
Characterization of Yeast Extracellular Vesicles: Evidence
for the Participation of Different Pathways of Cellular
Traffic in Vesicle Biogenesis
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Abstract

Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens,
these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular
space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.

Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of
the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering
analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-
associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB)
formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular
fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants
with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma
membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed
a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in
both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle
production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had
slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in
vesicle fractions in comparison with WT cells.

Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are
required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast
cells.
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Introduction

Protein secretion is a complex process that involves many

organelles and accessory molecules. In eukaryotic cells, the most

well-studied pathway of protein secretion involves vesicular

migration from the endoplasmic reticulum to the trans face of

the Golgi and then loading into a complex network of vesicles, the

trans-Golgi reticulum [1]. The vesicular post-Golgi network is the

most prominent example of conventional mechanism of protein

secretion. These proteins are sorted in the trans-Golgi network into

transport vesicles that immediately move to and fuse with the

plasma membrane, releasing their contents by exocytosis [1].

There are multiple unconventional mechanisms of protein

secretion in eukaryotes [2]. One of these mechanisms requires

the formation of the exosomes, which are vesicles derived from

membrane invagination within endocytic compartments (endo-

somes). The formation of internal vesicles in the lumen of

endosomes generates the multivesicular bodies (MVBs), which can

fuse with the plasma membrane, resulting in the release of internal

vesicles to the extracellular milieu as exosomes [3]. Extracellular

vesicle formation could also require other cellular pathways, as

suggested for Dictyostelium discoideum. In this organism, it has been

hypothesized that the Golgi reassembly stacking protein (GRASP),

which is attached peripherally to the cytoplasmic surface of Golgi

membranes, is required for the vesicular release of acyl-CoA

binding protein [4].

Fungal cells secrete molecules of different chemical natures and

molecular masses. As typical eukaryotic organisms, fungal cells use

conventional pathways of secretion involving post-Golgi vesicles

that fuse with the plasma membrane to release their cargo [5,6]. In

fact, it is well known that yeast cells continuously secrete a number

of enzymes that remain localized in the periplasm [7] but, until

recently, trans-cell wall secretion in fungi is a relatively unknown

cellular event, which consequently, had not been extensively

studied. Over the past few years, the existence of trans-cell wall

transport of intact vesicles has been reported and partially

characterized in pathogenic and non-pathogenic species of fungi

[8,9,10,11,12,13,14,15]. These vesicles contain a number of

proteins, lipids, polysaccharides and pigments of a wide molecular

mass range [8,11,14,15]. Therefore, we have proposed that

extracellular vesicle secretion represents a eukaryotic solution to

the problem of trans-cell wall transport, especially for large

molecules [9,12].

Although fungal extracellular vesicles have been generally

termed ‘fungal exosomes’ [9,14,16], different studies suggest that

their release to the extracellular space requires elements of the

conventional post-Golgi secretory pathway [16,17]. Yoneda and

Doering demonstrated that a Cryptococcus neoformans strain defective

in the production of Sav1p, a homolog of the S. cerevisiae small

GTPase Sec4p, accumulates post-Golgi vesicles under restrictive

conditions [17], a morphological feature that was initially

described for S. cerevisiae [6,18,19]. More precisely, the sav1 mutant

of C. neoformans had defective protein secretion and accumulated

exocytic vesicles at the septum and the bud during cell division.

Remarkably, these vesicles also contained a polysaccharide

destined to the extracellular space, suggesting that post-Golgi

secretion is involved with the transfer of macromolecules through

the cell wall. These findings were further supported by an

independent study showing that exposure of yeast cells to brefeldin

A, which interferes with the retrograde protein transport from the

Golgi apparatus to the endoplasmic reticulum, results in the

inhibition of polysaccharide assembly at the outer layer of the C.

neoformans cell wall [20]. In agreement with these observations, a C.

neoformans RNAi mutant strain lacking expression of Sec6p, an

88 kDa subunit of the exocytic complex that mediates polarized

targeting of secretory vesicles to active sites of exocytosis, was

unable to produce extracellular vesicles [16].

Although the studies mentioned above suggested the involvement

of conventional secretory mechanisms in the vesicular export of

polysaccharides in C. neoformans, it remained unclear whether

extracellular polysaccharides were targeted to the cell surface

exclusively in post-Golgi vesicles or via recycling endosomes [17].

Hence, the possibility that that the post-Golgi polysaccharide-

containing vesicles are sorted to a compartment other than the

plasma membrane, such as the late endosomes and theMVBs cannot

be ruled out. In fact, endosomes and MVBs can be connected to the

trans-Golgi secretory pathway [3], thus both pathways could be

involved in vesicular polysaccharide export in fungi. The molecular

machinery implied inMVB formation and sorting is widely known in

S. cerevisiae [21], but studies have not evaluated extracellular vesicle

transport and the connection to exosomes.

In this study, we characterized extracellular vesicles produced by

the model yeast S. cerevisiae. Based on recent suggestions that fungal

extracellular vesicles resemble exosomes but originate from Golgi-

related pathways [9,14,16], we also characterized vesicle fractions

from culture supernatants of mutants with defects inMVB formation

and post-Golgi secretion. Our results indicate that mutations in both

pathways affect vesicle composition. Nevertheless, yeast cells

mutated in the SEC4 gene, previously shown to accumulate

cytoplasmic vesicles [19], were defective in the secretion of vesicles

to the extracellular space, suggesting a key role for the Golgi-derived

secretory pathway in the trans-cell wall traffic in yeast cells.

Materials and Methods

Strains
The S. cerevisiae strains used in this study included RSY255,

RSY113, SEY6210 and BY4741 wild type (WT) cells and several

yeast secretory mutants, as subsequently described in this section

and summarized in Table 1. Strains RSY782, SF2642-1D, and

RSY954 are respectively, temperature sensitive sec1-1, sec4-2 and

bos1-1 (also known as sec32-1) mutants. Strains EEY6-2 and EEY9

correspond to mutant cells lacking expression of Vps23p and

Snf7p (also known as Vps32p), respectively. Strain GRH1delta is

defective in the expression of GRASP. WT and mutant cells were

cultivated in Sabouraud dextrose broth for 24 h at 25uC with

shaking. Based on recent literature, strains SF2642-1D (sec4-2) and

EEY9 (snf7) were used as prototypes of yeast cells defective in post-

Golgi or endosome-dependent vesicular secretion, respectively

[17,22]. Therefore, except for proteomic analyses where all strains

listed above were used, experiments in this study were performed

using sec4 and snf7 mutants and related WT strains.

Vesicle isolation
Extracellular vesicles from strains SEY6210 and BY4741 and

corresponding vps and grasp mutants were isolated from culture

supernatants, using variations of methods previously described

[8,14,15]. For vesicle isolation from cultures of strains RSY255

and RSY113 and the corresponding sec mutants, supernatants

were removed from 24 h cultures, cells were washed three times,

and fresh medium was added for further incubation at 37uC for 1

to 18 h at which time supernatants were removed and processed

for vesicle isolation. Cell viability was similar in WT and mutant

cultures, as determined by colony forming unit counting (data not

shown). For all cultures, yeast cells and debris were removed by

sequential centrifugation at 4,000 and 15,000 g (15 min, 4uC)

[8,14,15]. Supernatants were collected and concentrated by

approximately 20-fold using an Amicon ultrafiltration system
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(cutoff = 100 kDa). The concentrate was again centrifuged at

4,000 and 15,000 g (15 min, 4uC) and passed through filtering

membranes (0.8 mm pores). Filtered fractions were finally

centrifuged at 100,000 g for 1 h at 4uC. Pellets were then washed

by three sequential suspension and centrifugation steps, each

consisting of 100,000 g for 1 h at 4uC with 0.1 M Tris buffered

saline (TBS, pH 7.4). The resulting pellets were then suspended in

fixative solution for electron microscopy analysis or prepared for

lipid and protein determinations, as described below. To avoid the

possibility of artifactual isolation of intracellular organelles from

dead cells, similar protocols were used with suspensions of heat-

killed cells instead of living yeast as described previously [15].

Vesicle-like structures were not observed under these conditions.

Transmission electron microscopy (TEM)
Pellets obtained after centrifugation of cell-free supernatants at

100,000 g were fixed with 2% glutaraldehyde in 0.1 M cacodylate

at room temperature for 2 h, and then incubated overnight in 4%

formaldehyde, 1% glutaraldehyde, and 0.1% PBS. The samples

were incubated for 90 min in 2% osmium, serially dehydrated in

ethanol, and embedded in Spurrs epoxy resin. Thin sections were

obtained on a Reichart Ultracut UCT and stained with 0.5%

uranyl acetate and 0.5% lead citrate. Samples were observed in a

JEOL 1200EX transmission electron microscope operating at

80 kV.

Light scattering analysis of vesicles
Vesicles undergo Brownian motion that translates into light

scattering fluctuations in a liquid phase. This property can be

measured by dynamic light scattering (DLS) techniques providing

information on the size and heterogeneity of the sample [11].

Measurement of vesicle size by DLS was performed in a 90Plus/BI-

MAS Multi Angle Particle Sizing analyzer (Brookhaven Instruments)

as described recently by Einsenman and colleagues [11].

Sterol analysis
Sterols are structural components of fungal extracellular vesicles

and markers of vesicle membranes [15]. For this reason, these

molecules were used in our model as molecular markers of

vesicular secretion in indirect quantification of vesicle fractions.

Sterols were also analyzed in cellular fractions, for comparative

analyses in the different strains used in this study. Intact cells were

collected by centrifugation and washed with PBS. These pellets or

vesicle fractions were first suspended in methanol and then two

volumes of chloroform were added. The mixture was vigorously

vortexed and centrifuged to discard precipitates, dried by vacuum

centrifugation and partitioned according to [23]. The lower phase,

containing neutral lipids, was recovered for analysis by high

performance thin layer chromatography (HPTLC). The lipid

extract was loaded into HPTLC silica plates (Si 60F254s,

LiChrospher, Merck, Germany) and separated using a solvent

system containing hexane:ether:acetic acid (80:40:2, v/v/v). The

plate was sprayed with a solution of 50 mg ferric chloride (FeCl3)

in a mixture of 90 ml water, 5 ml acetic acid and 5 ml sulfuric

acid. After heating at 100uC for 3–5 min, the sterol spots were

identified by the appearance of a red-violet color. Stained HPTLC

plates were digitalized using Adobe Photoshop CS (version 8.0)

and densitometrically analyzed with the Scion Image software

(version Alpha 4.0.3.2). Sterol content was also evaluated using the

quantitative fluorimetric kit ‘‘Amplex Red Sterol Assay Kit’’

(Molecular Probes). Sensitivity of sterol detection in this test is

approximately 8 ng in intact membranes, with no requirement of

lipid extraction. Vesicle pellets were suspended in 500 ml PBS and

10% of the sample was evaluated in this assay according to

manufacturer’s instructions. In all analyses, sterol content in each

fraction was normalized to the number of viable cells in yeast

cultures.

Protein identification by liquid chromatography-tandem
mass spectrometry (LC-MS/MS)
Vesicle proteomics followed the methodology recently estab-

lished for the analysis of extracellular vesicle fractions from fungal

cells [8,14]. Briefly, purified vesicles were suspended in 40 ml

400 mM NH4HCO3, containing 8 M urea, and the disulfide

bonds were reduced by the addition of 10 ml 50 mM dithiotreitol,

followed by incubation for 15 min at 50uC. Cysteine residues were

alkylated by the addition of 100 mM iodoacetamide (10 ml),

followed by incubation for 15 min at room temperature under

protection from the light. The final concentration of urea was then

adjusted to 1 M and the mixture was supplemented with 4 mg

sequencing-grade trypsin (Promega) for overnight digestion at

37uC. Resulting tryptic peptides were desalted in C18 reverse-

phase in-house ziptip columns (POROS R2 50, Applied

Biosystems), as described by Jurado et al. [24]. Samples were

finally redissolved in 5% acetonitrile (ACN), containing 0.5%

formic acid (FA), and loaded onto a C18-trap column. The

separation was performed on a capillary reverse-phase column

connected to a nanoHPLC system (nanoLC 1D Plus, Eksigent).

Peptides were eluted in a linear gradient (5–40%) of solvent B

(solvent A: 5% ACN/0.1% FA; solvent B: 80% ACN/0.1% FA)

during 200 min and directly analyzed in an electrospray-linear ion

trap-mass spectrometer (LTQ XL/ETD, Thermo Fisher)

equipped at the front end with a Triversa NanoMate nanospray

source (Advion). The nanospray was set at 1.35 kV and 0.2 psi N2

Table 1. Yeast strains.

WT strain Mutation (mutant strain) Cellular event affected by mutation Origin Reference

RSY255 sec1-1 (RSY782) Membrane fusion* Schekman laboratory [63]

RSY113 sec4-2 (SF2642-1D) Vesicle targeting to the cell surface* Schekman laboratory [32]

RSY255 bos1-1, also known as sec32.2
(RSY954)

Vesicle targeting to the Golgi complex* Schekman laboratory [47]

SEY6210 snf7, also known as vps32 (EEY9) Vesicle invagination within multivesicular bodies Emr laboratory [22,31]

SEY6210 vps23 (EEY6-2) Late endosomal trafficking Emr laboratory [46]

BY4741 grh1, also known as grasp
(GRH1delta)

Unconventional secretion of acyl coenzyme A–binding
protein

EUROSCARF/Malhotra laboratory [39]

(*) Phenotype observed under restrictive temperature.
doi:10.1371/journal.pone.0011113.t001
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pressure using a chip A (Advion). MS spectra were collected in

centroid mode at the 400–1700 m/z range and the ten most

abundant ions were subjected twice to collision induced dissoci-

ation (CID) with 35% normalized collision energy, before being

dynamically excluded for 60 sec.

All MS/MS spectra from peptides with 800–3500 Da, more

than 10 counts, and at least 15 fragments were converted into

DTA files using Bioworks v.3.3.1 (Thermo Fisher). DTA files were

submitted to database search using TurboSequest [25] and the S.

cerevisiae protein database (downloaded on June 8th, 2008 from

www.yeastgenome.org) combined with human keratin and porcine

trypsin sequences (downloaded on June 8th, 2008 from www.ncbi.

nlm.nih.gov/protein). All the sequences were used in the correct

and reverse orientations, forming a database with 13,760 entries.

The database search parameters included: i) trypsin cleavage in

both peptide termini with one missed cleavage site allowed; ii)

carbamidomethylation of cysteine residues as a fixed modification;

iii) oxidation of methionine residues as a variable modification;

and iv) 2.0 Da and 1.0 Da for peptide and fragment mass

tolerance, respectively. TurboSequest outputs were filtered with

DCn $0.05, peptide probability #0.05, and Xcorr $1.5, 2.0, and

2.5 for singly-, doubly-, and triply-charged peptides, respectively.

After filtering, the files were exported into XML formats and the

peptides sequences were assembled into proteins using an in-house

written script (Nakayasu, Sobreira, and Almeida, unpublished

data). The protein hits were re-filtered with sum of peptide Xcorr

$3.5. The false-discovery rate (FDR) was estimated as described

previously [8,14]. Proteins with shared peptides were assembled

into groups to assess the redundancy issue. For semi-quantitative

calculations, another in-house script was elaborated to combine

respective peptides and spectral counts into their respective protein

groups (Nakayasu, Sobreira, and Almeida, unpublished data).

Semi-quantitative determinations of protein abundance in each

sample were based on the calculation of the exponentially modified

protein abundance index (emPAI), according to the methodology

proposed by Ishihama et al. [26]. emPAI Data were further

validated by the methodology described by Liu et al. [27], using

the number of spectra acquired for each protein (spectral count).

The relevant differences in protein abundance were selected when

a two-fold incremental change variation (WT vs. mutant proteins)

after spectral count and emPAI calculation was observed. A total

of 400 proteins were identified; however, those (n = 273) with less

than 10 spectra after MS/MS analysis of peptides were excluded

from the spectral count analysis. Using this approach we could

semi-quantify 127 proteins. This group of proteins was used in the

analyses detailed in Tables S1 and S2 and related data. The whole

set of results is available in Tables S3, S4 and S5.

Bioinformatics
Venn diagrams were prepared using the Venny tool, available

at http://bioinfogp.cnb.csic.es/tools/venny/index.html. Func-

tional networks in vesicle proteins were prepared using the Osprey

Network Visualization software (version 1.2.0), with the S. cerevisiae

database (available from the software). Analysis of the putative

presence of glycosylphosphatidylinositol (GPI)-anchored sequences

in vesicle proteins was performed as described recently [28], using

the GPI-anchored protein prediction program FragAnchor

(http://navet.ics.hawaii.edu/,fraganchor/NNHMM/NNHMM.

html) [29]. Correlation graphs and R2 calculations were performed

with GraphPad Prism version 5.00 for Windows, GraphPad

Software, San Diego California USA, www.graphpad.com. The

presence of signal peptide cleavage sites in amino acid sequences

from vesicle proteins was predicted with the SignalP 3.0 Server

(http://www.cbs.dtu.dk/services/SignalP/), as previously de-

scribed [30].

Results

Morphological features and diameter distribution of S.
cerevisiae vesicles
Vesicle morphology was analyzed in both WT and mutant S.

cerevisiae cells. The selection of mutant strains for this analysis was

based on the hypothesis that fungal extracellular vesicles derive

from MVB-related pathways for exosome formation or from post-

Golgi conventional secretion [9,14,16,17]. In this context, our

analyses included the snf7 mutant, which shows defective MVB

formation [31], and the sec4-2 mutant, due to the implication of

the SEC4 gene in the secretion of Golgi-derived vesicles in yeast

cells [17,32].

Morphological analysis of yeast extracellular vesicles by TEM

revealed bilayered structures with varying levels of electron density

(Figure 1A). The vesicles were generally round or ovoid and

sometimes resembled multivesicular structures. No morphologic

alterations were apparent in vesicles obtained from sec4-2 and snf7

mutants. Analysis of the effective diameter of vesicle fractions

obtained from WT cells revealed average values ranging from

133.964.2 (strain SEY6210, parental of snf7) to 183.9624.0

(strain RSY113, parental of sec4-2) nm (Figure 1B). In interpreting

these numbers, and the results below, it is noteworthy that

dynamic light scattering tends to overestimate vesicle diameter

relative to other techniques (for discussion on this effect see [11]).

However, for the purposes of this study we have used dimensions

obtained for dynamic light scattering for all comparisons thus

controlling for any systematic trends in vesicle size inherent to the

technique. Vesicles from strain SEY6210 were clearly distributed

in two different populations, ranging from 50 to 75 and 180 to

250 nm in effective diameter. Mutation in the SNF7 gene had little

or no influence in vesicle diameter, which shifted from

133.964.2 nm in the vesicle fraction from WT cells to

143.562.1 nm for vesicles from the mutant cells. The two-

population profile of distribution of vesicle diameter in fractions

from the snf7mutant was very similar to that found in vesicles from

the parental strain SEY6210. On the other hand, mutation in the

SEC4 gene significantly affected the diameter of extracellular

vesicles. While most of the vesicles from WT cells (strain RSY113)

were in the range of 100 to 200 nm, sec4-2 vesicles were

distributed in two populations. The mutant vesicles were

distributed in either a population ranging from 80 to 120 nm or

in a population with very high diameters (400–550 nm). Average

values shifted from 183.9624.0 nm (RSY113 strain) to

294.56117.9 nm (sec4-2 mutant). Hence, a SEC4 mutation

resulted in a qualitative difference in the vesicles produced by S.

cerevisiae.

Proteomic analysis reveals a complex composition in S.

cerevisiae extracellular vesicles
Previous studies with C. neoformans and H. capsulatum revealed

that fungal extracellular vesicles carry proteins with highly diverse

functions [8,14]. Many of these proteins were previously reported

to also be components of mammalian exosomes [33,34,35]. In our

model, proteomic analysis was performed with vesicles obtained

from three different WT S. cerevisiae cells, including strains

RSY113, RSY225, and SEY6210. Four hundred proteins were

identified in our analysis, with a FDR of ,1.6% in protein level.

Within this group, those with more than 10 spectra after MS/MS

analysis of peptides were used for the analyses shown in Figures 2,

3, 4, and 5 and Tables S1 and S2.
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A summary of the proteins found in these three strains is

summarized in Table S1 and their detailed characterization is

shown in Tables S3 and S4.

The S. cerevisiae vesicle proteome had many similarities to the

protein profiles observed for C. neoformans and H. capsulatum [8,14].

Proteins related to diverse metabolic processes consisted of the

most abundant functional class in the S. cerevisiae vesicles, as

previously described for similar models (Figure 2 and Table S1)

[8,14]. Other classes found in the vesicles included cell

organization and biogenesis, transporters, carbohydrate metabo-

lism, stress response, protein biosynthesis, protein degradation,

protein transport and sporulation. A few molecules with unknown

function were also identified (Figure 2A). Of note, twenty four

different proteins required for cell wall modeling were identified,

including seven different glucanases and three glucanosyl trans-

ferases. Eight different heat shock proteins and other stress-related

proteins were also found in the vesicles, as well as peptidases,

vacuolar and secretory proteins. Although the protein composition

of the S. cerevisiae extracellular vesicles was multifaceted in many

aspects, most of the proteins identified in these preparations (90%)

are putatively functionally connected with one or more molecules

within the vesicular proteome (Figure 2B). The proportion of

proteins showing a high probability of bearing GPI-anchored was

approximately 4% of the total vesicular proteome, a value 4-fold

higher than those predicted for the cellular S. cerevisiae proteome

[29]. In addition, prediction of the presence of signal peptide

cleavage sites revealed that vesicle fractions also concentrated

proteins targeted to the endoplasmic reticulum and the secretory

pathway (Figure 3).

Profiles of protein composition of the S. cerevisiae vesicles were

very similar in different WT cells, as inferred from the high

percentage of vesicular proteins shared by distinct strains

(Figure 4). The variation range (5–25%) in protein identification

observed between different runs of the same sample is within the

acceptable range previously reported [36,37]. Analysis of vesicles

obtained from strains RSY113 and RSY225, which were both

cultivated at 37uC, revealed that more than 90% of the proteins

identified were common to both preparations. These values were

also high even when these strains were compared with SEY6210

cells, which were cultivated at room temperature. Proteomic

Figure 1. Morphology and diameter of S. cerevisiae extracellular vesicles. A. TEM of vesicles isolated from WT (WT) and mutant cells. Each
individual panel exemplifies the typical vesicle morphology for the cell group specified in the top. WT fractions shown in left panels were obtained
from strain RSY113, parental of the sec4-2mutant. Similar morphological features (not shown) were observed in vesicle fractions obtained from strain
SEY6210 (parental of the snf7 mutant). Scale bar, 100 nm. B. Light scattering analysis showing diameter distribution and average values of vesicles
obtained from WT (WT) or mutant (sec4-2 and snf7) cells.
doi:10.1371/journal.pone.0011113.g001
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analysis was also performed in vesicle fractions from S. cerevisiae

secretion mutants (Table S3). Remarkably, most of the proteins

found in WT cells were detected in the mutant fractions. The

qualitative analysis shown in Figure 4 revealed that most of the

proteins found in WT cells were also present in both sec4-2 and

snf7 mutants, suggesting that the protein compositions were not

severely affected by mutations in the secretion genes studied here.

Aiming at a more reliable data interpretation, we included in this

analysis vesicle proteomics of additional secretion-related systems,

which comprised mutations in SEC1, BOS1 (post-Golgi secretion)

and VPS23 (MVB formation) genes. The results obtained were

very similar to those detailed in Figure 4 (data not shown).

Protein abundance in S. cerevisiae vesicles is affected by
mutations in SEC and MVB-related genes
Based on the fact that vesicle protein composition was barely

affected by mutations in SEC4, SEC1, BOS1, VPS23, and SNF7

genes, we evaluated whether the relative abundance of vesicle

proteins would be modified in cells bearing defects in expression of

the related proteins. These analyses were based on semi-

quantitative determinations of the abundance of each vesicle

protein [26,27], the same approach used before to describe the

proteomic composition of different compartments of the secretory

pathway [38]. These methods are based on the fact that the most

abundant proteins have a higher coverage by LC-MS/MS. For

these analyses we only considered the 127 proteins with at least 10

spectra on one of the samples (Table S5). Within this group,

seventy three proteins (57.5%) had changes in their abundance in

at least one of the yeast mutants relative to the wild type strain. In

the SEC mutant group, the abundance of 24 vesicular proteins

increased, whereas 11 decreased. Analysis of the VPS group of

mutants revealed that vesicular protein abundance increased in 14

proteins and decreased in 33. Notably, the collective analysis of

graphs correlating emPAI values in vesicle proteins from WT cells

with those from mutant strains (Figure 5) demonstrated that the

most expressive changes in protein abundance were observed in

the snf7 mutant, followed by sec4-2, sec1-1, bos1-1 and vps23 cells.

Individual analysis of protein abundance revealed that the greatest

changes (5-fold increase or decrease in comparison to protein

abundance in fractions from WT cells) were observed in the VPS

gene family (Table S5). This analysis revealed an increased

abundance of plasma membrane H+-ATPases and mannosyl-

transferases in the vps mutants, with a parallel decrease of

glucanases and cyclophilin. These results, which were essentially

confirmed by spectral count (data not shown), suggest that vesicle

formation is probably affected by multiple elements of the

secretory apparatus.

Mutations in genes involved in either conventional or
unconventional secretion affect S. cerevisiae extracellular
vesicles
The differences in protein composition led us to consider the

possibility that vesicle secretion was somehow altered in the S.

cerevisiae mutants. Due to the well known characteristic of

intracellular vesicle accumulation in the sec4-2 mutant of S.

cerevisiae and in the sav1 mutant of C. neoformans [17,19,32], we first

quantified vesicle release in these cells and in the snf7 mutant by

measuring the content of sterols in cellular and vesicle fractions by

different methods. Fluorimetric analysis (Figure 6A) revealed that

the sterol content in vesicle fractions from strains SEY6210 and

snf7 were very similar, whereas a large decrease in sterol detection

was observed in the mutant sec4-2, in comparison to its parental

strain (RSY113). These results were essentially confirmed by

chromatographic analysis (Figure 6B–C), which showed that, in

comparison to WT cells, the sec4-2 mutant showed intracellular

accumulation of sterols and reduced detection of extracellular

vesicular sterols. Similar results were observed for the sec1.1

mutant (data not shown). The distribution of vesicular and cellular

sterols was apparently not significantly affected by mutation in the

SNF7 gene.

The decreased vesicle production in the sec4-2 mutant led us to

analyze the kinetics of vesicle release by these cells, in comparison

to the WT strain. While the peak of vesicle secretion in the WT

strain occurred after 18 h, detection of sterols in vesicle fractions

from the mutant strain stagnated after 3 h (Figure 6D). This result

confirmed that release of vesicles to the extracellular space was

affected by mutation in the SEC4 gene.

Due to the clear involvement of elements of the post-Golgi

secretory pathway in the kinetics of vesicle release in yeast and the

potential involvement of MVB-related pathways with vesicle

composition, we asked whether other secretion pathways could

be related to vesicular secretion in S. cerevisiae. Extracellular vesicle

fractions from WT cells and a mutant lacking expression of

GRASP, which participates in secretory mechanisms connecting

Figure 2. Functional distribution of proteins in extracellular vesicle fractions obtained from S. cerevisiae WT cells. A. Proteins were
grouped by color as indicated according to their function in the cellular metabolism. B. Functional interrelationship in the collection of vesicular
proteins. For protein identification according with each individual code, see Table S1.
doi:10.1371/journal.pone.0011113.g002

Figure 3. Prediction of the presence of GPI-anchored sequenc-
es and signal peptide cleavage sites in S. cerevisiae cellular or
vesicle proteins. All values used in these analysis were obtained in
this study, except those related to GPI-anchored sequences in cellular
fractions (y) [29].
doi:10.1371/journal.pone.0011113.g003
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early endosomal compartments and the MVB sorting pathway

[39], were analyzed. As observed for the sec4.2 mutant, yeast cells

lacking GRASP expression had significantly reduced sterol content

in vesicle fractions and increased intracellular sterol accumulation

(Figure 7). This result, which suggests the participation of an

unconventional secretion pathway in vesicle production, is in

agreement with the fact that approximately 75% of vesicular

proteins have no signal peptide sequences for ER translation

(Figure 3).

Discussion

The production of extracellular vesicles by yeast cells has now

been reported for at least 6 different fungal species

[8,10,11,13,14,15,16]. Fungal extracellular vesicles are believed

to function as carriers of distinct molecules to the extracellular

space which, in the case of pathogens, includes a wide range of

virulence factors, including polysaccharides, pigments, and lipids

[8,10,11,13,14]. As described for mammalian exosomes [40], the

vesicular transport in fungi may even include the release of nucleic

acids to the extracellular milieu [41]. The secretion of such a

complex array of different molecules is expected to impact the

interaction of fungal cells with their hosts. In fact, extracellular

vesicles isolated from the yeast pathogen C. neoformans were

recently reported to modulate macrophage functions [42].

Vesicular traffic in eukaryotes is a complex and multifunctional

cellular mechanism. Intracellular vesicles are required for the

traffic of proteins destined for secretion, in pathways that require

their movement from the endoplasmic reticulum to the Golgi

complex and then, via the trans-Golgi network, to the cell surface

[5,19,43]. These vesicles are expected to fuse with the plasma

membrane releasing their cargo. Vesicular secretion can also

involve exosomes, which originate from intracellular MVBs. These

organelles derive from endosomes, which form internal vesicles

that are released to the extracellular milieu as exosomes upon

plasma fusion with the plasma membrane [3]. Yeast extracellular

vesicles have been generally termed ‘fungal exosomes’ [9,14,16],

but different studies suggest that they are linked to elements of the

conventional post-Golgi secretory pathway [16,17,20]. It remains

unknown, nevertheless, whether the formation of MVBs is related

to the biogenesis of fungal extracellular vesicles.

C. neoformans represents the yeast cell model that extracellular

vesicles have been investigated in most detail. This species appears

to use trans-cell wall vesicular transport to release its major

capsular polysaccharide [15,16,17,20], a high molecular weight

polysaccharide known as glucuronoxylomannan (GXM). Although

it has been suggested that C. neoformans produces MVB- and

exosome-like structures [14,44,45], the vesicular traffic of GXM

apparently requires homologues of SEC4 and SEC6 genes [16,17],

suggesting that the export of polysaccharide-containing vesicles in

these cells requires events of the conventional post-Golgi secretory

apparatus. The events required for the biogenesis of extracellular

vesicles in these cells are unclear, but the complex and variable

morphology of extracellular cryptococcal vesicles analyzed by

TEM [14] strongly suggests that the fractions usually analyzed in

studies on fungal extracellular vesicles include mixed populations

of diverse cellular origin.

Although C. neoformans was the species that led to discovery of

extracellular vesicles, this fungus may not be the ideal system at

this time for genetic dissection of vesicular physiology because the

copious extracellular polysaccharide hinders several analytic

approaches such as mass spectrometry and genetic tools remain

more difficult to use relative to other model fungi. Consequently,

we turned our attention to S. cerevisiae, where we similarly detected

extracellular vesicles in culture supernatants by TEM [8].

Consequently we took advantage of the availability of S. cerevisiae

secretion mutants and characterized their extracellular vesicles,

aiming to identify key elements required for the generation of these

compartments in yeast cells. Two major prototypes were used in

our study, based on previous literature observations. Snf7, a

mutant strain with defective MVB formation [31], was selected as

a candidate to evaluate whether exosome formation was related to

extracellular vesicles in yeast cells. The sec4-2 mutant was selected

as the prototype mutant to evaluate whether events of the post-

Golgi conventional secretion were required for the release of

fungal extracellular vesicles, given a recent report that the

orthologue of SEC4 in C. neoformans is required for the export of

polysaccharide-containing vesicles [17]. Using the same rationale,

some of the experiments performed in this study included mutant

cells with related defects in post-Golgi secretion mechanisms (sec1-

1 and bos1-1) and MVB biogenesis (vps23) [19,46,47].

As determined in this work and in a previous study [11], the

diameter of fungal extracellular vesicles ranged from 50 to

500 nm. These dimensions contrast with the fact that extracellular

vesicles in other models are in a diameter range lower than

100 nm [3]. Different studies, however, have demonstrated that

larger membrane structures (300–500 nm in size) are the vehicles

Figure 4. Venn diagrams showing similarities of protein composition in vesicle fractions from WT (RSY113 and SEY6210 strains)
and mutant cells (sec4-2 and snf7 mutants).
doi:10.1371/journal.pone.0011113.g004
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responsible for long distance, ER-to-Golgi and trans-Golgi to

plasma membrane transport of secretory molecules (reviewed in

[48]). Estimation of the diameter of cell wall pores in yeast cells

revealed values in the range of 200 to 400 nm [49], which would

theoretically permit the release of vesicles of different sizes to the

extracellular space. These observations and the high variability in

the morphology of fungal extracellular vesicles [14] support the

hypothesis that the vesicle populations originate from compart-

ments of distinct biogenesis, which could involve both Golgi- and

exosome-derived pathways.

Proteomic analysis of yeast extracellular vesicles revealed a

complex composition, as described for mammalian exosomes and

other fungal vesicles [14,33,34,35]. Several cytoplasmic proteins

with no apparent relation with secretory processes were observed

in the vesicle proteome, providing another parallel with mamma-

lian exosomes. Sorting of cytosolic proteins into exosomes is

normally explained by a random engulfment of small portions of

cytosol during the inward budding process of MVBs [3]. Of note,

many cell wall-degrading enzymes were found in the S. cerevisiae

vesicles, consistent with a prior notion that the passage of vesicles

through the cell wall could require hydrolysis of structural

components [8,9,12]. These enzymes were present in all fractions

analyzed in this study. Protein composition was consistently similar

in all vesicle fractions analyzed, providing confidence in the

Figure 5. Correlation analysis of the relative variation of protein abundance in vesicle fractions fromWT (WT) or mutant S. cerevisiae
cells. emPAI values for each parental strain were plotted against the values obtained for yeast mutant fractions analyzed by proteomics. SEC or MVB-
related mutants included snf7 (A), sec4-2 (B), vps23 (C), sec1-1 (D) and bos1-1 (E). Lower R2 values suggest greater alterations in relative protein
distribution in vesicles from the mutants, in comparison to WT cells. Proteins whose abundance was increased in vesicle fractions from mutant cells
are represented by the red spots, whereas proteins that were more abundant in WT fractions are highlighted in blue.
doi:10.1371/journal.pone.0011113.g005
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validity of the conclusion that vesicle proteins include many

different functional classes.

Most of the proteins found in the yeast vesicle proteome were

potentially associated other molecules identified in the vesicular

protein collection. More precisely, bioinformatics analyses sug-

gested that at least 219 protein-protein interactions were observed

within the vesicle proteome. Some of these interactions were in

fact expected. For example, YGR032W and YLR342W (glucan

synthases) were associated, and they are in the same functional

class. Apparently unrelated proteins, however, were also poten-

tially interacting. For instance, YER103W is a heat shock protein

that plays a role in protein-membrane targeting and translocation.

We found that the molecule interacted with other vesicular heat

shock proteins, but also with the metabolic enzyme glyceralde-

hyde-3-phosphate dehydrogenase [50,51,52]. Similarly,

YLR249W is a translational elongation factor that interacted with

four other elongation factors and two heat shock proteins, but also

with pyruvate decarboxylase, phosphoglucose isomerase and

alcohol dehydrogenase [53,54,55,56]. These observations illustrate

the complexity of the protein composition of fungal extracellular

vesicles, as well as the difficulties in unraveling their biosynthetic

steps.

Vesicular fractions had greater concentrations of secretory and

GPI-anchored proteins in comparison to intact S. cerevisiae cells.

Figure 6. Sterol analysis in vesicle and cellular fractions obtained from yeast cells. A–B. Indirect sterol-based vesicle quantification of
fractions obtained from cultures of WT (WT) or mutant cells. The sterol content was determined by fluorimetric methods (A) or by densitometric
analysis of bands obtained after HPTLC separation (B). Comparative analysis of the sterol content in vesicle fractions obtained from WT or mutant
cells suggested that the sec4-2mutant has a defective release of extracellular vesicles. This supposition was supported by chromatographic analysis in
association with densitometry of cellular (C) or vesicle (D) fractions obtained from yeast cultures. The sec4-2 mutant, in contrast to the snf7 mutant,
showed intracellular accumulation of sterols (C) and a lower kinetics of release of sterol-containing vesicles (D). Arrows indicate the migration of an
ergosterol standard in TLC plates. Results are representative of three independent analyses showing similar results.
doi:10.1371/journal.pone.0011113.g006

Yeast Extracellular Vesicles

PLoS ONE | www.plosone.org 10 June 2010 | Volume 5 | Issue 6 | e11113



This observation suggests that the unconventional mechanism of

protein secretion by vesicle release includes elements of the

conventional secretory pathway. Furthermore, the fact that

sequences potentially containing GPI anchors and signals for ER

targeting are enriched in vesicle fractions confirms previous

observations that fungal extracellular vesicles are actively secreted

rather than released by dead cells, since they concentrate

secretion-related proteins.

Our semi-quantitative analysis of protein abundance in yeast

vesicles strongly suggests that fungal vesicles include compart-

ments related to the MVB-derived pathway of exosome

formation. Although vesicle release was similar in WT cells and

in the snf7 mutant, the abundance of 35 proteins was modified in

the mutant vesicles, suggesting that defects in MVB formation

also affect extracellular vesicles in fungi. In fact, the greatest

differences in protein abundance in WT/mutant systems

observed in this study involved vps mutants and, particularly,

snf7 cells. In vesicle fractions from these mutants, proteins with

the greatest levels of increase in relative abundance consisted of

two related plasma membrane proton ATPases (YGL008C and

YPL036W; Pma1p and Pma2p, respectively) and two Golgi

mannosyltransferases (YDR483W and YBR199W). The manno-

syltransferases YDR483W and YBR199W are known to interact

with other Golgi proteins, which include, respectively, members

of the exocyst complex and t-SNAREs required for vesicular

transport [57,58]. Similarly, Pma1p and its isoform Pma2p

interact with several elements of Golgi-associated pathways of

cellular traffic, including Ric1p, a protein involved in retrograde

transport to the cis-Golgi network, and Vps29p, which is essential

for endosome-to-Golgi retrograde transport [59,60]. Therefore,

we speculate that mutations in the VPS genes could led to the

activation of compensatory mechanisms of Golgi-associated

traffic, which could explain the increased abundance of Golgi-

related proteins in vesicles from snf7 and vps23 cells. On the other

hand, vesicles from the snf7 mutants had significantly decreased

levels of a protein of unknown function, two glucanases and

cyclophilin. The functional implication of each of these individual

changes in protein abundance is unknown, but the possibilities

are numerous. For instance, cyclophilin is supposed to interact

with 34 different proteins in S. cerevisiae, including elements of the

secretory apparatus [60] and cell wall architecture [61]. These

observations illustrate the fact that vesicular proteins with no

apparent connections with the secretory process may be directly

or indirectly linked to vesicle biogenesis.

Our results show that mutation of the SEC4 gene is associated

with a delay in vesicle release to the extracellular space. This result

is supportive and consistent with previous reports that a sec4-2

mutant of S. cerevisiae and a similar mutant in C. neoformans

accumulate intracellular vesicles [17,18]. This observation sup-

ports the view that the extracellular vesicles observed in fungal

cells may not be conventional exosomes, as suggested in

independent studies [14,16,17]. Nevertheless, it remains unknown

how post-Golgi vesicles, which are expected to fuse with the

plasma membrane to release their cargo, would leave the cell wall.

Different reports, however, suggest that not all secretory vesicles

fuse with the plasma membrane (reviewed in [48]), which supports

a prior study with a sec6 C. neoformans mutant [16] and our current

observations with S. cerevisiae strains showing that post-Golgi

secretion events are required for the release of extracellular

vesicles.

Remarkably, vesicle release was not completely abrogated in

any of the mutants analyzed in this study. This observation could

indicate that multiple cellular pathways are required for formation

of fungal extracellular vesicles, including elements of non-

conventional secretory mechanisms. In fact, in our study, mutant

cells lacking expression of GRASP, which is required for

unconventional secretion of an acyl coenzyme A–binding protein

in S. cerevisiae [39] and Dictyostelium discoideum [4], showed a

decreased content of extracellular vesicles, in comparison with WT

cells. This observation may be related to the fact that acyl

coenzyme A–binding protein plays an important role in the

cellular distribution of sphingolipids [62], which are important

structural components of fungal extracellular vesicles [15].

GRASP is involved in secretory mechanisms that require

autophagy genes, early endosomal compartments, and MVBs

[39]. The decreased vesicular release by the GRASP mutant

reinforces the importance of Golgi components in extracellular

vesicle formation and supports the notion that extracellular release

of vesicles in fungi is a multifactorial cellular event of high

complexity, and possibly involves considerable redundancy. We

cannot rule out the possibility, however, that the collection of

mutations analyzed in our study are affecting different types of

vesicles, since the methods currently used for vesicle purification

do not discriminate between vesicles of different origins, resulting

in heterogeneous preparations.

Our current results together with previous reports suggest

agreement with the fact that endosomes and MVBs can be

connected to the trans-Golgi secretory pathway [3], which could

directly affect the formation of fungal extracellular vesicles. In

summary, after analysis of eight different S. cerevisiae strains, our

results indicate that both MVB- and Golgi-derived cellular

pathways affect the formation and release of extracellular vesicles

Figure 7. Sterol analysis in vesicle (A) and cellular (B) fractions obtained from WT cells and a mutant strain lacking GRASP
expression. Comparative analysis of the sterol content in vesicle fractions obtained from WT or mutant cells suggested that GRASP is involved in the
release of extracellular vesicles. Chromatograms and related densitometric analyses are shown. Arrows indicate the chromatographic migration of
ergosterol standards. Results are representative of three independent analyses showing similar results.
doi:10.1371/journal.pone.0011113.g007
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by fungal cells. We believe our observations with S. cerevisiae

extracellular vesicles will contribute to the understanding of a

complex event in the biology of yeast cells. Since yeast

extracellular vesicles in pathogens are presumably linked to fungal

virulence and the ability of fungal cells to modulate the host

immunity, these results could also be of use in the design of

pathogenic models aiming at the elucidation of the role of

secretion events in fungal virulence.
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