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Abstract

In this paper we study characterizations of odd and even dimensional mixed super quasi-
Einstein manifold and we give three and four dimensional examples (both Riemannian and
Lorentzian) of mixed super quasi-Einstein manifold to show the existence of such manifold.
Also in the last section we give the examples of warped product on mixed super quasi-Einstein
manifold.
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1 Introduction

A Riemannian manifold (M , g) with dimension (n ≥ 2) is said to be an Einstein manifold if it
satisfies the condition S(X, Y ) = r

ng(X, Y ), holds on M , here S and r denote the Ricci tensor
and the scalar curvature of (M , g) respectivley. According to [2] the above equation is called the
Einstein metric condition. Einstein manifolds play an important role in Riemannian Geometry, as
well as in general theory of relativity. The notion of quasi-Einstien manifold was defined in [7]. A
non-flat Riemannian manifold (M , g), (n ≥ 2) is said to be an quasi Einstein manifold if the con-
dition S(X, Y ) = αg(X, Y )+βρ(X)ρ(Y ), is fulfilled on M , where α and β are scalars of which
β 6= 0 and ρ is non-zero 1-form such that g(X, ξ) = ρ(X) for all vector field X and ξ is a unit
vector field.

In [5], M.C.Chaki introduced super quasi-Einstein manifold, denoted by S(QE)n and gave an
example of a 4-dimensional semi Riemannian super quasi-Einstein manifold, where the Ricci tensor
S of type (0, 2) which is not identically zero satisfies the condition

S(X, Y ) = αg(X, Y ) +βA(X)A(Y ) +γ[A(X)B(Y ) +A(Y )B(X)] + δD(X,Y ), (1.1)

where α, β, γ, δ are scalars such that β, γ, δ are nonzero and A,B are two nonzero 1-forms
such that g(X, ξ1) = A(X) and g(X, ξ2) = B(X), ξ1, ξ2 being unit vectors which are orthogonal,
i.e., g(ξ1, ξ2) = 0 and D is symmetric (0, 2) tensor with zero trace which satisfies the condition
D(X, ξ1) = 0, ∀ X ∈ χ(M).

Here α, β, γ, δ are called the associated scalars ,and A,B are called the associated main and auxil-
iary 1-forms respectively, ξ1, ξ2 are main and auxiliary generators and D is called the associated
tensor of the manifold.
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In [3], A.Bhattacharyya, M.Tarafdar and D.Debnath introduced the notion of mixed super quasi-
Einstein manifold, denoted by MS(QE)n with an example. A non-flat Riemannian manifold(M, g),
(n ≥ 3) is called mixed super quasi-Einstein manifold if its the Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + %B(X)B(Y )

+ γ[A(X)B(Y ) +A(Y )B(X)] + δD(X,Y ), (1.2)
where α, β, %, γ, δ are scalars such that β, %, γ, δ are nonzero and A,B are two nonzero 1-forms such
that

g(X, ξ1) = A(X), g(X, ξ2) = B(X), g(ξ1, ξ2) = 0,∀X (1.3)

ξ1, ξ2 being unit vectors which are orthogonal, D is symmetric (0, 2) tensor which satisfies the
condition

D(X, ξ1) = 0, traceD = 0 ∀X ∈ χ(M). (1.4)

Here α, β, %, γ, δ are called the associated scalars, and A,B are called the associated main and aux-
iliary 1-forms respectively, ξ1, ξ2 are main and auxiliary generators and D is called the associated
tensor of the manifold.

In [11], A.A.Shaikh, S.Jana introduced the notion of pseudo generalized quasi-Einstein man-
ifold, denoted by P (GQE)n with examples. A non-flat Riemannian manifold(M, g), (n > 2) is
called pseudo generalized quasi Einstein manifold if its the Ricci tensor S of type (0, 2) is not iden-
tically zero and satisfies the condition

S(X, Y ) = αg(X, Y )+βA(X)A(Y )+%B(X)B(Y )+δD(X,Y ), (1.5)

where α, β, % and δ are nonzero and A,B are two nonzero 1-forms such that

g(X, ξ1) = A(X), g(X, ξ2) = B(X), g(ξ1, ξ2) = 0,∀X, (1.6)

ξ1, ξ2 being unit vectors which are orthogonal, D is symmetric (0, 2) tensor which satisfies the
condition

D(X, ξ1) = 0, traceD = 0 ∀ X ∈ χ(M). (1.7)

Here α, β, %, δ are called the associated scalars, and A,B are called the associated 1-forms of the
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manifold and D is called the structure tensor of the manifold.

Let M be an m-dimensional, m ≥ 3, Riemannian manifold and p ∈ M . Denote by K(π) or
K(U ∧ V ) the sectional curvature of M associated with a plane section π ⊆ TpM , where {U, V }
is an orthonormal basis of π. For a n-dimensional subspace L ⊆ TpM, 2 ≤ n ≤ m, its scalar

cuvrvature τ(L) is denoted by τ(L) =
∑

1≤i<j≤n

K(ei ∧ ej), where {e1, e2, ..., en} is any orthonormal

basis of L ([8]).
The notion of warped product generalizes that of a surface of revolution. It was introduced in [4], for
studying manifolds of negative curvature. Let (B, gB), (F , gF ) be two Riemannian manifolds with
dim B = m > 0, dimF = k > 0 and f : B −→ (0,∞), f ∈ C∞(B). The warped product
M = B ×f F is the Riemannian manifold B × F furnished with the metric gM = gB + f2gF . B is
called the base of M , F is the fibre and the warped product is called a simply Riemannian product
if f is a constant function. The function f is called the warping function of the warped product[10].

The well-known characterization of 4-dimensional Einstein spaces was given by Singer and Thorpe
in [12]. Later we have seen that the generalization of 4-dimensional Einstein spaces was given by
Chen in [6]. On the other hand, in [8] Dumitru obtained the result for odd dimensional Einstein
spaces. Also these results (both odd and even dimensions) were generalized to quasi Einstein man-
ifold by Bejan in [1]. Also characterization of super quasi-Einstein manifold for both of odd and
even dimensions was studied in [9]. From above studies, we have given characterization of mixed
super quasi-Einstein manifold for both of odd and even dimensions with three and four dimensional
examples of mixed super quasi-Einstein manifold to ensure the existence of such manifold. Next we
show that a mixed super quasi-Einstein manifold is pseudo generalized quasi Einstein manifold if
either of generators is parallel vector field. In the last section we have given examples of warped
product on mixed super quasi-Einstein manifold.

2. Characterization of mixed super quasi-Einstein manifold

In this section we establish the characterization of odd and even dimensional MS(QE)n.

Theorem 2.1. A Riemannian manifold of dimension (2n+1) with n ≥ 2 is mixed super quasi
Einstein manifold if and only if the Ricci operator Q has eigen vector fields ξ1 and ξ2 such that at
any point p ∈M , there exist three real numbers a, b and c satisfying

τ(P ) + a = τ(P⊥); ξ1, ξ2 ∈ TpP⊥,

τ(N) + b = τ(N⊥); ξ1 ∈ TpN, ξ2 ∈ TpN⊥,

τ(R) + c = τ(R⊥); ξ1 ∈ TpR, ξ2 ∈ TpR⊥,

for any n-plane sections P,N and (n + 1)-plane section R where P⊥, N⊥ and R⊥ denote the or-
thogonal complements of P,N and R in TpM respectively and
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a = {α+ β + %+ δ[

2n−1∑
i=n+1

D(ei, ei) +D(e2n+1, e2n+1)−
n∑

i=1

D(ei, ei)]}/2,

b = {α− β + %+ δ[

2n+1∑
i=n+1

D(ei, ei)−
n−1∑
i=1

D(ei, ei)]}/2,

c = {%− α− β + δ[

2n+1∑
i=n+2

D(ei, ei)−
n∑

i=1

D(ei, ei)]}/2,

where α, β, % and δ are scalars.

Proof. First suppose that M is a (2n + 1) dimensional mixed super quasi Einstein manifold,
so

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + %B(X)B(Y )

+ γ[A(X)B(Y ) +A(Y )B(X)] + δD(X,Y ), (2.1)

where α, β, %, γ, δ are scalars such that β, %, γ, δ are nonzero and A,B are two nonzero 1-forms
such that g(X, ξ1) = A(X) and g(X, ξ2) = B(X), ξ1, ξ2 being unit vectors which are orthogo-
nal, i.e., g(ξ1, ξ2) = 0 and D is symmetric (0, 2) tensor with zero trace which satisfies the condition
D(X, ξ1) = 0,∀X ∈ χ(M).

Let P ⊆ TpM be an n-dimensional plane orthogonal to ξ1, ξ2 and let {e1, e2.......en} be orthonormal
basis of it. Since ξ1 and ξ2 are orthogonal to P , we can take orthonormal basis {en+1, en+2.......e2n+1}
of P⊥ such that e2n = ξ1 and e2n+1 = ξ2. Thus {e1, e2.......en, en+1, en+2.......e2n+1} is an orthonor-
mal basis of TpM . Then we can take X = Y = ei in (2.1), we have

S(ei, ei) =

2n+1∑
j=1

R(ej , ei, ei, ej) =

 α+ δD(ei, ei), for 1 ≤ i ≤ 2n− 1
α+ β, for i = 2n

α+ %+ δD(ξ2, ξ2), for i = 2n+ 1

By use of (2.1) for any 1 ≤ i ≤ 2n+ 1, we can write

S(e1, e1) = K(e1 ∧ e2) +K(e1 ∧ e3) + ............+K(e1 ∧ e2n−1)

+K(e1 ∧ ξ1) +K(e1 ∧ ξ2) = α+ δD(e1, e1),

S(e2, e2) = K(e2 ∧ e1) +K(e2 ∧ e3) + .............+K(e2 ∧ e2n−1)

+K(e2 ∧ ξ1) +K(e2 ∧ ξ2) = α+ δD(e2, e2),

....................................................................

S(e2n−1, e2n−1) = K(e2n−1 ∧ e1) +K(e2n−1 ∧ e2) +K(e2n−1 ∧ e3)
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+............+K(e2n−1 ∧ ξ2) = α+ δD(e2n−1, e2n−1),

S(ξ1, ξ1) = K(ξ1 ∧ e1) +K(ξ1 ∧ e2) + ................+K(ξ1 ∧ e2n−1)

+K(ξ1 ∧ ξ2) = α+ β,

S(ξ2, ξ2) = K(ξ2 ∧ e1) +K(ξ2 ∧ e2) + .................+K(ξ2 ∧ e2n−1)

+K(ξ2 ∧ ξ1) = α+ %+ δD(ξ2, ξ2).

Adding first n-equations, we get

2τ(P ) +
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej) = nα+ δ

n∑
i=1

D(ei, ei). (2.2)

Then adding the last (n+ 1) equations, we have

2τ(P⊥) +
∑

1≤j≤n<i≤2n+1

K(ei ∧ ej) = (n+ 1)α+ β + %

+δ

2n−1∑
i=n+1

D(ei, ei) + δD(ξ2, ξ2). (2.3)

Then, by substracting the equation (2.2) and (2.3), we obtain

τ(P⊥)− τ(P ) = {α+ β + %+ δ[

2n−1∑
i=n+1

D(ei, ei) +D(e2n+1, e2n+1)− Σn
i=1D(ei, ei)]}.

Therefore τ(P ) + a = τ(P⊥), where,

a = {α+ β + %+ δ[

2n−1∑
i=n+1

D(ei, ei) +D(e2n+1, e2n+1)−
n∑

i=1

D(ei, ei)]}/2.

Similarly, Let N ⊆ TpM be an n-dimensional plane orthogonal to ξ2 and let {e1, e2.......en}
be orthonormal basis of it. Since ξ2 is orthogonal to N , we can take an orthonormal basis
{en+1, en+2.......e2n+1} of N⊥ orthogonal to ξ1, such that en = ξ1 and e2n+1 = ξ2, respectively.
Thus, {e1, e2.......en, en+1, en+2.......e2n+1} is an orthonormal basis of TpM . Then we can take
X = Y = ei in (2.1) to have

S(ei, ei) =

2n+1∑
j=1

R(ej , ei, ei, ej) =


α+ δD(ei, ei), 1 ≤ i ≤ n− 1

α+ β, i = n
α+ δD(ei, ei), n+ 1 ≤ i ≤ 2n

α+ %+ δD(e2n+1, e2n+1), i = 2n+ 1
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Adding first n-equations, we get

2τ(N) +
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej) = nα+ β + δ

n−1∑
i=1

D(ei, ei), (2.4)

and adding the last (n+ 1) equations, we have

2τ(N⊥) +
∑

1≤j≤n<i≤2n+1

K(ei ∧ ej) = (n+ 1)α+ %+ δ

2n+1∑
i=n+1

D(ei, ei). (2.5)

Then, by substracting the equation (2.4) and (2.5), we obtain

τ(N⊥)− τ(N) = {α− β + %+ δ[

2n+1∑
i=n+1

D(ei, ei)−
n−1∑
i=1

D(ei, ei)]}/2.

Therefore τ(N) + b = τ(N⊥), where,

b = {α− β + %+ δ[

2n+1∑
i=n+1

D(ei, ei)−
n−1∑
i=1

D(ei, ei)]}/2.

Analogously, Let R ⊆ TpM be an (n+1)-plane orthogonal to ξ2 and let {e1, e2, ..., en+1} be orthonor-
mal basis of it. Since ξ2 is orthogonal to R, we can take an orthonormal basis {en+2, en+3, ..., e2n,
e2n+1} of R⊥ orthogonal to ξ1, such that en+1 = ξ1 and e2n+1 = ξ2. Thus,

{e1, e2, ..., en, en+1, en+2, ..., e2n+1}

is an orthonormal basis of TpM . Then we can take X = Y = ei in (2.1) to have

S(ei, ei) =

2n+1∑
j=1

R(ej , ei, ei, ej) =


α+ δD(ei, ei), 1 ≤ i ≤ n

α+ β, i = n+ 1
α+ δD(ei, ei), n+ 2 ≤ i ≤ 2n

α+ %+ δD(e2n+1, e2n+1), i = 2n+ 1

Adding the first n+ 1-equations, we get

2τ(R)+
∑

1≤i≤n+1<j≤2n+1

K(ei∧ej) = (n+1)α+β+δ

n∑
i=1

D(ei, ei), (2.6)
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and adding the last n equations, we have

2τ(R⊥) +
∑

1≤j≤n+1<i≤2n+1

K(ei ∧ ej) = nα+ %+ δ

2n+1∑
i=n+2

D(ei, ei). (2.7)

Then, by substracting the equation (2.6) and (2.7), we obtain

τ(R⊥)− τ(R) = {%− α− β + δ[

2n+1∑
i=n+2

D(ei, ei)−
n∑

i=1

D(ei, ei)]}/2.

Therefore τ(R) + c = τ(R⊥), where,

c = {%− α− β + δ[

2n+1∑
i=n+2

D(ei, ei)−
n∑

i=1

D(ei, ei)]}/2.

Conversely, let g(lX, Y ) = D(X,Y ), where l is a symmetric endomorphism of the tangent space
TpM and let V be an arbitrary unit vector of TpM , at p ∈M , orthogonal to ξ1 and ξ2. Now D is
symmetric as g is so, trace of D is zero and D(X, ξ1) = 0 for all X ∈ χ(M). We take an orthonormal
basis {e1, e2.......en, en+1, en+2.......e2n+1} of TpM such that V = e1, en+1 = ξ1 and e2n+1 = ξ2. We
consider n-plane section N and (n+1)-plane section R inTpM as follows N = span {e2.......en, en+1}
and R = span {e1, e2.......en, en+1} respectively. Then we have N⊥ = span {e1, en+2.......e2n, e2n+1}
and R⊥ = span {en+2.......e2n} respectively. Now

S(V, V ) = [K(e1 ∧ e2) +K(e1 ∧ e3) + ......+K(e1 ∧ en+1)]

+[K(e1 ∧ en+2) + ...........+K(e1 ∧ e2n) +K(e1 ∧ e2n+1)]

= [τ(R)−
∑

2≤i<j≤n+1

K(ei ∧ ej)]

+[τ(N⊥)−
∑

n+2≤i<j≤2n+1

K(ei ∧ ej)]

= τ(R)− τ(N) + τ(R⊥)− τ(N⊥)
= [τ(R) + τ(N)] + [b+ τ(N)− c− τ(R)]
= b− c.

Therefore, S(V, V ) = b − c, for any unit vector V ∈ TpM , orthogonal to ξ1 and ξ2. Then we
can write for any 1 ≤ i ≤ 2n + 1, S(ei, ei) = b − c, since S(V, V ) = (b − c)g(V, V ). It follows
that S(X,X) = (b − c)g(X,X) + K1A(X)A(X) + K4D(X,X) and S(Y, Y ) = (b − c)g(Y, Y ) +
K2B(Y )B(Y ) +K3[A(Y )B(Y ) +B(Y )A(Y )] for any X ∈ [span{ξ1}]⊥ and Y ∈ [span{ξ2}]⊥, where
A, B are the dual forms of ξ1 and ξ2 with respect to g, respectively and K1,K2,K3,K4 are scalars,
such that K1 6= 0,K2 6= 0,K3 6= 0,K4 6= 0.

Now from the above equations, we get from symmetry that S with tensors (b−c)g+K1(A⊗A)+K4D
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and (b− c) +K2(B ⊗B) +K3[(A⊗B) + (A⊗B)] must coincide on the complement of ξ1 and ξ2,
respectively, that is S(X,Y ) = (b− c)g(X,Y ) +K1A(X)A(Y ) +K2B(X)B(Y ) +K3[A(X)B(Y ) +
B(X)A(Y )] +K4D(X,Y ), for any X,Y ∈ [span{ξ1, ξ2}]⊥ . Since ξ1 and ξ2 are eigenvector fields of
Q, we also have S(X, ξ1) = 0 and S(Y, ξ2) = 0 for any X,Y ∈ TpM orthogonal to ξ1 and ξ2. Thus,
we can extend the above equation to

S(X,Z) = (b− c)g(X,Z) +K1A(X)A(Z) +K2B(X)B(Z))

+K3[A(X)B(Z +A(Z)B(X)] +K4D(X,Z), (2.8)

for any X ∈ [span{ξ1, ξ2}]⊥ and Z ∈ TpM , where K1,K2,K3,K4 are scalars and K1 6= 0,K2 6=
0,K3 6= 0,K4 6= 0. Now, let us consider the n-plane section P and (n + 1)-plane section R
in TpM as follows P = span {e1, e2, ..., en} and R = span {e1, e2, ..., en, ξ1}. Then we have
P⊥ = span {ξ1, en+2, ..., e2n+1} and R⊥ = span {en+2, ..., e2n, e2n+1} respectively. Now

S(ξ1, ξ1) = [K(ξ1 ∧ e1) +K(ξ1 ∧ e2) + ......+K(ξ1 ∧ en)]

+[K(ξ1 ∧ en+2) + ...........+K(ξ1 ∧ e2n) +K(e1 ∧ e2n+1)]

= [τ(R)−
∑

1≤i<j≤n

K(ei ∧ ej)]

+[τ(P⊥)−
∑

n+2≤i<j≤2n+1

K(ei ∧ ej)]

= τ(R)− τ(P ) + τ(P⊥)− τ(R⊥)
= [τ(R) + τ(P )] + [a+ τ(P )− c− τ(R)]
= a− c

Therefore we can write

S(ξ1, ξ1) = (b− c)g(ξ1, ξ1) + (a− b)A(ξ1)A(ξ1) +K4D(ξ1, ξ1). (2.9)

Analogously, let us consider the n-plane section P andN ∈ TpM as follows P = span {e1, e2, .......en}
and N = span {en+1, en+2.......e2n} respectively. Then we have P⊥ = span {en+1, en+2.......e2n, ξ2}
and N⊥ = span {e1, .......en, ξ2} respectively. Now, we have

S(ξ2, ξ2) = [K(ξ2 ∧ e1) +K(ξ2 ∧ e2) + ......+K(ξ2 ∧ en)]

+[K(ξ2 ∧ en+1) +K(ξ2 ∧ en+2) + ........+K(e2 ∧ e2n)]

= [τ(N⊥)−
∑

1≤i<j≤n

K(ei ∧ ej)]

+[τ(P⊥)−
∑

n+1≤i<j≤2n

K(ei ∧ ej)]

= τ(N⊥)− τ(P ) + τ(P⊥)− τ(N)
= [τ(N) + b− τ(P )] + [a+ τ(P )− τ(N)]
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= a+ b.

Then, we get

S(ξ2, ξ2) = (b−c)g(ξ2, ξ2)+(a+c)B(ξ2)B(ξ2)+K3[A(ξ2)B(ξ2)+A(ξ2)B(ξ2)]. (2.10)

Now from (2.8), (2.9) and (2.10) we can write the Ricci tensor by

S(X, Y ) = µ1g(X, Y ) +K1A(X)A(Y ) +K2B(X)B(Y )

+K3[A(X)B(Y ) +A(Y )B(X)] +K4D(X,Y ), (2.11)

for any X,Y ∈ TpM . From (2.11) it follows that M is a mixed super quasi Einstein manifold
, where µ1,K1,K2,K3,K4 are scalars and K1 6= 0,K2 6= 0,K3 6= 0,K4 6= 0. Hence the theorem is
proved.

Theorem 2.2. A Riemannian manifold of dimension 2n with n ≥ 2 is mixed super quasi Einstein
manifold if and only if the Ricci operator Q has eigen vector fields ξ1 and ξ2 such that at any point
p ∈M , there exist three real numbers a, b and c satisfying

τ(P ) + a = τ(P⊥); ξ1, ξ2 ∈ TpP⊥,

τ(N) + b = τ(N⊥); ξ1 ∈ TpN, ξ2 ∈ TpN⊥,

τ(R) + c = τ(R⊥); ξ1 ∈ TpR, ξ2 ∈ TpR⊥,

for any n-plane section P,N and (n+1)-plane section R where P⊥, N⊥ and R⊥ denote the orthog-
onal complements of P,N and R in TpM respectively and

a = {β + %+ δ[

2n−2∑
i=n+1

D(ei, ei) +D(e2n, e2n)−
n∑

i=1

D(ei, ei)]}/2,

b = {2α− β + %+ δ[

2n∑
i=n+1

D(ei, ei)−
n∑

i=2

D(ei, ei)]}/2,

c = {%− β + δ[

n∑
i=1

D(ei, ei)−
2n∑

i=n+1

D(ei, ei)]}/2,

where α, β, % and δ are scalars.

Proof. Let P and R be n-plane sections and N be an (n − 1)-plane section such that, P =
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span{e1, e2, ...en}, R = span{en+1, en+2, ...e2n} and N = span{e2, e3, ...en} respectively. Therefore
the orthogonal complements of these sections can be written as P⊥ = span{en+1, en+2, ...e2n}, R⊥
= span{e1, e2, ...en} and N⊥ = span{e1, en+1, ...e2n}.
Then rest of the proof is similar to the proof of Theorem 2.1.

Corollary 1. For pseudo generalized quasi Einstein manifold the characterization will be same
but the values of a, b, c will be different for both odd and even dimensional manifolds.

3. MS(QE)n with the parallel vector field generators

Theorem 3.1. A mixed super quasi Einstein manifold is pseudo generalized quasi Einstein manifold
if either of generators is parallel vector field.
Proof. By the definition of the Riemannian curvature tensor, if ξ1 is parallel vector field, then we
find that

R(X,Y )ξ1 = ∇X∇Y ξ1 −∇Y∇Xξ1 −∇[X,Y ]ξ1 = 0,

and consequently we get

S(X, ξ1) = 0. (3.1)

Again, put Y = ξ1 in the equation (1.2) and applying (1.3) and (1.4), we get

S(X, ξ1) = (α+ β)g(X, ξ1) + γg(X, ξ2).

So, if ξ1 is a parallel vector field, by (3.1), we get

(α+ β)g(X, ξ1) + γg(X, ξ2) = 0. (3.2)

Now, putting X = ξ2 in the equation (3.2) and using (1.3) we get γ = 0. So, if ξ1 is parallel
vector field in a mixed super quasi Einstein manifold, then the manifold is pseudo generalized quasi
Einstein manifold.

Again, if ξ2 is parallel vector field, then R(X,Y )ξ2 = 0. Contracting, we get

S(Y, ξ2) = 0. (3.3)

Putting X = ξ2 in the equation (1.2) and applying (1.3), we get

S(Y, ξ2) = (α+ %)g(Y, ξ2) + γg(Y, ξ1) + δD(Y, ξ2).
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If, ξ2 is a parallel vector field, by (3.3), we get

(α+%)g(Y, ξ2)+γg(Y, ξ1)+δD(Y, ξ2) = 0. (3.4)

Putting Y = ξ1 and using (3.4), (1.3), (1.4), we get γ = 0, i.e., the manifold is pseudo generalized
quasi Einstein manifold.

4. Examples of 3-dimensional and 4- dimensional mixed super quasi Einstein man-
ifold

Example 4.1. Let us consider a Riemannian metric g on R3 by

ds2 = gijdx
idxj = (x3)4/3[(dx1)2 + (dx2)2)] + (dx3)2,

(i, j = 1, 2, 3) and x3 6= 0. Then the only non-vanishing components of Christofell symbols, the
curvature tensors and the Ricci tensors are

Γ1
13 = Γ2

23 =
2

3x3
, Γ3

11 = Γ3
22 = −2

3
(x3)

1
3

R1331 = R2332 = − 2

9(x3)
2
3

, R1221 =
4

9
(x3)

2
3

R11 = R22 =
2

9(x3)
2
3

, R33 = − 4

9(x3)2

Let us consider the associated scalars α, β, %, γ and δ and the associated tensor D as follows:

α = − 4

9(x3)2
, β =

5(x3)
4
3

9
, % =

7

9(x3)2
, γ = − 1

(x3)
5
3

, δ =
1

15(x3)
5
3

,

and

Dij =



5
3x

3 for i = j = 1
− 5

3x
3 for i = j = 2

15

(x3)
1
3

for i = 1, j = 2

15

(x3)
1
3

for i = 2, j = 1

0 for otherwise
the 1-form

Ai(x) =

{
1
x3 for i = 1
0 for otherwise

and Bi(x) =

{
(x3)

2
3 for i = 2

0 for otherwise

Then we have

(i)R11 = αg11 + βA1A1 + %B1B1 + γ[A1B1 +A1B1] + δD11
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(ii)R22 = αg22 + βA2A2 + %B2B2 + γ[A2B2 +A2B2] + δD22

(iii)R33 = αg33 + βA3A3 + %B3B3 + γ[A3B3 +A3B3] + δD33

Since all the cases other than (i)− (iii) are trivial, we can say that

Rij = αgij + βAiAj + %BiBj + γ[AiBj + AjBi] + δDij for i, j = 1, 2, 3. Thus if (R3, g) is a
Riemannian manifold endowed with the metric given by

ds2 = gijdx
idxj = (x3)4/3[(dx1)2 + (dx2)2)] + (dx3)2,

(i, j = 1, 2, 3) and x3 6= 0, then (R3, g) is an MS(QE)3.

Next we consider the Lorentzian metric g on R3 by

ds2 = gijdx
idxj = −(x3)4/3(dx1)2 + (x3)4/3(dx2)2) + (dx3)2, (i, j = 1, 2, 3) and x3 6= 0.

Now, by similar way after some construction of associated scalars and associated 1-forms, we can
say that the manifold is a mixed super quasi-Einstein manifold. Therefore we get another example
of MS(QE)3.

Example 4.2. (R3, g) is a Lorentzian manifold endowed with the metric given by

ds2 = gijdx
idxj = −(x3)4/3(dx1)2 + (x3)4/3(dx2)2) + (dx3)2,

(i, j = 1, 2, 3) and x3 6= 0, then (R3, g) is an MS(QE)3.

Example 4.3. Let us consider a Riemannian metric g on R4 by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4) and p = ex
1

k2 , k is constant, then the only non-vanishing components of Christofell
symbols, the curvature tensors and the Ricci tensors are

Γ1
22 = Γ1

33 = Γ1
44 = − p

1 + 2p
,

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 =
p

1 + 2p

R1221 = R1331 = R1441 =
p

1 + 2p

R11 =
3p

(1 + 2p)2
, R22 = R33 = R44 =

p

(1 + 2p)2
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It can be easily seen that the scalar curvature r of the given manifold (R4, g) is r = 6p
(1+2p)3 , which

is non-vanishing and non-constant.

Let us consider the associated scalars α, β, %, γ and δ and the associated tensor D as follows:

α =
p

(1 + 2p)3
, β = 2p, % = − p

(1 + 2p)2
, γ = − 2

√
p

1 + 2p
, δ = − 2

(1 + 2p)2
,

and

Dij =

 p for i = j = 1
−p for i = j = 3
0 for otherwise

the 1-form

Ai(x) =

{ 1
1+2p for i = 1

0 for otherwise
and Bi(x) =


√
p for i = 1

−
√
p for i = 3

0 for otherwise

Then we have
(i)R11 = αg11 + βA1A1 + %B1B1 + γ[A1B1 +A1B1] + δD11

(ii)R22 = αg22 + βA2A2 + %B2B2 + γ[A2B2 +A2B2] + δD22

(iii)R33 = αg33 + βA3A3 + %B3B3 + γ[A3B3 +A3B3] + δD44

(iv)R44 = αg44 + βA4A4 + %B4B4 + γ[A4B4 +A4B4] + δD44

Since all the cases other than (i)− (iv) are trivial, we can say that

Rij = αgij + βAiAj + %BiBj + γ[AiBj +AjBi] + δDij , for i, j = 1, 2, 3, 4.

so if (R4, g) be a Riemannian manifold endowed with the metric given by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4). and p = ex
1

k2 , k is constant, then (R4, g) is an MS(QE)4 with non-zero and
non-constant scalar curvature.

If we consider the Lorentzian metric g on R3 by

ds2 = gijdx
idxj = −(1 + 2p)(dx1)2 + (1 + 2p)[(dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4) and p = ex
1

k2 , k is constant. Now, by similar way after some construction of associ-
ated scalars and associated 1-forms, we can say that the manifold is a mixed super quasi-Einstein
manifold. Therefore we get another example of MS(QE)4.

Example 4.4. Let (R4, g) be a Lorentzian manifold endowed with the metric given by
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ds2 = gijdx
idxj = −(1 + 2p)(dx1)2 + (1 + 2p)[(dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4) and p = ex
1

k2 , k is constant. Then (R4, g) is an MS(QE)4 with non-zero and
non-constant scalar curvature.

5. Examples of warped product on mixed super quasi-Einstein manifold

Example 5.1. Here we consider the example 4.1, a 3-dimensional example of mixed super quasi-
Einstein manifold. Let (R3, g) be a Riemannian manifold endowed with the metric given by

ds2 = gijdx
idxj = (x3)4/3[(dx1)2 + (dx2)2)] + (dx3)2, where (i, j = 1, 2, 3) and x3 6= 0.

To define warped product on MS(QE)3, we consider the warping function f : R \ 0 −→ (0,∞) by

f(x3) = (x3)
2
3 and observe that f = (x3)

2
3 > 0 is a smooth function. The line element defined on

R \ {0} ×R2 which is of the form B ×f F , where B = R \ {0} is the base and F = R2 is the fibre.

Therefore the metric ds2M can be expressed as ds2B + f2ds2F i.e.,

ds2 = gijdx
idxj = (dx3)2 + {(x3)2/3}2[(dx1)2 + (dx2)2],

which is the example of Riemannian warped product on MS(QE)3.

Example 5.2. We consider the example 4.3, a 4-dimensional example of mixed super quasi-Einstein
manifold. Let (R4, g) be a Riemannian manifold endowed with the metric given by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], where (i, j = 1, 2, 3, 4), p = ex

1

k2 , k is
constant.

To define warped product on MS(QE)4, we consider the warping function f : R3 −→ (0,∞)
by f(x1, x2, x3) =

√
(1 + 2p) and we observe that f > 0 is a smooth function. The line element

defined on R3 ×R which is of the form B ×f F , where B = R3 is the base and F = R is the fibre.

Therefore the metric ds2M can be expressed as ds2B + f2ds2F

i.e., ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2] + [

√
(1 + 2p)]2(dx4)2,

which is the example of Riemannian warped product on MS(QE)4.
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