensitive to the parameters of

the mass–dimension relationship, and two such relationships

were applied: the first from Heymsfield et al. (2010, HE10)

with α = 7.00 × 10−3 and β = 2.2, and the second the fre-

quently used Brown and Francis (1995, BF95) relationship

with α = 2.94 × 10−3 and β = 1.9. Starting from the dis-

cretization and truncation errors given by SF (case A in Ta-

ble 2), additional sources of uncertainty were introduced in-

crementally. Case B adds disdrometer analytic and sampling

uncertainties, case C adds uncertainties in φ for an SVI-like

instrument, case D adds uncertainties in φ for an instrument

using an equal-area D, and case E adds 2DVD fallspeed un-

certainties to case C. For all cases, φ = 0.82.

The dominant sources of uncertainty for both dBZe and

logS were discretization and truncation, and φ. The disdrom-

eter analytic and sampling uncertainties contributed weakly

to the total uncertainties, as did the uncertainties in the bin-

mean fallspeeds observed by the 2DVD. Uncertainties were

larger for the HE10 mass–dimension relationship than for the

BF95 relationship, owing mainly to the larger discretization

and truncation errors associated with the larger β value for

HE10. For these results, biases and residual errors were cal-

culated for all SVI samples combined. Refinements, such as

evaluating bias and residual errors as functions of the mod-

eled reflectivities or snowfall rates, can help reduce resid-

ual errors. Evaluating SF for HE10 microphysics by binning

modeled reflectivities and snowfall rates into bins of 2 dBZe

and 0.1 in logS, then evaluating bias bin by bin, reduced

residual errors for reflectivity from 1.87 to 1.04 dB and for

snowfall rate from 0.081 to 0.053 in logS.

When fully accounted, these forward model uncertainties

are substantial compared to reasonable estimates of measure-

ment uncertainties. Although these uncertainty estimates do

not require assumptions about the shape of their distribu-

tions, comparisons can be illustrated by assuming a partic-

ular shape. Figure 6 shows sampled probability density func-

tions (PDFs) and uncertainty ellipses calculated for bivariate

normal distributions using the uncertainties in Table 2. Con-

sidering discretization and truncation errors (Fig. 6a) com-

bined with uncertainties in the representation of particle di-

mension by the disdrometer (Fig. 6b) gives an uncertainty

ellipse similar in size to that for estimated observational er-

rors (Fig. 6c). The observational errors for reflectivity have

been represented with standard deviations of 1.5 dB, simi-

lar to uncertainties for a well-calibrated operational C-band

radar (Thurai et al., 2008). Those for snowfall rate have been

estimated at 0.3 in logS, which gives a factor of 2 uncer-

tainty in S. Uncertainties for snowfall measurements on short

timescales by automated all-weather gauges (e.g., appropri-

ately fenced OTT Pluvio or Geonor T-200 instruments) are

not well characterized, so this value is taken as an approxi-

mate upper limit. Although errors in measurements of reflec-

tivity and snowfall rate are independent, the shared depen-

dence of the forward-modeled values on the observed size

distributions introduces correlations in the errors in modeled

reflectivities and snowfall rates, illustrated by the sloped ma-

jor axes of the ellipses in panels a and b. Summing the covari-

ance matrices for measurement and model errors per Eq. (15)
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Table 2. Contributions to uncertainties in forward-modeled dBZe and logS, averaged over 1053 5 min samples. Values of SF for β = 1.9

(BF95) were interpolated from Table 1.

HE10 BF95

Case Description s (dBZe) s (logS) s (dBZe, logS) s (dBZe) s (logS) s (dBZe, logS)

A SF only 1.87 0.081 0.082 1.38 0.070 0.048

B A +s (Di) ,s (N (Di)) 2.01 0.089 0.094 1.50 0.077 0.057

C B +(s (φ) = 0.15) 4.02 0.196 0.70 3.36 0.187 0.57

D B +(s (φ) = 0.25) 6.14 0.34 2.00 5.23 0.29 1.48

E C +s
(

VM,i

)

4.02 0.22 0.78 3.36 0.197 0.57
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Fig. 6. Uncertainty models for (a) case A alone, (b) case E alone,

(c) estimated observational uncertainties, and (d) case E with es-

timated observational uncertainties. Orange contours show the es-

timated bounds for 1 standard deviation, while the grayscale illus-

trates sampled PDFs.

leads to an uncertainty ellipse that is substantially larger than

that for either the measurement or model uncertainties alone

and which maintains significant error correlations (Fig. 6d).

This enlargement of the uncertainty ellipse results from the

comparatively large uncertainties in observed versus mod-

eled snowfall rates and in modeled versus observed reflectiv-

ities.

5.1 Ze–S relationships

Snowfall rate may be estimated from observed radar reflec-

tivities using so-called Ze–S relationships, typically reported

in the form Ze = ASB . Such relationships can be developed

using reflectivities and snowfall rates modeled from observed

snow PSDs, although parameterized forms of the PSDs have

been used (e.g., Matrosov et al., 2009). These relationships

have uncertainties arising from the assumptions about the

particle masses, fallspeeds and scattering properties, as well

as from the uncertainties in the observed PSDs. Ze–S rela-

tionships were developed for reflectivities, snowfall rates and

their uncertainties modeled from the 1053 data points using

case E with the HE10 and BF95 mass–dimension relation-

ships. Fits were then performed for modifications to case E

in which φ was varied to simulate the use of several different

unadjusted disdrometer measurements of particle size: E1,

a disdrometer using equal-area Dec; E2, a disdrometer us-

ing DSVI,f; and E3, a disdrometer using D2DVD,w. Fits were

performed on the dBZe and logS values using the bivariate

least-squares estimation method of York et al. (2004), which

treats uncertainties in both variables as well as error covari-

ances between the variables, using a function of the form

logS = a + b(dBZe). (21)

The parameters of the fitted relationships show only small

sensitivity to differences in the actual observed particle size,

represented by changes in φ (Table 3, cases E, E1, E2, and

E3), but more substantial sensitivity to differences in the

mass–dimension relationship (case E, HE10 versus BF95).

At 15 dBZe, the differences in φ lead to differences in S

of about ±1.5 %, while at 30 dBZe the differences in S are

about ±5 %. In comparison, changes in the assumed mass–

dimension relationship lead to differences in S of ±13 % at

15 dBZe and ±20 % at 30 dBZe. The exponents B found here

are consistent with values from a number of prior studies, as

summarized by Fujiyoshi et al. (1990), and with the results

of Huang et al. (2010), who analyzed 2DVD and collocated

C-band radar observations for these same snow events and

found values ranging from 1.1 to 1.9. For the coefficients

A, Huang et al. found values in the range of 100 to 300,

somewhat smaller than those obtained here, while the stud-

ies summarized by Fujiyoshi et al. gave larger values ranging

predominantly between 200 and 3000. Huang et al. note that

in some cases the large coefficients in these earlier studies

may be due to the use of the reflectivity factor, rather than

the equivalent reflectivity factor, to develop the Z–S rela-

tionships from particle size distributions, which would cause

about a factor of 4 increase in A (Smith, 1984).
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Table 3. Fit results for Ze–S relationships, showing the parameters a and b from Eq. (21). Also shown are parameters A and B used in the

more typical form Ze = ASB . Uncertainties (square roots of estimated variances) are given in parentheses.

Ze = ASB

Case m(D) D φ a b s(a,b) A B χ2

E HE10 DM 0.82 (0.15) −1.557 (0.006) 0.0615 (3 × 10−4) −1.39 × 10−6 339. 1.63 2.67

E BF95 DM 0.82 (0.15) −1.499 (0.005) 0.0655 (3 × 10−4) −1.13 × 10−6 194. 1.53 2.82

E1 HE10 Dec 1.17 (0.15) −1.488 (0.004) 0.0577 (3 × 10−4) −7.1 × 10−7 378. 1.73 2.46

E2 HE10 DSVI,f 1.00 (0.15) −1.508 (0.005) 0.0591 (3 × 10−4) −9.5 × 10−7 358. 1.69 2.55

E3 HE10 D2DVD,w 0.88 (0.15) −1.540 (0.006) 0.0606 (3 × 10−4) −1.22 × 10−6 347. 1.65 2.64

6 Conclusions

Typical retrieval and estimation techniques involve mini-

mizing differences between observed and modeled quanti-

ties. For these sorts of problems, quantifying the uncertainty

characteristics of the model–measurement differences is es-

sential. As an example, in Bayesian optimal estimation the

model–measurement difference uncertainties, along with the

a priori estimate of the PDF of the retrieved state, determine

the posterior distribution of the retrieved state. In general,

larger uncertainties in the model–measurement differences

will contribute to larger uncertainties in the posterior, re-

trieved state. Retrieval performance can be gauged based on

comparisons of the width of the posterior PDF compared to

that of the a priori PDF (e.g., Shannon Information Content;

Rodgers, 2000), and so accurate assessments of the model–

measurement difference uncertainties contribute to accurate

assessments of retrieval performance.

In this particular application, forward model uncertainties

are substantial compared to estimated measurement uncer-

tainties, so omitting the contribution of forward model uncer-

tainties to the model–measurement difference uncertainties

would likely underestimate uncertainties in the retrieved state

and of the retrieval information content. Ignoring the forward

model uncertainties may in some cases cause retrieval fail-

ure, since the model–measurement difference uncertainties

impact the value of the cost function being minimized.

For modeled reflectivities and snowfall rates, the dominant

sources of uncertainty are discretization and truncation, and

the uncertainty in φ. Uncertainties in the discrete values of

Di and N(Di) provided by the disdrometer and uncertainties

in the size bin mean fallspeeds contributed minimally to the

total uncertainties. Considering discretization and truncation,

truncation contributes more strongly to the total uncertain-

ties. Truncation uncertainties can be reduced by increasing

the sample volume, which increases the size at which trun-

cation occurs. For an instrument like the SVI, this can be

achieved by increasing the number of image frames in a sin-

gle sample, by increasing the field of view, or by increas-

ing the depth of field. The number of image frames can be

increased by either sampling longer or sampling faster, and

there are likely several trade-offs with either approach. For

example, longer sampling will decrease the temporal reso-

lution of the dataset, while faster sampling would likely im-

pact camera hardware, data storage and processing require-

ments, and potentially increase errors caused when parti-

cles are counted repeatedly in successive frames. With faster

sampling, it becomes more likely that successive frames no

longer observe independent samples of the PSD.

Uncertainties in φ contribute at least half of the total un-

certainties in modeled reflectivities and snowfall rates. The

value of φ varies with particle shape and the particular di-

mensional measurement used by the disdrometer (Fig. 2).

The use of dimensional measurements such as feret diam-

eter that reduce the sensitivity of φ to particle shape is desir-

able to reduce these uncertainties. Additional coincident dis-

drometer observations may also help constrain φ or reduce

its uncertainties. As an example, although the dual viewing

geometries of the 2DVD raise particle matching issues, the

D2DVD,w particle size metric gives φ values with relatively

weak sensitivity to particle shape. The SVI is adaptable to

other viewing geometries (e.g., viewing from a more nearly

vertical orientation rather than horizontally), and such ge-

ometries may prove useful for constraining φ.

Finally, while changes in the mass–dimension relationship

have a pronounced effect on modeled Ze–S relationships,

changes in φ affect both reflectivity and snowfall rate some-

what proportionately so that Ze–S relationships are mini-

mally affected. As shown in Table 3, changes in φ of 0.82 to

1.17 cause changes in the coefficient of Ze–S relationships

of only 339 to 378, and changes in the exponent of only 1.63

to 1.73. Thus disdrometers employing different measures of

particle size might be expected to produce similar modeled

Ze–S relationships.

Appendix A

Disdrometer dimensional errors

How significant are the errors introduced by treating a dis-

drometer observation of D as the maximum dimension? An

exponential size distribution based on the true maximum

dimension DM is
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N(DM) = N0,M exp(−λMDM). (A1)

Here and in the following, the subscript M indicates quan-

tities determined from measurements of particle maximum

dimension. Transforming this distribution to use an observed

dimension Dobs = φDM as the independent variable gives

N(Dobs) = N(DM)
∂DM

∂Dobs
=

N0,M

φ
exp

(

−
λM

φ
Dobs

)

, (A2)

where it has been assumed that φ is constant over the en-

tire distribution. The transformation from DM to Dobs results

in a distribution with steeper slope and larger intercept. Al-

though the zeroth moments are the same for both distribu-

tions, higher-order moments are different and quantities such

as reflectivity which depend on higher-order moments will

be affected. Reflectivities can be calculated for both cases,

one in which the disdrometer truly observes DM and a sec-

ond in which Dobs is erroneously taken to be DM. Applying

the mass power law Eq. (19) with the distribution Eq. (A2)

and calculating reflectivity per Eq. (4) gives

Zeobs =
36α2

π2ρ2
ice

||Ki||
2

||Kw||2

N0,M

φ

Ŵ(2β + 1)

(λM/φ)2β+1
, (A3)

while that for distribution Eq. (A1) is

ZeM =
36α2

π2ρ2
ice

||Ki||
2

||Kw||2
N0,M

Ŵ(2β + 1)

λ
2β+1
M

, (A4)

where Ŵ is the gamma function. The ratio of the reflectivities

is

Zeobs

ZeM
=

N0,M/φ

N0,M

λ
2β+1
M

(λM/φ)2β+1
= φ2β . (A5)

Taking a typical horizontal aspect ratio of 0.6 (Korolev and

Isaac, 2003) gives φ ≈ 0.82 for Dobs = DSVI,f. A common

estimate for β is 1.9 (Brown and Francis, 1995), resulting in

a reflectivity ratio of 0.47. Thus Ze modeled using N(Dobs)

will be underestimated by 3.2 dB. In order for a modeled

value of Zeobs to match an observed Ze, the coefficient α

would have to be overestimated by almost 50 %.

Appendix B

Disdrometer uncertainty models

B1 Analytic uncertainties for DSVI,f,i and N
(

DSVI,f,i

)

The SVI size distribution is determined as shown in Eq. (2).

Both Aijk and Lijk depend on particle size:

Aijk = (Xfov − Dijk)(Yfov − Dijk), (B1)

Lijk = f Dijk, (B2)

where Xfov and Yfov are the maximum width and height of

the frame, f is an empirical factor relating particle size to

depth of field, and Dijk is the particle size (Newman et al.,

2009). The expression Eq. (B1) embodies an “all-in” require-

ment, in which the particle must be contained totally within

the field of view of the image to be counted. Newman et al.

derived the relationship Eq. (B2) using the feret diameter,

and this is consistent with the observed D used in these SVI

data (note that the SVI,f subscript for D has been dropped for

clarity). Combining Eqs. (2), (B1) and (B2) then simplifying

the indexing, the size distribution can be written as

N(Di) =
1

Nf1Di

j=Npi,tot
∑

j=1

1

(Xfov − Dij )(Yfov − Dij )f Dij

. (B3)

Npi,tot is the total number of particles observed in the ith bin

accumulated over all image frames. The number of frames Nf

and the frame dimensions Xfov and Yfov can be determined

accurately, and 1Di is a specified constant size bin width,

leaving Npi,tot, f , and Dij as sources of error.

Errors in the measured particle size Dij are caused by blur-

ring and lack of contrast in the image (Newman et al., 2009).

These errors affect the estimates of the field of view Aijk

and depth of field Lijk , which then propagate as errors in

the calculated size distribution via Eq. (B3). Particle sizing

errors also cause particles to be misclassified into size inter-

vals. Since undercounting in one interval will be accompa-

nied by overcounting in nearby intervals, the effects on in-

tegrated quantities like reflectivity and snowfall rate calcula-

tions in the forward model are expected to be minor and are

neglected.

Errors in the count of particles Npi,tot can be caused by

reappearance of particles and by obscuration. In environ-

ments with very low wind speeds, a slowly falling particle

may appear in multiple frames, causing it to be counted mul-

tiple times. Winds at 2 ma.g.l. were generally in excess of

1.5 ms−1 during the seven snow events, and such repeated

counting is not expected to be a concern. Under conditions

of high particle concentrations, a particle in the background

of the sample volume may be obscured by a particle in the

foreground. It is not known to what extent obscuration af-

fects the SVI observations. For small particles, for which

concentrations may be high, the depth of field per Eq. (B2)

is shallow, making obscuration unlikely. For large particles,

depth of field is larger but concentrations are typically low,

also making obscuration unlikely. Based on these arguments,

errors in Npi,tot due to reappearance and obscuration were

neglected.

To estimate the analytic uncertainty, we assume that Npi,tot

is measured with negligible uncertainty (e.g., overlapping or

doubly counted particles are uncommon). The measurements

Dij have uncertainties with variances s2(Dij ) that are ex-

pected to be independent and identically distributed. The pa-

rameter f has uncertainty independent of the uncertainties

in Dij with variance s2(f ). Representing N(Di) as Ni to
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simplify notation, Eq. (B3) can be rewritten as

Ni =
1

Nf1Di

j=Npi,tot
∑

j=1

xj , (B4)

where

xj =
1

(Xfov − Dj )(Yfov − Dj )f · Dj

(B5)

and where the i subscript for terms inside the sum has been

omitted for clarity. The variances s2(xj ) can be estimated by

error propagation as

s2(xj ) =

(

∂xj

∂Dj

)2

s2(Dj ) +

(

∂xj

∂f

)2

s2(f ). (B6)

The variance s2(Ni) can be found as

s2(Ni) =




(

∂Ni

∂x1

)2

s2(x1) +

(

∂Ni

∂x2

)2

s2(x2) + ·· ·+

(

∂Ni

∂xNpi,tot

)2

s2(xNpi,tot
)



 . (B7)

Since ∂Ni

∂xj
= 1

Nf1Di
,

s2(Ni) =

[

1

Nf1Di

]2
[

s2(x1) + s2(x2) + ·· ·+ s2(xNpi,tot
)
]

. (B8)

Provided the partial derivatives
∂xj

∂Dj
do not vary significantly

over the size range within a bin, the values of s2(xj ) will also

not vary significantly and can be approximated with a single

value s2(x), giving

s2(Ni) ≈

[

1

Nf1Di

]2

Npis
2(x). (B9)

Since single-particle measurements were not part of the

processed SVI data, the derivatives
∂xj

∂Dj
and the variances

s2(Dj ) were estimated at the expected values of D on the

size bin interval between Di and Di+1. For spherical par-

ticles, the uncertainty in particle size has been estimated at

18 % (Newman et al., 2009), and that estimate was used for

this work even though nonspherical snow particles are ob-

served. Note that Dij in this context is the dimension ob-

served by the disdrometer, not an estimate of the particle

maximum dimension. Newman et al. (2009) estimated the

uncertainty in depth of field at 15 % when particle size is

known accurately, suggesting that f has an uncertainty of

15 %, which was the value used for this work.

B2 Sampling uncertainties for DSVI,f,i and N
(

DSVI,f,i

)

Sampling errors affect both the number of particles counted

in the discrete size intervals and the distribution of particle

sizes observed in a particular interval. The number of parti-

cles Npi,tot in a particular size bin observed arriving in the

disdrometer sample volume at a particular instant is typically

taken to be a random deviate (Joss and Waldvogel, 1969)

and contributes to sampling uncertainty in the calculated size

distribution values. For rainfall, the number of particles ob-

served in a given size bin by a volume sampling device like

the SVI is often taken to be a Poisson-distributed random

variable (Joss and Waldvogel, 1969; Gertzman and Atlas,

1977; Uijlenhoet et al., 2006). The same approach is taken

here for snowfall, considering it to behave as a homogeneous

Poisson process during the sampling time interval. The num-

ber of particles Npi,tot appearing in the SVI sampling volume

then follows a Poisson distribution.

The observed particles sizes Dij also vary and are dis-

tributed according to a probability density function defined

by the size distribution (Uijlenhoet et al., 2006). The ob-

served Dij form a sequence of random variables taken to be

independent and identically distributed. As a result, the xj of

Eq. (B5) are also independent and identically distributed. Re-

ferring to Eq. (B3), since both the particle sizes Dij and the

number of particles Npi,tot are realizations of random vari-

ables, the form of N(Di) is seen to be that of a random sum

of random variables (Feldman and Valdez-Flores, 2010), also

known as a randomly stopped sum.

Letting

yi =

j=Npi,tot
∑

j=1

xj (B10)

the variance of yi can be shown to be

V
[

yi

]

= V
[

xj

]

E
[

Npi,tot

]

+
[

E
[

xj

]]2
V
[

Npi,tot

]

, (B11)

(Feldman and Valdez-Flores, 2010) by applying the law of

total variance, where V [] indicates variance and E[] indicates

expectation. Since Npi,tot is Poisson-distributed, the best es-

timate of the expectation and variance is the observed count,

so that

V
[

yi

]

= Npi,totV
[

xj

]

+ Npi,tot

[

E
[

xj

]]2
. (B12)

Thus it is necessary to estimate the expectation and variance

for xj . These can be estimated via Taylor series expansion of

x(D). Since uncertainty in f does not contribute to sampling

uncertainty, the expectation can be estimated as

E[x(D)] ≈ x(µD) +
x′′(µD)

2
s2
D, (B13)

where µD and s2
D are the expectation and variance of D, re-

spectively, and the primes indicate derivatives with respect to

D. The variance can be estimated as

V [x(D)] ≈
(

x′(µD)
)2

s2
D. (B14)

As noted by Uijlenhoet et al. (2006), the particle size dis-

tribution can be written as the product of the total num-

ber concentration, Ntot, and the probability density function
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Fig. B1. Comparison of uncertainties estimated from observations

(square root of variance computed from samples of 5 1 min particle

size distributions) and those calculated from the uncertainty model.

of particle sizes, p(D). Taking the particle sizes to be dis-

tributed exponentially gives

N(D) = Ntotλexp(−λD), (B15)

from which it can be seen that

p(D) = λexp(−λD). (B16)

What is needed are estimates of the expectation and variance

of D on subintervals of p(D). For a subinterval bounded by

Di and Di+1, expectation and variance are defined by

µD =

∫ Di+1

Di
p(D)DdD

∫ Di+1

Di
p(D)dD

(B17)

and

s2
D =

∫ Di+1

Di
p(D)(D − µD)2dD
∫ Di+1

Di
p(D)dD

. (B18)

Evaluating these integrals for the exponential probability dis-

tribution gives

µD = Di +
1

λ
−

(Di+1 − Di)exp(−λ(Di+1 − Di))

1 − exp(−λ(Di+1 − Di))
(B19)

and

s2
D =

1

λ2
−

exp(−λ(Di+1 − Di))(Di+1 − Di)
2

(1 − exp(−λ(Di+1 − Di)))
2

. (B20)

The value of λ can be estimated by linear least squares

fitting of ln(Ni) to Di . Given these last two relationships and

λ, the expectation and variance of D can be determined for

each size bin. From these, the expectation and variance of

x(D) can be found using Eqs. (B13) and (B14). Next, the

variance of yi can be found via Eq. (B12). Finally, since

Ni =
1

Nf1Di

yi, (B21)

the variance of Ni is

V [Ni] =

[

1

Nf1Di

]2

V
[

yi

]

. (B22)

B3 Size distribution uncertainty model evaluation

As a simple check on the validity of the size distribution

uncertainty model, distinct samples of the SVI observations

were formed by repeatedly collecting five consecutive 1 min

SVI size distributions from the observations for one C3VP

snow event. Variances were computed bin by bin for each

sample. The statistical uncertainty model described above

was then applied to the 5 min average size distribution ob-

tained from each sample, and then the modeled analytic and

sampling variances for each bin were summed. Both the

empirical and modeled uncertainties spanned approximately

three orders of magnitude (Fig. B1). At small uncertainties,

the modeled and empirical uncertainties were in good agree-

ment. At large uncertainties, the modeled uncertainties for

the 5 min size distributions were somewhat smaller than the

empirical uncertainties for the 1 min size distributions. Given

that the empirical uncertainties apply to 1 min SVI observa-

tions, while the modeled uncertainties apply to 5 min aver-

ages of the SVI observations, the differences appear reason-

able.
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