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Abstract. We find conditions on the weight w in order characterize functions in weighted

Besov spaces Bp,q
w,φ in terms of differences ∆xf .

Introduction.

There are many ways to define Besov spaces (see [1, 19, 24]). It is well known that
Besov spaces can be defined, for instance in terms of convolutions f ∗ φt with different
kinds of smooth functions φ and that they can be also described by means of differences
∆xf (see [10, 11, 22]).

Our objective will be to find weights (which extend the case tα) where we can still get
such a characteritation of weighted Besov spaces and to give a general procedure which
works not only in the classical case but also in the weighted one. Our arguments will be
based upon two main points: The Calderón’s formula, a quite simple Schur Lemma.

We want to notice that this characterization can be used to get the atomic decomposition
of the spaces.

The paper is divided into two sections. Section 1 has a preliminary character and it is
devoted to introduce the notation and the main lemmas to be used later on. In Section
2 we prove the result about coincidence of seminorms in the spaces defined by differences
and convolutions.

Throughout the paper a weight w : R
+ → R

+ will be a measurable function w > 0 a.e.,
1 ≤ p, q ≤ ∞ and p′, q′ stand for the conjugate exponents. S denotes the Schwartz class
of test functions on R

n, S ′ the space of tempered distributions, S0 the set of functions in
S with mean zero and S ′

0 its topological dual.
Given a weight w and 1 ≤ p, q ≤ ∞ we shall denote by Λp,q

w the space of measurable
functions f : R

n → C such that

||f ||Λp,q
w

=
(∫

Rn

||∆xf ||qp
w(|x|)q

dx

|x|n
) 1

q

<∞ (1 ≤ q <∞)

or
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||f ||Λp,∞
w

= inf{C > 0 : ||∆xf ||p ≤ Cw(|x|) a.e.x ∈ R
n} <∞ (q = ∞)

where ∆xf(y) = f(x+ y) − f(y).

Given a weight w, φ ∈ S0 and 1 ≤ p, q ≤ ∞ we shall denote by Bp,q
w,φ the space functions

f : R
n → C with f ∈ L1

(
R

n, dx
(1+|x|)n+1

)
such that

||f ||Bp,q
w,φ

=
(∫

Rn

||φt ∗ f ||qp
w(t)q

dt

t

) 1
q

<∞ (1 ≤ q <∞)

or

||f ||Bp,∞
w,φ

= inf{C > 0 : ||φt ∗ f ||p ≤ Cw(t) a.e.t > 0} <∞ (q = ∞)

where φt(x) = 1
tnφ

(
x
t

)
.

To state the results of the paper, let us first recall the following notions.
A weight w is said to satisfy Dini condition if there exists C > 0 such that∫ s

0

w(t)
t
dt ≤ Cw(s) a.e. s > 0.

A weight w is said to be a b1-weight if there exists C > 0 such that∫ ∞

s

w(t)
t2

dt ≤ C
w(s)
s

a.e. s > 0.

We shall denote by W0,1 the space of b1-weights which satisfy Dini condition.
Let us also use the notation A and A1 for the following classes

A = {φ ∈ S0 :
∫ ∞

0

(
φ̂(tξ)

)2 dt

t
= 1 for ξ ∈ R

n \ {0}}.

A1 = {φ ∈ A : φ radial and real, supp φ ⊆ {|x| ≤ 1},
∫

Rn

xiφ(x)dx = 0, i = 1, ..., n}.

Section 2 is devoted to prove the following theorem.

Main Theorem. Let 1 ≤ p, q ≤ ∞, φ ∈ A and w be a weight that can be factorized as

w(t) = λ
1
q′ (t)µ

−1
q (t−1) where λ, µ ∈ W0,1. Then

Λp,q
w = Bp,q

w,φ (with equivalent seminorms).

For particular cases w(t) = tα the reader is referred to [10, 11, 14, 22] for similar results
for special functions φ and their applications. In our weighted situation some closely
related results for the unit disc are included in [3] and [5].

The reader should be aware that the case 1 < q < ∞ in Main Theorem could have
been shown by interpolation with the extreme cases, but a direct proof is presented in the
paper.
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§1. Preliminaries.

Let us recall some notions on weights we shall need later.

Definition 1.1. Let ε ≥ 0, δ ≥ 0 and w be a weight. w is said to be a dε-weight if exists
C > 0 such that

(1.1)
∫ s

0

tεw(t)
dt

t
≤ Csεw(s) a.e. s > 0.

w is said to be a bδ-weight if there exists C > 0 such that

(1.2)
∫ ∞

s

w(t)
tδ

dt

t
≤ C

w(s)
sδ

a.e. s > 0.

If (dε)(respect. (bδ)) denotes de class of dε-weights (respect. bδ-weights) we write

Wε,δ = (dε) ∩ (bδ).

The following properties are elementary and left to the interested reader

(1.3) w ∈ (dε) ⇒ w ∈ (dε′) for any ε′ > ε.

(1.3′) w ∈ (bδ) ⇒ w ∈ (bδ′) for any δ′ > δ.

(1.4) Let w(t) = w(t−1) then w ∈ (bε) ⇐⇒ w ∈ (dε).

(1.5) w ∈ Wε,δ ⇒ w(t) ≥ Cmin
(
t−ε, tδ

)
.

Let us now give some examples.
It is elementary to see that if α ∈ R and wα(t) = tα then wα ∈ Wε,δ for any δ > α and

ε > −α.
Let us give a bit more general example. Let α, β ∈ R and wα,β(t) = tα(1 + | log t|)β .

Then wα,β ∈ Wε,δ for any δ > α and ε > −α.
Indeed, let us take δ > α. Then making the change of variable t = su we have∫ ∞

s

wα,β(t)
tδ+1

dt =
∫ ∞

s

tα−δ(1 + | log t|)β dt

t

≤ sα−δ

∫ ∞

1

uα−δ(1 + | log s| + log u)β du

u
.
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For β < 0 then

∫ ∞

s

wα,β(t)
tδ+1

dt ≤ 1
δ − α

sα−δ(1 + | log s|)β =
Cβ

δ − α

wα,β(s)
sδ

.

For β > 0, using (a+ b)β ≤ Cβ(aβ + bβ), we have

∫ ∞

s

wα,β(t)
tδ+1

dt ≤ Cβs
α−δ

(
(1 + | log s|)β

∫ ∞

1

uα−δ du

u
+

∫ ∞

1

uα−δ(log u)β du

u

)

≤ C(α, β, δ)
wα,β(s)
sδ

.

Since wα,β(t) = w−α,β(t−1) then also have wα,β is a dε-weight for ε > −α. �

Let us now establish the main lemma to be used later on. Observe that a net {φi}i∈Λ

converges to φ in S ′
0 if there exist {ci}i∈Λ ⊂ C such that φi − ci converges to φ in S ′.

One of the main facts in our approach, which follows ideas from [6] and [14], is the use
of the Calderón reproducing formula.

Let φ ∈ A and ψ ∈ S then for ξ ∈ R
n \ {0},

ψ̂(ξ) =
∫ ∞

0

(φt ∗ φt ∗ ψ)(̂ξ)
dt

t
.

This shows that ψε,δ =
∫ δ

ε
φt ∗ φt ∗ ψ dt

t converges to ψ in S.

Lemma A. (see Appendix [14]). Let f ∈ L1
(
R

n, dx
(1+|x|)n+1

)
and φ ∈ A. For 0 < ε < δ

define

fε,δ(x) =
∫ δ

ε

(φt ∗ φt ∗ f)(x)
dt

t
.

Then fε,δ converges to f in S ′
0 as ε→ 0 and δ → ∞.

To finish this preliminary section let us state a version of Schur lemma that will be useful
for our purposes and whose elementary proof we include here for the sake of completeness.

Lemma B. Let 1 < q < ∞ and 1
q + 1

q′ = 1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two

σ-finite measure spaces and let K : Ω1 × Ω2 → R
+ be a measurable function and write

TK(f) for

TK(f)(w2) =
∫

Ω1

K(w1, w2)f(w1)dµ1(w1).

If there exist C > 0 and measurable functions hi : Ωi → R
+ (i = 1, 2) such that

(1.9)
∫

Ω1

K(w1, w2)h
q′

1 (w1)dµ1(w1) ≤ Chq′

2 (w2) µ2 − a.e.
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(1.10)
∫

Ω2

K(w1, w2)h
q
2(w2)dµ2(w2) ≤ Chq

1(w1) µ1 − a.e.

Then TK defines a bounded operator from Lq(Ω1, µ1) into Lq(Ω2, µ2).

Proof. From (1.9) and Hölder’s inequality we have

|TK(f)(w2)| ≤ Ch2(w2)
(∫

Ω1

K(w1, w2)h
−q
1 (w1)|f(w1)|qdµ1(w1)

) 1
q

.

Apply now (1.10) and Fubini’s theorem to get

||TK(f)||q ≤ C

(∫
Ω1

(∫
Ω2)

K(w1, w2)h
q
2(w2)dµ2(w2)

)
h1(w1)−q|f(w1)|qdµ1(w1)

) 1
q

≤ C2||f ||q.

§2. Characterization of Besov spaces

Let us first establish some general facts that can be used to relate properties about
differences ∆xf and convolutions φt ∗ f .

Lemma 2.1. Let 1 ≤ p ≤ ∞, ρ ≥ 0 and φ ∈ A. Then there exists C > 0 such that if

f ∈ L1
(
R

n, dx
(1+|x|)n+1

)
then we have:

(2.1) ||φt ∗ f ||p ≤ C

∫
Rn

min
(( |x|

t

)n

,

(
t

|x|

)ρ)
||∆xf ||p

dx

|x|n .

(2.2) ||∆xf ||p ≤ C

∫ ∞

0

min
(

1,
|x|
t

)
||φt ∗ f ||p

dt

t
.

Proof. Notice that, since
∫

Rn

φ(x)dx = 0, then

φt ∗ f(y) =
∫

Rn

φt(x)∆−xf(y)dx.

From Minkowski’s inequality one gets

(2.1′). ||φt ∗ f ||p ≤
∫

Rn

|x|n
tn

∣∣∣∣φ
(−x

t

)∣∣∣∣ ||∆xf ||p
dx

|x|n .

Hence (2.1) follows from the trivial estimates
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|y|n+ρ|φ(y)| ≤ C if |y| ≥ 1.

|φ(y)| ≤ C if |y| ≤ 1.

To prove (2.2) observe first that for 0 < ε < δ

(2.2′) ∆xfε,δ(y) =
∫ δ

ε

(∆−xφt) ∗ φt ∗ f(y)
dt

t
.

Hence Minkowski’s inequality and Young’s inequality give

||∆xfε,δ||p ≤
∫ δ

ε

||∆−xφt||1||φt ∗ f ||p
dt

t
.

Note that

||∆yφ||1 ≤ 2||φ||1 if |y| ≥ 1.

||∆yφ||1 ≤ |y|
∫

Rn

max
|z−u|<1

| � φ(z)|du if |y| ≤ 1.

Hence

‖∆−xφt‖1 =
∥∥∥∆−x

t
φ
∥∥∥

1
≤ Cmin

(
1,

|x|
t

)
.

Therefore, using the previous estimate (2.2′) and Lemma A, a simple limiting argument
shows (2.2). �

Although for the purposes of this paper only a particular case of next lemma will be
used we state a general version of it that we find interesting in its own right.

Lemma 2.2. Given 0 ≤ ε, δ <∞, 1 < q <∞, and w a weight, let us consider

Rε,δ(s, t) =
w(s)
w(t)

min

((s
t

)ε

,

(
t

s

)δ
)
.

If w(s) = λ
1
q′ (s)µ

−1
q (s−1) for some pair of weights λ, µ ∈ Wε,δ, then there exist C > 0

and g : R
+ → R

+ measurable such that

(2.3)
∫ ∞

0

Rε,δ(s, t)gq′
(s)

ds

s
≤ Cgq′

(t).

(2.4)
∫ ∞

0

Rε,δ(s, t)gq(t)
dt

t
≤ Cgq(s).

Proof. Let us take g(t) = λ
1

qq′ (t)µ
1

qq′ (t−1). Then gq′
(s) =

λ(s)
w(s)

and gq(t) = w(t)µ(t−1).
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Therefore

∫ ∞

0

Rε,δ(s, t)gq′
(s)

ds

s
=

1
w(t)

∫ ∞

0

λ(s) min

((s
t

)ε

,

(
t

s

)δ
)
ds

s

=
1

tεw(t)

∫ t

0

sελ(s)
ds

s
+

tδ

w(t)

∫ ∞

t

λ(s)
sδ

ds

s

≤ C
λ(t)
w(t)

= Cgq′
(t).

On the other hand

∫ ∞

0

Rε,δ(s, t)gq(t)
dt

t
= w(s)

∫ ∞

0

µ(t−1) min

((s
t

)ε

,

(
t

s

)δ
)
dt

t

=
w(s)
sδ

∫ s

0

tδµ(t−1)
d

t
+ sεw(s)

∫ ∞

s

µ(t−1)
tε

dt

t

=
w(s)
sδ

∫ ∞

s−1

µ(t)
tδ

d

t
+ sεw(s)

∫ s−1

0

tεµ(t)
dt

t

≤ Cµ(s−1)w(s) = Cgq(s). �

Let us now state the following result in order to avoid repeating arguments in several
of the remaining proofs.

Lemma 2.3. Let 1 ≤ p ≤ ∞ and let f be a measurable function.

If ‖∆xf‖p ∈ L1
(
R

n, dx
(1+|x|)n+1

)
then f ∈ L1

(
R

n, ( dx
1+|x|)n+1

)
.

Proof. Choose Ψ ∈ Lp′
(Rn, dx) with Ψ > 0 a.e. Then Hölder’s inequality and Fubini’s

theorem give

∫
Rn

(∫
Rn

|f(x+ y) − f(y)|
(1 + |x|)n+1 dx

)
Ψ(y)dy <∞.

Therefore ∫
Rn

|f(x+ y) − f(y)|
(1 + |x|)n+1 dx <∞ for a.e. y ∈ R

n.

Since (1 + |x|)−(n+1) ∈ L1(Rn) then∫
Rn

|f(x+ y)|
(1 + |x|)n+1 dx <∞ for a.e. y ∈ R

n.

Finally since there exists C > 0 such that 1 + |x+ y| ≥ C(1 + |x|) for all y ∈ R
n, then

one has
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∫
Rn

|f(x)|
(1 + |x|)n+1 dx <∞. �

Let us now start with the case q = ∞ in the Main Theorem which easily follows from
Lemma 2.1.

Theorem 2.1. Let 1 ≤ p ≤ ∞, φ ∈ A and w ∈ W0,1. Then

Λp,∞
w = Bp,∞

w,φ (with equivalent seminorms).

Proof. Assume f ∈ Λp,∞
w . Note that

∫
Rn

||∆xf ||p
(1 + |x|)n+1 dx ≤ C

∫
Rn

w(|x|)
(1 + |x|)n+1 dx

≤ C

∫ ∞

0

w(t)tn−1

(1 + t)n+1 dt

≤ C
( ∫ 1

0

w(t)
dt

t
+

∫ ∞

1

w(t)
dt

t2

)
<∞

what combined with Lemma 2.3 gives

∫
Rn

|f(x)|
(1 + |x|)n+1 dx <∞.

Let us prove that ||φt ∗ f ||p ≤ Cw(t). From (2.1) in Lemma 2.1 for ρ = 1 we have

||φt ∗ f ||p ≤ C

(
1
tn

∫
|x|<t

||∆xf ||pdx+ t

∫
|x|>t

||∆xf ||p
dx

|x|n+1

)

≤ C

(
1
tn

∫
|x|<t

w(|x|)dx+ t

∫
|x|>t

w(|x|) dx

|x|n+1

)

≤ C

(∫ t

0

(s
t

)n

w(s)
ds

s
+ t

∫ ∞

t

w(s)
ds

s2

)
≤ Cw(t).

Assume now f ∈ Bp,∞
w,φ . Then from (2.2) we have

||∆xf ||p ≤ C

(∫ |x|

0

||φ ∗ f ||p
dt

t
+ |x|

∫ ∞

|x|
||φ ∗ f ||p

dt

t2

)

≤ C

(∫ |x|

0

w(t)
t
dt+ |x|

∫ ∞

|x|

w(t)
t2

dt

)
≤ Cw(|x|). �

We prove now the case q = 1 in the Main Theorem.
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Theorem 2.2. Let 1 ≤ p ≤ ∞, φ ∈ A and w such that µ(t) = w−1(t−1) ∈ W0,1. Then

Λp,1
w = Bp,1

w,φ (with equivalent seminorms).

Proof. Assume f ∈ Λp,1
w . Let us first prove that

∫
Rn

|f(x)|
(1 + |x|)n+1 dx <∞.

From (1.5)

1
|x|nw(|x|) ≥ C

1
|x|n min

(
1,

1
|x|

)
≥ C

1
|x|n min

(
|x|n, 1

|x|

)
≥ C

(1 + |x|)n+1 .

Hence ∫
Rn

||∆xf ||p
(1 + |x|)n+1 dx ≤ C

∫
Rn

||∆xf ||p
w(|x|)

dx

|x|n <∞

and we apply Lemma 2.3 again.
We shall now prove that ||f ||Bp,1

w,φ
≤ C||f ||Λp,1

w
.

Using (2.1) in Lemma 2.1 with ρ = 1

∫ ∞

0

||φt ∗ f ||p
w(t)

dt

t
≤ C

∫ ∞

0

[∫
Rn

min
(( |x|

t

)n

,

(
t

|x|

)) ||∆xf ||p
w(t)

dx

|x|n
]
dt

t

= C

∫
Rn

||∆xf ||p
[∫ ∞

0

min
(( |x|

t

)n

,

(
t

|x|

))
µ

(
t−1

) dt
t

]
dx

|x|n

= C

∫
Rn

||∆xf ||p
[∫ |x|

0

tµ
(
t−1

)
|x|

dt

t
+

∫ ∞

|x|

|x|nµ
(
t−1

)
tn

dt

t

]
dx

|x|n

≤ C

∫
Rn

||∆xf ||p
[

1
|x|

∫ ∞

|x|−1
µ(t)

dt

t2
+

∫ |x|−1

0

µ(t)
dt

t

]
dx

|x|n

≤ C

∫
Rn

||∆xf ||pµ
(
|x|−1

) dx

|x|n

= C

∫
Rn

||∆xf ||p
w(|x|)

dx

|x|n .

Take now f ∈ Bp,1
w,φ. From (2.2) in Lemma 2.1 and Fubini’s theorem
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∫
Rn

||∆xf ||p
w(|x|)

dx

|x|n ≤ C

∫ ∞

0

||φt ∗ f ||p
[∫

Rn

µ
(
|x|−1

)
min

(
1,

|x|
t

)
dx

|x|n
]
dt

t

= C

∫ ∞

0

||φt ∗ f ||p
[∫ ∞

0

µ(s) min
(

1,
1
st

)
ds

s

]
dt

t

= C

∫ ∞

0

||φt ∗ f ||p
[∫ t−1

0

µ(s)
s
ds+

1
t

∫ ∞

t−1

µ(s)
s2

ds

]
dt

t

≤ C

∫ ∞

0

||φt ∗ f ||pµ
(
t−1

) dt
t

= C

∫ ∞

0

||φt ∗ f ||p
w(t)

dt

t
. �

Theorem 1.3. Let 1 ≤ p ≤ ∞, 1 < q <∞, φ ∈ A and w a weight such that

w(t) = λ
1
q′ (t)µ

−1
q (t−1)

for some pair of weights λ, µ ∈ W0,1. Then

Λp,q
w = Bp,q

w,φ (with equivalent seminorms).

Proof. Assume f ∈ Λp,q
w . Let us show first that∫

Rn

|f(x)|
(1 + |x|)n+1 dx <∞.

Let us denote

Φ(x) =
w(|x|)|x|n

(1 + |x|)n+1 .

We shall see that under the assumptions λ, µ ∈ W0,1 one has that Φ ∈ Lq′
(
R

n, dx
|x|n

)
.

Indeed ∫ ∞

0

Φq′
(t)
dt

t
=

∫ ∞

0

λ(t)µ−q′/q
(
t−1

) tnq′

(1 + t)q′(n+1)

dt

t
.

Using (1.5) we have µ(s) ≥ Cmin(1, s). Therefore

∫ ∞

0

Φq′
(t)
dt

t
≤ C

∫ ∞

0

λ(t) max
(
1, t(q

′−1)
) tnq′

(1 + t)q′n+q′
dt

t

≤ C

(∫ 1

0

λ(t)
dt

t
+

∫ ∞

1

λ(t)
t

dt

t

)
<∞.

From Hölder’s inequality one has
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∫
Rn

||∆xf ||p
(1 + |x|)n+1 dx =

∫
Rn

||∆xf ||p
w(|x|) Φ(x)

dx

|x|n <∞

and we apply Lemma 2.3.
Let us now prove

||f ||Bp,q
w,φ

≤ C||f ||Λp,q
w
.

From (2.1) in Lemma 2.1 with ρ = 1

||φt ∗ f ||p
w(t)

≤ C

∫
Rn

K(x, t)
||∆xf ||p
w(|x|)

dx

|x|n

where

K(x, t) =
w(|x|)
w(t)

min
(

1,
t

|x|

)
.

Take

(Ω1,Σ1, µ1) =
(

R
n,B (Rn) ,

dx

|x|n
)

and

(Ω2,Σ2, µ2) =
(

(0,∞),B ((0,∞)) ,
dx

|x|n
)
.

Since K(x, t) = R0,1(|x|, t) we can apply Lemma 2.2 with ε = 0 and δ = 1 to get a
measurable function g satisfying (2.3) and (2.4).

Now write h1(x) = g(|x|) and h2(t) = g(t). Obviously, using polar coordinates, (2.3) and

(2.4) give (1.3) and (1.4) in Lemma B, what shows that TK is bounded from Lq

(
R

n,
dx

|x|n
)

into Lq

(
(0,∞),

dt

t

)
. Therefore

||f ||Bp,q
w,φ

≤ C

∣∣∣∣
∣∣∣∣TK

( ||∆xf ||p
w(|x|)

)∣∣∣∣
∣∣∣∣
Lq((0,∞), dt

t )

≤ C

∣∣∣∣
∣∣∣∣ ||∆xf ||p
w(|x|)

∣∣∣∣
∣∣∣∣
Lq(Rn, dx

|x|n )

≤ C||f ||Λp,q
w
.

(ii) Let us take f ∈ Bp,q
w,φ. From (2.2) in Lemma 2.1

||∆xf ||p
w(|x|) ≤ C

∫ ∞

0

R(x, t)
||φt ∗ f ||p
w(t)

dt

t
.

where

R(x, t) =
w(t)
w(|x|) min

(
1,

|x|
t

)
.
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Now take

(Ω1,Σ1, µ1) =
(

(0,∞),B ((0,∞)) ,
dx

|x|n
)

and

(Ω2,Σ2, µ2) =
(

R
n,B (Rn) ,

dx

|x|n
)
.

Combine now again Lemma 2.2 and Lemma B to get the boundedness of TR from

Lq

(
(0,∞),

dt

t

)
into Lq

(
R

n,
dx

|x|n
)

. Therefore

||f ||Λp,q
w

≤ C

∣∣∣∣
∣∣∣∣TR

( ||φt ∗ f ||p
w(t)

)∣∣∣∣
∣∣∣∣
Lq( dx

|x|n )
≤ C

∣∣∣∣
∣∣∣∣ ||φt ∗ f ||p

w(t)

∣∣∣∣
∣∣∣∣
Lq( dt

t )
≤ C||f ||Bp,q

w,φ
. �

Remark. Note that in the previous theorem one of the embedding could have been proved
under weaker assumptions. In fact, if λ, µ ∈ Wn,1 then Λp,q

w ⊆ Bp,q
w,φ.
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