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ABSTRACT

We investigate limit theorems for Birkhoff sums of locally Hölder functions

under the iteration of Gibbs–Markov maps. Aaronson and Denker have

given sufficient conditions to have limit theorems in this setting. We show

that these conditions are also necessary: there is no exotic limit theorem

for Gibbs–Markov maps. Our proofs, valid under very weak regularity

assumptions, involve weak perturbation theory and interpolation spaces.

For L2 observables, we also obtain necessary and sufficient conditions to

control the speed of convergence in the central limit theorem.

1. Introduction and results

Let T be a probability preserving transformation on a space X , and let
f : X → R. We are interested in this paper in limit theorems for sequences
(Snf − An)/Bn, where Snf =

∑n−1
k=0 f ◦ T k and An, Bn are real numbers with

Bn > 0. If T is a Gibbs–Markov map and f satisfies a very weak regularity as-
sumption, we will give necessary and sufficient conditions for the convergence in
distribution of (Snf − An)/Bn to a nondegenerate random variable. Sufficient
conditions for this convergence are already known by the work of Aaronson and
Denker [AD01b, AD01a] (under stronger regularity assumptions), and the main
point of this article is to show that these conditions are also necessary. We will

Received September 3, 2008

1
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also considerably weaken the regularity assumptions of Aaronson and Denker,
by using weak perturbation theory [KL99, Her05].

Finding necessary conditions for limit theorems in dynamical systems has
already been considered in [Sar06], but here the author considered only random
variables in a controlled class of distributions, while our results apply to all
random variables. The paper [Jak93] (see also [DJ89]) gives in a wider setting
(the condition (B) in this paper is satisfied for Gibbs–Markov maps) a partial
answer to the questions we are considering: if one assumes that An = 0, then the
limiting distribution has to be stable, as in the case of i.i.d. random variables.
However, it does not describe for which functions f the convergence Snf/Bn→W

takes place, nor does it treat the more difficult case An �= 0.
At the heart of our argument lies a very precise control on the leading eigen-

value of perturbed transfer operators: if the function f belongs to Lp for
p ∈ (1,∞), we obtain such a control up to an error term O(|t|p+ε) for some
ε > 0, in Theorem 3.13. This estimate is useful in many different situations: we
illustrate it by deriving, in Appendix A, necessary and sufficient conditions for
the Berry–Esseen theorem (i.e., estimates on the speed of convergence in the
central limit theorem), for L2 observables satisfying the same weak regularity
condition as above.

1.1. The case of i.i.d. random variables. Since our limit theorems will be
modeled on corresponding limit theorems for sums of independent identically
distributed random variables, let us first describe the classical results in this
setting (the statements of this paragraph can be found in [Fel66] or [IL71]).

Definition 1.1: Let Xn be a sequence of random variable. This sequence satisfies
a nondegenerate limit theorem if there exist An ∈ R and Bn > 0 such that
(Xn −An)/Bn converges in distribution to a nonconstant random variable.

Definition 1.2: A measurable function L : R
∗
+ → R

∗
+ is slowly varying if, for

any λ > 0, L(λx)/L(x) → 1 when x→ +∞.

We define three sets of random variables as follows:

• Let D1 be the set of nonconstant random variables Z whose square is
integrable.

• Let D2 be the set of random variables Z such that the function
L(x) := E(Z21|Z|≤x) is unbounded and slowly varying (equivalently,
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P (|Z| > x) = x−2�(x) for a function � such that L̃(x) := 2
∫ x
1
�(u)
u du is

unbounded and slowly varying, and in this case L and L̃ are equivalent
at +∞).

• Finally, let D3 be the set of random variables Z such that there exist
p ∈ (0, 2), a slowly varying function L and c1, c2 ≥ 0 with c1 + c2 =
1 such that P (Z > x) = (c1 + o(1))L(x)x−p and P (Z < −x) =
(c2 + o(1))L(x)x−p when x→ +∞.

Let also D = D1 ∪ D2 ∪ D3. The set D is exactly the set of random variables
satisfying nondegenerate limit theorems. We will now describe the norming
constants and the limiting distribution in these theorems.

Let Z ∈ D; let Z0, Z1, . . . be i.i.d. random variables with the same distribution
as Z. Then

• If Z ∈ D1, let Bn =
√
n and W = N (0, E(Z2) − E(Z)2).

• If Z ∈ D2, let Bn → ∞ satisfy nL(Bn) ∼ B2
n and let W = N (0, 1).

• If Z∈D3, let Bn→∞ satisfy nL(Bn)∼Bpn. Define c=Γ(1−p) cos (pπ/2)
if p �= 1 and c = π/2 if p = 1, and β = c1 − c2. Let ω(p, t) = tan(pπ/2)
if p �= 1 and ω(1, t) = − 2

π log |t|. Let W be the random variable with
characteristic function

(1.1) E(eitW ) = e−c|t|
p(1−iβ sgn(t)ω(p,t)).

Theorem 1.3: In all three cases, there exists An such that

(1.2)
∑n−1

k=0 Zk −An
Bn

→W.

One can take An = nE(Z) if Z is integrable, and An = 0 if Z ∈ D3 with p < 1
(if p = 1 but Z is not integrable, the value of An is more complicated to express,

see [AD98]).
Moreover, the random variables in D are the only ones to satisfy such a limit

theorem: if a random variable Z is such that the sequence
∑n−1

k=0 Zk satisfies a

nondegenerate limit theorem, then Z ∈ D.

The set D can therefore be described as the set of random variables belonging
to a domain of attraction. The limit laws in this theorem are the normal law
and the so-called stable laws. The two parts of this theorem are quite different:
while the direct implication is quite elementary (it boils down to a computation
of characteristic functions), the converse implication, showing that a random
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variable automatically belongs to D if it satisfies a nondegenerate limit theorem,
is much more involved, and requires the full strength of Lévy–Khinchine theory.

The direct implication of Theorem 1.3 describes one limit theorem for random
variables in D, but does not exclude the possibility of other limit theorems (for
different centering and scaling sequences). However, the following convergence
of types theorem (see, e.g., [Bil95, Theorem 14.2]) ensures that it can only be
the case in a trivial way:

Theorem 1.4: Let Wn be a sequence of random variables converging in distri-

bution to a nondegenerate random variableW . If, for some An ∈ R and Bn > 0,

the sequence (Wn − An)/Bn also converges in distribution to a nondegenerate

random variable W ′, then the sequences An and Bn converge respectively to

real numbers A and B (and W ′ is equal in distribution to (W −A)/B).

The specific form of the convergence, the norming constants or the limit
laws in Theorem 1.3 will not be important to us. Indeed, we will prove in a
dynamical setting that Birkhoff sums satisfy a limit theorem if and only if the
sums of corresponding i.i.d. random variables also satisfy a limit theorem. Using
Theorem 1.3, this will readily imply a complete characterization of functions
satisfying a limit theorem — it will not be necessary to look into the details
of Theorem 1.3 and the specific form of the domains of attraction, contrary to
what is done in [AD01b, AD01a].

1.2. Limit theorems for Gibbs–Markov maps. Let (X, d) be a bounded
metric space endowed with a probability measure m. A probability preserving
map T : X → X is Gibbs–Markov if there exists a partition α of X (modulo
0) by sets of positive measure, such that

(1) Markov: for all a ∈ α, T (a) is a union (modulo 0) of elements of α and
T : a→ T (a) is invertible.

(2) Big image and preimage property: there exists a subset {a1, . . . , an} of
α with the following property: for any a ∈ α, there exist i, j ∈ {1, . . . , n}
such that a ⊂ T (ai) and aj ⊂ T (a) (modulo 0).

(3) Expansion: there exists γ < 1 such that for all a ∈ α, for almost all
x, y ∈ a, d(Tx, T y) ≥ γ−1d(x, y).

(4) Distortion: for a ∈ α, let g be the inverse of the jacobian of T on a, i.e.,

g(x) =
dm|a

d(m ◦ T|a) (x) for x ∈ a.
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Then there exists C such that, for all a ∈ α, for almost all x, y ∈ a,
∣
∣
∣
∣1 − g(x)

g(y)

∣
∣
∣
∣ ≤ Cd(Tx, T y).

A Gibbs–Markov map is mixing if, for all a, b ∈ α, there exists N such that
b ⊂ T n(a) mod 0 for any n > N . Since the general case reduces to the mixing
one, we will only consider mixing Gibbs–Markov maps.

For f : X → R and A ⊂ X , let Df(A) denote the best Lipschitz constant of
f on A. If f is integrable, we will write

∫
f or E(f) for

∫
f dm, the reference

measure being always dm. Our main result follows.

Theorem 1.5: Let T : X → X be a mixing probability preserving a Gibbs–

Markov map, and let f : X → R satisfy
∑

a∈αm(a)Df(a)η < ∞ for some

η ∈ (0, 1].
Assume f ∈ L2. Then

• Either f is the sum of a measurable coboundary and a constant, i.e.,

there exist a measurable function u and a real number c such that

f = u− u ◦T + c almost everywhere. Then u is bounded, and Snf −nc

converges in distribution to the difference Z − Z ′ where Z and Z ′ are

independent random variables with the same distribution as u.

• Otherwise, let f̃ = f−∫
f dm, and define σ2 =

∫
f̃2+2

∑∞
k=1

∫
f̃ ·f̃◦T k.

Then this series converges, σ2 > 0, and (Snf − n
∫
f)/

√
n converges in

distribution to N (0, σ2).

Assume that f does not belong to L2. Let Z0, Z1, . . . be i.i.d. random vari-

ables with the same distribution as f . Consider sequences An ∈ R and Bn > 0,

and a nondegenerate random variable W . Then (Snf − An)/Bn converges to

W if and only if (
∑n−1

k=0 Zk −An)/Bn converges to W .

In particular, it follows from the classification in the i.i.d. case that the
Birkhoff sums of a function f satisfy a nondegenerate limit theorem if and
only if the distribution of f belongs to the class D described in Paragraph 1.1.

In the L2 case, the behavior of Birkhoff sums can be quite different from
the i.i.d. case (see the formula for σ2, encompassing the interactions between
different times). On the other hand, when f �∈ L2, the behavior is exactly the
same as in the i.i.d. case (the interactions are negligible with respect to the
growth of the sums), and the good scaling coefficients can be read directly from
the independent case Theorem 1.3.
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The “sufficiency” part of the theorem (i.e., the convergence of the Birkhoff
sums if f is in the domain of attraction of a gaussian or stable law) is known
under stronger regularity assumptions: if the function f is locally Hölder contin-
uous (i.e. supa∈αDf(a) <∞), then the result is proved in [AD01b, AD01a] for
f �∈ L2, and it follows from the classical Nagaev method (see, e.g., [RE83, GH88]
for subshifts of finite type) when f ∈ L2. The article [Gou04] proves the
same results under the slightly weaker assumption

∑
m(a)Df(a) < ∞. How-

ever, these methods are not sufficient to deal with the weaker assumption
∑
m(a)Df(a)η < ∞, hence new arguments will be required to prove the suf-

ficiency part of Theorem 1.5. The main difficulty is the following: even if
f belongs to all Lp spaces and

∑
m(a)Df(a)η < ∞, it is possible that T̂ f

is not locally Hölder continuous, in the sense that there exists a ∈ α with
D(T̂ f)(a) = ∞ (here, T̂ denotes the transfer operator associated to T ).1

However, the main novelty of the previous theorem is the necessity part,
showing that no exotic limit theorem can hold for Gibbs–Markov maps, even if
one assumes only very weak regularity of the observable.

Remark 1.6: The regularity condition
∑

a∈αm(a)Df(a)η < ∞ is weaker than
the conditions usually encountered in the literature, but it appears in some
natural examples: for instance, if one tries to prove limit theorems for the
observable f0(x) = x−a under the iteration of x 
→ 2x mod 1, by inducing on
[1/2, 1], then the resulting induced observable f satisfies such a condition for
some η = η(a) < 1, but not for η = 1.

Remark 1.7: For general transitive Gibbs–Markov maps (without the mixing
assumption), it is still possible to prove that, if the Birkhoff sums Snf of a
function f (with

∑
m(a)Df(a)η < ∞) satisfy a nondegenerate limit theorem,

then the distribution of f belongs to the class D: the proof we shall give below
also applies to merely transitive maps. However, the converse is not true. More
precisely, functions in D which are not the sum of a coboundary and a constant
satisfy a limit theorem, just like in the mixing case, but this is not the case in
general for coboundaries.

1 This is, for instance, the case if T is the full Markov shift on infinitely many symbols

a0, a1, . . . with m(ai) = Ce−i2/2, and f vanishes on [ai] but on [ai] ∩
⋂i−1

n=1 T−n(a0),

where it is equal to ei2 .
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1.3. A more general setting. Our results on Gibbs–Markov maps will be a
consequence of a more general theorem, making it possible to obtain necessary
and sufficient conditions for limit theorems of Birkhoff sums whenever one can
obtain sufficiently precise information on characteristic functions.

Definition 1.8: Let T : X → X be a probability preserving mixing map, and let
f : X → R be measurable. The function f admits a characteristic expansion
if there exist a neighborhood I of 0 in R, two measurable functions λ, μ : I → R

continuous at 0 with λ(0) = μ(0) = 1, and a sequence εn tending to 0 such that,
for any t ∈ I and any n ∈ N,

(1.3)
∣
∣E(eitSnf ) − λ(t)nμ(t)

∣
∣ ≤ εn.

This characteristic expansion is accurate if one of the following properties
holds:

• Either there exist q ≤ 2 and ε > 0 such that f �∈ Lq and
(1.4)

λ(t) = E(eitf ) +O(|t|q+ε) +O(t2) + o

(∫

|eitf − 1|2
)

+O

(∫

|eitf − 1|
)2

.

• Or f ∈ L2 and there exists c ∈ C such that

(1.5) λ(t) = 1 + itE(f) − ct2/2 + o(t2).

When f �∈ L2, this definition tells that a characteristic expansion is accurate if
λ(t) is close to E(eitf ), up to error terms described by (1.4). It should be noted
that these error terms are not always negligible with respect to 1 − E(eitf ),
but they are nevertheless sufficiently small (for sufficiently many values of t) to
ensure a good behavior, as shown by the following theorem.

Theorem 1.9: Let T : X → X be a probability preserving mixing map, and

let f : X → R admit an accurate characteristic expansion.

Assume that f ∈ L2. Let λ(t) = 1+itE(f)−ct2/2+o(t2) be the characteristic

expansion of f . Then σ2 := c− E(f)2 ≥ 0, and (Snf − nE(f))/
√
n converges

in distribution to N (0, σ2).
Assume that f �∈ L2. Let Z0, Z1, . . . be i.i.d. random variables with the same

distribution as f . Consider sequences An ∈ R and Bn > 0, and a nondegener-

ate random variable W . Then (Snf − An)/Bn converges to W if and only if

(
∑n−1

k=0 Zk −An)/Bn converges to W .
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The flavor of this theorem is very similar to Theorem 1.5. The only difference
is in the L2 case, when σ2 = 0: Theorem 1.9 only says that (Snf −nE(f))/

√
n

converges in distribution to 0 (note that this is a degenerate limit theorem)
while Theorem 1.5 gives a more precise conclusion in this case, showing that
Snf − nE(f) converges in distribution to a nontrivial random variable. To get
this conclusion, one needs to show that a function f satisfying σ2 = 0 is a
coboundary — this is indeed the case for Gibbs–Markov maps, as we will see
in Paragraph 3.6.

To deduce Theorem 1.5 from Theorem 1.9, we should of course check the
assumptions of the latter theorem. The following proposition is therefore the
core of our argument concerning Gibbs–Markov maps.

Proposition 1.10: Let T be a mixing Gibbs–Markov map, and let f : X → R

satisfy
∑

a∈αm(a)Df(a)η < ∞ for some η > 0. Then f admits an accurate

characteristic expansion.

Remark 1.11: If we strengthened Definition 1.8, by requiring for instance λ(t) =
E(eitf )+O(t2) when f �∈ L2, then Theorem 1.9 would be much easier to prove.
However, we would not be able to prove Proposition 1.10 with this stronger
definition. The form of the error term in (1.4) is the result of a tradeoff between
what is sufficient to prove Theorem 1.9, and what we can prove for Gibbs–
Markov maps.

The rest of the paper is organized as follows: Section 2 is devoted to the proof
of Theorem 1.9, using general considerations on characteristic functions, while
the results concerning Gibbs–Markov maps (Proposition 1.10 and Theorem 1.5)
are proved in Section 3. The required characteristic expansion is obtained in
some cases using classical perturbation theory as in [AD01b], but other tools are
also required in other cases: weak perturbation theory [KL99, GL06, HP08] and
interpolation spaces [BL76]. Finally, Appendix A describes another application
of our techniques, to the speed in the central limit theorem.

2. Using accurate characteristic expansions

In this section, we prove Theorem 1.9. Let f be a function satisfying an accurate
characteristic expansion.
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Assume first that f is square integrable. Let t ∈ R. If n is large enough,
t/
√
n belongs to the domain of definition of λ, and

λ

(
t√
n

)n
= exp

(
n log

[
1 + itE(f)/

√
n− ct2/(2n) + o(1/n)

])

= exp
(
n
[
itE(f)/

√
n− ct2/(2n) + t2E(f)2/(2n) + o(1/n)

])
.

Hence, e−it
√
nE(f)λ(t/

√
n)n converges to e−(c−E(f)2)t2/2. By definition of a

characteristic expansion, this implies that e−it
√
nE(f)E(eitSnf/

√
n) converges to

e−(c−E(f)2)t2/2. Therefore, e−(c−E(f)2)t2/2 is the characteristic function of a
random variable W and (Snf − nE(f))/

√
n converges in distribution to W .

This yields σ2 := c − E(f)2 ≥ 0, and W = N (0, σ2), as desired. The proof of
Theorem 1.9 is complete in this case.

We now turn to the other more interesting case, where f �∈ L2. We have
apparently two different implications to prove, but we will prove them at the
same time, using the following proposition.

Proposition 2.1: Let T : X → X and T̃ : X̃ → X̃ be two probability preserv-

ing mixing maps, and let f : X → R and f̃ : X̃ → R be two functions with the

same distribution. Assume that both of them admit an accurate characteristic

expansion, and do not belong to L2. If (
∑n−1

k=0 f ◦T k−An)/Bn converges in dis-

tribution to a nondegenerate random variable W , then (
∑n−1

k=0 f̃ ◦ T̃ k−An)/Bn
also converges to W .

Let us show how this proposition implies Theorem 1.9.

Conclusion of the proof of Theorem 1.9, assuming Proposition 2.1. Let f �∈ L2

admit an accurate characteristic expansion.
Let T̃ be the left shift on the space X̃ = R

N, and let f̃(x0, x1, . . . ) = x0.
We endow X̃ with the product measure such that f̃ , f̃ ◦ T̃ , . . . are i.i.d. and
distributed as f . Then f̃ admits an accurate characteristic expansion (with
μ̃(t) = 1 and λ̃(t) = E(eitf )).

Proposition 2.1 shows that the convergence of (Snf − An)/Bn to W gives
the convergence of (

∑n−1
k=0 f̃ ◦ T̃ k − An)/Bn to W . This is one of the desired

implications in Theorem 1.9. The other implication follows from the same
argument, but exchanging the roles of T and T̃ in Proposition 2.1.
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The rest of this section is devoted to the proof of Proposition 2.1. We fix
once and for all T, T̃ and f, f̃ as in the assumptions of this proposition, and as-
sume that (Snf−An)/Bn converges in distribution to a nondegenerate random
variable W . Let us also fix q and ε such that f �∈ Lq and λ(t), λ̃(t) satisfy (1.4)
(if the values of q and ε do not coincide for the expansions of λ(t) and λ̃(t), just
take the minimum of the two).

Let Φ(t) = E(1− cos(tf)) ≥ 0; this function will play an essential role in the
following arguments.

Lemma 2.2: We have
∫ |eitf − 1|2 = 2Φ(t). Moreover, since f does not belong

to L2,

(2.1) t2 +
(∫

|eitf − 1|
)2

= o(Φ(t)) when t→ 0.

Proof. Writing |eitf − 1|2 = (eitf − 1)(e−itf − 1) and expanding the product,
the first assertion of the lemma is trivial.

To prove that t2 = o(
∫ |eitf − 1|2), let us show that

(2.2)
∫ ∣

∣
∣
∣
eitf − 1

t

∣
∣
∣
∣

2

dm→ +∞ when t→ 0.

The integrand converges to |f |2, whose integral is infinite. Since a sequence fn
of nonnegative functions always satisfies

∫
lim inf fn ≤ lim inf

∫
fn, by Fatou’s

Lemma, we get (2.2).
Let us now check that

(∫ |eitf − 1|)2 = o(
∫ |eitf − 1|2). Fix a large number

M and partition the space into AM = {|f | ≤M} and BM = {|f | > M}. Since
(a+ b)2 ≤ 2a2 + 2b2 for any a, b ≥ 0, we get

(∫

|eitf − 1|
)2

=
(∫

AM

|eitf − 1| +
∫

BM

|eitf − 1|
)2

≤ 2
(∫

AM

|eitf − 1|
)2

+ 2
(∫

BM

|eitf − 1|
)2

≤ 2M2t2 + 2 ‖1BM‖2
L2

∥
∥eitf − 1

∥
∥2

L2 ,

by Cauchy–Schwarz inequality. The term 2M2t2 is negligible with respect to
∫ |eitf − 1|2, by (2.2), while the second term is m(BM )

∫ |eitf − 1|2. Choosing
M large enough, we can ensure that m(BM ) is arbitrarily small, concluding the
proof.
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Lemma 2.2 shows that (1.4) is equivalent to

(2.3) λ(t) = E(eitf ) +O(|t|q+ε) + o(Φ(t)).

The main difficulty is that, for a general function f not belonging to Lq, |t|q+ε
is not always negligible with respect to Φ(t). This is, however, true along a
subsequence of t’s:

Lemma 2.3: Since f does not belong to Lq, there exists an infinite set A ⊂ N

such that, for any t ∈ Λ :=
⋃
n∈A[2−n−1, 2−n],

(2.4) |t|q+ε/2 ≤ Φ(t).

Proof. Assume by contradiction that, for any large enough n, there exists tn ∈
[2−n−1, 2−n] with

∫
X 1 − cos(tnf) < |tn|q+ε/2. If x ∈ X is such that |f(x)| ∈

[2n−1, 2n], then |tnf(x)| ∈ [1/4, 1]. Since 1 − cos(y) is bounded from below by
c > 0 on [−1,−1/4]∪ [1/4, 1], we get

m{|f | ∈ [2n−1, 2n]} ≤ c−1

∫

1 − cos(tnf) ≤ C|tn|q+ε/2 ≤ C2−n(q+ε/2).

Hence,
∑

2qnm{|f | ∈ [2n−1, 2n]} is finite. This implies that f belongs to Lq, a
contradiction.

Lemma 2.4: Along Λ, we have |λ(t)|2 = 1 − (2 + o(1))Φ(t).

Proof. Along Λ, the previous lemma and (2.3) give λ(t) = E(eitf ) + o(Φ(t)).
Hence,

|λ(t)|2 = |E(eitf )|2 + o(Φ(t))

= (1 − E(1 − eitf )) · (1 − E(1 − e−itf )) + o(Φ(t))

= 1 − 2E(1 − cos(tf)) + |E(1 − eitf )|2 + o(Φ(t)).

Moreover, E(1 − cos(tf)) = Φ(t), and |E(1 − eitf )|2 ≤ (∫ |1 − eitf |)2, which is
negligible with respect to Φ(t) by Lemma 2.2. This proves the lemma.

Lemma 2.5: The sequence Bn tends to infinity.

Proof. Assume by contradiction that Bn does not tend to infinity. Then, there
exists a subsequence j(n) such that the distribution of Sj(n)f − Aj(n) is tight.
Since T is mixing, [AW00, Theorem 2] implies the existence of c ∈ R and of a
measurable function u : X → R such that f = u− u ◦T + c almost everywhere.
In particular, Snf −nc converges in distribution, to Z := Z1−Z2 where Z1 and
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Z2 are i.i.d. and distributed as u. Hence, e−itncE(eitSnf ) converges to E(eitZ),
and therefore |E(eitSnf )| → |E(eitZ)|. However, E(eitSnf ) = μ(t)λ(t)n + o(1).
If |λ(t)| < 1, we obtain E(eitZ) = 0.

Along Λ, the function Φ is positive (by (2.4)) and |λ(t)|2 = 1− (2+ o(1))Φ(t)
by the previous lemma. Hence, if t is small enough and belongs to Λ, we
have |λ(t)| < 1, and E(eitZ) = 0. In particular, the function t 
→ E(eitZ) is
not continuous at 0, which is a contradiction since a characteristic function is
always continuous.

Lemma 2.6: The sequence Bn+1/Bn converges to 1.

Proof. We know that (Snf−An)/Bn converges in distribution to a nondegener-
ate random variable W . Since the measure is invariant, (Snf ◦T −An)/Bn also
converges to W . Since Bn → ∞, this implies that (Sn+1f −An)/Bn converges
to W . However, (Sn+1f − An+1)/Bn+1 converges to W . The convergence of
types theorem (Theorem 1.4) therefore yields Bn+1/Bn → 1.

Slowly varying functions have been defined in Definition 1.2.

Lemma 2.7: There exist d ∈ (0, 2] and a slowly varying function L such that

Bn ∼ n1/dL(n).

Proof. Since Bn → ∞, the convergence (Snf − An)/Bn → W translates into:
e−itAn/Bnλ(t/Bn)n → E(eitW ) uniformly on small neighborhoods of 0. Hence,
|λ(t/Bn)|2n → |E(eitW )|2 = E(eitZ) where Z := W −W ′ is the difference of
two independent copies of W . Taking the logarithm, we get

(2.5) 2n log |λ(t/Bn)| → logE(eitZ).

Since Bn → ∞ and Bn+1/Bn → 1, [BGT87, Proposition 1.9.4] implies that, for
t > 0, one can write |λ(t)|2 = exp(−tdL0(1/t)) for some slowly varying function
L0 and some real number d. Moreover, E(eitZ) = e−ct

d

for some c > 0. Since
E(eitZ) is a characteristic function, this restricts the possible values of d to
d ∈ (0, 2].

Let t0 > 0 be such that E(eit0Z) ∈ (0, 1). The convergence (2.5) for t =
t0 becomes n ∼ CBdn/L0(Bn) for some C > 0. Since d > 0, the function
x 
→ Cxd/L0(x) is asymptotically invertible by [BGT87, Theorem 1.5.12], and
admits an inverse of the form x 
→ x1/dL(x) where L is slowly varying. We get
Bn ∼ n1/dL(n).
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Lemma 2.8: The number d given by Lemma 2.7 satisfies d ≤ q + ε/2.

Proof. Let t0 > 0 satisfy E(eit0Z) ∈ (0, 1). The sequence |λ(t0/Bn)|2n converges
to E(eit0Z). Taking logarithms, we obtain the existence of a > 0 such that

(2.6) − n log
∣
∣
∣
∣λ

(
t0
Bn

)∣
∣
∣
∣

2

→ a.

Since Bn+1/Bn → 1, there exists j(n) → ∞ such that t0/Bj(n) ∈ Λ (where
Λ is defined in Lemma 2.3). Along this sequence, we have |λ(t0/Bj(n))|2 =
1− (2+ o(1))Φ(t0/Bj(n)) by Lemma 2.4. Taking the logarithm and using (2.6),
we obtain j(n)Φ(t0/Bj(n)) → a/2. By (2.4), this yields j(n)/Bq+ε/2j(n) = O(1).
Moreover, by Lemma 2.7,

(2.7) j(n)/Bq+ε/2j(n) ∼ j(n)1−(q+ε/2)/d/L(j(n))q+ε/2.

This sequence can be bounded only if 1 − (q + ε/2)/d ≤ 0, concluding the
proof.

Proof of Proposition 2.1. For small enough t, |λ(t)− 1| < 1/2. Hence, it is pos-
sible to define log λ(t) by the series log(1− s) = −∑

sk/k. Since the logarithm
is a Lipschitz function, (2.3) gives

logλ(t) = logE(eitf ) +O(|t|q+ε) + o(Φ(t)).

Moreover, 1 − E(eitf ) = Φ(t) − iE(sin tf), hence

(2.8) − logE(eitf ) = Φ(t) − iE(sin tf) + o(Φ(t)) +O(|E(sin tf)|2).
Moreover, |E(sin(tf))| = | ImE(eitf − 1)| ≤ E|eitf − 1|. Using (2.1), we obtain
|E(sin(tf))|2 = o(Φ(t)). We have proved

(2.9) − logλ(t) = Φ(t) − iE(sin tf) + o(Φ(t)) +O(|t|q+ε).
The convergence (Snf −An)/Bn →W also reads

e−itAn/Bnλ(t/Bn)n → E(eitW ).

By (2.9), the left hand side is

exp
(
−itAn/Bn − nΦ(t/Bn) + niE(sin(tf/Bn)) + o(nΦ(t/Bn)) +O(n/Bq+εn )

)
.

By Lemma 2.8, n/Bq+εn tends to 0 when n → ∞. Hence, the last equation can
also be written as

(2.10) exp
(
−itAn/Bn−nΦ(t/Bn)+niE(sin(tf/Bn))+o(nΦ(t/Bn))+o(1))

)
.
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To prove the desired convergence of (S̃nf̃−An)/Bn to W , we should prove that
e−itAn/Bn λ̃(t/Bn)n converges to E(eitW ). The previous arguments also apply
to λ̃, and show that

(2.11) e−itAn/Bn λ̃

(
t

Bn

)n

=

exp
(
−itAn/Bn − nΦ(t/Bn) + niE(sin(tf/Bn)) + õ(nΦ(t/Bn)) + õ(1))

)
,

where we have used the notation õ to emphasize the fact that these negligible
terms may be different from those in (2.10).

Let us now conclude the proof by showing that (2.11) converges to E(eitW ),
using the fact that (2.10) converges to E(eitW ). The only possible problem
comes from the negligible term õ(nΦ(t/Bn)) (since the term õ(1) has no influ-
ence on the limit).

We treat two cases. Assume first that E(eitW ) �= 0. Then the modulus of
λ(t/Bn)n converges to a nonzero real number. In particular, nΦ(t/Bn) con-
verges, which implies that õ(nΦ(t/Bn)) converges to 0. This concludes the
proof in this case.

Assume now that E(eitW ) = 0. This implies that the modulus of λ(t/Bn)n

converges to 0. By (2.10), this yields nΦ(t/Bn) → +∞. In this case, we have
no control on the argument of e−itAn/Bn λ̃(t/Bn)n (since the term õ(nΦ(t/Bn))
may very well not tend to 0), but its modulus tends to 0. This is sufficient
to get again e−itAn/Bn λ̃(t/Bn)n → 0 = E(eitW ). This concludes the proof of
Proposition 2.1.

3. Characteristic expansions for Gibbs–Markov maps

3.1. The accurate characteristic expansion for non-integrable

functions. Let us fix a mixing probability preserving Gibbs–Markov map
T :X→X , as well as a measurable function f :X→R with

∑
m(a)Df(a)η<∞

for some η ∈ (0, 1].
Let T̂ denote the transfer operator associated to T (defined by duality by

∫
u · v ◦ T dm =

∫
T̂ u · v dm). It is given explicitly by

(3.1) T̂ u(x) =
∑

Ty=x

g(y)u(y),



Vol. 180, 2010 WEAK CONVERGENCE IN GIBBS–MARKOV MAPS 15

where g is the inverse of the jacobian of T . We will need the following inequality:
there exists a constant C such that

(3.2) C−1m(a) ≤ g(x) ≤ Cm(a)

for any a ∈ α and x ∈ a. This follows from the assumption of bounded distortion
for Gibbs–Markov maps.

Let L be the space of bounded functions u : X → C such that

(3.3) sup
a∈α

sup
x,y∈a

|u(x) − u(y)|/d(x, y)η <∞.

Then T̂ acts continuously on L, has a simple eigenvalue at 1 and the rest of
its spectrum is contained in a disk of radius < 1. Moreover, it satisfies an
inequality

(3.4)
∥
∥
∥T̂ nu

∥
∥
∥
L
≤ Cγn ‖u‖L + C ‖u‖L1 ,

for some γ < 1. This follows from [AD01b, Proposition 1.4 and Theorem 1.6].
Let us now define a perturbed transfer operator T̂t by T̂t(u) = T̂ (eitfu).

Using the estimate
∑
m(a)Df(a)η < ∞, one can check that the operator T̂t

acts continuously on L, and

(3.5)
∥
∥
∥T̂t − T̂

∥
∥
∥
L→L

= O(|t|η + E|eitf − 1|).

This follows from Lemma 3.5 and the proof of Corollary 3.6 in [Gou04].
The estimate (3.5) is a strong continuity estimate. We can therefore apply

the following classical perturbation theorem (which follows, for instance, from
[Kat66, Sections III.6.4 and IV.3.3]).

Theorem 3.1: Let A be a continuous operator on a Banach space B, for which

1 is a simple eigenvalue, and the rest of its spectrum is contained in a disk of

radius < 1. Let At (for small enough t) be a family of continuous operators on

B, such that ‖At −A‖B→B → 0 when t→ 0.

Then, for any small enough t, there exists a decomposition Et ⊕ Ft of B into

a one-dimensional subspace and a closed hyperplane, such that Et and Ft are

invariant under At. Moreover, At is the multiplication by a scalar λ(t) on Et,

while ‖(At)n|Ft
‖B→B ≤ Cγn for some γ < 1 and C > 0.

The eigenvalue λ(t) and the projection Pt on Et with kernel Ft satisfy

(3.6) |λ(t) − 1| ≤ C ‖At −A‖B→B
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and

(3.7) ‖Pt − P0‖B→B ≤ C ‖At −A‖B→B .

This theorem yields an eigenvalue λ(t) of T̂t for small t, and an eigenfunction
ξt = Pt1/

∫
Pt1 such that

∫
ξt = 1 and

(3.8) ‖ξt − 1‖L = O(|t|η + E|eitf − 1|),
by (3.7).

We have

(3.9) E(eitSnf ) =
∫

T̂ nt (1) = λ(t)n
∫

Pt1 +O(γn) = μ(t)λ(t)n +O(γn),

for μ(t) =
∫
Pt1. This proves that f admits a characteristic expansion. To

prove Proposition 1.10, we have to show that this expansion is accurate, i.e., to
get precise estimates on λ(t). We have

(3.10) λ(t) =
∫

λ(t)ξt =
∫

T̂tξt =
∫

T̂t1 +
∫

(T̂t − T̂ )(ξt − 1),

hence

(3.11) λ(t) = E(eitf ) +
∫

(eitf − 1)(ξt − 1).

When η = 1 (i.e.,
∑
m(a)Df(a) < ∞) and f �∈ L2, (3.11) together with the

estimate (3.8) readily imply that the characteristic expansion of f is accurate,
concluding the proof of Proposition 1.10 in this case. The general case requires
more work.

We first deal with the case f �∈ L1+η/2. In this case, we already have enough
information to conclude:

Lemma 3.2: If f �∈ L1+η/2, then f admits an accurate characteristic expansion.

Proof. The equation (3.11) together with (3.8) yield

(3.12) λ(t) = E(eitf ) +O

(

|t|η ·
∫

|eitf − 1|
)

+O

(∫

|eitf − 1|
)2

.

Let p ∈ [0, 1] be such that f ∈ Lp and f �∈ Lp+η/2 (we use the convention that
every measurable function belongs to L0). For any x ∈ R, |eix − 1| ≤ 2|x|p.
Then

(3.13) |t|η
∫

|eitf − 1| ≤ 2|t|η
∫

|t|p|f |p ≤ C|t|p+η.
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This yields the accurate characteristic expansion (1.4) as desired, for q = p+η/2
and ε = η/2.

The case where f ∈ L1+η/2 is a lot trickier. It requires a more general spectral
perturbation theorem, essentially due to Keller and Liverani. Unfortunately,
this theorem is sufficient only when there exists q < 2 such that f �∈ Lq, while
the remaining case can only be treated using a generalization of this theorem,
involving several successive derivatives of the operators, that we will describe
in the next paragraph.

3.2. A general spectral theorem. In this paragraph, we describe a gen-
eral spectral theorem extending the results of [KL99] to the case of several
derivatives. A very similar result has been proved in [GL06], but with slightly
stronger assumptions that will not be satisfied in the forthcoming application
to Gibbs–Markov maps (in particular, [GL06] requires (3.16) below to hold for
0 ≤ i < j ≤ N , instead of 1 ≤ i < j ≤ N). Let us also mention [HP08] for
related results.

Let B0 ⊃ B1 ⊃ · · · ⊃ BN , N ∈ N
∗, be a finite family of Banach spaces, let I ⊂

R be a fixed open interval containing 0, and let {At}t∈I be a family of operators
acting on each of the above Banach spaces. Let also b0, b1, . . . , bN−1 ∈ (0, 1]
(usually, bi = 1 for i ≥ 1). Let b(i, j) =

∑j−1
k=i bk for 0 ≤ i ≤ j ≤ N . Assume

that

(3.14) ∃M > 0, ∀ t ∈ I, ‖Ant f‖B0
≤ CMn ‖f‖B0

and

(3.15) ∃ γ < M, ∀ t ∈ I, ‖Ant f‖B1
≤ Cγn ‖f‖B1

+ CMn ‖f‖B0
.

Assume also that there exist operators Q1, . . . , QN−1 satisfying the following
properties:

(3.16) ∀ 1 ≤ i < j ≤ N, ‖Qj−i‖Bj→Bi
≤ C

and, setting Δ0(t) := At and Δj(t) := At −A0 −
∑j−1

k=1 t
kQk for j ≥ 1,

(3.17) ∀ t ∈ I, ∀0 ≤ i ≤ j ≤ N, ‖Δj−i(t)‖Bj→Bi
≤ C|t|b(i,j).

These assumptions mean that t 
→ At is continuous at t = 0 as a function from
Bi to Bi−1, and that t 
→ At even has a Taylor expansion of order N − 1, but
the differentials take their values in weaker spaces.
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For 
 > γ and δ > 0, denote by Vδ,
 the set of complex numbers z such that
|z| ≥ 
 and, for all 1 ≤ k ≤ N , the distance from z to the spectrum of A0 acting
on Bk is ≥ δ.

Theorem 3.3: Given a family of operators {At}t∈I satisfying conditions (3.14),
(3.15), (3.16) and (3.17) and setting

RN (t) :=
N−1∑

k=0

tk
∑

�1+···+�j=k
(z−A0)−1Q�1(z−A0)−1 . . . (z−A0)−1Q�j (z−A0)−1,

for all z ∈ Vδ,
 and t small enough, we have
∥
∥(z −At)−1 −RN (t)

∥
∥
BN→B0

≤ C|t|κb0+b(1,N)

where κ = log(
/γ)/log(M/γ).

Hence, the resolvent (z − At)−1 depends on t in a Cκb0+b(1,N) way at t = 0,
when viewed as an operator from BN to B0.

Notice that one of the results of [KL99] in the present setting reads

(3.18)
∥
∥(z −At)−1 − (z −A0)−1

∥
∥
B1→B0

≤ C|t|κb0 .
Accordingly, one has Theorem 3.3 in the case N = 1 where no assumption is
made on the existence of the operators Qj .

We will use the following estimate of [KL99]:

Lemma 3.4: For any small enough τ and any z ∈ Vδ,
, we have

(3.19)
∥
∥(z −A0)−1u

∥
∥
B0

≤ Cτκ ‖u‖B1
+ Cτκ−1 ‖u‖B0

.

Proof. This is essentially (11) in [KL99]. Let us recall the proof for the conve-
nience of the reader. We have

(3.20) (z −A0)−1 = z−n(z −A0)−1An0 +
1
z

n−1∑

j=0

(z−1A0)j

(this can be obtained for large enough z by taking the series expansion of
(z −A0)−1 and isolating the first terms). Hence,

∥
∥(z −A0)−1u

∥
∥
B0

≤ C|z|−n ∥
∥(z −A0)−1

∥
∥
B1→B1

[
γn ‖u‖B1

+Mn ‖u‖B0

]

+
1
|z|

n−1∑

j=0

|z|−j
∥
∥
∥A

j
0

∥
∥
∥
B0→B0

‖u‖B0

≤ C(γ/
)n ‖u‖B1
+ C(M/
)n ‖u‖B0

.
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Let us choose n so that (γ/
)n = τκ, i.e., n = | log τ |/ log(M/γ). Then

(3.21) (M/
)n = exp
(

| log τ | · log(M/
)
log(M/γ)

)

= τκ−1.

Proof of Theorem 3.3. We have

(3.22) (z −At)−1 = (z −A0)−1 + (z −At)−1(At −A0)(z −A0)−1.

If we want an expansion of (z − At)−1 up to order |t|κb0+b1 , this equation is
sufficient: we can replace on the right (z−At)−1 with (z−A0)−1 up to a small
error |t|κb0 (by (3.18)), and use the Taylor expansion of At − A0 to conclude
(since At − A0 = OB2→B1(|t|b1), the global error is of order |t|κb0+b1). If we
want a better precision |t|κb0+b(1,N), we should iterate the previous equation,
so that in the end (z −At)−1 is multiplied by a term of order |t|b(1,N).

This is done as follows. Let A(z, t) := (At − A0)(z − A0)−1. Iterating the
previous equation N − 1 times, it follows that

(z −At)−1 =
N−2∑

j=0

(z −A0)−1A(z, t)j + (z −At)−1A(z, t)N−1

=
N−1∑

j=0

(z −A0)−1A(z, t)j +
[
(z −At)−1 − (z −A0)−1

]
A(z, t)N−1.

(3.23)

For each j, we then need to expand A(z, t)j to isolate the good Taylor expan-
sion, and negligible terms. The computation is quite straightforward, but the
notations are awful. To simplify them, let us denote by � a tuple (�1, . . . , �k)
of positive integers. Write also l(�) = k and |�| = �1 + · · · + �k and Q̃� =
Q�1(z −A0)−1 · · ·Q�k(z −A0)−1, and Δ̃i(t) = Δi(t)(z −A0)−1.

Let us prove that, for any j < N ,

(3.24) A(z, t)j =
∑

l(�)<j, j−l(�)<N−|�|
t|�|A(z, t)j−l(�)−1Δ̃N−|�|−(j−l(�)−1)(t)Q̃�

+
∑

l(�)=j, 0<N−|�|
t|�|Q̃�.

We start from the following equality, valid for each j ∈ N and a ≤ N , which
is a direct consequence of the definition of Δa(t):

(3.25) A(z, t)j = A(z, t)j−1Δ̃a(t) +
a−1∑

�=1

t�A(z, t)j−1Q̃�.
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We can again iterate this equation. We will adjust the parameter a used during
this iteration, as follows: we claim that, for all 1 ≤ m ≤ j,

(3.26) A(z, t)j =
∑

l(�)<m, j−l(�)<N−|�|
t|�|A(z, t)j−l(�)−1Δ̃N−|�|−(j−l(�)−1)(t)Q̃�

+
∑

l(�)=m, j−l(�)<N−|�|
t|�|A(z, t)j−mQ̃� .

In fact, for m = 1 the above formula is just (3.25) for a = N − j + 1. Next,
suppose (3.26) is true for some m < j, then the formula for m + 1 follows by
substituting the last terms A(z, t)j−m using (3.25) for a = N−|�|−(j−l(�)−1).
This proves (3.26) for any m ≤ j. In particular, for m = j, we obtain (3.24).

The equations (3.23) and (3.24) sum up to

(3.27) (z −At)−1 = RN (t) +
[
(z −At)−1 − (z −A0)−1

]
A(z, t)N−1

+
N−1∑

j=0

∑

l(�)<j, j−l(�)<N−|�|
t|�|(z −A0)−1A(z, t)j−l(�)−1Δ̃N−|�|−(j−l(�)−1)(t)Q̃�.

We will show that all the error terms are OBN→B0(|t|κb0+b(1,N)).
Fix j and � with l(�) < j, j − l(�) < N − |�|. Let

(3.28) F (t) = t|�|A(z, t)j−l(�)−1Δ̃N−|�|−(j−l(�)−1)(t)Q̃�.

We wish to show that

(3.29)
∥
∥(z −A0)−1F (t)

∥
∥
BN→B0

≤ C|t|κb0+b(1,N).

We have
∥
∥
∥|t||�|Q̃�

∥
∥
∥
BN→BN−|�|

≤ C|t||�| ≤ C|t|b(N−|�|,N) by (3.16), while

(3.30)
∥
∥
∥Δ̃N−|�|−(j−l(�)−1)(t)

∥
∥
∥
BN−|�|→Bj−l(�)−1

≤ C|t|b(j−l(�)−1,N−|�|)

by (3.17), and
∥
∥A(z, t)j−l(�)−1

∥
∥
Bj−l(�)−1→B0

≤ C|t|b(0,j−l(�)−1) again by (3.17)

applied j − l(�) − 1 times, since A(z, t) = Δ̃1(t). Multiplying these estimates
gives

(3.31) ‖F (t)‖BN→B0
≤ C|t|b(0,N).

Moreover, since Δ̃k = Δ̃k−1 − tkQ̃k, the norm of Δ̃k from Bj to Bj−k+1

is bounded by C|t|b(j−k+1,j) . In particular, the norm of Δ̃N−|�|−(j−l(�)−1)(t)
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from BN−|�| to Bj−l(�) is bounded by C|t|b(j−l(�),N−|�|). Together with the same
arguments as above, we obtain

(3.32) ‖F (t)‖BN→B1
≤ C|t|b(1,N).

The estimate (3.29) now follows from (3.31) and (3.32), as well as Lemma 3.4
for τ = |t|b0 .

We now turn to the term

(3.33)
[
(z −At)−1 − (z −A0)−1

]
A(z, t)N−1

of (3.27). As ‖A(z, t)‖Bi→Bi−1
= O(|t|bi−1 ), we have

∥
∥A(z, t)N−1

∥
∥
BN→B1

=
O(|t|b(1,N)). With (3.18), this shows that (3.33) is OBN→B0(|t|κb0+b(1,N)), con-
cluding the proof.

We will use the previous theorem in the following form:

Corollary 3.5: Under the assumptions of the previous theorem, assume also

that M = 1 and that A0 acting on each space Bj has a simple isolated eigenvalue

at 1, with corresponding eigenfunction ξ0. Then, for small enough t, At has a

unique simple isolated eigenvalue λ(t) close to 1.

Let ν be a continuous linear form on B0 with ν(ξ0) = 1. For small enough

t, ν does not vanish on the eigenfunction of At for the eigenvalue λ(t). It is

therefore possible to define a normalized eigenfunction ξt satisfying ν(ξt) = 1.

Finally, there exist u1 ∈ BN−1, . . . , uN−1 ∈ B1 such that, for any ε > 0,

(3.34)

∥
∥
∥
∥
∥
ξt − ξ0 −

N−1∑

k=1

tkuk

∥
∥
∥
∥
∥
B0

= O(|t|b(0,N)−ε).

Proof. Let c > 0 be small, and define an operator Pt = 1
2iπ

∫
|z−1|=c(z−At)−1 dz.

The operator P0 is the spectral projection corresponding to the eigenvalue 1 of
P0. By Theorem 3.3, ‖Pt − P0‖BN→B0

converges to 0 when t → 0. Therefore,
the operator Pt is also a rank one projection for small enough t, corresponding to
an eigenvalue λ(t) of At. Let ξ̃t = Pt(u) for some fixed u ∈ BN with P0(u) �= 0;
ξ̃t is an eigenfunction of At for the eigenvalue λ(t). Since ‖ξ̃t − ξ̃0‖B0 → 0,
this eigenfunction satisfies ν(ξ̃t) �= 0 for small enough t, and we can define a
normalized eigenfunction ξt = ξ̃t/ν(ξ̃t).

For 1 ≤ k ≤ N − 1, let

ũk =
∑

�1+···+�j=k

1
2iπ

∫

|z−1|=c
(z −A0)−1Q�1 · · · (z −A0)−1Q�j(z −A0)−1u dz.
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It belongs to BN−k by (3.16). Moreover, Theorem 3.3 yields

(3.35)

∥
∥
∥
∥
∥
ξ̃t − ξ̃0 −

N−1∑

k=1

tkũk

∥
∥
∥
∥
∥
B0

≤ C|t|κb0+b(1,N),

for κ = log((1 − c)/γ)/ log(1/γ). Applying ν to this equation, we obtain that
ν(ξ̃t) admits an expansion ν(ξ̃t) =

∑N−1
k=0 tkνk + O(|t|κb0+b(1,N)). Hence, ξt =

ξ̃t/ν(ξ̃t) also admits an expansion similar to (3.35).
This is almost the conclusion of the proof; we only have to see that the error

term O(|t|κb0+b(1,N)) can be modified to be of the form O(|t|b(0,N)−ε) for any
ε > 0. This follows from the fact that c can be chosen arbitrarily small (by
holomorphy, this does not change the projection Pt for small enough t, hence
ũk and uk are also not modified).

Remark 3.6: Corollary 3.5 states that the normalized eigenfunction ξt has a
Taylor expansion of order b(0, N)− ε at 0. Under similar assumptions at every
point of a neighborhood I of 0, we obtain that ξt has a Taylor expansion at
every point of I. By a lemma of Campanato [Cam64], this implies that ξt is
Cb(0,N)−ε on I, a result analogous to [HP08].

3.3. Definition of good Banach spaces. We now turn back to the dynam-
ical setting: T : X → X is a mixing Gibbs–Markov map, and f : X → R is a
function satisfying

∑
m(a)Df(a)η < ∞, for which we want to prove an accu-

rate characteristic expansion. To do that, we wish to apply Corollary 3.5 to a
carefully chosen sequence of Banach spaces. We have currently at our disposal
the spaces Lp (but the spectral properties of the transfer operator on these
spaces are not good), and the space L (which is only a space, not a sequence of
spaces). Our goal in this paragraph is to define a family of intermediate spaces
between Lp and L, which will be more suitable to apply Corollary 3.5.

For 1 ≤ p ≤ ∞ and s > 0, let us define a Banach space Lp,s as follows: it
is the space of measurable functions u such that, for any k ∈ N, there exists a
decomposition u = v+w with ‖v‖L ≤ Cek and ‖w‖Lp ≤ Ce−sk. The best such
C is by definition the norm of u in Lp,s. This Banach space is an interpolation
space between L and Lp (see [BL76]).

Of course, Lp,s is included in Lp (simply use the decomposition for k = 0),
and Lp,s is contained in Lp′,s′ when p′ ≤ p and s′ ≤ s.
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Let us check that the operators T̂ and T̂t enjoy good spectral properties
when acting on Lp,s. This will be a consequence of the fact that they have good
properties when acting on L, and are contractions when acting on Lp.

Lemma 3.7: Let 1 ≤ p ≤ ∞ and let s > 0. The operator T̂ acts continuously

on the space Lp,s. Moreover, there exist γ < 1 and C > 0 such that

(3.36)
∥
∥
∥T̂ nu

∥
∥
∥
Lp,s

≤ Cγn ‖u‖Lp,s + C ‖u‖L1 .

Proof. Let γ0 < 1 be such that
∥
∥
∥T̂ nu

∥
∥
∥
L
≤ Cγn0 ‖u‖L + C ‖u‖L1 .

For n ∈ N, let A be the integer part of εn, for some ε > 0 with γ0e
−ε < 1.

Let u ∈ Lp,s; there exists a decomposition u = v+w with ‖v‖L ≤ ek+A ‖u‖Lp,s

and ‖w‖Lp ≤ e−s(k+A) ‖u‖Lp,s . Then
∥
∥
∥T̂ nv

∥
∥
∥
L
≤ Cγn0 e

k+A ‖u‖Lp,s + C ‖v‖L1

≤ C(γn0 e
A)ek ‖u‖Lp,s + C ‖w‖L1 + C ‖u‖L1

≤ C(γn0 e
A + e−s(k+A))ek ‖u‖Lp,s + C ‖u‖L1

≤ ek(Cγn ‖u‖Lp,s + C ‖u‖L1),

for some γ < 1. Moreover,
∥
∥
∥T̂ nw

∥
∥
∥
Lp

≤ ‖w‖Lp ≤ Ce−sAe−sk ‖u‖Lp,s ≤ e−sk(Cγn ‖u‖Lp,s)

≤ e−sk(Cγn ‖u‖Lp,s + C ‖u‖L1)

for some γ < 1.
Therefore, the decomposition of T̂ nu as T̂ nv + T̂ nw shows that T̂ nu belongs

to Lp,s, and has a norm bounded by Cγn ‖u‖Lp,s + C ‖u‖L1 .

Lemma 3.8: For any p ≥ 1 and s > 0, the inclusion of Lp,s in L1 is compact.

Proof. Let un be a sequence bounded by 1 in Lp,s. Fix k ∈ N, and let us
decompose un as vn + wn with ‖vn‖L ≤ ek and ‖wn‖Lp ≤ e−sk. Since the
inclusion of L in L1 is compact, there exists a subsequence j(n) such that
vj(n) converges in L1. Therefore, lim supn,m→∞

∥
∥uj(n) − uj(m)

∥
∥
L1 ≤ 2e−sk.

With a diagonal argument over k, we finally obtain a convergent subsequence
of un.

Corollary 3.9: The transfer operator T̂ acting on Lp,s has a simple eigenvalue

at 1, and the rest of its spectrum is contained in a disk of radius < 1.
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Proof. Together with Hennion’s Theorem [Hen93], the two previous lemmas
ensure that the essential spectral radius of T̂ acting on Lp,s is ≤ γ < 1, i.e.,
the elements of the spectrum of T̂ with modulus > γ are isolated eigenvalues of
finite multiplicity.

If u is an eigenfunction of T̂ for an eigenvalue of modulus 1, then u belongs
to L1. Since T̂ satisfies a Lasota–Yorke inequality (3.4) on the space L, the
theorem of Ionescu Tulcea and Marinescu [ITM50] implies that u belongs to
L. However, we know that T̂ acting on L has a simple eigenvalue at 1, and no
other eigenvalue of modulus 1.

Lemma 3.10: For any p ≥ 1 and s > 0, the operator T̂t acts continuously on

Lp,s for small enough t. Moreover, ‖T̂t−T̂‖Lp,s→Lp,s converges to 0 when t→ 0.

Finally, if t is small enough, T̂t satisfies a Lasota–Yorke type inequality

(3.37)
∥
∥
∥T̂ nt u

∥
∥
∥
Lp,s

≤ Cγn ‖u‖Lp,s + C ‖u‖L1 ,

where C > 0 and γ < 1 are independent of t.

Proof. For any operator M sending L to L and Lp to Lp, then M sends Lp,s
to Lp,s and, for any integer A ≥ 0,

(3.38) ‖M‖Lp,s→Lp,s ≤ max(eA ‖M‖L→L , e
−sA ‖M‖Lp→Lp).

This follows using the decomposition of u ∈ Lp,s as v + w with ‖v‖L ≤
ek+A ‖u‖Lp,s and ‖w‖Lp ≤ e−sk−sA ‖u‖Lp,s .

By (3.5), ‖T̂t − T̂‖L→L tends to 0, while ‖T̂t − T̂‖Lp→Lp is uniformly
bounded. Applying (3.38) to M = T̂t − T̂ and eA close to ‖T̂t − T̂‖−1/2

L→L,
we obtain that ‖T̂t − T̂ ‖Lp,s→Lp,s tends to zero.

By (3.36), we can fix N > 0, σ < 1 and C > 0 such that ‖T̂Nu‖Lp,s ≤
σ ‖u‖Lp,s + C ‖u‖L1 . Let σ1 ∈ (σ, 1). Since ‖T̂t − T̂‖Lp,s→Lp,s tends to 0 when
t→ 0, the previous equation gives, for small enough t,

(3.39)
∥
∥
∥T̂Nt u

∥
∥
∥
Lp,s

≤ σ1 ‖u‖Lp,s + C ‖u‖L1 .

Iterating this equation, we get by induction over k

(3.40)
∥
∥
∥T̂ kNt u

∥
∥
∥
Lp,s

≤ σk1 ‖u‖Lp,s + C

k−1∑

j=0

σk−1−j
1

∥
∥
∥T̂

jN
t u

∥
∥
∥
L1
.
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Since T̂t is a contraction on L1, we obtain ‖T̂ kNt u‖Lp,s ≤ σk1 ‖u‖Lp,s +C′ ‖u‖L1 ,
for C′ = C

∑∞
j=0 σ

j . This proves (3.37) for n of the form kN , and the general
case follows.

3.4. Gaining δ in the integrability exponent. We wish to apply Corol-
lary 3.5 to obtain the accurate characteristic expansion. This theorem in-
volves an (arbitrarily) small loss of ε, that we will have to compensate at
some point. In this paragraph, we show how a regularity assumption of the
form

∑
m(a)Df(a)η < ∞ makes it possible to obtain a definite gain in the

integrability exponent of some functions, which ultimately will compensate the
aforementioned loss.

Lemma 3.11: For any β ∈ (0, 1], there exists δ > 0 with the following property.

Let f ∈ Lp (for some p ∈ [1, 1/β]) satisfy
∑
m(a)Df(a)β < ∞. Let c ∈ [β, p],

and consider a function u such that |u| ≤ |f |c, and, for all a ∈ α,

(3.41) Du(a) ≤
⎧
⎨

⎩

Df(a) if c ≤ 1,

Df(a) ‖1af‖c−1
L∞ if c > 1.

Let q, r be positive numbers (possibly q = ∞) such that 1/r = 1/(p/c) + 1/q,
and r ≥ 1 + β. Then the operator v 
→ T̂ (uv) maps Lq to Lr+δ (and its norm

is bounded only in terms of f and β).

Since u ∈ Lp/c, the Hölder inequality shows that the operator v 
→ T̂ (uv)
maps Lq to Lr. The lemma asserts that there is in fact a small gain of δ in
the integrability exponent, due to the regularity property

∑
m(a)Df(a)β <∞.

Moreover, the gain is uniform over the parameters if r stays away from 1.

Proof. We will show that, under the assumptions of the lemma, the operator
v 
→ T̂ (uv) maps Lq to Lr̃, for

r̃ =
pq/c− β2q

p/c+ q − β2q
.

Since r̃−r is uniformly bounded from below when the parameters vary according
to the conditions of the lemma, this will conclude the proof.2

2 Indeed,

(3.42) r̃ − r =
β2q (pq/c − p/c − q)

(p/c + q)(p/c + q − β2q)
.
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Let us first show that

(3.44)
∑

a∈α
m(a) ‖f1a‖βL∞ <∞.

For x, y ∈ a, we have |f(x)| ≤ |f(y)| + Df(a). Integrating over y, we get
|f(x)| ≤ 1

m(a)

∫
a |f |+Df(a). Together with the inequality (t′+ t)β ≤ 1+ t′+ tβ,

valid for any t′, t ≥ 0, we obtain
∑

a∈α
m(a) ‖f1a‖βL∞ ≤

∑

a∈α
m(a)

(

1 +
1

m(a)

∫

a

|f |
)

+
∑

a∈α
m(a)Df(a)β .

These sums are finite, concluding the proof of (3.44).
Let β̃ = β2; we will now show that

(3.45)
∑

a∈α
m(a) ‖u1a‖β̃L∞ <∞.

By the previous argument, it is sufficient to show that
∑

a∈αm(a)Du(a)β̃ is
finite. If c ≤ 1, Du(a)β̃ ≤ Df(a)β̃ ≤ max(1, Df(a)β), and the result follows. If
c > 1,

Du(a)β̃ ≤ Df(a)β̃ ‖1af‖(c−1)β̃
L∞ ≤ max(Df(a), ‖1af‖L∞)cβ̃

≤ Df(a)cβ̃ + ‖1af‖cβ̃L∞ .

Since cβ̃ ≤ β, (3.44) shows that
∑
m(a)Du(a)β̃ < ∞, concluding the proof of

(3.45).
By (3.1) and (3.2), T̂ (|u|β̃) is bounded by

∑
a∈αm(a) ‖u1a‖β̃L∞ , which is finite.

Hence, T̂ (|u|β̃) is a bounded function.
Let us now estimate T̂ (uv) for v ∈ Lq. Let ρ = r̃/(r̃−1), so that 1/ρ+1/r̃ = 1.

We have

(3.46) T̂ (|uv|) = T̂ (|u|β̃/ρ|u|1−β̃/ρ|v|) ≤ T̂ (|u|β̃)1/ρT̂ (|u|r̃(1−β̃/ρ)|v|r̃)1/r̃ .
Since T̂ (|u|β̃) is bounded, we obtain

∥
∥
∥T̂ (uv)

∥
∥
∥
Lr̃

≤ C

(∫

T̂ (|u|r̃(1−β̃/ρ)|v|r̃)
)1/r̃

= C

(∫

|u|r̃(1−β̃/ρ)|v|r̃
)1/r̃

.

Since r ≥ 1 + β, we have pq/c ≥ (1 + β)(p/c + q). Therefore, the second term of the

numerator of (3.42) is at least β(p/c + q). Simplifying with the denominator, we get

(3.43) r̃ − r ≥ β3

p/qc + 1 − β2
≥ β3

β−2 + 1 − β2
.
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Let s and t be such that 1/s+1/t = 1 and tr̃ = q, i.e., t = q/r̃ and s = q/(q− r̃).
The Hölder inequality gives

(3.47)
∫

|u|r̃(1−β̃/ρ)|v|r̃ ≤
(∫

|u|r̃(1−β̃/ρ)s
)1/s(∫

|v|r̃t
)1/t

.

The choice of r̃ above ensures that r̃(1 − β̃/ρ)s = p/c. Hence, the integral
involving u is finite, since u ∈ Lp/c. We obtain ‖T̂ (uv)‖Lr̃ ≤ C ‖v‖Lq , as
required.

Lemma 3.12: For any β ∈ (0, 1], there exists δ > 0 with the following property.

Let f ∈ Lp (for some p ∈ [1, 1/β]) satisfy
∑
m(a)Df(a)β < ∞. Let c ∈ [β, p],

and consider a function u such that |u| ≤ |f |c, and, for all a ∈ α,

(3.48) Du(a) ≤
⎧
⎨

⎩

Df(a) if c ≤ 1,

Df(a) ‖1af‖c−1
L∞ if c > 1.

Let q, r be positive numbers (possibly q = ∞) such that 1/r = 1/(p/c) + 1/q,
and r ≥ 1 + β. Then, for any s > 0, there exists s′ = s′(f, β, s) such that

the operator v 
→ T̂ (uv) maps Lq,s to Lr+δ,s′ (and its norm is bounded only in

terms of f, β, s).

Proof. Let δ0 be the value of δ given by Lemma 3.11 for β/2 instead of β. We
will prove that the lemma holds for δ = δ0/2.

For K ≥ 1, denote by A(K) the union of the elements a ∈ α such that
Df(a) + ‖1af‖L∞ ≤ K, and let B(K) be its complement. The finiteness of the
sum

∑
a∈αm(a)(Df(a)β + ‖1af‖βL∞) (which has been proved in (3.44)) implies

that there exists C such that

(3.49) m(B(K)) ≤ CK−β.

Moreover, let d = max(c, 1); then u is bounded byKd on A(K), and its Lipschitz
constant is also bounded by Kd. Therefore,

(3.50)
∥
∥1A(K)u

∥
∥
L ≤ CKd.

Take v ∈ Lq,s bounded by 1, and k ∈ N. By definition of Lq,s, we can write
v = w + w′ with ‖w‖L ≤ ek and ‖w′‖Lq ≤ e−sk. For any K ≥ 1, we obtain a
decomposition of T̂ (uv) as the sum of T̂ (1A(K)uw) and T̂ (1B(K)uw+ uw′). We
claim that

(3.51)
∥
∥
∥T̂ (1A(K)uw)

∥
∥
∥
L
≤ CKdek
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and, for some ε > 0,

(3.52)
∥
∥
∥T̂ (1B(K)uw + uw′)

∥
∥
∥
Lr+δ0/2

≤ Ce−sk + CekK−ε.

This concludes the proof of the lemma, for δ = δ0/2 and s′ = s/(1+d(1+s)/ε).
Indeed, for K = exp((1 + s)k/ε), the bound in (3.51) becomes Cesk/s

′
, and the

bound in (3.52) becomes Ce−sk. Taking k′ close to sk/s′, we have obtained a
decomposition of T̂ (uv) as a sum w̃ + w̃′ with ‖w̃‖L ≤ Cek

′
and ‖w̃′‖Lr+δ0/2 ≤

Ce−s
′k′ , as desired.

It remains to prove (3.51) and (3.52). The former follows from the inequality
‖zz′‖L ≤ C ‖z‖L ‖z′‖L, applied to the functions z = 1A(K)u (whose norm is
bounded by (3.50)), and z′ = w (whose norm is at most ek).

We turn to (3.52). First, by Lemma 3.11,

(3.53)
∥
∥
∥T̂ (uw′)

∥
∥
∥
Lr+δ0/2

≤
∥
∥
∥T̂ (uw′)

∥
∥
∥
Lr+δ0

≤ C ‖w′‖Lq ,

which is at most e−sk. Let then Q be large enough, and let r′ be such that
1/r′ = 1/(p/c) + 1/Q. Then

(3.54) r − r′ = rr′
(

1
r′

− 1
r

)

= rr′
(

1
Q

− 1
q

)

≤ rr′

Q
.

Moreover, 1/r ≥ 1/(p/c) ≥ β2, and 1/r′ ≥ β2 as well. Hence, r − r′ ≤ β−4/Q.
Choosing Q large enough, we can ensure r − r′ ≤ δ0/2. Therefore,

∥
∥
∥T̂ (1B(K)uw)

∥
∥
∥
Lr+δ0/2

≤ ‖w‖L∞

∥
∥
∥T̂ (1B(K)|u|)

∥
∥
∥
Lr+δ0/2

≤ ‖w‖L∞

∥
∥
∥T̂ (1B(K)|u|)

∥
∥
∥
Lr′+δ0

.

Since 1/(p/c) ≤ 1/r ≤ 1/(1 + β), we have 1/r′ ≤ 1/(1 + β) + 1/Q, which is at
most 1/(1+ β/2) if Q is large enough. Thanks to the definition of δ0 above, we
can therefore apply Lemma 3.11 to the function v = 1B(K) and the parameters
r′, Q, β/2, to obtain

(3.55)
∥
∥
∥T̂ (1B(K)|u|)

∥
∥
∥
Lr′+δ0

≤ C
∥
∥1B(K)

∥
∥
LQ .

Since ‖w‖L∞ ≤ ek and
∥
∥1B(K)

∥
∥
LQ ≤ CK−β/Q by (3.49), this proves (3.52) for

ε = β/Q.
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3.5. Accurate characteristic expansions for integrable functions.

We will now prove that a function f satisfying
∑
m(a)Df(a)η <∞ admits an

admissible characteristic expansion. By Lemma 3.2, it is sufficient to treat the
case f ∈ L1+η/2. We will give very precise asymptotics of the eigenvalue λ(t)
of the transfer operator, yielding also other limit theorems in the L2 case.

Theorem 3.13: Let η ∈ (0, 1]. There exists a function ε : (1,∞) → R
∗
+,

bounded away from zero on compact subsets of (1,∞), with the following prop-

erty.

Let f satisfy
∑
m(a)Df(a)η < ∞, and f ∈ Lp for some p > 1. Then there

exist complex numbers ci (for 1 ≤ i < p+ ε(p)) such that

(3.56) λ(t) = E(eitf ) +
∑

2≤i<p+ε(p)
cit

i +O(|t|p+ε(p)).

This theorem contains the characteristic expansion of f ∈ Lp for p > 1:

Corollary 3.14: Let f ∈ L1+η/2; then f admits an accurate characteristic

expansion.

Proof. If f ∈ L2, then (3.56) for p = 2 becomes λ(t) = 1+itE(f)−ct2/2+o(t2),
for some c ∈ C. This is the desired characteristic expansion.

Assume now f �∈ L2. Let ε > 0 be the infimum of ε(p) for p ∈ [1 + η/2, 2].
Let p ≥ 1 + η/2 be such that f ∈ Lp and f �∈ Lp+ε/2. Then (3.56) gives
λ(t) = E(eitf ) + ct2 +O(|t|p+ε), which is accurate.

Together with Lemma 3.2, this concludes the proof of Proposition 1.10.
Theorem 3.13 also contains much more information, in particular in the L2

case. We will describe in Appendix A another consequence of this very precise
expansion of the eigenvalue λ(t), on the speed of convergence in the central limit
theorem. What is remarkable in that theorem is that the regularity assumption
on the function need not be increased to get finer results,

∑
m(a)Df(a)η <∞

is always sufficient: the only additional conditions are moment conditions.

Remark 3.15: For p < 2, Theorem 3.13 can be proved using only the theorem
of Keller and Liverani in [KL99], instead of its extension to several derivatives
given in Paragraph 3.2 (but the resulting bound ε tends to 0 when p tends to 2):
in the forthcoming proof, there is no derivative involved for p < 2. This gives
a more elementary proof of the accurate characteristic expansion for functions
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f not belonging to Lq for some q < 2, but the general case (functions in Lp for
every p < 2) requires the full power of Theorem 3.3.

We will need the following elementary lemma.

Lemma 3.16: For j ≥ 1, define a function Fj : R → C by

(3.57) Fj(x) = eix −
j−1∑

k=0

(ix)k/k!.

Let also b ∈ (0, 1]. For j ≥ 1 and x ∈ R, |Fj(x)| ≤ 2|x|j−1+b. Moreover, for

j ≥ 2 and x, y ∈ R, |Fj(x) − Fj(y)| ≤ 2|x− y| · max(|x|, |y|)j−2+b.

Proof. Let (Aj) denote the property “for all x ∈ R, |Fj(x)| ≤ 2|x|j−1+b” and
(Bj) the property “for all x, y, |Fj(x) − Fj(y)| ≤ 2|x− y| · max(|x|, |y|)j−2+b”.
We claim that (Aj) holds for j ≥ 1, and (Bj) holds for j ≥ 2.

First, (A1) holds trivially. Moreover, if (Bj) holds, then (Aj) holds by taking
y = 0. Hence, it is sufficient to prove that (Aj) implies (Bj+1) to conclude by
induction. Assume (Aj). Since F ′

j+1 = iFj , we have

|Fj+1(x) − Fj+1(y)| ≤ |x− y| sup
z∈[x,y]

|F ′
j+1(z)| ≤ |x− y| sup

z∈[x,y]

2|z|j−1+b

≤ 2|x− y|max(|x|, |y|)j−1+b.

This proves (Bj+1), as desired.

Proof of Theorem 3.13. Fix once and for all η ∈ (0, 1]. Let us fix A > 1; we
will prove the theorem for p ∈ [1 + 1/A,A].

The quantity p
1+1/5A − p

1+1/2A is bounded from below, uniformly for p ∈
[1 + 1/A,A]. Therefore, there exists δp ∈ [1/5A, 1/2A] such that the distance
from p/(1 + δp) to the integers is ≥ δ, for some δ > 0. Let us fix such a δp. Let
N ≥ 2 be the integer such that N > p/(1 + δp) > N − 1; write p/(1 + δp) =
N − 1 + b0 for some b0 ∈ [δ, 1 − δ]. Let b1 = · · · = bN−1 = 1. Define numbers
p0, . . . , pN in [1 + δp,∞] by p0 = 1 + δp and, for i ≥ 1, pi = p/(N − i). Define
also operators Qj by Qj(v) = ij

j! T̂ (f jv), and let Δj(t) = T̂t − T̂ − ∑j−1
k=1 t

kQk.
Let B̃j = Lpj .

We claim that the assumptions (3.16) and (3.17) are satisfied for the spaces
B̃j . Indeed, the choices of b0 and the pis ensure that, for 0 ≤ i < j ≤ N ,

(3.58)
1
pi

=
1
pj

+
b(i, j)
p

.
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Therefore, if u ∈ Lp/b(i,j) and v ∈ Lpj , then uv ∈ Lpi . Since f j−i ∈ Lp/(j−i),
this shows that Qj−i sends B̃j to B̃i if i > 0.

By Lemma 3.16, for any n ≥ 1 and b > 0, |eix − ∑n−1
k=0

ik

k!x
k| ≤ 2|x|n−1+b.

Therefore, |Δj−i(t)v| ≤ 2T̂ (|tf |j−i−1+b|v|). Taking b = bi, we obtain

(3.59) |Δj−i(t)v| ≤ 2|t|b(i,j)T̂ (|f |b(i,j)|v|).

Since |f |b(i,j) belongs to Lp/b(i,j), this shows, thanks to (3.58), that Δj−i(t)
sends B̃j to B̃i with a norm at most C|t|b(i,j). This is (3.17).

Unfortunately, the spaces Lpj do not satisfy a Lasota–Yorke type inequality
(3.15). Moreover, we would like to gain a little bit on the integrability exponent.
Therefore, we will rather use spaces Lq,s instead of spaces Lq. To check the
assumptions (3.16) and (3.17), we will apply Lemma 3.12 for some small enough
β ∈ (0, η] depending only on A.

The assumptions of this lemma are satisfied for the operator
Qj−i (1 ≤ i < j ≤ N), with q = pj, r = pi and c = b(i, j) (since f j−i is
indeed bounded by |f |j−i, and D(f j−i)(a) ≤ CDf(a) ‖1af‖j−i−1

L∞ ). We now
turn, for 0 ≤ i < j ≤ N , to the operators Δj−i(t). Once again, we take q = pj ,
r = pi and c = b(i, j). Let us show that the assumptions of Lemma 3.12 are sat-
isfied. First, if β is small enough, then r = pi is larger than 1+β (since we have
chosen p0 = 1+δp with δp ≥ 1/5A), and c = b(i, j) is larger than β (since b0 ≥ δ

by the good choice of δp). Let us define a function fj−i(t) = eitf−∑j−i−1
k=0

(itf)k

k! ,
so that Δj−i(t)v = T̂ (fj−i(t)v). The following lemma shows that fj−i(t) is well
behaved, which is the last assumption of Lemma 3.12 we have to check.

Lemma 3.17: For any 0 < b ≤ 1 and j ≥ 1, the function uj(t)=fj(t)/(2|t|j−1+b)
satisfies |uj | ≤ |f |j−1+b and, for all a ∈ α,

(3.60) Duj(t)(a) ≤
⎧
⎨

⎩

Df(a) if j − 1 + b ≤ 1,

Df(a) ‖1af‖j−2+b
L∞ if j − 1 + b > 1.

Proof. We have fj(t) = Fj(tf), where Fj is defined in Lemma 3.16. Therefore,
this lemma yields |fj(t)| ≤ 2|tf |j−1+b as desired. If j = 1, fj(t) = eitf − 1,
hence (3.60) follows easily. Assume now j ≥ 2. For any points x, y in the same
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element a of the partition α,

|fj(t)(x) − fj(t)(y)| = |Fj(tf(x)) − Fj(tf(y))|
≤ 2|tf(x) − tf(y)|max(|tf(x)|, |tf(y)|)j−2+b

≤ 2|t|j−1+bDf(a)d(x, y) ‖1af‖j−2+b
L∞ .

This proves (3.60) in this case.

Let δ > 0 be given by Lemma 3.12 for the value of β we constructed above.
Decreasing δ if necessary, we can assume δ ≤ 1/2A. Let also sN = 1. Lemma
3.12 (applied to the operators Q1 and Δ1(t), on the space LpN ,sN ) provides us
with sN−1 = s′ such that ‖Q1‖LpN ,sN →LpN−1+δ,sN−1 is finite, and

(3.61) ‖Δ1(t)‖LpN ,sN →LpN−1+δ,sN−1 = O(|t|b(N−1,N)).

Continuing inductively this process, we obtain a sequence sN , sN−1, . . . , s0

such that, for any 1 ≤ i < j ≤ N , the operator Qj−i maps continuously Lpj ,sj

to Lpi+δ,si , and such that, for any 0 ≤ i < j ≤ N , the operator Δj−i(t) maps
continuously Lpj ,sj to Lpi+δ,si , with a norm at most C|t|b(i,j).

Define a space Bi = Lpi+δ,si . Since Bi is continuously contained in Lpi,si ,
we have just proved that the assumptions (3.16) and (3.17) of Theorem 3.3 are
satisfied. Moreover, (3.14) and (3.15) for M = 1 follow from Lemmas 3.7 and
3.10. Therefore, Corollary 3.5 applies. Since Bi is included in Lpi+δ, we obtain
in particular the following: there exist u1 ∈ LpN−1+δ, . . . , uN−1 ∈ Lp1+δ such
that the normalized eigenfunction ξt of T̂t satisfies

(3.62)

∥
∥
∥
∥
∥
ξt − 1 −

N−1∑

k=1

tkuk

∥
∥
∥
∥
∥
Lp0+δ

= O(|t|b(0,N)−ε),

for any ε > 0.
Let us now estimate the eigenvalue λ(t) of T̂t using this estimate. Let us

write ξt − 1 =
∑N−1

k=1 tkuk + rt, where rt is an error term controlled by (3.62).
By (3.11),

λ(t) = E(eitf ) +
∫

(eitf − 1)(ξt − 1)

= E(eitf ) +
N−1∑

k=1

tk
∫

(eitf − 1)uk +
∫

(eitf − 1)rt.
(3.63)
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Let us first estimate
∫

(eitf − 1)rt. We have p0 = 1 + δp and b(0, N) =
p/(1+δp). Let q be such that 1/(p0+δ)+1/q = 1, i.e., q = (1+δp+δ)/(δp+δ).
Since δ ≤ 1/2A and δp ≤ 1/2A, we obtain q ≥ A. In particular, q ≥ p.
Therefore, |eix − 1| ≤ 2|x|p/q for any real x. This yields

(3.64)
∥
∥eitf − 1

∥
∥
Lq ≤

(∫

|eitf − 1|q
)1/q

≤ C|t|p/q .

Hence,

(3.65)
∣
∣
∣
∣

∫

(eitf − 1)rt

∣
∣
∣
∣ ≤

∥
∥eitf − 1

∥
∥
Lq ‖rt‖Lp0+δ ≤ C|t|p/q+p/(1+δp)−ε.

Moreover,

(3.66)
p

q
+

p

1 + δp
− ε = p

(

1 − 1
1 + δp + δ

+
1

1 + δp

)

− ε.

Since δ is positive, this quantity is larger than p if ε is small enough. Hence,
(3.65) is of the form O(|t|p+ε′ ) for some ε′ > 0. This is compatible with (3.56).

We now turn to the terms tk
∫
(eitf − 1)uk in (3.63), for 0 ≤ k ≤ N − 1.

The function uk belongs to Lp/k+δ. Let q be such that 1/q + 1/(p/k + δ) = 1.
Let also c > 0 satisfy qc = p. Then eitf =

∑
0≤j<c(itf)j/j! + rc,t, where

|rc,t| ≤ 2|t|c|f |c by Lemma 3.16. To conclude the proof, it is sufficient to show
that tk

∫
rc,tuk = O(|t|p+ε′ ) for some ε′ > 0, since the terms coming from the

integrals tk
∫

(itf)j/j! · uk will contribute to the polynomial in (3.56). We have
∣
∣
∣
∣t
k

∫

rc,tuk

∣
∣
∣
∣ ≤ |t|k ‖rc,t‖Lq ‖uk‖Lp/k+δ ≤ C|t|k

(∫

|rc,t|q
)1/q

≤ C|t|k+c
(∫

|f |p
)1/q

.

Finally, k+ c = k + p− k/(1 + kδ/p) is strictly larger than p, since δ > 0.

Remark 3.18: When f ∈ Lp, p > 1, the function μ(t) =
∫
Pt1 appearing in the

characteristic expansion (3.9) of f also satisfies an expansion

(3.67) μ(t) = 1 +
∑

1≤i<p
dit

i +O(|t|p−ε),

for any ε > 0. This follows from a similar (but easier) argument, where one does
not need to use the gain in the exponent from Lemma 3.12. This expansion is
not as strong as the expansion of λ(t) (it does not reach the precision O(|t|p),
while Theorem 3.13 gets beyond it). The reason for this difference is that μ(t)
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is only expressed in spectral terms (and Theorem 3.3 therefore gives a small loss
in the exponent), while for λ(t) one can take advantage of the formula (3.11).

3.6. Last details in the L2
case. In this paragraph, we conclude the proof

of Theorem 1.5. By Proposition 1.10 and Theorem 1.9, we only have to identify
the variance σ2 when f ∈ L2, and to strengthen the conclusion of Theorem 1.9
in the σ2 = 0 case.

Lemma 3.19: Assume f ∈ L2, and write f̃ = f − ∫
f . Then the asymptotic

expansion of λ(t) given by Theorem 3.13 is

(3.68) λ(t) = 1 + itE(f) − (σ2 + E(f)2)t2/2 + o(t2),

where σ2 =
∫
f̃2 + 2

∑∞
k=1

∫
f̃ · f̃ ◦ T k (the series converges exponentially fast).

Proof. In the expansion (3.56) of λ(t), the term for i = 2 comes only, in the
proof, from the integral

∫
itfu1, where

(3.69) u1 =
1

2iπ

∫

|z−1|=c
(z − T̂ )−1Q1(z − T̂ )−11 dz,

where Q1(v) = T̂ (ifv) (and the integral is converging in a space L2+δ,s for some
δ > 0 and s > 0). Let us identify u1. We have (z − T̂ )−11 = 1/(z − 1). More-
over, if E is the space of constant functions and F the space of functions with
vanishing integral, then (z− T̂ )−1 is the multiplication by 1/(z−1) on E, while
(z − T̂ )−1v =

∑∞
k=0 z

−k−1T̂ kv for v ∈ F (the series converging exponentially
fast in L2+δ,s, and in particular in L2). Writing T̂ f as (

∫
f) + T̂ f̃ ∈ E ⊕ F , we

obtain

(3.70) u1 =
1

2iπ

∫

|z−1|=c

i
∫
f

(z − 1)2
dz +

∞∑

k=0

1
2iπ

∫

|z−1|=c

z−k−1

z − 1
iT̂ k+1f̃ dz.

Since 1/(z − 1)2 has a vanishing residue at z = 1, while z−k−1/(z − 1) has a
residue equal to 1, this gives

(3.71) u1 = i
∞∑

k=0

T̂ k+1f̃ .
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We obtain from (3.56)

λ(t) = E(eitf ) − t2
∞∑

k=1

∫

fT̂ kf̃ +O(|t|2+ε)

= 1 + itE(f) − t2
∫

f2/2 − t2
∞∑

k=1

∫

f̃ · f̃ ◦ T k + o(t2)

= 1 + itE(f) − (σ2 + E(f)2)t2/2 + o(t2).

To conclude, it is sufficient to prove that, if σ2 vanishes, then f is a bounded
coboundary. A similar result is proved in [AD01b, Corollary 2.3], and we will
essentially reproduce the same argument for completeness.

Lemma 3.20: Assume f ∈ L2 is such that σ2 (given by Lemma 3.19) vanishes.

Then there exist a bounded function u and a real c such that f = u−u ◦T + c.

Proof. Replacing f with f̃ = f − ∫
f , we can assume without loss of generality

that
∫
f = 0.

The exponential convergence of
∫
f · f ◦ T k to 0 ensures that

∫
(Snf)2 =

nσ2 + O(1). Therefore, if σ2 = 0, then Snf is bounded in L2. By Leonov’s
Theorem (see, e.g., [AW00]), this implies that f is an L2 coboundary: there
exists u ∈ L2 such that f = u− u ◦ T almost everywhere. Then

(3.72) T̂t(e−itu) = T̂ (eitfe−itu) = T̂ (e−itu◦T ) = e−itu.

By [ITM50], this yields e−itu ∈ L. In particular, the function e−itu is continuous
for any small enough t. Lemma 3.21 shows that u itself is continuous. In
particular, there exists a cylinder [b0, . . . , bk] on which u is bounded. Since f is
bounded on each element of the partition α, the equation f = u− u ◦T implies
that u is bounded on bk. Together with the topological transitivity of T , we
obtain that u is bounded on each a ∈ α.

Let {a1, . . . , an} be a finite subset of α such that each element of α contains
the image of one of the ais (it exists by the big preimage property). Let a ∈ α,
and choose i such that a ⊂ T (ai); then the equation f = u − u ◦ T gives
‖u1a‖L∞ ≤ ‖(|f | + |u|)1ai‖L∞ . This shows that u is uniformly bounded, as
desired.

In fact, a slightly refined version of the same argument also shows that u is
Hölder continuous.
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Lemma 3.21: Let u be a real function on a metric space X , and assume that

eitu is continuous for t ∈ [a, b] a nontrivial interval of R. Then u is continuous.

Proof. We will show that, if vn is a real sequence such that eitvn converges to 0
for any t ∈ [a, b], then vn → 0. Applying this result to vn = u(xn)− u(x) when
xn → x, this gives the required continuity of u at x ∈ X , for any x.

Let AN = {t ∈ [a, b] | ∀n ≥ N, dist(tvn, 2πZ) ≤ 1}. The set AN is a closed
subset of [a, b], and

⋃
AN = [a, b]. By Baire’s Theorem, there exists a set AN

containing a nontrivial interval [c, d]. For n ≥ N and t ∈ [c, d], the number tvn
belongs to 2πZ + [−1, 1], and depends continuously on t. It has to stay in the
same connected component of 2πZ + [−1, 1], therefore |cvn − dvn| ≤ 2. This
shows that vn is bounded.

Any cluster value v of vn satisfies eitv = 0 for any t ∈ [a, b], hence v = 0.

Appendix A. The Berry–Esseen theorem for Gibbs–Markov maps

In this appendix, we obtain necessary and sufficient conditions for the Berry–
Esseen theorem, for Gibbs–Markov maps.

Theorem A.1: Let T : X → X be a probability preserving mixing Gibbs–

Markov map, and let f : X → R satisfy
∑

a∈αm(a)Df(a)η < ∞ for some

η ∈ (0, 1]. Assume f ∈ L2 and E(f) = 0, and Snf/
√
n → N (0, σ2) with

σ2 > 0. Let

(A.1) Δn := sup
x∈R

∣
∣m{Snf/

√
n < x} − P (N (0, σ2) < x)

∣
∣ .

Let δ ∈ (0, 1). Then Δn = O(n−δ/2) if and only if E(f21|f |>x) = O(x−δ) when

x→ ∞.

Moreover, Δn = O(n−1/2) if and only if E(f21|f |>x) = O(x−1) when x→ ∞,

and E(f31|f |<x) is uniformly bounded.

When one considers i.i.d. random variables instead of Birkhoff sums, this
theorem for δ < 1 is proved in [IL71, Theorem 3.4.1], and the proof for δ = 1
is given in [Ibr66]. For the proof in the dynamical setting, we will essentially
follow the same strategy as in the i.i.d. case, the additional crucial ingredient
being the estimate on λ(t) provided by Theorem 3.13. We will only give the
proof for δ < 1, since the proof for δ = 1 is very similar following the arguments
of [Ibr66].
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Proof of the necessity in Theorem A.1. Assuming Δn = O(n−δ/2), we will
prove E(f21|f |>x) = O(x−δ). This is trivial if f ∈ L3, so we can assume
this is not the case. In this proof, ε will denote the minimum of ε(p) given by
Theorem 3.13 for p ∈ [2, 3]. Consider p ∈ [2, 3] such that f ∈ Lp and f �∈ Lp+ε/2,
and let q = min(p+ ε, 3). Hence, λ(t) = E(eitf ) + ct2 +O(|t|q) for some c ∈ R.
It will be more convenient to write this estimate as follows:

(A.2) λ(t) = E(eitf )ect
2+t2φ(t) with φ(t) = O(|t|q−2).

Let W be the symmetrization of f , i.e., the difference of two independent
copies of f . Its characteristic function is E(eitW ) = |E(eitf )|2. Let us write
E(eitW ) = e−σ

2
0t

2+t2γ0(t) where σ2
0 = E(f2) and γ0 is a real function defined on

a neighborhood of 0. [IL71, Paragraph III.4] proves the following fact:

(A.3)
If

∫ x

0

t2|γ0(t)| = O(x3+δ̃), 0 < δ̃ < 1, when x→ 0,

then E(f21|f |>x) = O(x−δ̃) when x→ +∞.

To conclude, it is therefore sufficient to estimate
∫
t2|γ0(t)|.

Let H denote the distribution function of N (0, 2σ2), and Fn the distribution
function of the difference of two independent copies of Snf/

√
n. From the

assumption Δn = O(n−δ/2), it follows that supx∈R |H(x) − Fn(x)| ≤ Cn−δ/2.
Let h(t) and fn(t) be the characteristic functions ofH and Fn, i.e., h(t) = e−σ

2t2

and fn(t) = |E(eitSnf/
√
n)|2. Integrating by parts the equality fn(t) − h(t) =

∫
eitx d(Fn(x) −H(x)), we obtain

(A.4)
fn(t) − h(t)

it
=

∫

eitx(Fn(x) −H(x)) dx.

This shows that the L2 functions (fn(t) − h(t))/it and Fn − H are Fourier
transforms of one another. The functions te−t

2/2 and −ixe−x
2/2/

√
2π are also

Fourier transforms of one another. Hence, Parseval’s theorem gives

(A.5)
∫
fn(t) − h(t)

t
· te−t2/2 dt = C

∫

(Fn(x) −H(x))xe−x
2/2 = O(n−δ/2).

Since
∫
|t|≥logn e

−t2/2 dt = O(n−δ/2), this yields

(A.6)
∫

|t|≤logn

(fn(t) − h(t))e−t
2/2 dt = O(n−δ/2).
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The characteristic expansion of f gives

fn(t) = |E(eitSnf/
√
n)|2 =

∣
∣
∣
∣λ

(
t√
n

)∣
∣
∣
∣

2n ∣
∣
∣
∣μ

(
t√
n

)∣
∣
∣
∣

2

+ εn(t),

where εn(t) tends exponentially fast to 0 (by Theorem 3.1), and the function
μ satisfies μ(t) = 1 + O(t) (by Remark 3.18). Let gn(t) = |λ(t/

√
n) |2n; then

∫
|t|≤logn

(fn(t) − gn(t))e−t
2/2 dt = O(n−1/2). Therefore, (A.6) gives

(A.7)
∫

|t|≤logn

(gn(t) − h(t))e−t
2/2 dt = O(n−δ/2).

Moreover, by (A.2)

gn(t) = |E(eitf/
√
n)|2ne2ct2+2t2 Reφ(t/

√
n)

= e−σ
2
0t

2+t2γ0(t/
√
n)+2ct2+2t2 Reφ(t/

√
n)

= e−σ
2t2+t2γ0(t/

√
n)+2t2 Reφ(t/

√
n).

Let hn(t) = e−σ
2t2+t2γ0(t/

√
n). Since φ(t) = O(|t|q−2) by (A.2), we have

∫
|t|≤logn(gn(t) − hn(t))e−t

2/2 dt = O(n−(q−2)/2). Hence,

(A.8)
∫

|t|≤logn

(hn(t) − h(t))e−t
2/2 dt = O(n−δ/2) +O(n−(q−2)/2).

Since hn(t) − h(t) = e−σ
2t2(et

2γ0(t/
√
n) − 1), we can now conclude as in [IL71,

Page 106] to get

(A.9)
∫ x

0

t2|γ0(t)| = O(x3+δ) +O(xq+1).

By (A.3), this proves that E(f21|f |>x) = O(x−δ̃) for δ̃ = min(δ, q − 2). If
q − 2 < δ (in particular, q �= 3, so q = p + ε), we have δ̃ = q − 2, hence f
belongs to Lq

′
for any q′ < q. In particular, f ∈ Lq−ε/2 = Lp+ε/2. This is

not compatible with the choice of p. Hence, q − 2 ≥ δ, whence δ̃ = δ, and
E(f21|f |>x) = O(x−δ).

Proof of the sufficiency in Theorem A.1. Assuming E(f21|f |>x) = O(x−δ), we
will prove Δn = O(n−δ/2). We essentially follow the arguments of the proof
of the necessity, in the reverse direction, the main difference being that we no
longer need to work with the symmetrization of the random variables.

Let us write E(eitf )=e−σ
2
0t

2/2+t2γ(t). [IL71, Page 111] proves that, under the
assumptionE(f21|f |>x)=O(x−δ), the function γ satisfies

∫ x
0 t

2|γ(t)|dt=O(x3+δ).
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Moreover, f belongs to Lp for any p < 2+δ. Let q = min(2+δ+ε/2, 3) > 2+δ.
Taking p = 2 + δ− ε/2, Theorem 3.13 shows that λ(t) = E(eitf )+ ct2 +O(|t|q),
which we may rewrite as λ(t) = E(eitf )ect

2+t2φ(t) where φ(t) = O(|t|q−2). To-
gether with the expansion of E(eitf ), we obtain

(A.10) λ(t) = e−σ
2t2/2+t2ψ(t) with

∫ x

0

t2|ψ(t)| dt = O(x3+δ).

Let fn denote the characteristic function of Snf/
√
n. The classical Berry–

Esseen estimate [IL71, Theorem 1.5.2] shows that, for any T > 0,

(A.11) Δn ≤ C

∫ T

−T

1
|t| |fn(t) − e−σ

2t2/2| dt+ C/T.

Let us choose T = ρ
√
n with ρ small enough. The second term in this estimate

is then O(n−1/2) = O(n−δ). For the first term, we split the integral in two
parts, corresponding to |t| ≤ 1/n and |t| > 1/n. In the first part, we have

(A.12) |fn(t) − 1| =
∣
∣
∣E(eitSnf/

√
n − 1)

∣
∣
∣ ≤ |t|E|Snf |/

√
n ≤ √

n|t|.
The resulting integral is bounded by

(A.13)
∫

|t|≤1/n

√
n+ |t|−1|1 − e−σ

2t2/2| dt = O(n−1/2).

Hence,

(A.14) Δn ≤ C

∫

1/n≤|t|≤ρ√n

1
|t| |fn(t) − e−σ

2t2/2| dt+O(n−1/2).

We have fn(t) = λ(t/
√
n)nμ(t/

√
n)+εn(t), where εn(t) tends exponentially fast

to 0, while μ(t) = 1 + O(t). Let gn(t) = λ(t/
√
n)n. By (A.10), if ρ is small

enough, we have |λ(t)| ≤ e−σ
2t2/4 for |t| ≤ ρ. This yields |λ(t/

√
n)|n ≤ e−σ

2t2/4

for |t| ≤ ρ
√
n. Hence,

(A.15)
∫

1/n≤|t|≤ρ√n

1
|t| |fn(t) − gn(t)| ≤ C/

√
n.

With (A.10), we obtain

Δn ≤ C

∫

1/n≤|t|≤ρ√n

1
|t| |gn(t) − e−σ

2t2/2| dt+O(n−1/2)

= C

∫

1/n≤|t|≤ρ√n

1
|t|e

−σ2t2/2|et2ψ(t/
√
n) − 1| dt+O(n−1/2).

Since
∫ x
0 t

2|ψ(t)| dt = O(x3+δ), this last integral is bounded by O(n−δ/2) (see,
e.g., [IL71, bottom of Page 107]). This concludes the proof.
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