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Abstract. We consider a special wavelet transform of Moritoh and give new definitions
of wave front sets of tempered distributions via that wavelet transform. The major result is that
these wave front sets are equal to the wave front sets in the sense of Hörmander in the cases
n = 1, 2,4,8. If n ∈ N \ {1,2,4,8}, then we combine results for dimensionsn = 1, 2,4,8
and characterize wave front sets inξ -directions, whereξ are presented as products of non-zero
points ofRn1, . . . ,Rns , n1 + · · · + ns = n, ni ∈ {1,2, 4,8}, i = 1, . . . , s. In particular, the
casen = 3 is discussed through the fourth-dimensional wavelet transform.

1. Introduction. In this paper, emphasis is put on the characterization of wave front
sets via wavelet transforms. We refer to [2] for the local analysis of functions and distributions
through wavelet expansions and wavelet transforms and to [3, 6] for the local and microlocal
analysis through wavelet transforms.

The paper is inspired by Moritoh [7], where a wavelet transform of a distributionf ∈
S ′(Rn) is defined by

Wψf (x, ξ) =
∫

Rn
f (t)|ξ |n/2ψ(|ξ |Rξ (t − x)) dt, (x, ξ) ∈ Rn × Rn \ {0} ,

whereψ is an analyzing wavelet andRξ ∈ SO(n) mapsξ/|ξ | to en = (0, . . . ,0,1). Integral
is interpreted in a distributional sense.

This definition of wavelet transform can be obtained from Murenzi’s definition [8]. In
Murenzi’s definition the wavelet transform involves dilatation, translation and rotation as pa-
rameters, while Moritoh fixes rotation (with a special choice ofRξ ) and keeps dilatation and
translation as parameters.

In [7], the change of variablesω = |ξ |−1Rξτ satisfiesdω/|ω|n = dξ/|ξ |n. This is not
true for all rotations that were used in [7].

The aim of this paper is twofold. First, for dimensions 1,2,4 and 8, we improve the
results of [7] concerning the estimates of wavefronts introducing a parameterized wavelet
transform and by an intrinsic analysis of transformations of variables in the frequency domain.
The second aim is to extend results to dimensionsn �= 1,2,4,8. Actually, we transfer the
results for quoted dimensions to generaln ∈ N, excluding some directions in the frequency
domain.
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We start in Section 2 by examining the existence of rotationsRξ ∈ O(n) such that
Rξ (ξ) = |ξ |en holds for everyξ ∈ Rn\{0}. It will be shown that if we suppose that the
mappingξ �→ Rξ is continuous, then its existence is limited only to dimensionsn = 1,2,4
and 8. In these cases, explicit constructions of such rotations are given. The proof that no
rotations with previously stated property exist forn �= 1,2,4 and 8 was given by Wagner
[10].

Although it is not stated in [7] that the mappingξ �→ Rξ has to be continuous, we find
that it had been used implicitly. Without continuity it would be hard to follow how some
relevant sets, for example conic neighborhoods, are transformed through different changes of
variables. Even if we allow discontinuity ofξ �→ Rξ we can construct rotations such that
Rξ (ξ/|ξ |) = en, butdω/|ω|n = dξ/|ξ |n is not satisfied (at points of continuity). InR3 one
such mapping would be a rotation around the linep that passes through the origin and is
orthogonal toξ and e3.

In Section 3 we introduce an analyzing waveletψ and a wavelet transformWψ associated
with it for the casesn = 1,2,4 and 8. Wavefront setsWFψ andWF (s)

ψ have been introduced
by means of this wavelet transform. In these definitions the setsWFψ andWF (s)

ψ depend on

ψ. It is shown in main theorems thatWFψ = WF andWF (s)
ψ = WF (s), whereWF andWF (s)

are defined by Hörmander (see [4, 5]). Moritoh achieved in [7] only lower and upper bounds
for (Hörmander’s) wave front sets in terms of his wave front sets and the wavelet transforms.
In order to obtain an exact description of the wave front sets, we introduce a parameter in the
wavelet transform; if the parameter equals one, then the wavelet transform is that defined in
[7]. This parameter plays an essential role in achieving independence ofWFψ andWF (s)

ψ on
ψ. We can say that, the construction in [7] tends to overshoot Hörmander’s wave front sets
by about a conic set obtained from the support of the Moritoh wavelet. By introducing this
parameter, this was corrected.

In Section 4 we overcome the fact that our results were limited to casesn = 1,2,4 and
8. Definitions and theorems from the previous section are extended to the cases with general
n ∈ N. In this case some directions had to be omitted in order to have the right characterization
of wave front sets. We discuss this question in Remarks 16 and 19. In particular, in the case
n = 3, we show that all the directions can be analyzed through the analysis of the fourth-
dimensional case.

In the proofs of main theorems some properties of rotationsRξ were used. We give these
properties in the form of lemmas in Sections 5 and 6.

2. Rotations. Let ξ ∈ Rn\{0}. For eachξ we associate the following matrices for:

• n = 1,

Rξ = 1

|ξ | [ξ ] ;
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• n = 2,

Rξ = 1

|ξ |

[
ξ2 −ξ1
ξ1 ξ2

]
;

• n = 4,

Rξ = 1

|ξ |


−ξ4 −ξ3 ξ2 ξ1

−ξ3 ξ4 ξ1 −ξ2
−ξ2 ξ1 −ξ4 ξ3

ξ1 ξ2 ξ3 ξ4

 ;

• n = 8,

Rξ = 1

|ξ |



−ξ8 −ξ7 −ξ6 ξ5 −ξ4 ξ3 ξ2 ξ1

−ξ7 ξ8 −ξ5 −ξ6 ξ3 ξ4 ξ1 −ξ2
−ξ6 ξ5 ξ8 ξ7 −ξ2 ξ1 −ξ4 −ξ3
−ξ5 −ξ6 ξ7 −ξ8 ξ1 ξ2 −ξ3 ξ4

−ξ4 −ξ3 ξ2 ξ1 ξ8 −ξ7 ξ6 −ξ5
−ξ3 ξ4 ξ1 −ξ2 −ξ7 −ξ8 ξ5 ξ6

−ξ2 ξ1 −ξ4 ξ3 ξ6 −ξ5 −ξ8 ξ7

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8


.

In the casesn = 2,4 and 8 they represent rotations that belong to the groupsSO(2),
SO(4) and SO(8), i.e., they are orthogonal matrices whose determinant is equal to 1. For
n = 1 the matrixRξ is an orthogonal matrix whose determinant can be either 1 or−1.
They satisfy the following.

(i) Rn \ {0} � ξ �→ Rξ ∈ O(n) is continuous.
(ii) Rξ (ξ/|ξ |) = en, ξ ∈ Rn \ {0}.
(iii) Let ξ ∈ Rn \ {0}. For everyτ ∈ Rn\{0} there existsR̄τ ∈ O(n) such that

Rξ (τ)

|τ | = R̄τ (ξ)

|ξ | .

(iv) Let τ ∈ Rn \ {0} andω = |ξ |−1Rξ (τ), ξ ∈ Rn \ {0}. Thendω/|ω|n = dξ/|ξ |n.
These are easy to show and we omit the proof.

We only give a descrription of̄Rτ . Letn = 1,2,4 or 8 andξ, τ ∈ Rn \ {0}. Then

ω = 1

|ξ |Rξ (τ) = 1

|ξ |2


〈ξ(1), τ 〉
〈ξ(2), τ 〉

...

〈ξ(n), τ 〉

 ,
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where the vectorsξ(1), ξ (2), . . . , ξ (n) are row vectors of|ξ |Rξ . Obviously,

ξ(j) = (ij1ξπ(j)(1), ij2ξπ(j)(2), . . . , ijnξπ(j)(n)) ,

whereπ(j) is a permutation of{1,2, . . . , n}, andij1, . . . , ijn ∈ {1,−1}.
If we defineτ (j) = (ijπ(j)(1)τπ(j)(1), ijπ(j)(2)τπ(j)(2), . . . , ijπ(j)(n)τπ(j)(n)), then

〈ξ(j), τ 〉 = 〈ξ, τ (j)〉
and the matrix

R̄τ = 1

|τ | (τ
(1), τ (2), . . . , τ (n))t

satisfies (iii).
We want to emphasize that matrices satisfying properties (i), (ii), (iii) and (iv) are not

uniquely determined. These properties remain true if we multiply some of the rows (except
the last one) by−1. New matrices obtained in this manner could be used instead of the quoted
ones and all the results presented in this paper hold with these matrices.

So, to summarize, forn = 1,2,4 and 8 there exists a continuous mappingS : Rn\{0} →
Gl(n), ξ �→ Sξ , such that

Sξ (ξ)‖en , ξ ∈ Rn\{0} .
One such mapping is given bySξ = Rξ .

A natural question arising from the construction of rotationsRξ is whether it is possible
to construct rotations in other dimensions in a similar way. The answer is negative. The proof
uses the fact thatSn−1 is parallelizable which only holds ifn = 2,4 or 8 (see [1]). Recall that
a differentiable manifold of dimensionn is parallelizable if there existn vector fields that at
each point form a basis for the tangent space at that point.

PROPOSITION 1 ([10]). Let n ∈ N\{1,2,4,8}. Then there does not exist continuous
mapping S : Sn−1 → Gl(n) such that for every ξ ∈ Sn−1 the vector Sξ (ξ) is parallel to en (Sξ
stands for S(ξ)). The proposition remains true if we substitute en with an arbitrary non-zero
vector.

PROOF. Suppose the contrary, i.e., suppose that suchS exists.
Let ξ ∈ Sn−1. As Sξ ∈ Gl(n) it holds thatTξ = S−1

ξ . From detTξ �= 0 it follows
thatTξ (e1), Tξ (e2), . . . , Tξ (en) are linearly independent vectors. AsTξ (en) is parallel toξ, it
follows thatTξ (e1), Tξ (e2), . . . , ξ form a set of linearly independent vectors.

For eachk ∈ {1, . . . , n− 1}, we define a mappingfk such thatfk : Sn−1 → Rn and

fk(ξ) = Tξ (ek)− 〈Tξ (ek), ξ〉ξ , ξ ∈ Sn−1 .

This gives us

〈fk(ξ), ξ〉 = 〈Tξ (ek), ξ〉 − 〈Tξ (ek), ξ〉〈ξ, ξ〉 = 0 , ξ ∈ Sn−1 .
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As a consequence,f1(ξ), f2(ξ), . . . , fn−1(ξ) are linearly independent and they are all
orthogonal toξ . This means that{f1(ξ), f2(ξ), . . . , fn−1(ξ)} is a basis of the tangent space
of the sphereSn−1 at the pointξ , which is not possible. �

We find that the continuity condition forξ �→ Rξ , ξ ∈ Rn\{0}, is essential for our
needs. We need to follow how certain sets, such as conic neighborhoods, are transformed by
particular changes of variables that involve these rotations. It would be hard to follow this if
we would allow discontinuities. For that reason we do not defineRξ for dimensions different
from n = 1,2,4 or 8.

3. Wavelet transform and wave front set.
3.1. Wavelet transform. By the definition,ψ ∈ L2(Rn) is an admissible analyzing

wavelet if

Cψ = (2π)n
∫

Rn

|ψ̂(ξ)|2
|ξ |n dξ < ∞ .(1)

Our analyzing wavelet is similar to those of [7] and is a functionψ ∈ S(Rn) satisfying:
(1) ψ̂ ∈ C∞

0 (R
n), ψ̂ � 0; and

(2) Ω = suppψ̂ does not contain 0 and̂ψ(en) �= 0, whereen = (0, . . . ,0,1).
It follows from ψ̂ ∈ C∞

0 (R
n) thatψ ∈ S(Rn), which implies that the microlocal proper-

ties are better localized in the frequency domain than in the time domain.
Wavelets satisfying Properties 1 and 2 can be easily constructed in the following way. It

suffices to construct a smooth non-negative functionφ whose support is included inBr(en),
where 0< r < 1. Thenψ ∈ S(Rn), whereψ̂ = φ, is one such wavelet.

We restrict our consideration in this section to dimensionsn = 1,2,4 or 8. For the
waveletψ, we define a wavelet transformWψ of a distributionf ∈ S ′(Rn) by

Wψf (x, ξ) =
∫

Rn
f (t)|ξ |n/2ψ(|ξ |Rξ (t − x)) dt , (x, ξ) ∈ Rn × Rn\{0} ,

where integration is understood in the distributional sense, as for a fixed(x, ξ) the function
t �→ ψ(|ξ |Rξ (t − x)) is an element ofS(Rn). MappingsRξ are rotations inO(n) that have
been described more precisely in Section 2.

It is easy to verify that the Fourier transform ofWψf with respect tox is given by

̂Wψf (x, ξ)(τ, ξ) = (2π)n/2f̂ (τ )|ξ |−n/2ψ̂(|ξ |−1Rξ (τ)) , (τ, ξ) ∈ Rn × Rn\{0} ,
whereτ stands for the variable corresponding, in the frequency domain, to the variablex. In
particular,

Wψf (x, ξ) =
∫

Rn
f̂ (τ )|ξ |−n/2ψ̂(|ξ |−1Rξ (τ))e

iτx dτ , (x, ξ) ∈ Rn × Rn\{0} .
Here we list several propositions without proofs. They were proven in [7] by making use

of Property (iv) in the previous section. As already claimed, this property is not satisfied for
all rotations used in [7]. As allRξ given in Section 2 satisfy Property (iv), the proofs of [7]
are valid in these cases.
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PROPOSITION 2 (Parseval’s identity). Let f, g ∈ L2(Rn). Then Wψf ∈ L2(Rn ×
Rn\{0}) and ∫

Rn

∫
Rn
Wψf (x, ξ)Wψg(x, ξ) dxdξ = Cψ

∫
Rn
f (t)g(t) dt ,

where Cψ is given by (1).

COROLLARY 3. Wavelet transform Wψ is an isometric transform of L2(Rn, dt) to
L2(Rn × Rn\{0}, C−1

ψ dxdξ).

PROPOSITION 4 (Inverse formula). Let f ∈ L2(Rn). Then f can be expressed via
Wψf as

f (t) = C−1
ψ

∫
Rn

∫
Rn
Wψf (x, ξ)|ξ |n/2ψ(|ξ |Rξ (t − x)) dxdξ , t ∈ Rn .

PROPOSITION 5. Let f ∈ S ′(Rn). Then f ∈ Hs(Rn) if and only if∫
Rn

∫
Rn

|Wψf (x, ξ)|2(1 + |ξ |2)s dxdξ < ∞ .

3.2. Wavefront set. In the reminder of this section, letψ be an analyzing wavelet and
let r ∈ (0,1) be such that supp̂ψ ⊆ Br(en). For 0< λ < 1 we defineψλ by

ψλ(x) = λneixen(1−λ)ψ(λx) , x ∈ Rn .

PutΩλ = suppψ̂λ. It is not hard to see thatΩλ ⊆ Bλr(en).
We denoteWψλ(f ) by Wψ,λ(f ). Let ξ0 ∈ Rn\{0} and r0 > 0. In the sequel we use

Γ (ξ0) to denote an arbitrary conic neighborhood of the pointξ0 andΓ (ξ0, r0) for

Γ (ξ0, r0) =
{
ξ;

∣∣∣∣ ξ|ξ | − ξ0

|ξ0|
∣∣∣∣ < r0

}
.

Let f ∈ S ′(Rn). We define wave front setsWFψ(f ) andWF s
ψ(f ) through the definition

of the complements of these sets, as usual.

3.2.1. WF(f ) and WFψ(f ). We start with defining ourψ-wave front setWFψ(f ).

DEFINITION 6. Letf ∈ S ′(Rn). WFψ(f ) ⊆ Rn × Rn\{0} is the complement of the
set ofψ-microlocally regular points(x0, ξ0) ∈ Rn × Rn\{0}, that is,(x0, ξ0) /∈ WFψ(f ) if
and only if

(∃φ ∈ C∞
0 (R

n)) (φ(x0) �= 0) (∃Γ (ξ0)) (∃λ ∈ (0,1)) (∀N > 0) (∃CN > 0)

| ̂Wψ,λ(φf )(x, ξ)(τ, ξ)| � CN |ξ |−N, τ ∈ Rn, ξ ∈ Γ (ξ0), |ξ | � 1 .

Note that(x0, ξ0) /∈ WFψ(f ) is equivalent to

(∃φ ∈ C∞
0 (R

n)) (φ(x0) �= 0) (∃Γ (ξ0)) (∃λ ∈ (0,1)) (∀N > 0) (∃CN > 0)

|φ̂f (τ )ψ̂λ(|ξ |−1Rξ (τ))| � CN |ξ |−N , τ ∈ Rn, ξ ∈ Γ (ξ0), |ξ | � 1 .

The next theorem shows thatWFψ(f ) does not depend onψ. In the proof we use results
from Section 5.
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THEOREM 7. Let f ∈ S ′(Rn). Then WFψ(f ) = WF(f ).

PROOF. Let (x0, ξ0) /∈ WF(f ). Letφ ∈ C∞
0 (R

n), φ(x0) �= 0 andΓ (ξ0) satisfy that for
eachN > 0 there existsCN > 0 such that

|φ̂f (ξ)| � CN |ξ |−N , ξ ∈ Γ (ξ0), |ξ | � 1 .

To prove that(x0, ξ0) /∈ WFψ(f ) we need to findΓ̃ (ξ0) andλ ∈ (0,1) (φ will be the same)
such that for eachN > 0, there existsC′

N > 0 satisfying

|φ̂f (τ )ψ̂λ(|ξ |−1Rξ (τ))| � C′
N |ξ |−N, τ ∈ Rn, ξ ∈ Γ̃ (ξ0), |ξ | � 1 .

As the mappingτ �→ ω = |ξ |−1Rξ (τ) is a bijection ofRn onto itself, we can reformulate the
problem and look forΓ̃ (ξ0) andλ ∈ (0,1) such that for eachN > 0 there existsC′

N > 0
satisfying

|φ̂f (|ξ |R−1
ξ (ω))ψ̂λ(ω)| � C′

N |ξ |−N, ω ∈ Rn, ξ ∈ Γ̃ (ξ0), |ξ | � 1 .

With the already introduced notation suppψ̂λ = Ωλ, we further reformulate the problem and
look for Γ̃ (ξ0) andλ ∈ (0,1) such that for everyN > 0 there existsC′

N > 0 satisfying

|φ̂f (|ξ |R−1
ξ (ω))ψ̂λ(ω)| � C′

N |ξ |−N, ω ∈ Ωλ, ξ ∈ Γ̃ (ξ0), |ξ | � 1 .(2)

Lemma 23 below implies that for a givenΓ (ξ0) there existΓ̃ (ξ0) and λ such that
|ξ |R−1

ξ (ω) ∈ Γ (ξ0) for everyξ ∈ Γ̃ (ξ0) andω ∈ Ωλ. Thus, we conclude that forω ∈
Ωλ, ξ ∈ Γ̃ (ξ0), |ξ | � 1,

|φ̂f (|ξ |R−1
ξ (ω))ψ̂λ(ω)| � C|φ̂f (|ξ |R−1

ξ (ω))|
� CCN(|ξ ||R−1

ξ (ω)|)−N ,
where we have used(x0, ξ0) /∈ WF(f ). This continues as

= CCN |ω|−N |ξ |−N
� C′

N |ξ |−N

for ω ∈ Ωλ, ξ ∈ Γ̃ (ξ0), |ξ | � 1. Thus,(x0, ξ0) /∈ WFψ(f ).
Now, let (x0, ξ0) /∈ WFψf . Then there existφ ∈ C∞

0 (R
n), φ(x0) �= 0, Γ (ξ0, r0) and

λ ∈ (0,1), which satisfy that for eachN > 0 there existsC′
N > 0 such that (2) is satisfied for

Γ̃ (ξ0) = Γ (ξ0, r0). As en ∈ Ωλ andψ̂λ(en) �= 0, we get forξ ∈ Γ (ξ0, r0), |ξ | � 1,

|φ̂f (ξ)| = |φ̂f (|ξ |R−1
ξ (en))|

�
C′
N

ψ̂λ(en)
|ξ |−N .

Thus,(x0, ξ0) /∈ WF(f ) and the proof is completed. �

3.2.2. WF (s)(f ) and WF (s)
ψ (f ). Now we define our Sobolevψ-wave front setWF (s)

ψ

(f ).
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DEFINITION 8. Letf ∈ S ′(Rn). ThenWF (s)
ψ (f ) ⊆ Rn × Rn\{0} is the complement

of the set of Sobolevψ-microlocally regular points(x0, ξ0) ∈ Rn× Rn\{0}, that is,(x0, ξ0) /∈
WF (s)

ψ (f ) if and only if

(∃φ ∈ C∞
0 (R

n)) (φ(x0) �= 0) (∃Γ (ξ0)) (∃λ ∈ (0,1))∫
Γ (ξ0)

∫
Rn

| ̂Wψ,λ(φf )(τ, ξ)|2(1 + |ξ |2)s dτdξ < ∞ .

Now, we show that a theorem equivalent to Theorem 7 holds for the Sobolevψ-wave
front set. In the proof we again use the lemmas in Section 5.

THEOREM 9. Let f ∈ S ′(Rn). Then WF (s)
ψ (f ) = WF (s)(f ).

PROOF. Assume that(x0, ξ0) /∈ WF (s)(f ). Then we have

I =
∫
Γ (ξ0,r0)

∫
R n

| ̂Wψ,λ(φf )(τ, ξ)|2(1 + |ξ |2)s dτdξ

= (2π)n
∫
Γ (ξ0,r0)

(1 + |ξ |2)s dξ
∫

Rn
|φ̂f (τ )|2|ξ |−nψ̂λ(|ξ |−1Rξ (τ))

2 dτ

= (2π)n
∫
Γ (ξ0,r0)

(1 + |ξ |2)s dξ
∫
Γ̃ (ξ0)

|φ̂f (τ )|2|ξ |−nψ̂λ(|ξ |−1Rξ (τ))
2 dτ ,

where

Γ̃ (ξ0) = {τ ∈ Rn \ {0} ; there existsξ ∈ Γ (ξ0, r0) such that|ξ |−1Rξ (τ) ∈ Ωλ}
(see Lemma 23 below). So, it follows that

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
∫
Γ (ξ0,r0)

(1 + |ξ |2)s |ξ |−nψ̂λ(|ξ |−1Rξ (τ))
2 dξ ,

and using the change of variablesξ �→ ω, whereω = |ξ |−1Rξ (τ), we obtain

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
∫
Ω ′(τ )

(
1 + |τ |2

|ω|2
)s

|ω|−nψ̂λ(ω)2 dω ,

where

Ω ′(τ ) = {ω ∈ Rn \ {0} ; there existsξ ∈ Γ (ξ0, r0) such thatω = |ξ |−1Rξ (τ) ∈ Ωλ} ,
for τ ∈ Γ̃ (ξ0) (see Lemmas 21 and 22). There exist positive constantsC1 andC2 such that

C1(1 + |τ |2)s � 1

|ω|n
(

1 + |τ |2
|ω|2

)s
� C2(1 + |τ |2)s, ω ∈ Ω .

AsΩ ′(τ ) ⊆ Ωλ ⊆ Ω , it follows that

C1(1 + |τ |2)s � 1

|ω|n
(

1 + |τ |2
|ω|2

)s
� C2(1 + |τ |2)s, ω ∈ Ω ′(τ ) ,
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which implies that

C1(1 + |τ |2)s
∫
Ω ′(τ )

ψ̂λ(ω)
2 dω �

∫
Ω ′(τ )

(
1 + |τ |2

|ω|2
)s

|ω|−nψ̂λ(ω)2 dω ,∫
Ω ′(τ )

(
1 + |τ |2

|ω|2
)s

|ω|−nψ̂λ(ω)2 dω � C2(1 + |τ |2)s
∫
Ω ′(τ )

ψ̂λ(ω)
2 dω .

Let r0 = r/2 andλ be such thatrΩλ , the conic radius ofΩλ (see Section 5), is less than
r/2. From Lemma 22 we know that̃Γ (ξ0) ⊆ Γ (ξ0, r0 + rΩλ), which implies thatΓ̃ (ξ0) ⊆
Γ (ξ0, r). Furthermore, we have

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
∫
Ω ′(τ )

(
1 + |τ |2

|ω|2
)s

|ω|−nψ̂λ(ω)2 dω

� C2(2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ
∫
Ω ′(τ )

ψ̂λ(ω)
2 dω

� C2(2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ
∫
Ωλ

ψ̂λ(ω)
2 dω

� C

∫
Γ̃ (ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ

� C

∫
Γ (ξ0,r)

|φ̂f (τ )|2(1 + |τ |2)s dτ ,

whereC = C2(2π)n
∫
Ωλ
ψ̂λ(ω)

2 dω. Thus, the assumption(x0, ξ0) /∈ WF (s)(f ) implies that

(x0, ξ0) /∈ WF (s)
ψ (f ).

Let now(x0, ξ0) /∈ WF (s)
ψ (f ). Then by Definition 8 (andΓ (ξ0, r0) instead ofΓ (ξ0))∫

Γ (ξ0,r0)

∫
Rn

| ̂Wψ,λ(φf )(τ, ξ)|2(1 + |ξ |2)s dτdξ < ∞ .

Then, by Lemma 21, there existsΩ ′ neighborhood of pointen such that for everyτ ∈
Γ (ξ0, r0/2)

Ω ′ ⊆ Ω ′(τ ) .
Now, from Lemma 22 it follows thatΓ (ξ0, r0/2) ⊆ Γ̃ (ξ0). Then

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
∫
Ω ′(τ )

(
1 + |τ |2

|ω|2
)s

|ω|−nψ̂λ(ω)2 dω

� C1(2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ
∫
Ω ′(τ )

ψ̂λ(ω)
2 dω

� C1(2π)n
∫
Γ (ξ0,r0/2)

|φ̂f (τ )|2(1 + |τ |2)s dτ
∫
Ω ′
ψ̂λ(ω)

2 dω

� C

∫
Γ (ξ0,r0/2)

|φ̂f (τ )|2(1 + |τ |2)s dτ ,

whereC = C1(2π)n
∫
Ω ′ ψ̂λ(ω)2 dω. We conclude that(x0, ξ0) /∈ WF (s)(f ). �
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4. Wavelet transform and wave front set-generalization. In this section we gen-
eralize the definition of wavelet transforms and the characterization of wave front sets via
wavelet transforms of Section 3 in dimensions different fromn = 1,2,4 and 8.

Let n ∈ N and letn1, . . . , nk ∈ {1,2,4,8} be such thatn = n1 + · · · + nk. Let ψj ∈
S(Rnj ), j ∈ Ik = {1, . . . , k} satisfy the following:

(1) ψ̂j ∈ C∞
0 (R

nj ) andψ̂j (ξj ) � 0, ξj ∈ Rnj for j ∈ Ik;
(2) Ωj = suppψ̂j does not contain 0 and̂ψj(enj ) �= 0 for j ∈ Ik.
We will use the following partition ofIn = {1, . . . , n}. Let {pj1, . . . , pjnj }, j ∈ Ik , be

disjoint subsets ofIn, j ∈ Ik, such thatpjl < p
j

l+1, 1 ≤ l ≤ nj − 1, j ∈ Ik. Then

ψ(x) =
k∏
j=1

ψj(xpj1
, . . . , x

p
j
nj

), xj = (x
p
j

1
, . . . , x

p
j
nj

) ∈ Rnj , j ∈ Ik ,

represents an analyzing wavelet. Clearly,

ψ̂(ξ) =
k∏
j=1

ψ̂j (ξpj1
, . . . , ξ

p
j
nj

), ξj = (ξ
p
j

1
, . . . , ξ

p
j
nj

) ∈ Rnj , j ∈ Ik .

Note that we could choose another wavelet both for a different choice ofn′
1, . . . , n

′
k′ ,

different partitions ofIn and thus, differentψ ′
1, . . . , ψ

′
k′ . The idea is to represent wavelet as a

product of wavelets that belong toRk for somek = 1,2,4 or 8.
In the sequel, we will assume that

x1 = xp1
1
, . . . , xn1 = xp1

n1
, . . . , xn = xpknk

.

Thus, forx, ξ ∈ Rn, we use the notationx = (x1, . . . , xk) andξ = (ξ1, . . . , ξk), where
xj , ξj ∈ Rnj , j ∈ Ik. We also use the notationen = (en1, . . . , enk ), whereenj are the unit
vectors ofRnj for j ∈ Ik.

We define the wavelet transform of a distributionf ∈ S ′(Rn) by

Wψf (x, ξ) =
∫

Rn
f (t)

k∏
j=1

|ξj |nj /2ψj(|ξj |Rξj (tj − xj )) dt ,

for (x, ξ) ∈ Rn×∏k
j=1(R

nj \{0}), where integration is understood in the distributional sense.
Obviously, for a different factorization of a wavelet into a product of wavelets we obtain
different wavelet transforms.

The Fourier transform ofWψf with respect tox is given by

̂Wψf (x, ξ)(τ, ξ) = (2π)n/2f̂ (τ )
k∏
j=1

|ξj |−nj /2ψ̂j (|ξj |−1Rξj (τ
j )) ,
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for (τ, ξ) ∈ Rn × ∏k
j=1(R

nj \{0}). In other words,

Wψf (x, ξ) =
∫

Rn
f̂ (τ )

k∏
j=1

|ξj |−nj /2ψ̂j (|ξj |−1Rξj (τ
j ))eiτx dτ ,

for (x, ξ) ∈ R n × ∏k
j=1(R

nj \{0}).
Asf is a tempered distribution, we have thatWψf is a tempered distribution with respect

to the variablex, while ξ belongs to
∏k
j=1(R

nj \{0}).
The complement ofRn×∏k

j=1(R
nj \{0}) in Rn×Rn is of zero measure. Thus, excluding

this set in the domain of integration, we can apply the same argument as in the assertions of
Section 3.1 forn = 1,2,4,8 and obtain the next four assertions.

PROPOSITION 10 (Parseval’s identity). Let f, g ∈ L2(Rn). Then Wψf ∈ L2(Rn ×∏k
j=1(R

nj \{0})) and∫
Rn

∫
Rn
Wψf (x, ξ)Wψg(x, ξ) dxdξ = Cψ

∫
Rn
f (t)g(t) dt ,

where

Cψ = (2π)n
∫

Rn

k∏
j=1

|ψ̂j (ξj )|2
|ξj |nj dω .

COROLLARY 11. The wavelet transformWψ is an isometric mapping fromL2(Rn, dt)
to L2(Rn × ∏k

j=1(R
nj \{0}), C−1

ψ dxdξ).

PROPOSITION 12 (Inverse formula). Let f ∈ L2(Rn). Then f can be expressed via
Wψf as

f (t) = C−1
ψ

∫
Rn

∫
Rn
Wψf (x, ξ)

k∏
j=1

|ξj |nj /2ψj(|ξj |Rξj (tj − xj )) dxdξ .

Note that this formula does not hold for polynomials as all the moments ofψ equal zero.
We refer to [3, 9] for the (generalized) wavelettransforms of tempered and other classes of
distributions.

PROPOSITION 13. Let f ∈ S ′(Rn). Then f ∈ Hs(Rn) if and only if∫
Rn

∫
Rn

|Wψf (x, ξ)|2(1 + |ξ |2)s dxdξ < ∞ .

4.1. Wavefront set. In the remainder of this section we assume that suppψ̂j ⊆
Br(enj ), r ∈ (0,1), j ∈ {1, . . . , k}. For 0< λ < 1, we defineψλ(x) = ∏k

j=1ψj,λ(x
j ),

x ∈ Rn, where

ψj,λ(x
j ) = λnj e

ixenj (1−λ)
ψj (λx

j ), xj ∈ R nj .

PutΩj,λ = suppψ̂j,λ andΩλ = ∏k
j=1Ωj,λ. Clearly,Ωj,λ ⊆ Bλr(enj ).
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4.1.1. WF(f ) and WFψ(f ). We define aψ-wave front setWFψ(f ) with respect to
the newly introduced wavelet transform as a subset ofRn × ∏k

j=1(R
nj \{0}).

DEFINITION 14. Letf ∈ S ′(Rn). WFψ(f ) ⊆ Rn × ∏k
j=1(R

nj \{0}) is the comple-

ment of the set ofψ-microlocally regular points(x0, ξ0) ∈ Rn × ∏k
j=1(R

nj \{0}), that is,
(x0, ξ0) /∈ WFψ(f ) if and only if

(∃φ ∈ C∞
0 (R

n)) (φ(x0) �= 0)

(
∃Γ (ξ0) ⊆

k∏
j=1

(Rnj \{0})
)

(∃λ ∈ (0,1)) (∀N > 0) (∃CN > 0)

| ̂Wψ,λ(φf )(x, ξ)(τ, ξ)| � CN |ξ |−N, τ ∈ Rn, ξ ∈ Γ (ξ0) , |ξ | � 1 .

Note, in this definition the coneΓ (ξ0) is a subset of
∏k
j=1(R

nj \{0}).
Let (x0, ξ0) ∈ Rn × ∏k

j=1(R
nj \{0}). Then(x0, ξ0) /∈ WFψ(f ) if and only if

(∃φ ∈ C∞
0 (R

n)) (φ(x0) �= 0)

(
∃Γ (ξ0) ⊆

k∏
j=1

(Rnj \{0})
)

(∃λ ∈ (0,1)) (∀N > 0) (∃CN > 0)

|φ̂f (τ )|
k∏
j=1

|ξj |−nj /2ψ̂j,λ(|ξj |−1Rξj (τ
j )) � CN |ξ |−N, τ ∈ Rn, ξ ∈ Γ (ξ0) , |ξ | � 1 ;

and, further, if and only if

(∃φ ∈ C∞
0 (R

n)) (φ(x0) �= 0)

(
∃Γ (ξ0) ⊆

k∏
j=1

(Rnj \{0})
)

(∃λ ∈ (0,1)) (∀N > 0) (∃CN > 0)

|φ̂f (τ )|
k∏
j=1

ψ̂j,λ(|ξj |−1Rξj (τ
j )) � CN |ξ |−N , τ ∈ Rn, ξ ∈ Γ (ξ0) , |ξ | � 1 .

We are going to give a variant of Theorem 7. We use the lemmas in Section 6.

THEOREM 15. Let f ∈ S ′(Rn). Then WFψ(f ) = WF(f ) ∩ Rn × ∏k
j=1(R

nj \{0}).
PROOF. It is expected that the proof will be similar to the one of Theorem 7, but one has

to take care about the directions in the domain ofξ -variable. In order to achieve completeness,
we will give the details of the proof.

Let (x0, ξ0) /∈ WF(f ) andξ0 ∈ ∏k
j=1(R

nj \{0}). To show that(x0, ξ0) /∈ WFψ(f ) we

need to findΓ̃ (ξ0) ⊆ ∏k
j=1(R

nj \{0}) andλ ∈ (0,1) (such that for eachN > 0 there exists
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C′
N > 0) such that

|φ̂f (τ )|
k∏
j=1

ψ̂j,λ(|ξj |−1Rξj (τ
j )) � C′

N |ξ |−N , τ ∈ Rn, ξ ∈ Γ̃ (ξ0) , |ξ | � 1 .

As for everyξ ∈ ∏k
j=1(R

nj \{0}) the mappingτ �→ ω, where

ωj = |ξj |−1Rξj (τ
j ) , τ ∈ Rn ,

is a bijection of setRn onto itself, the problem can be reformulated to findΓ̃ (ξ0) ⊆∏k
j=1(R

nj \{0}) andλ ∈ (0,1) such that

(∀N > 0) (∃C′
N > 0)

(
∀ω ∈

k∏
j=1

Ωj,λ

)
(∀ξ ∈ Γ̃ (ξ0)) (|ξ | � 1)

|φ̂f (|ξ1|R−1
ξ1 (ω

1), . . . , |ξk|R−1
ξk
(ωk))|

k∏
j=1

ψ̂j,λ(ω
j ) � C′

N |ξ |−N .(3)

By Lemma 26 there exist a conic neighborhood̃Γ (ξ0) and λ ∈ (0,1) such that
(|ξ1|R−1

ξ1 (ω
1), . . . , |ξk|R−1

ξk
(ωk)) ∈ Γ (ξ0) for ω ∈ ∏k

j=1Ωj,λ andξ ∈ Γ̃ (ξ0). We conclude
that

|φ̂f (|ξ1|R−1
ξ1 (ω

1), . . . , |ξk |R−1
ξk
(ωk))|

k∏
j=1

ψ̂j,λ(ω
j )

� C|φ̂f (|ξ1|R−1
ξ1 (ω

1), . . . , |ξk |R−1
ξk
(ωk))|

� CCN

(√
(|ξ1||R−1

ξ1 (ω
1)|)2 + · · · + (|ξk||R−1

ξk
(ωk)|)2

)−N

� CCN

(√
(|ξ1||ω1|)2 + · · · + (|ξk ||ωk|)2

)−N

� CCN(min{|ω1|, . . . , |ωk|})−N |ξ |−N
� C′

N |ξ |−N ,
whereω ∈ ∏k

j=1Ωj,λ, ξ ∈ Γ̃ (ξ0), |ξ | � 1. Thus(x0, ξ0) /∈ WFψf .

Now, let (x0, ξ0) /∈ WFψf . Then there existφ ∈ C∞
0 (R

n), φ(x0) �= 0, Γ̃ (ξ0), a conic
neighborhood ofξ0, andλ ∈ (0,1) such that for eachN > 0 there existsC′

N > 0 such

that (3) is satisfied for everyω ∈ Ωλ = ∏k
j=1Ωj,λ, ξ ∈ Γ̃ (ξ0), |ξ | � 1. As en ∈ Ωλ and

ψ̂λ(en) �= 0, we get

|φ̂f (ξ)| = |φ̂f (|ξ1|R−1
ξ1 (en1), . . . , |ξk |R−1

ξk
(enj ))|

�
C′
N

ψ̂λ(en)
|ξ |−N ,

whereξ ∈ Γ̃ (ξ0), |ξ | � 1. Thus,(x0, ξ0) /∈ WF(f ). �
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REMARK 16. For a different choice of factorization of a waveletψ into a product of
wavelets described in the introduction of Section 4, the equality in Theorem 15 would hold
on corresponding subsets ofRn × Rn due to the fact thatWψ is defined on these subsets. It
is natural to ask whether it would be possible to achieve the characterization ofWFψ in full
for n �= 1,2,4,8. We can start with looking at the set of all factorizations ofn, denoted by
S, into the sum consisting of addends 1,2,4 and 8. Denote byψm,m ∈ S, the corresponding
wavelets, as it is described, and denote byRm

n the set of directions, whereWψm is defined in
ξ -direction. LetRn = ⋃

m∈S Rm
n . Obviously, we have

WF(f ) ∩ (Rn × Rn) =
⋃
m∈S

WFψm(f ) .

One can easily check that forn = 3 the directions

(0,0, ξ3) , (0, ξ2,0) , (ξ1,0,0) ,

(different from 0∈ R3) are not inR3.
In order to analyze all directionsξ of R3 \ {0}, we can proceed as follows. Let1R be the

characteristic function of the real line. Then we see

Rn × Rn \ {0} � (x, ξ) /∈ WFf ⇐⇒ ((x,0), (ξ,0)) /∈ WF(f ⊗ 1R) .

Thus, for the analysis of directions(0,0, ξ3), (0, ξ2,0) and (ξ1,0,0), we have to consider
Wψ(f ⊗1R), whereψ = ψ4 is the fourth-dimensional wavelet described in Section 3.1 and to
see whether the directions((x,0), (0,0, ξ3,0)), ((x,0), (0, ξ2,0,0)) and((x,0), (ξ1,0,0,0))
are out ofWFψ4(f ⊗ 1R).

In the general case, forn /∈ {1,2,4,8}, one has to combine ideas described in the case
n = 3. Such analysis involves a lot of combinatorics and it will not be given.

4.2. WF (s)(f ) andWF (s)
ψ (f ). Now we define Sobolevψ-wave front setsWF (s)

ψ (f )

⊆ Rn × ∏k
j=1(R

nj \{0}).
DEFINITION 17. Letf ∈ S ′(Rn). ThenWF (s)

ψ (f ) ⊆ Rn × ∏k
j=1(R

nj \{0}) is the

complement of the set of Sobolevψ-microlocally regular points(x0, ξ0) ∈ Rn × ∏k
j=1(R

nj \
{0}), that is,(x0, ξ0) /∈ WF (s)

ψ (f ) if and only if

(∃φ ∈ C∞
0 (R

n)) (φ(x0) �= 0)

(
∃Γ (ξ0) ⊆

k∏
j=1

(Rnj \{0})
)
(∃λ ∈ (0,1))

∫
Γ (ξ0)

∫
Rn

| ̂Wψ,λ(φf )(τ, ξ)|2(1 + |ξ |2)s dτdξ < ∞ .

Now we give a theorem equivalent to Theorem 9. We use the lemmas from Section 6.

THEOREM 18. Let f ∈ S ′(Rn). Then WF (s)
ψ (f ) = WF (s)(f )∩ Rn×∏k

j=1(R
nj \{0}).
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PROOF. Let ξ0 ∈ ∏k
j=1 Rnj \{0} and(x0, ξ0) /∈ WFs (f ). Then

I =
∫
Γ (ξ0,r0)

∫
R n

| ̂Wψ,λ(φf )(τ, ξ)|2(1 + |ξ |2)s dτdξ

= (2π)n
∫
Γ (ξ0,r0)

(1 + |ξ |2)s dξ
∫
Γ̃ (ξ0)

|φ̂f (τ )|2
k∏
j=1

|ξj |−nj ψ̂j,λ(|ξj |−1Rξj (τ
j ))2 dτ ,

where Γ̃ (ξ0) = {τ ; there existsξ ∈ Γ (ξ0, r0) such that|ξj |−1Rξj (τ
j ) ∈ Ωj,λ for j =

1, . . . , k}. So, we have

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
∫
Γ (ξ0,r0)

(1 + |ξ |2)s
k∏
j=1

|ξj |−nj ψ̂j,λ(|ξj |−1Rξj (τ
j ))2 dξ ,

and with the change of variables

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
∫
Ω ′(τ )

(
1 + |τ1|2

|ω1|2 + · · · + |τ k|2
|ωk|2

)s k∏
j=1

|ωj |−nj ψ̂j,λ(ωj )2 dω ,

where, forτ ∈ Γ̃ (ξ0),Ω ′(τ ) is defined by

{
ω ; there existsξ ∈ Γ (ξ0, r0) such that(|ξ1|−1Rξ1(τ1), . . . , |ξk |−1Rξk (τ

k)) ∈
k∏
j=1

Ωj,λ

}
.

AsΩ ′(τ ) ⊆ ∏k
j=1Ωj,λ, there exist positive constantsC1 andC2, independent fromτ , such

that for everyω ∈ Ω ′(τ )

C1(1 + |τ |2)s �
(

1 + |τ1|2
|ω1|2 + · · · + |τ k|2

|ωk|2
)s k∏

j=1

|ωj |−nj � C2(1 + |τ |2)s ,

which implies that

C1(1 + |τ |2)s
∫
Ω ′(τ )

k∏
j=1

ψ̂j,λ(ω
j )2 dω

�
∫
Ω ′(τ )

(
1 + |τ1|2

|ω1|2 + · · · + |τ k|2
|ωk|2

)s k∏
j=1

|ωj |−nj ψ̂j,λ(ωj )2 dω

� C2(1 + |τ |2)s
∫
Ω ′(τ )

k∏
j=1

ψ̂j,λ(ω
j )2 dω .
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Lemma 24 implies that we can chooser0 such thatΓ̃ (ξ0) is a subset ofΓ (ξ0) and then

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
∫
Ω ′(τ )

(
1 + |τ1|2

|ω1|2 + · · · + |τ k|2
|ωk|2

)s k∏
j=1

|ωj |−nj ψ̂j,λ(ωj )2 dω

� C2(2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ
∫

∏
Ωj,λ

k∏
j=1

ψ̂j,λ(ω
j )2 dω

� C

∫
Γ (ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ ,

whereC = C2(2π)n
∫∏

Ωj,λ

∏k
j=1 ψ̂j,λ(ω

j )2 dω. This implies that(x0, ξ0) /∈ WF (s)
ψ (f ).

Let now(x0, ξ0) /∈ WF (s)
ψ (f ). Using Lemma 25, we see that there exists a conic neigh-

borhoodΓ̃ ′(ξ0) such thatΓ̃ ′(ξ0) ⊆ Γ̃ (ξ0) and that for everyτ ∈ Γ̃ ′(ξ0) it holds thatΩ ′(τ )
contains the same neighborhood ofen, which we call

∏k
j=1Ω

′
j . Then we have

I = (2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2 dτ
(

1 + |τ1|2
|ω1|2 + · · · + |τ k|2

|ωk|2
)s k∏

j=1

|ωj |−nj ψ̂j,λ(ωj )2dω

� C1(2π)n
∫
Γ̃ (ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ
∫
Ω ′(τ )

k∏
j=1

ψ̂j,λ(ω1)
2 dω

� C

∫
Γ̃ ′(ξ0)

|φ̂f (τ )|2(1 + |τ |2)s dτ ,

whereC = C1(2π)n
∫∏

Ω ′
j

∏k
j=1 ψ̂j,λ(ω1)

2 dω. This implies that(x0, ξ0) /∈ WF (s)(f ). �

REMARK 19. The same conclusions concerning the directions laying out ofRn given
in Remark 16 hold forWFs (f ).

5. Auxiliary lemmas A. We assume thatn = 1,2,4 or 8.

LEMMA 20. Let τ ∈ Rn\{0}. Then the following hold.
(1) The mapping ξ �→ ω, where ω = |ξ |−1Rξ (τ), is bijective from Rn\{0} onto itself.

The inverse mapping ω �→ ξ is given by ξ = (|τ |/|ω|2)[R̄τ ]−1(ω), where ω ∈ Rn\{0}.
(2) For a given ξ ∈ Rn\{0} and every ω ∈ Rn\{0} there exists R′

ω ∈ O(n) such that
ξ = |ω|−1R′

ω(τ).
(3) Let r0 > 0. The above mapping ξ �→ ω is bijective from Γ (τ, r0) onto Γ (en, r0).

PROOF. (1) For everyξ1, ξ2 ∈ Rn\{0}, we see that

|ξ1|−1Rξ1(τ ) = |ξ2|−1Rξ2(τ ) ⇒ |ξ1| = |ξ2| ⇒ Rξ1(τ ) = Rξ2(τ ) .
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First, implication is a consequence of the fact that any rotation preserves the norm. Further-
more, we have

Rξ1(τ )

|τ | = Rξ2(τ )

|τ | ⇒ R̄τ (ξ1)

|ξ1| = R̄τ (ξ2)

|ξ2| ⇒ R̄τ (ξ1) = R̄τ (ξ2) ⇒ ξ1 = ξ2 ,

and this proves thatξ �→ ω is injective.
To prove thatξ �→ ω is surjective we need to show that for everyω ∈ Rn\{0} there exists

ξ ∈ Rn\{0} such that|ξ |−1Rξ (τ) = ω. We can easily verify thatξ given by

ξ = |τ |
|ω|2 [R̄τ ]−1(ω)

satisfies this.
(2) As we did before when takinḡRτ ∈ O(n) for eachRξ such that

Rξ (τ)

|τ | = R̄τ (ξ)

|ξ | ,

(see Section 2), we can takeR′
ω ∈ O(n) for [R̄τ ]−1 such that

[R̄τ ]−1(ω)

|ω| = R′
ω(τ)

|τ | .

Then it is clear that

ξ = |ω|−1R′
ω(τ) .

(3) First, we note thatξ ∈ Γ (τ, r0) implies |ξ |−1Rξ (τ) ∈ Γ (en, r0), which follows
from ∣∣∣∣ |ξ |−1Rξ (τ)

|ξ |−1|τ | − en

∣∣∣∣ =
∣∣∣∣Rξ (τ)|τ | − Rτ (τ)

|τ |
∣∣∣∣ =

∣∣∣∣ R̄τ (ξ)|ξ | − R̄τ (τ )

|τ |
∣∣∣∣

=
∣∣∣∣ ξ|ξ | − τ

|τ |
∣∣∣∣ < r0 .

Second, for everyω ∈ Γ (en, r0) there existsξ ∈ Rn\{0} such thatω = |ξ |−1Rξ (τ). Indeed,
suchξ is given byξ = |τ ||ω|−2[R̄τ ]−1(ω). We only need to show that it belongs toΓ (τ, r0).
This follows from ∣∣∣∣∣∣∣∣

|τ |
|ω|2 [R̄τ ]−1(ω)

|τ |
|ω|2 |ω|

− τ

|τ |

∣∣∣∣∣∣∣∣ =
∣∣∣∣ [R̄τ ]−1(ω)

|ω| − [R̄τ ]−1(en)

∣∣∣∣
=

∣∣∣∣ ω|ω| − en

∣∣∣∣ < r0 .

LEMMA 21. Let ξ0 ∈ Rn\{0} and r0 > 0.
(1) Let τ ∈ Γ (ξ0, r0/2). Then

Γ (en, r0/2) ⊆ {ω ; there exists ξ ∈ Γ (ξ0, r0) such that ω = |ξ |−1Rξ (τ)} ,
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or equivalently for every τ ∈ Γ (ξ0, r0/2), it follows that Γ (en, r0/2) is contained in the image
of Γ (ξ0, r0) under the mapping ξ �→ ω = |ξ |−1Rξ (τ).

(2) Let Ω be a neighborhood of en. Let

Ω ′(τ ) = {ω ∈ Rn \ {0} ; there exists ξ ∈ Γ (ξ0, r0) such that ω = |ξ |−1Rξ (τ) ∈ Ω},
where τ ∈ Rn \ {0}. Then there exists a neighborhood Ω ′ of en such that for every τ ∈
Γ (ξ0, r0/2),

Ω ′ ⊆
⋂

τ∈Γ (ξ0,r0/2)
Ω ′(τ ) .

(3) Let Ω ⊆ Br0(en) ⊆ Rn, r0 ∈ (0,1) and

rΩ = sup{|ω/|ω| − en| ; ω ∈ Ω} .
Then rΩ is the smallest non-negative real number such that Ω ⊆ Γ (en, rΩ). Moreover,
rΩ �

√
2r0/(1 − r0).

(4) Ω ′ defined in the above can be chosen in such way that rΩ ′ � r0/2.

PROOF. (1) Letτ ∈ Γ (ξ0, r0/2). ThenΓ (τ, r0/2) ⊆ Γ (ξ0, r0) because for everyξ ∈
Γ (τ, r0/2), we have∣∣∣∣ ξ|ξ | − ξ0

|ξ0|
∣∣∣∣ �

∣∣∣∣ ξ|ξ | − τ

|τ |
∣∣∣∣ +

∣∣∣∣ τ|τ | − ξ0

|ξ0|
∣∣∣∣ < r0

2
+ r0

2
= r0 .

From Lemma 20 we know thatΓ (τ, r0/2) is mapped ontoΓ (en, r0/2) by ξ �→ ω = |ξ |−1Rξ

(τ). So, for everyτ ∈ Γ (ξ0, r0/2)
Γ (en, r0/2) = {ω ∈ Rn \ {0} ; there existsξ ∈ Γ (τ, r0/2) such thatω = |ξ |−1Rξ (τ)}

⊆ {ω ∈ Rn \ {0} ; there existsξ ∈ Γ (ξ0, r0) such thatω = |ξ |−1Rξ (τ)} ,
which is what we had to prove.

(2) This assertion is a direct corollary of part (1). The claim is satisfied forΩ ′ =
Ω ∩ Γ (en, r0/2).

(3) Clearly,Ω ⊂ Γ (en, rΩ) and rΩ is the smallest non-negative number such that

this inclusion holds. If we show thatΩ ⊆ Γ (en,
√

2r0/(1 − r0)), then it follows thatrΩ ≤√
2r0/(1 − r0). We have|ω − en| � r0, ω ∈ Ω , i.e.,

|ω|2 � r2
0 + 2ωn − 1 , ω ∈ Ω .

Also,ω ∈ Ω implies that|ω| � |en| − |en − ω| � 1 − r0 > 0 andωn > 0. Furthermore, we
have ∣∣∣∣ ω|ω| − en

∣∣∣∣2 = 2|ω|2 − 2ωn|ω|
|ω|2 �

2(r2
0 + 2ωn − 1)− 2ω2

n

|ω|2

≤ 2r2
0

|ω|2 ≤ 2r2
0

(1 − r0)2
,

which implies thatΩ ⊆ Γ (en,
√

2r0/(1 − r0)).
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(4) This is a consequence of part (2). �

We callrΩ the conic radius ofΩ ⊆ Br0(en) ⊆ Rn, r0 ∈ (0,1). Note that forn = 1 the
conic radius of any setΩ (contained in(−r0, r0)) is equal to 0.

LEMMA 22. Let ξ0 ∈ Rn\{0} and en ∈ Ω ⊆ Br0(en), where r0 < 1. Define

Γ̃ (ξ0) = {τ ∈ Rn \ {0} ; there exists ξ ∈ Γ (ξ0, r0) such that |ξ |−1Rξ (τ) ∈ Ω} .
Then the following hold.

(1) Γ̃ (ξ0) is a conic neighborhood of ξ0, in particular, Γ (ξ0, r0) ⊆ Γ̃ (ξ0).

(2) Γ̃ (ξ0) ⊆ Γ (ξ0, r0 + rΩ).

PROOF. (1) By definition, if τ ∈ Γ̃ (ξ0), then there existsξ ∈ Γ (ξ0, r0) such that
|ξ |−1Rξ (τ) ∈ Ω . Let a > 0 andξ ∈ Γ (ξ0, r0). Thenaξ ∈ Γ (ξ0, r0). AsRξ (τ) = Raξ (τ )

andaRξ (τ ) = Rξ (aτ), we get

|aξ |−1Raξ (aτ) = |ξ |−1Rξ (τ) ∈ Ω .

HenceΓ̃ (ξ0) is a conic set. Asen belongs toΩ and |ξ |−1Rξ (ξ) = en, it follows that
Γ (ξ0, r0) ⊆ Γ̃ (ξ0). Now, we conclude that̃Γ (ξ0) is a conic neighborhood ofξ0.

(2) To prove thatΓ̃ (ξ0) ⊆ Γ (ξ0, r0 + rΩ) we need to show that for everyτ ∈ Γ̃ (ξ0)∣∣∣∣ τ|τ | − ξ0

|ξ0|
∣∣∣∣ < r0 + rΩ .

For τ ∈ Γ̃ (ξ0) there existξ ∈ Γ (ξ0, r0) andω ∈ Ω such that|ξ |−1Rξ (τ) = ω, i.e., τ =
|ξ |R−1

ξ (ω). So, we have∣∣∣∣ |ξ |R−1
ξ (ω)

|ξ ||ω| − ξ0

|ξ0|
∣∣∣∣ �

∣∣∣∣R−1
ξ (ω)

|ω| − R−1
ξ (en)

∣∣∣∣ +
∣∣∣∣R−1
ξ (en)− ξ0

|ξ0|
∣∣∣∣

=
∣∣∣∣ ω|ω| − en

∣∣∣∣ +
∣∣∣∣ ξ|ξ | − ξ0

|ξ0|
∣∣∣∣ < rΩ + r0 .

LEMMA 23. Let Γ (ξ0) be a conic neighborhood of ξ0 ∈ Rn\{0}. For every λ ∈ (0,1)
let Ωλ ⊆ Bλr(en). Then there exist a conic neighborhood Γ̃ (ξ0) of ξ0 and λ ∈ (0,1) such
that

ξ ∈ Γ̃ (ξ0) , ω ∈ Ωλ ⇒ |ξ |R−1
ξ (ω) ∈ Γ (ξ0) .(4)

PROOF. The mapping given by(Rn \ {0})× Rn � (ξ, ω) �→ τ = |ξ |R−1
ξ (ω) is contin-

uous at(ξ0, en), which is mapped toξ0. So, there exist neighborhoodsU(ξ0) of ξ0 andU(en)
of en such that

|ξ |R−1
ξ (ω) ∈ Γ (ξ0) , ξ ∈ U(ξ0) , ω ∈ U(en) .

Furthermore, there existsλ ∈ (0,1) such thatΩλ ⊆ U(en), which means that

|ξ |R−1
ξ (ω) ∈ Γ (ξ0) , ξ ∈ U(ξ0) , ω ∈ Ωλ .
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Let Γ̃ (ξ0) be a conic set formed byU(ξ0), that is defined by

Γ̃ (ξ0) = {aξ ; ξ ∈ U(ξ0), a > 0} .
For everyξ ∈ U(ξ0) andω ∈ Ωλ we have that|ξ |R−1

ξ (ω) ∈ Γ (ξ0). Thus, fora > 0, we
obtain

|aξ |R−1
aξ (ω) = a|ξ |R−1

ξ (ω) ∈ Γ (ξ0) ,
becauseΓ (ξ0) is a conic set. So,λ andΓ̃ (ξ0) satisfy property (4). �

6. Auxiliary lemmas B. We have already introduced the multidimensional notation
(see the very beginning of Section 4).

LEMMA 24. Let ξ0 ∈ ∏k
j=1(R

nj \{0}) and r ∈ (0,1). For every λ ∈ (0,1) let Ωj,λ ⊆
Bλr(enj ), j = 1, . . . , k. For every r0 ∈ R+ and λ ∈ (0,1) denote

Γ̃r0,λ(ξ0)={τ ; there exists ξ ∈Γ (ξ0, r0) such that |ξj |−1Rξj (τ
j ) ∈ Ωj,λ for j = 1, . . . , k} .

(1) If for some λ ∈ (0,1), enj ∈ Ωj,λ for j = 1, . . . , k, then for every r0 ∈ R+ the set

Γ̃r0,λ(ξ0) is a conic neighborhood of ξ0. In particular, Γ (ξ0, r0) ⊆ Γ̃r0,λ(ξ0) (τ are points in∏k
j=1(R

nj \{0}).)
(2) There exist r0 ∈ R+ and λ ∈ (0,1) such that Γ̃r0,λ(ξ0) ⊆ Γ (ξ0, r).

PROOF. (1) If τ = (τ1, . . . , τ k) ∈ Γ̃r0,λ(ξ0), then there existξ = (ξ1, . . . , ξk) ∈
Γ (ξ0, r0) andω = (ω1, . . . , ωj ) ∈ Ωλ = Ω1,λ × · · · ×Ωk,λ such that

|ξj |−1Rξj (τ
j ) = ωj , j = 1, . . . , k .(5)

Then, fora > 0, it follows thataξ ∈ Γ (ξ0, r0) and

|aξj |−1Raξj (aτ
j ) = ωj , j = 1, . . . , k .

Thus,aτ ∈ Γ̃r0,λ(ξ0). ThatΓ (ξ0, r0) ⊆ Γ̃r0,λ(ξ0) is a consequence of the fact thatenj ∈ Ωj,λ
and|ξj |−1Rξj (ξ

j ) = enj for j = 1, . . . , k.

(2) It is necessary to findr0 > 0 andλ ∈ (0,1) such that for everyτ ∈ Γ̃r0,λ(ξ0)∣∣∣∣ τ|τ | − ξ0

|ξ0|
∣∣∣∣ < r .(6)

Let

I (ξ, ω) =
(|ξ1|R−1

ξ1 (ω
1), . . . , |ξk |R−1

ξk
(ωk))

|(|ξ1|R−1
ξ1 (ω

1), . . . , |ξk |R−1
ξk
(ωk))| .

For everyτ ∈ Γ̃r0,λ(ξ0) there existξ ∈ Γ (ξ0, r0) andωj ∈ Ωj,λ, j = 1, . . . , k, such that (5)
holds. So, (6) is equivalent to

|I (ξ, ω) − I (ξ0, e
n)| < r .
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As the mapping
k∏
j=1

(Rnj \{0})× Rn\{0} � (ξ, ω) �→ I (ξ, ω)(7)

is continuous at(ξ0, en), there exist neighborhoodU(ξ0) of ξ0 andλ ∈ (0,1) such that

|I (ξ, ω)− I (ξ0, e
n)| < r , ξ ∈ U(ξ0), ω ∈ Ωλ .

Now, it remains to construct a conic set fromU(ξ0) and to show that for everyξ from this
conic set and everyω ∈ Ωλ the same inequality holds. If the given inequality holds for
ξ ∈ U(ξ0) it will hold for aξ , a > 0, because the mapping in (7) maps(ξ, ω) and(aξ, ω) to
the same point. Finally, letr0 > 0 be such that

Γ (ξ0, r0) ⊆ {aξ ; ξ ∈ U(ξ0) anda > 0} .
This proves the second part of the lemma. �

LEMMA 25. Let ξ0 ∈ ∏k
j=1(R

nj \{0}) and r0 ∈ R+. Let Ω = Ω1 × · · · × Ωk such
that Ωj ⊆ Rnj are neighborhoods of enj for j = 1, . . . , k. Let

Γ̃ (ξ0) = {τ ; there exists ξ ∈ Γ (ξ0, r0) such that |ξj |−1Rξj (τ
j ) ∈ Ωj for j = 1, . . . , k} .

For every τ ∈ Γ̃ (ξ0), we define Ω ′(τ ) by

Ω ′(τ ) =
{
ω ; there exists ξ ∈ Γ (ξ0, r0) such that ωj = |ξj |−1Rξj (τ

j ) ∈ Ωj
for j = 1, . . . , k

}
.

(τ ′ and ω above are points in
∏k
j=1(R

nj \{0}).)
Then there exist a conic neighborhood of ξ0, denoted by Γ̃ ′(ξ0), and a neighborhood of

en, called
∏k
j=1Ω

′
j , such that Γ̃ ′(ξ0) ⊆ Γ̃ (ξ0) and that for every τ ∈ Γ̃ ′(ξ0) it holds that

Ω ′(τ ) contains
∏k
j=1Ω

′
j .

PROOF. Let τ ∈ Rn andr > 0. Denote byU(τ, r) the product of ballsBr(τ j ), j =
1, . . . , k. As Γ (ξ0, r0) is a neighborhood ofξ0, there existsr > 0 such thatU(ξ0, r) ⊆
Γ (ξ0, r0). We can taker � 2 minj {|ξj0 |}. This requirement will become clear later.

First, we want to show that for everyτ ∈ U(ξ0, r/2)
U(en, r/(8|ξ0|)) ⊂

⋃
ξ∈U(τ,r/2)

{(|ξ1|−1Rξ1(τ1), . . . , |ξk|−1Rξk (τ
k))} .

Note that, ifτ ∈ U(ξ0, r/2), thenτ ∈ ∏k
j=1(R

nj \{0}) because forj = 1, . . . , k,

|τ j | � |ξj0 | − |ξj0 − τ j | > |ξj0 | − r/2 � 0 .

Also,ω ∈ ∏k
j=1(R

nj \{0}) if ω ∈ U(en, r/(8|ξ0|)), because forj = 1, . . . , k,

|ωj | � 1 − |enj − ωj | > 1 − r/(8|ξ0|) > 1 − r/(4|ξj0 |) � 1/2 .

Then from Lemma 20 we know there existsξ ∈ ∏k
j=1(R

nj \{0}) such that

ωj = |ξj |−1Rξj (τ
j ) , j = 1, . . . , k .



390 S. PILIPOVIĆ AND M. VULETI Ć

We need to show that thisξ belongs toU(τ, r/2). We know that

|ωj − enj | =
∣∣∣∣Rξj (τ j )|ξj | − Rξj (ξ

j )

|ξj |
∣∣∣∣

= 1

|ξj | |τ
j − ξj | = |ωj |

|τ j | |τ
j − ξj | , j = 1, . . . , k .

So,|τ j − ξj | = (|τ j |/|ωj |)|ωj − enj | for j = 1, . . . , k. As

|τ j | � |ξj0 | + |τ j − ξ
j
0 | � |ξ0| + r/2 � 2|ξ0| ,

we conclude that

|τ j − ξj | < 2|ξ0|
1/2

r

8|ξ0| = r

2
, j = 1, . . . , k .

This implies thatξ ∈U(τ, r/2). Furthermore,U(τ, r/2) ⊆ U(ξ0, r) for everyτ ∈ U(ξ0, r/2).
AsU(τ, r/2) ⊆ U(ξ0, r) ⊆ Γ (ξ0, r0), it follows that

U(en, r/(8|ξ0|)) ⊂
⋃

ξ∈Γ (ξ0,r0)
{(|ξ1|−1Rξ1(τ

1), . . . , |ξk |−1Rξk (τ
k))}(8)

for everyτ ∈ U(ξ0, r/2). We construct a conic set fromU(ξ0, r/2) and denote it byΓ̃ ′(ξ0).
It is easy to verify that (8) holds for everyτ ∈ Γ̃ ′(ξ0). As U(ξ0, r/2) ⊆ U(ξ0, r) ⊆
Γ (ξ0, r0) ⊆ Γ̃ (ξ0) (see Lemma 24), it follows that̃Γ ′(ξ0) ⊆ Γ̃ (ξ0). Then we chooseΩ ′

j

such that
∏k
j=1Ω

′
j is a neighborhood ofen and

∏k
j=1Ω

′
j ⊆ U(en, r/(8|ξ0|)) ∩Ω . �

LEMMA 26. Let Γ (ξ0) be a conic neighborhood of ξ0 ∈ ∏k
j=1(R

nj \{0}) and r ∈
(0,1). For every λ ∈ (0,1) let Ωλ = ∏k

j=1Ωj,λ satisfy Ωj,λ ⊆ Bλr(enj ) for j = 1, . . . , k.

Then there exist Γ̃ (ξ0) ⊆ ∏k
j=1(R

nj \{0}), a conic neighborhood of ξ0 and λ ∈ (0,1) such
that

(|ξ1|R−1
ξ1 (ω

1), . . . , |ξk |R−1
ξk
(ωk)) ∈ Γ (ξ0) , ξ ∈ Γ̃ (ξ0) , ω ∈ Ωλ .(9)

PROOF. The mapping
∏k
j=1(R

nj \{0})× Rn � (ξ, ω) �→ τ, where

τ j = |ξj |R−1
ξj
(ωj ) , j = 1, . . . , k ,

is continuous at(ξ0, en), which is mapped toξ0. So, there exist neighborhoodsU(ξ0) ⊆∏k
j=1(R

nj \{0}) of ξ0 andU(en) of en such that

(|ξ1|R−1
ξ1 (ω

1), . . . , |ξk|R−1
ξk
(ωk)) ∈ Γ (ξ0) , ξ ∈ U(ξ0) , ω ∈ U(en) .

Furthermore, there existsλ ∈ (0,1) such thatΩλ ⊆ U(en). Then we have

(|ξ1|R−1
ξ1 (ω

1), . . . , |ξk|R−1
ξk
(ωk)) ∈ Γ (ξ0) , ξ ∈ U(ξ0) , ω ∈ Ωλ .

Let Γ̃ (ξ0) be a conic set constructed fromU(ξ0). Obviously,Γ̃ (ξ0) ⊆ ∏k
j=1(R

nj \{0}). These

λ andΓ̃ (ξ0) satisfy property (9). �
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