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Characterization of ZnO Nanobelt-Based Gas Sensor
for H2, NO2, and Hydrocarbon Sensing
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Abstract—A conductometric H2, NO2, and hydrocarbon gas
sensor based on single-crystalline zinc oxide (ZnO) nanobelts has
been developed. The nanobelt sensitive layer was deposited using
a radio frequency (RF) magnetron sputterer. The microcharac-
terization study reveals that the nanobelts have a single crystal
hexagonal structure with average thickness and width of about
10 and 50 nm, respectively. The sensor was exposed to H2, NO2

and propene gases at operating temperatures between 150 C

and 450 C. The study showed that optimum operating temper-
atures for the sensor are in the range of 300 C–400 C for H2,
300 C–350 C forNO2, and 350 C–420 C for propene sensing.

Index Terms—Conductometric, gas sensor, RF sputtering, ZnO
nanobelts.

I. INTRODUCTION

D
EVICES based on semiconductor metal oxide (SMO) thin

films are the most promising among solid-state gas sen-

sors, due to their small dimensions, low cost, online operation,

and high compatibility with microelectronic processing [1].

They have been used extensively for gas sensing based on film

conductivity changes caused by interaction with gas molecules

[2]–[4]. Intense research and development have been conducted

to design highly sensitive, selective and stable gas sensors since

Seiyama first observed gas sensing effects in metal oxides [5].

Semiconductor metal-oxide-based gas sensors are used for

environmental and emission monitoring, automotive, domestic,

industrial, and medical applications. The gas sensing mechanism

in these materials is governed by the reactions which occur at

the sensor surface between the thin-film sensitive layer and the

target gas molecules. It involves chemisorption of oxygen on the

oxide surface followed by charge transfer during the reactions of

oxygen with target gas molecules [6]. The adsorbed gas atoms

inject electrons into or extract electrons from the semiconducting

material, depending on whether they are reducing or oxidizing

agents, respectively [7]. This mechanism results in a change
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of the film conductivity, which corresponds to the gas concen-

tration. Although semiconductor metal-oxide gas sensors are

promising, low selectivity, high-power consumption, and lack of

long term stability have prevented their use in more demanding

applications [8]. In the literature, there are several approaches to

reduce these limitations, such as use of catalysts and promoters,

multisensor array systems, optimization of sensors’ operating

temperature, and use of nanotechnology.

The performance of solid-state gas sensors improves with a

reduction in the size of the oxide particles [9], as the entire thick-

ness of the sensitive layer can be affected by the redox reaction

during the interaction process. As a result, the performance of

a gas sensor is directly related to granularity, porosity, and ratio

of exposed surface area to volume. Recent advances in the syn-

thesis, structural characterization, and investigation of physical

properties of nanostructured metal oxides provide the opportu-

nity to greatly improve the response of these materials for gas

sensing. Devices based on nanostructured oxides have already

been fabricated for gas sensing, for example, nanobelts

for CO and sensing [1], nanowires for de-

tection [10], nanowires for sensing [11], and

nanotubes for sensing [12].

Among the semiconductor metal oxides, zinc oxide (ZnO)

was one of the earliest discovered and is the most widely ap-

plied oxide gas sensing materials due to its high mobility of con-

duction electrons and good chemical and thermal stability under

operating conditions [13]. ZnO gas sensors have been fabricated

in various forms, including single crystals, sintered pellets, thick

films, thin films, and heterojunctions which were studied to de-

tect [3], [14], [15], [16], [17], CO [14],

and ethanol [18]. Catalytic elements, such as palladium (Pd) and

platinum (Pt) are often used to modify surface reactions for im-

proving sensing properties [16], [19]. Still, a common concern

about the ZnO thin-film-based gas sensor is the lack of selec-

tivity and higher operating temperature. In general, its optimum

operating temperature is in the range of 400 –500 [20].

Semiconducting zinc oxide in the form of nanobelts,

nanorods, and nanowires is of growing importance for the de-

velopment of highly sensitive gas sensors. ZnO nanobelts, with

a distinct structural morphology (wurtzite family), character-

ized by a rectangular cross section and a uniform structure, are

very promising for the development of stable gas sensors [21].

Nanobelts form porous structures when deposited as thin films.

Their large surface to volume ratio’s and nanoscale dimensions

allow quick diffusion of gases into and out of the belt, which

increases the intensity of reactions resulting in high sensitivity

and fast sensor response and recovery times. As a result, most
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literature reports on nanostructured ZnO gas sensors [1], [19],

[22]–[26] indicate that significant gas sensing performance im-

provement has been achieved. Wang et al. [22] developed ZnO

nanorods coated with Pd to detect down to 10 ppm at 25 .

Rout et al. [19] have employed ZnO nanorods, nanowires, and

nanotubes to detect and ethanol. They found high sensitivity

at 200 and even reduced operating temperature to 150

after impregnating them with 1% Pt. Xiangfeng et al. [23]

developed a ZnO nano-tetrapod-based sensor to detect ethanol

and methane and achieved high sensitivity at 300 . Baratto

et al. [24] developed nanostructured fibers of ZnO to detect

down to 0.4 ppm at 100 . Zhang et al. [25] developed

ZnO nanorod and nanowire-based humidity sensors and found

that they are highly sensitive towards humidity and have good

long-term stability and fast response time.

Various ZnO nanostructure growth techniques have been re-

ported in literature, such as wet chemical process [26], molec-

ular beam epitaxy [27], solid vapor deposition [28], vapor-phase

transport process [25], pulsed laser deposition [29], metal-or-

ganic vapor phase epitaxy [30], electrochemical deposition [19],

thermal evaporation [23], [31], and sputtering [32]. In this paper,

RF sputtered ZnO nanobelt-based sensor has been developed

and the dynamic responses of the sensor to different concentra-

tion of , , and propene between 150 and 450 have

been investigated.

II. EXPERIMENTAL

The sensor was designed and fabricated to operate as a resis-

tive element. The device comprises of a sensitive ZnO nanobelt

layer deposited over platinum (Pt) sputtered interdigital elec-

trodes on a sapphire substrate. A platinum sputtered

heater also fabricated onto the substrate which is separated from

the sensing layer and the electrodes by the electrically insulating

sapphire layer.

Zinc oxide layer was deposited on the substrate using RF

sputtering technique without the presence of a metal catalyst

[33]. Initially, the sputtering chamber was evacuated to a pres-

sure lower than . Deposition of ZnO was then carried

out at a pressure of 40 mtorr and an RF power of 300 W for

a period of 60 min. The ZnO target was prepared by conven-

tional solid-state method from 99.9% pure ZnO powder. The

sputtering process was performed under argon (Ar) atmosphere

without external heating of the substrate.

Since no metal catalyst was used in the synthesis, it is likely

that the growth mechanism of nanostructured ZnO is governed

by a vapor-solid (VS) process. It is believed, at first, island-

shape nanoparticles of ZnO were formed on the substrate similar

to Stranski-Krstanov type growth model [34]. These nanoparti-

cles acted as nucleation sites or seed for subsequent growth of

ZnO nanobelts as the surface energy of these nucleation sites is

higher than that of the flat surface.

In addition, when the sputtering power is low (for instance

lower than 200 W), the deposited ZnO layer is transparent, in-

dicating that a thin film of highly ordered crystallites has been

formed. High sputtering power is needed for the formation of

ZnO nanostructures which produces a supersaturation deposi-

tion condition [33]. In this work, the ZnO films deposited at an

Fig. 1. SEM image of ZnO nanobelts on alumina substrate in 5 �m scale [39].

Fig. 2. SEM image of ZnO nanobelts on alumina substrate in 1 �m scale [39].

RF power of 300 W appear white. This indicates randomly ori-

ented nanostructures.

The sensor was mounted inside an enclosed environmental

cell. Four mass flow controllers (MFC) were connected to form

a single output that supplies gas to the cell. A constant flow rate

of 0.2 liters per minute was delivered via the MFCs. A comput-

erized gas calibration system was used to vary the concentra-

tion of , , and propene in synthetic air. A high precision

Keithley 2001 multimeter was used to measure the variation of

sensor resistance. Custom LabVIEW-based software was used

to autonomously control the experimental setup and take mea-

surement of the sensor. The sensor responses were displayed in

real-time and saved for offline processing and analysis. Gas ex-

posure time was fixed for each pulse of analyte gas and the cell

was purged with synthetic air for fixed periods of time between

each pulse to allow the surface of the sensor to recover to the

atmospheric conditions.

Heating for the device is provided by a micro heater fabri-

cated on the back side of the sapphire substrate with a patterned

platinum resistive element. A regulated DC power supply was

connected to the heater to control the operating temperature of

the sensor between the range of 150 and 450 in incre-

ments of approximately 30 . A thermocouple was used to ob-

tain a real-time reading of the sensor surface temperature with

Authorized licensed use limited to: RMIT University. Downloaded on November 23, 2008 at 22:59 from IEEE Xplore.  Restrictions apply.



SADEK et al.: CHARACTERIZATION OF ZnO NANOBELT-BASED GAS SENSOR FOR , AND HYDROCARBON SENSING 921

Fig. 3. (a) TEM bright field image of a ZnO nanobelt, the inset is a zoom of 1100 spot. (b) Associated SADP of ZnO layer [33].

1 accuracy. The sensor was exposed to gas pulse se-

quence of 0.06%, 0.12%, 0.25%, 0.50%, 1%, and 0.12% con-

centration in synthetic air, gas pulse sequence of 0.51,

1.06, 2.12, 4.25, 8.5, and 1.06 ppm concentration in synthetic

air and propene gas pulse sequence of 0.25%, 0.50%, 1%, and

0.25% concentration in synthetic air.

III. RESULTS

Structural Characterization: The scanning electron mi-

croscopy (SEM) (Figs. 1 and 2) images indicate that the

as-grown ZnO layer on the substrate consists of a large quantity

of wire-like nanostructures with typical lengths in the range

of several micrometers. The wire-like nanostructures are not

evenly distributed across the surface; instead there are islands

with thousands of nanowires. The transmission electron mi-

croscopy (TEM) bright field image and the associated selected

area diffraction pattern (SADP) of wire-like ZnO nanostructure

are shown in Fig. 3(a) and (b), respectively. From the TEM

trace analysis, it was found that the ZnO nanostructure grew

along and directions on the (0001) plane [33].

The TEM image and the cross streaking of the spot in the

inset of Fig. 3(a) indicate that the geometrical shape of the ZnO

nanostructures can be categorized as nanobelts. The analysis

of the TEM image also suggests that the ZnO nanobelts have

a distinct structural morphology characterized by a rectangular

cross section and a uniform structure. The analysis of SEM and

TEM images show that the as-grown nanobelts have a single

crystal hexagonal structure with average thickness and width of

about 10 and 50 nm, respectively.

Electrical Characterization: The dynamic properties of the

sensor such as sensitivity, stability, response, and recovery times

were all found to be temperature dependent. The sensor requires

an elevated operating temperature to enhance redox reactions to

achieve the optimum conditions [35]. Dynamic responses of the

sensor to different concentrations of at 385 and 420

and at 300 and 325 are shown in Figs. 4 and 5,

respectively. It was observed that with the increase of temper-

ature, baseline resistance of the sensor was decreased and the

response and recovery times of the sensor were reduced. For

gas, the dynamic response was not linear with respect to gas

concentrations. It is believed that at high concentrations of ,

saturation may take place due to a lack of adsorbed oxygen ions

Fig. 4. Dynamic response of the conductometric sensor to different H gas
concentrations in synthetic air at 350 C and 420 C.

Fig. 5. Dynamic response of the conductometric sensor to different NO gas
concentrations in synthetic air at 300 C and 325 C.

to react with analyte molecules. It is well known that in an air

environment, oxygen molecules adsorb onto the surface of the

ZnO layer to form , , and ions by extracting elec-

trons from the conduction band depending on the temperature

[6], [36]. Takata et al. [37] found that the stable oxygen ions

were below 100 , between 100 and 300 , and

above 300 . The oxygen adsorptions on the surface of

nanobelts can be explained by the following equations:

(1)

(2)

(3)

(4)
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The positively charged ZnO surface and negatively charged

adsorbed oxygen ions form a depletion region at the surface.

Since ZnO nanobelts have single crystalline structure with av-

erage thickness less than 50 nm (less than Debye length), ad-

sorbed oxygen can easily penetrate through the bulk of the belt.

As a result, free carriers can travel through the bulk of the belt

in a similar way to the channel of a field-effect transistor (FET)

[1]. When the device is exposed to a target gas, two different

extremes may occur: pinch-off and fully conductive states. A

complete depletion of carriers inside the belt will produce a

pinched-off channel. A complete removal of adsorbed oxygen

from the belt will produce a highly conductive channel. When

an n-type ZnO nanobelt surface is exposed to a reducing gas

such as hydrogen or propene at elevated temperatures, analyte

molecules dissociate and combine with the adsorbed oxygen,

thereby reinjecting electrons. Above 300 , the reactions can

be expressed by the following equations:

(5)

(6)

Due to increase concentration of electrons, the depletion re-

gion decreases to produce a conductive channel along the belt,

which strongly increases belt conductivity.

In the case of strong oxidizing gas , reactions take place

directly with the oxide surface rather than with the oxygen

chemisorbed at surface. During the interaction process,

molecules consume conduction electrons and subsequently

increase the depletion region at the surface. Thus, the ZnO

nanobelt layer conductivity is reduced after exposure to .

The sensor response to can be explained by the following

reactions:

(7)

(8)

The sensitivity of a semiconducting oxide gas sensor is de-

fined as follows:

(a) for reducing gas: ;

(b) for oxidizing gas: ;

where is the resistance of the sensor in air, is the re-

sistance of the sensor in presence of gas.

The sensitivity of the sensor towards and as a func-

tion of operating temperature is shown in Fig. 6 and towards

propene in Fig. 7. The sensitivity versus operating temperature

curve shows a maximum which depends on the target gas. This

could be explained by the temperature dependence of the ad-

sorption and desorption process on the metal-oxide surface [38].

It was observed that the sensitivity towards is highest at

220 –250 but other performance parameters such as re-

sponse and recovery times are long, repeatability is poor, and

the baseline resistance is not stable. Therefore, the tradeoff be-

tween different parameters is needed in choosing the operating

temperature. Analysis of the experimental results suggest that

the optimum operating temperatures for the sensor are in the

range of 300 –400 for , 300 –350 for , and

350 –420 for propene sensing. However, it was found that

the sensor has the fastest response and recovery with greater re-

peatability and baseline stability at operational temperatures of

Fig. 6. Sensitivity versus operating temperature for 1% H and 8.5 ppm NO
gas concentrations in synthetic air.

Fig. 7. Sensitivity versus operating temperature for 1% propene concentration
in synthetic air.

Fig. 8. Dynamic response of the conductometric sensor to different H gas
concentrations in synthetic air at 385 C [39].

385 , 350 , and 370 for , , and propene gas, re-

spectively. Figs. 8–10 show the dynamic responses of the sensor

to different concentrations of at 385 , at 350 ,

and propene at 370 , respectively. At these temperatures, the

sensitivity of the sensor was calculated to be 14.3 for 1% ,

0.81 for 8.5 ppm , and 0.17 for 1% propene. Fast response

time of 48, 180, 72 s, and recovery time of 336, 268, 252 s

were observed for 1% , 1.06 ppm , and 1% propene gas,

respectively.

Reproducibility was observed as indicated when a second

pulse of 0.12% , 1.06 ppm , and 0.25% propene were

introduced into the sensor chamber. It was found that the ZnO

nanobelt-based sensor produce repeatable responses of the same

magnitude with good baseline stability.
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Fig. 9. Dynamic response of the conductometric sensor to different NO gas
concentrations in synthetic air at 350 C [39].

Fig. 10. Dynamic response of the conductometric sensor to different propene
gas concentrations in synthetic air at 370 C.

IV. CONCLUSION

A conductometric gas sensor has been fabricated based on

ZnO nanobelts synthesized by RF sputtering of a zinc oxide

target under controlled conditions. Novel gas sensor based on

these ZnO nanobelts has been investigated towards , ,

and hydrocarbon at different operating temperatures between

150 and 450 . Study shows that the optimum operating

temperatures for the sensor are in the range of 300 –400

for , 300 –350 for , and 350 –420 for

propene sensing. The fastest response and recovery with

greater repeatability for , , and propene gases occurred

at 385 , 350 , and 370 , respectively. The results

demonstrate that the developed sensors are promising for

industrial applications.
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