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Abstract

Certain characterizations of recently proposed univariate continuous distributions are presented in different directions.
This work may be a source of preventing reinventing and duplicating the existing distributions and calling them newly
proposed distributions.
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1. Introduction

This work is a continuation of our previous works (Hamedani and Safavimanesh, 2016) and (Hamedani 2017) on char-
acterizations and infinite divisibility of distributions introduced in 2016-2017. In designing a stochastic model for a
particular modeling problem, an investigator will be vitally interested to know if their model fits the requirements of
a specific underlying probability distribution. To this end, the investigator will rely on the characterizations of the se-
lected distribution. Thus, the problem of characterizing a distribution is an important problem in various fields and has
recently attracted the attention of many researchers. Consequently, various characterization results have been reported in
the literature. These characterizations have been established in many different directions. This work deals with various
characterizations of the following distributions: 1) Extension of the Generalized Linear Failure Rate (EGLFR) distri-
bution of Kazemi et al.; 2) McDonald Gompertz (McG) distribution of Roozegar et al.; 3) Kumaraswamy-Transmuted
Exponentiated Modified Weibull (Kw-TEMW) distribution of Al-babtain et al.; 4) Lomax-Exponential (LE) distribution
of Hami Golzar et al.; 5) Truncated Exponential Exponential (TEE) distribution of Mahdavi and Silva; 6) Gompertz-G
(Go-G) family of distributions of Alizadeh et al.; 7) Type I Half-Logistics (TIHL-G) family of distributions of Cordeiro
et al.; 8) Transmuted Geometric-Weibull (TGW) distribution of Nofal et al.; 9) Adjusted Log-Logistic Generalized Ex-
ponential (ALLGE) distribution of Okorie et al.; 10) Type II Half Logistic (TIIHL-G) family of distributions of Hassan
et al.; 11) Transmuted New Generalized Inverse Weibull (TNGIW) distribution of Khan et al.; 12) Poisson-G (Po-G)
family of distributions of Abouelmagd et al.; 13) Generalized Transmuted Weibull (GTW) distribution of Nofal and El
Gebaly; 14) Exponentiated Generalized-G Poisson (EGGP) family of distributions of Aryal and Yousof; 15) Beta Inverse
Rayleigh (BIR) distribution of Leão et al.; 16) Beta Weibull Poisson (BWP) distribution of Percontini et al.; 17) Gam-
ma Modified Weibull (GMW) distribution of Cordeiro et al.; 18) Transmuted Dagum (TD) distribution of Elbatal and
Aryal; 19) Exponentiated Gompertz Generated (EGG) family of distributions of Cordeiro et al.; 20) New Extension of
Power Lindley (NEPL) distribution of Alizadeh et al.; 21) Poisson-Weibull Regression (PWR) distribution of Vigas et al.;
22) Odd Log-Logistic Skew Normal (OLLSN) distribution of da Silva Braga et al.; 23) Extended Generalized Gamma
Geometric (EGGG) distribution of Bortolini e al.; 24) Eponentiated Transmuted Quasi Lindley (ETQL) distribution of
Preda; 25) Log-Kumaraswamy Generalized Gamma (LKGG) distribution of Pascoa et al.; 26) Exponentiated Reduced
Kies (ERK) distribution of Kumar and Dharmaja; 27) Exponentiated Lomax (EL) distribution of Abdul-Moniem and
Abdel Hameed; 28) Another Extension of Exponential (AEE) distribution of Gómez et al.; 29) New Weighted Exponen-
tial (NWE) distribution of Kharazmi and Jabbari; 30) Exponentiated Inverse Weibull Geometric (EIWG) distribution of
Chung et al.; 31) New Extension of the Exponential (NEE) distribution of Gómez et al.; 32) Exponentiated Transmuted
Weibull (WTW) distribution of Ebraheim; 33) Generalizations of Weibull (GW) distribution of Jayakumar and Babu;
34) Exponentiated Nadarajah and Haghighi Exponential (ENHE) distribution of Abdul-Moniem; 35) Generalization of
Weibull (GW) distribution of Babu; 36) Truncated Weibull-G (TW-G) distribution of Najarzadegan et al.; 37) Generalized
Additive Weibull-G (GAW-G) family of distributions of Hassan et al.; 38) Two-parameter Weighted Exponential (TWE)
distribution of Shakhatreh; 39) Generalized Weighted Weibull (GWW) distribution of Kharazmi; 40) Generalized Weight-
ed Exponential (GWE) distribution of Kharazmi et al.; 41) Generalized Bilal (GB) distribution of Abd-Elrahman; . These
characterizations are presented in different directions: (i) based on the ratio of two truncated moments; (ii) in terms of the
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hazard function; (iii) in terms of the reverse (reversed) hazard function and (iv) based on the conditional expectation of
certain function of the random variable. Note that (i) can be employed also when the cd f (cumulative distribution func-
tion) does not have a closed form. We would also like to mention that due to the nature of some of these 41 distributions,
our chracterizations may be the only possible ones. In defining the above distributions we shall try to employ the same
parameter notation as used by the original authors. We follow the same order as listed above.

1) The cd f and pd f (probability density function) of EGLFR are given, respectively, by

F (x;α, β, a, b) =


(
1−(1−β(ax+ b

2 x2))1/β
)α
, i f β , 0

(1−exp(−(ax+ b
2 x2)))α , i f β = 0

, (1)

and

f (x;α, β, a, b) =
{
α(a+bx)(1−βz)

1
β −1(1−(1−βz)1/β)α−1

, i f β , 0

α(a+bx) exp(−z)(1−exp(−z))α−1
, i f β = 0

(2)

where α > 0, β ∈ R, a ≥ 0 and b ≥ 0 (with a + b > 0) are parameters, z =
(
ax + b

2 x2
)

and
i. If β ≤ 0, then the support of the cd f is x ≥ 0.

ii. If β > 0, then the support of the cd f is 0 ≤ x ≤ 1
b

√
a2 + 2b

β
− a

b .

iii.If β > 0 and b = 0, then the support of the cd f is 0 ≤ x ≤ 1
aβ .

2) The cd f and pd f of McG are given, respectively, by

F (x; a, b, c, θ, γ) =
1

B (a/c, b)

∫ [
1−exp

(
− θ
γ

(eγx−1)
)]c

0
wa−1 (1 − w)b−1 dw, x ≥ 0, (3)

and

f (x; a, b, c, θ, γ) =

cθeγx

B (a/c, b)
exp

(
− θ
γ

(eγx − 1)
) [

1 − exp
(
− θ
γ

(eγx − 1)
)]ac−1 {

1 −
[
1 − exp

(
− θ
γ

(eγx − 1)
)]c}b−1

, x > 0, (4)

where a, b, c, θ, γ are all positive parameters.

3) The cd f and pd f of Kw-TEMW are given, respectively, by

F (x;α, β, θ, γ, a, b, λ) = 1 −
{
1 −

[
1 − e−(θx+γxβ)]αa [

1 + λ − λ
(
1 − e−(θx+γxβ))α]a}b

, (5)

x ≥ 0 and

f (x;α, β, θ, γ, a, b, λ)

= abα
(
θ + γβxβ−1

)
e−(θx+γxβ) [

1 + λ − 2λ
(
1 − e−(θx+γxβ))α]×[

1 − e−(θx+γxβ)]αa−1 [
1 + λ − λ

(
1 − e−(θx+γxβ))α]a−1

×

{
1 −

[
1 − e−(θx+γxβ)]αa [

1 + λ − λ
(
1 − e−(θx+γxβ))α]a}b−1

, x > 0, (6)

where α, β, θ, γ, a, b all positive and λ (|λ| ≤ 1) are parameters.

4) The cd f and pd f of LE are given, respectively, by

F (x; a, s, k) = 1 −
( a
esx + a − 1

)k
, x ≥ 0, (7)

and

f (x; a, s, k) =
skakesx

(esx + a − 1)k+1 , x > 0, (8)
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where a, s, k are positive parameters.
Remark 1. For α = 1 and G1 (x) = esx−1

esx+a−1 , x ≥ 0, the cd f of NF (A New Family) of distributions of Alizadeh et al
(2015) reduces to (7). The NF distribution has been characterized in the upcoming Research Monograph by Hamedani
and Maadooliat (2017).

5) The cd f and pd f of TEE are given, respectively, by

F (x;α, λ) =
eα − eαe−λx

eα − 1
, x ≥ 0, (9)

and

f (x;α, λ) =
αλe−λxeαe−λx

eα − 1
, x > 0, (10)

where α, λ are positive parameters.
Remark 2. For α = 1 and G1 (x) = 1− e−λx , x ≥ 0, the cd f of EGP (The Exponentiated G Poisson) model of Gomes et
al (2015) reduces to (9). The EGP distribution has been characterized in the upcoming Research Monograph by Hamedani
and Maadooliat (2017).

6) The cd f and pd f of Go-G are given, respectively, by

F (x; θ, γ, η) = 1 − e
θ
γ

{
1−

(
G(x;η)

)−γ}
, x ∈ R, (11)

and

f (x; θ, γ, η) = θg (x; η)
(
G (x; η)

)−γ−1
e
θ
γ

{
1−

(
G(x;η)

)−γ}
, x ∈ R, (12)

where θ, γ are positive parameters and g (x; η) and G (x; η) are pd f and cd f of the baseline distribution which depends on
the vector parameter η.

7) The cd f and pd f of TIHL-G are given, respectively, by

F (x; λ) =
1 −

(
G (x; η)

)λ
1 +

(
G (x; η)

)λ , x ∈ R, (13)

and

f (x; λ) =
2λg (x; η)

(
G (x; η)

)λ−1{
1 +

(
G (x; η)

)λ}2 , x ∈ R, (14)

where λ is a positive parameters and g (x; η) and G (x; η) are pd f and cd f of the baseline distribution which depends on
the vector parameter η.
Special TIHL-G distributions
The following distributions are listed as sub-models of the TIHL-G distribution: The type I half-logistic normal; The type
I half-logistic gamma and The type I half-logistic Fréchet.
Remark 3. For α = 1, the cd f of EHL-G (The Exponentiated Half-Logistic Family) of distributions of Cordeiro
et al (2014) reduces to (13). The EHL-G distribution has been characterized in the upcoming Research Monograph by
Hamedani and Maadooliat (2017).

8) The cd f and pd f of TGW are given, respectively, by

F (x;α, β, θ, λ) =
θ
(
1 − e−(αx)β

)
1 + (θ − 1)

(
1 − e−(αx)β

)
1 +

λe−(αx)β

1 + (θ − 1)
(
1 − e−(αx)β

)
 , (15)

x ≥ 0 and

f (x;α, β, θ, λ) =
θβαβxβ−1

e(αx)β
[
1 + (θ − 1)

(
1 − e−(αx)β

)]2

1 +
λe−(αx)β

1 + (θ − 1)
(
1 − e−(αx)β

)
 , (16)
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x > 0 , where α, β, θ positive and λ (|λ| ≤ 1) are parameters.

9) The cd f and pd f of ALLGE are given, respectively, by

F (x; θ, δ, η) =

(
δθ + 1

)
(1 − e−ηx)θ

δθ + (1 − e−ηx)θ
, x ≥ 0, (17)

and

f (x; θ, δ, η) =

(
δθ + 1

)
δθθηe−ηx (1 − e−ηx)θ−1[
δθ + (1 − e−ηx)θ

]2 , x > 0, (18)

where θ, δ, η are positive parameters.

10) The cd f and pd f of TIIHL-G are given, respectively, by

F (x; λ, ζ) =
2
[
G (x; ζ)

]λ
1 +

[
G (x; ζ)

]λ , x ≥ 0, (19)

and

f (x; λ, ζ) =
2λg (x; ζ)

[
G (x; ζ)

]λ−1[
1 +

[
G (x; ζ)

]λ]2 , x > 0, (20)

where λ is a positive parameter and G (x; ζ) , g (x; ζ) are cd f and pd f of the baseline distribution which depends on the
parameter vector ζ.

11) The cd f and pd f of TNGIW are given, respectively, by

F (x;α, β, γ, ϕ, λ) =

1 −
1 − exp

−αx − γ
(

1
x

)β
ϕ


1 + λ

1 − exp

−αx − γ
(

1
x

)β
ϕ

 , (21)

x ≥ 0 and

f (x;α, β, γ, ϕ, λ) = ϕ

 αx2 + βγ

(
1
x

)β+1
 exp

−αx − γ
(

1
x

)β×1 − exp

−αx − γ
(

1
x

)β
ϕ−1

×

1 − λ + 2λ

1 − exp

−αx − γ
(

1
x

)β
ϕ

 , (22)

x > 0 , where α, β, γ, ϕ all positive and λ (|λ| ≤ 1) are parameters.
Remark 4. For λ = 0 , TNGIW will reduce to NGIW (New Generalized Inverse Weibull) distribution of Khan and King
(2016).

12) The cd f and pd f of Po-G are given, respectively, by

F (x; θ, η) =
exp

[
θG (x; η)

] − 1
eθ − 1

, x ∈ R, (23)

and

f (x; θ, η) =
θg (x; η) exp

[
θG (x; η)

]
eθ − 1

, x ∈ R, (24)

where θ is a positive parameter and g (x; η) and G (x; η) are pd f and cd f of the baseline distribution which depends on the
parameter vector η.
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13) The cd f and pd f of GTW are given, respectively, by

F (x;α, β, a, b, λ) =
[
1 − e−(αx)β

] {
1 + λ − λ

[
1 − e−(αx)β

]b}
, x ≥ 0, (25)

and
f (x;α, β, a, b, λ) = βαβxβ−1e−(αx)β

[
1 − e−(αx)β

]a−1 {
a(1 + λ) − λ (a + b)

[
1 − e−(αx)β

]b}
, (26)

x > 0 , where α, β, a, b all positive and λ (|λ| ≤ 1) are parameters.

14) The cd f and pd f of EGGP are given, respectively, by

F (x; a, b, λ, ψ) =
1 − exp

{
−λ

{
1 −

[
G (x;ψ)

]a}b}
1 − exp {−λ} , x ∈ R, (27)

and

f (x; a, b, λ, ψ) =
abλg (x;ψ)

[
G (x;ψ)

]a−1 {
1 −

[
G (x;ψ)

]a}b−1

{
1 − exp {−λ}} exp

{
λ
{
1 −

[
G (x;ψ)

]a}b} , (28)

x ∈ R , where a, b, λ are positive parameters and g (x;ψ) and G (x;ψ) are pd f and cd f of the baseline distribution which
depends on the parameter vector ψ.

15) The cd f and pd f of BIR are given, respectively, by

F (x; a, b, θ) =
1

B (a, b)

∫ exp(−θx−2)

0
wa−1 (1 − w)b−1 dw, x ≥ 0, (29)

and
f (x; a, b, θ) =

2θ
B (a, b)

x−3 exp
(
−θx−2

) [
1 − exp

(
−θx−2

)]b−1
, x > 0, (30)

where a, b, θ are positive parameters.

16) The cd f and pd f of BIR1 (a = b = 1
2 ) are given, respectively, by

F (x; θ) =
2
π

arcsin
{
exp

(
− θ

2
x−2

)}
, x ≥ 0 (31)

and

f (x; θ) =
2
π

 θx−3 exp
(
− θ2 x−2

)
√

1 − exp
(−θx−2)

 , x > 0, (32)

where θ is a positive parameter.

17) The cd f and pd f of BWP are given, respectively, by

F (x;α, β, a, b, λ) =
1

B (a, b)

∫ eλe−βxα
−eλ

1−eλ

0
wa−1 (1 − w)b−1 dw, x ≥ 0, (33)

and

f (x; θ) = cxα−1e−βxαeλe−βxα
(
eλe−βxα − 1

)b−1
, x > 0, (34)

where α, β, a, b, λ are positive parameters and c = αβλe−λ(eλ−1)2−a−b

B(a,b)(1−e−λ) is the normalizing constant. Note that for a = 1,

c = bαβλ
(
eλ − 1

)−b
and for b = 1, c = aαβλ

(
eλ − 1

)−a
.

18) The cd f and pd f of GMW are given, respectively, by

F (x;α, β, a, λ) =
1
Γ (a)

∫ αxβeλx

0
ta−1e−tdt, x ≥ 0, (35)
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and

f (x;α, β, a, λ) =
αxβ−1 (β + λx)
Γ (a)

{
αxβeλx

}a−1
eλx−αxβeλx

, x > 0, (36)

where α, β, a, λ are positive parameters.

19) The cd f and pd f of TD are given, respectively, by

F (x;α, β, θ, λ) =
(
1 + αx−θ

)−β [
1 + λ − λ

(
1 + αx−θ

)−β]
, x ≥ 0, (37)

and
f (x;α, β, θ, λ) = αβθx−θ−1

(
1 + αx−θ

)−β−1
[
1 + λ − 2λ

(
1 + αx−θ

)−β]
, (38)

x > 0, where α, β, θ positive and λ (|λ| ≤ 1) are parameters.

20) The cd f and pd f of EGG are given, respectively, by

F (x;α, θ, γ, η) =
{

1 − e
θ
γ

(
1−

(
G(x;η)

)−γ)}α
, x ∈ R, (39)

and

f (x;α, θ, γ, η) =
αθg (x; η) e

θ
γ

(
1−

(
G(x;η)

)−γ)
(
G (x; η)

)1+γ
{

1 − e
θ
γ

(
1−

(
G(x;η)

)−γ)}1−α , x ∈ R, (40)

where α, θ, γ are positive parameters and g (x; η), G (x; η) are pd f and cd f of the baseline distribution with parameter
vector η.

21) The cd f and pd f of NEPL are given, respectively, by

F (x;α, β, λ) =

[
1 −

(
1 + λ

1+λ xβ
)

e−λxβ
]α[

1 −
(
1 + λ

1+λ xβ
)

e−λxβ
]α
+

(
1 + λ

1+λ xβ
)

e−λxβ
, x ≥ 0, (41)

and

f (x;α, β, λ) =
αβλ2

(
1 + xβ

)
e−λxβ

[
1 −

(
1 + λ

1+λ xβ
)

e−λxβ
]α−1 (

1 + λ
1+λ xβ

)α−1

(1 + λ)
{[

1 −
(
1 + λ

1+λ xβ
)

e−λxβ
]α
+

(
1 + λ

1+λ xβ
)

e−λxβ
}2 , x > 0 (42)

where α, β, λ are positive parameters.

22) The cd f and pd f of PWR (WLOG for µ = 0, σ = 1) are given, respectively, by

F (x;α) =
eα − eαe−ex

eα − 1
, x ∈ R, (43)

and
f (x;α) =

α

eα − 1
ex+αe−ex−ex

, x ∈ R, (44)

where α is a positive parameter.

23) The cd f and pd f of OLLSN (WLOG for µ = 0, σ = 1) are given, respectively, by

F (x; λ) =
[ΦS N (x; λ)]α

[ΦS N (x; λ)]α +
[
ΦS N (x; λ)

]α , x ∈ R, (45)

and

f (x; λ) =
2αϕ (x)Φ (λx) [ΦS N (x; λ)]α−1

[
ΦS N (x; λ)

]α−1

{
[ΦS N (x; λ)]α +

[
ΦS N (x; λ)

]α}2 , x ∈ R, (46)
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where λ is a positive parameter, ϕ (x) ,Φ (x) are pd f and cd f of the standard normal distribution, ΦS N (x; λ) = Φ (x) −
2T (x; λ) , T (x; λ) = (2π)−1

∫ λ

0
exp{− 1

2 x2(1+u2)}
1+u2 du and ΦS N (x; λ) = 1 − ΦS N (x; λ) .

24) The cd f and pd f of EGGG are given, respectively, by

F (x;α, τ, λ, p, k) = 1 −

1 −
γ1

[
k,

(
x
α

)τ]
1 − p

{
1 − γ1

[
k,

(
x
α

)τ]}

λ

, x ≥ 0, (47)

and

f (x;α, τ, λ, p, k) =
λτ (1 − p)λ

αΓ (k)

( x
α

)τk−1
exp

[
−

( x
α

)τ] {(
1 − γ1

[
k,

(
x
α

)τ]) (
1 − p

{
1 − γ1

[
k,

(
x
α

)τ]})}λ−1

(
1 − p

{
1 − γ1

[
k,

(
x
α

)τ]})2 , (48)

x > 0, where α, τ, λ, k positive, p ∈ (0, 1) are parameters, γ [k, x] =
∫ x

0 wk−1e−wdw , γ1 [k, x] = 1
Γ(k)

∫ x
0 wk−1e−wdw and

Γ (k) =
∫ ∞

0 wk−1e−wdw.

25) The cd f and pd f of ETQL are given, respectively, by

F (x;α, β, µ, θ, λ) =

1 −
1 −

 (1 + λ)
(
1 − µθ+1+θx

µθ+1 e−θx
)

−λ
(
1 − µθ+1+θx

µθ+1 e−θx
)2



α
β

, x ≥ 0, (49)

and

f (x;α, β, µ, θ, λ) =
αβθ2

µθ + 1
e−θx (µ + x)

1 −
 (1 + λ)

(
1 − µθ+1+θx

µθ+1 e−θx
)

−λ
(
1 − µθ+1+θx

µθ+1 e−θx
)2



α−1 1 −

1 −
 (1 + λ)

(
1 − µθ+1+θx

µθ+1 e−θx
)

−λ
(
1 − µθ+1+θx

µθ+1 e−θx
)2



α
β−1

×
[
1 + λ − 2λ

(
1 − µθ + 1 + θx

µθ + 1
e−θx

)]
, (50)

x > 0, where α, β, µ, θ positive and λ (|λ| ≤ 1) are parameters.

26) The pd f of LKGG (WLOG for µ = 0, σ = 1) is given, respectively, by

f (x; λ, φ, q) =



λφ|q|
Γ(q−2) (q−2)q−2

exp{q−1 x−q−2eqx}×

{γ1[q−2,q−2eqx]}λ−1{1−(γ1[q−2,q−2eqx])λ
}φ−1

, i f q,0
λφ√
2π

exp
(
− x2

2

)
(Φ(x))λ−1[1−(Φ(x))λ]φ−1

, i f q=0
(51)

x ∈ R, where λ, φ positive , q ∈ R are parameters and , as before, γ1 [α, x] = 1
Γ(α)

∫ x
0 wα−1e−wdw.

27) The cd f and pd f of ERK are given, respectively, by

F (x; β, λ) =
{

1 − exp
[
−

( x
1 − x

)β]}λ
, 0 ≤ x ≤ 1, (52)

and

f (x; β, λ) =
λβxβ−1 exp

[
−

(
x

1−x

)β]
(1 − x)β+1

{
1 − exp

[
−

( x
1 − x

)β]}λ−1

, (53)

0 < x < 1, where β, λ are positive parameters.

28) The cd f and pd f of EL are given, respectively, by

F (x;α, θ, λ) =
[
1 − (1 + λx)−θ

]α
, x ≥ 0, (54)
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and
f (x;α, θ, λ) = αθλ (1 + λx)−(θ+1)

[
1 − (1 + λx)−θ

]α−1
, x > 0, (55)

where α, θ, λ are positive parameters.
Remark 5. A generalization of the EL distribution was proposed by Mead (2015) which is characterized in the upcoming
Research Monograph by Hamedani and Maadooliat (2017).

29) The cd f and pd f of AEE are given, respectively, by

F (x;α, β) = 1 − (α + β + αβx) e−αx

α + β
, x ≥ 0, (56)

and

f (x;α, β) =
α2(1 + βx)e−αx

α + β
, x > 0, (57)

where α, β are positive parameters.

30) The cd f and pd f of NWE are given, respectively, by

F (x;α, β, λ) = 1 − C
λ

e−λx
{

β

β + 1
− e−λαx

α + 1
+

e−λα(β+1)x

(β + 1) (1 + α (β + 1))

}
, x ≥ 0 (58)

and

f (x;α, β, λ) = Ce−λx

1 − e−λαx −

(
1 − e−λα(β+1)x

)
(β + 1)

 , x > 0, (59)

where α, β, λ are positive parameters and C = λ(α+1)(1+α(β+1))
βα2 is the normalizing constant.

31) The cd f and pd f of EIWG are given, respectively, by

F (x;α, γ, q) =
e−γx−α

1 − q
(
1 − e−γx−α) , x ≥ 0 , (60)

and

f (x;α, γ, q) =
αγ (1 − q) x−(α+1)e−γx−α[

1 − q
(
1 − e−γx−α)]2 , x > 0, (61)

where α, γ positive and q (0 < q < 1) are parameters.
Remark 6. The EIWG distribution is a special case of BGIWG (The Beta Generalized Inverse Weibull Geometric) dis-
tribution of Elbatal et al. (2017). We believe that Chung et al. were not aware of Elbatal et al.’s paper as these two papers
were published within a couple of months of each other. The BGIWG distribution was characterized in Hamedani (2017)
paper listed in the references here.

32) The cd f and pd f of NEE are given, respectively, by

F (x;α, β) = 1 − α
2 (1 + βx) e−αx

α + β
, x ≥ 0 , (62)

and

f (x;α, β) =
(α + β + αβx) e−αx

α + β
, x > 0, (63)

where α, β are positive parameters.

33) The cd f and pd f of ETW are given, respectively, by

F (x;α, β, λ, ν) =
{
1 + (λ − 1) e−(

x
α )β − λe−2( x

α )β
}ν
, x ≥ 0 , (64)

and

f (x;α, β, λ, ν) =
νβ

α

( x
α

)β−1
e−(

x
α )β

[
1 − λ + 2λe−(

x
α )β

] {
1 + (λ − 1) e−(

x
α )β − λe−2( x

α )β
}ν−1

, (65)

46



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 1; 2018

x > 0, where α, β, ν all positive and λ (|λ| ≤ 1) are parameters.

34) The cd f and pd f of GW are given, respectively, by

F (x;α, β) =
1 − e−xβ

1 − (1 − α) e−xβ
, x ≥ 0 , (66)

and

f (x;α, β) =
αβxβ−1e−xβ[

1 − (1 − α) e−xβ
]2 , x > 0, (67)

where α, β, ν are positive parameters.
Remark 7. Generalizations of GW distributions were presented by Bidram et al. (2015) and by Elbatal et al. (2016).
These distributions are characterized in the upcoming Research Monograph by Hamedani and Maadooliat (2017).

35) The cd f and pd f of ENHE are given, respectively, by

F (x;α, β, λ) =
(
1 − e1−(1+αx)β

)λ
, x ≥ 0 , (68)

and
f (x;α, β, λ) = λαβ (1 + αx)β−1 e1−(1+αx)β

(
1 − e1−(1+αx)β

)λ−1
, (69)

x > 0, where α, β, λ are all positive parameters.

36) The cd f and pd f of GW are given, respectively, by

F (x;α, θ, c) =
1

1 − αθ
{
1 − αθ

(
1 − e−xc

+ αe−xc)−θ}
, x ≥ 0 , (70)

and

f (x;α, θ, c) =
θ (1 − α)αθcxc−1e−xc(

1 − αθ) (1 − e−xc
+ αe−xc )θ+1 , x > 0, (71)

where α, θ, c are all positive parameters.

37) The cd f and pd f of TW-G are given, respectively, by

F (x;α, β) =
1 − exp

[
−αG (x)β

]
1 − exp (−α)

, x ∈ R, (72)

and

f (x;α, β) =
αβg (x) G (x)β−1 exp

[
−αG (x)β

]
1 − exp (−α)

, x ∈ R, (73)

where α, β are positive parameters.
Remark 8. The TW-G distribution is not new. It was first introduced by Gomes et al. (2015), which is also characterized
in the upcoming Research Monograph by Hamedani and Maadooliat (2017).

38) The cd f and pd f of GAW-G are given, respectively, by

F (x; a, b, c, d, η) = 1 − exp
{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
}
, x ∈ R, (74)

and

f (x; a, b, c, d, η) =
g (x; η)

G (x; η)

{
cd

[
− ln

(
G (x; η)

)]d−1
+ ab

[
− ln

(
G (x; η)

)]b−1
}

exp
{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
}
,

(75)
x ∈ R , where a, b, c, d are positive parameters, G (x; η) and g (x; η) are cd f and pd f of the baseline distribution which
depends on the parameter vector η .
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39) The cd f and pd f of TWE are given, respectively, by

F (x; λ, α1, α2) = 1 −Ce−λx
(

1 − 1
1+α1

e−λα1 x − 1
1+α2

e−λα2 x

+ 1
1+α1+α2

e−λ(α1+α2)x

)
, x ≥ 0, (76)

and
f (x; λ, α1, α2) = Cλe−λx

(
1 − e−λα1 x

) (
1 − e−λα2 x

)
, x > 0, (77)

where λ, α1, α2 are positive parameters and C = (1+α1)(1+α2)(1+α1+α2)
α1α(2+α1+α2) is the normalizing constant.

40) The pd f of GWW is given by

f (x;α, β, λ, υ) = Cλβxβ−1e−λxβ
(
1 − e−λ(αx)β

)υ
, x > 0, (78)

where α, β, λ, υ are positive parameters and C = αβ

B
(

1
αβ
,υ+1

) is the normalizing constant and B (a, b) is the beta function.

Remark 9. The Generalized Weighted Exponential (GWE) distribution of Kharazmi et al. (2017) is a special case of
GWW distribution.

41) The cd f and pd f of GB are given, respectively, by

F (x; θ, λ) = 1 − e−2(x/θ)λ
(
3 − 2e−(x/θ)λ

)
, x ≥ 0, (79)

and

f (x; θ, λ) =
6λ
θ

( x
θ

)λ−1
e−2(x/θ)λ

(
1 − e−(x/θ)λ

)
, x > 0, (80)

where θ, λ are positive parameters.

2. Characterizations of Distributions

We present our characterizations (i) − (iv) in four subsections.

2.1 Characterizations Based on Two Truncated Moments

This subsection deals with the characterizations of distributions listed in Section 1 based on the ratio of two truncated
moments. Our first characterization employs a theorem due to Glänzel (1987), see Theorem 1 of Appendix A . The result,
however, holds also when the interval H is not closed, since the condition of the Theorem is on the interior of H.

Remark 1.1. For β = 0 , the distribution (1) has the simple form which has been characterized in our previous work.
We will concentrate on the following three cases: I) β < 0 ; II) β > 0 and b , 0 and III) β > 0 and b = 0.

CASE I :
———–

Proposition 1.1. Let X : Ω → (0,∞) be a continuous random variable and let q2 (x) =
(
1 −

(
1 − β

(
ax + b

2 x2
))1/β

)1−α

and q1 (x) = q2 (x)
(
1 − β

(
ax + b

2 x2
))−1

for x > 0. Then for β < 0, the random variable X has pd f (2) if and only if the
function ξ defined in Theorem 1 is of the form

ξ (x) = (1 − β)
(
1 − β

(
ax +

b
2

x2
))
, x > 0.

Proof. Suppose the random variable X has pd f (2), then

(1 − F (x)) E
[
q1 (X) | X ≥ x

]
=

α

1 − β

(
1 − β

(
ax +

b
2

x2
)) 1

β−1

, x > 0,

and

(1 − F (x)) E
[
q2 (X) | X ≥ x

]
= α

(
1 − β

(
ax +

b
2

x2
))1/β

, x > 0.
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Further,

ξ (x) q1 (x) − q2 (x) = −βq2 (x) > 0 , f or x > 0.

Conversely, if ξ is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x) − q2 (x)
=

(1 − β) (a + bx)

1 − β
(
ax + b

2 x2
) , x > 0,

and consequently

s (x) = −1 − β
β

log
{

1 − β
(
ax +

b
2

x2
)}
, x > 0.

Now, according to Theorem 1, X has density (2) .
Corollary 1.1. Let X : Ω → (0,∞) be a continuous random variable and let q2 (x) be as in Proposition 1.1. For β < 0,
the random variable X has pd f (2) if and only if there exist functions q1 and ξ defined in Theorem 1 satisfying the
following differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
(1 − β) (a + bx)

1 − β
(
ax + b

2 x2
) , x > 0.

Remark 1.2. The general solution of the differential equation in Corollary 1.1 is

ξ (x) =
[
1 − β

(
ax +

b
2

x2
)]1− 1

β

 − ∫
(1 − β) (a + bx)

[
1 − β

(
ax + b

2 x2
)] 1

β−2 ×
(q1 (x))−1 q2 (x) dx + D

 ,

where D is a constant. We like to point out that one set of functions satisfying the above differential equation is given in
Proposition 1.1 with D = 0. Clearly, there are other triplets (q1, q2, ξ) which satisfy conditions of Theorem1.

CASE II :
———–
Proposition 1.2. Let X : Ω →

(
0, 1

b

√
a2 + 2b

β
− a

b

)
be a continuous random variable and let q1 (x) and q2 (x) be as in

Proposition 1.1 for 0 < x < 1
b

√
a2 + 2b

β
− a

b . Then for β > 0 and b , 0, the random variable X has pd f (2) if and only if
the function ξ defined in Theorem 1 is of the form

ξ (x) = (1 − β)
(
1 − β

(
ax +

b
2

x2
))
, 0 < x <

1
b

√
a2 +

2b
β
− a

b
.
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Proof. Suppose the random variable X has pd f (2), then

(1 − F (x)) E
[
q2 (X) | X ≥ x

]
=

∫ 1
b

√
a2+ 2b

β −
a
b

x
α (a + bu)

(
1 − β

(
au +

b
2

u2
)) 1

β−1

du

= −α
(
1 − β

(
au +

b
2

u2
))1/β

|
1
b

√
a2+ 2b

β −
a
b

x

= −α

1 − β
 a

(
1
b

√
a2 + 2b

β
− a

b

)
+

b
2

(
1
b

√
a2 + 2b

β
− a

b

)2




1/β

+

α

(
1 − β

(
ax +

b
2

x2
))1/β

= −α
(
1 − β

(
1
β

))1/β

+ α

(
1 − β

(
ax +

b
2

x2
))1/β

= α

(
1 − β

(
ax +

b
2

x2
))1/β

, 0 < x <
1
b

√
a2 +

2b
β
− a

b
.

Similarly,

(1 − F (x)) E
[
q1 (X) | X ≥ x

]
=

α

1 − β

(
1 − β

(
ax +

b
2

x2
)) 1

β−1

, 0 < x <
1
b

√
a2 +

2b
β
− a

b
.

Further,

ξ (x) q1 (x) − q2 (x) = −βq2 (x) < 0 , f or 0 < x <
1
b

√
a2 +

2b
β
− a

b
.

Conversely, if ξ is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x) − q2 (x)
=

(1 − β) (a + bx)

1 − β
(
ax + b

2 x2
) , 0 < x <

1
b

√
a2 +

2b
β
− a

b
,

and consequently

s (x) = −1 − β
β

log
{

1 − β
(
ax +

b
2

x2
)}
, 0 < x <

1
b

√
a2 +

2b
β
− a

b
.

Now, according to Theorem 1, X has density (2) .

Corollary 1.2. Let X : Ω→
(
0, 1

b

√
a2 + 2b

β
− a

b

)
be a continuous random variable and let q2 (x) be as in Proposition 1.2.

For β > 0 and b , 0, the random variable X has pd f (2) if and only if there exist functions q1 and ξ defined in Theorem
1 satisfying the following differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
(1 − β) (a + bx)

1 − β
(
ax + b

2 x2
) , 0 < x <

1
b

√
a2 +

2b
β
− a

b
.

Remark 1.3. The general solution of the differential equation in Corollary 1.2 is

ξ (x) =
[
1 − β

(
ax +

b
2

x2
)]1− 1

β

 − ∫
(1 − β) (a + bx)

[
1 − β

(
ax + b

2 x2
)] 1

β−2 ×
(q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant.
CASE III : This case is similar to CASE II.
————
A Proposition, a Corollary and a Remark similar to Proposition 1.1, Corollary 1.1 and Remark 1.2 will be stated, without
proofs, for each of the remaining distributions listed in Section 1.

Proposition 1.3. Let X : Ω→ (0,∞) be a continuous random variable and let q1 (x) =
{
1 −

[
1 − exp

(
− θ
γ

(eγx − 1)
)]c}1−b
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and q2 (x) = q1 (x)
[
1 − exp

(
− θ
γ

(eγx − 1)
)]ac

for x > 0. Then, the random variable X has pd f (4) if and only if the
function ξ defined in Theorem 1 is of the form

ξ (x) =
1
2

{
1 +

[
1 − exp

(
− θ
γ

(eγx − 1)
)]ac}

, x > 0.

Corollary 1.3. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.3. The
random variable X has pd f (4) if and only if there exist functions q2 and ξ defined in Theorem 1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
acθeγx exp

(
− θ
γ

(eγx − 1)
) [

1 − exp
(
− θ
γ

(eγx − 1)
)]ac−1

1 −
[
1 − exp

(
− θ
γ

(eγx − 1)
)]ac , x > 0.

Remark 1.4. The general solution of the differential equation in Corollary 1.3 is

ξ (x) =
{

1 −
[
1 − exp

(
− θ
γ

(eγx − 1)
)]ac}−1

× −
∫

acθeγx exp
(
− θ
γ

(eγx − 1)
)
×[

1 − exp
(
− θ
γ

(eγx − 1)
)]ac−1

(q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant.
Proposition 1.4. Let X : Ω→ (0,∞) be a continuous random variable and let

q1 (x) =

{
1−

[
1−e−(θx+γxβ)]αa[

1+λ−λ
(
1−e−(θx+γxβ))α]a}1−b(

1−e−(θx+γxβ))α(1−a)

[
1+λ−2λ

(
1−e−(θx+γxβ))α] and q2 (x) = q1 (x)

[
1 + λ − λ

(
1 − e−(θx+γxβ)

)α]a
for x > 0.

Then, the random variable X has pd f (6) if and only if the function ξ defined in Theorem 1 is of the form

ξ (x) =
1
2

{[
1 + λ − λ

(
1 − e−(θx+γxβ))α]a

+ 1
}
, x > 0.

Corollary 1.4. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.4. The
random variable X has pd f (6) if and only if there exist functions q2 and ξ defined in Theorem 1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=

abα
(
θ + γβxβ−1

)
e−(θx+γxβ)

(
1 − e−(θx+γxβ)

)α−1 ×[
1 + λ − 2λ

(
1 − e−(θx+γxβ)

)α] [
1 + λ − λ

(
1 − e−(θx+γxβ)

)α]a−1[
1 + λ − λ

(
1 − e−(θx+γxβ)

)α]a
− 1

, x > 0.

Remark 1.5. The general solution of the differential equation in Corollary 1.4 is

ξ (x) =
{[

1 + λ − λ
(
1 − e−(θx+γxβ))α]a

− 1
}−1
× −

∫
abα

(
θ + γβxβ−1

)
e−(θx+γxβ)

(
1 − e−(θx+γxβ)

)α−1 ×[
1 + λ − 2λ

(
1 − e−(θx+γxβ)

)α] [
1 + λ − λ

(
1 − e−(θx+γxβ)

)α]a−1
(q1 (x))−1 q2 (x) + D

 ,
where D is a constant.

Proposition 1.5. Let X : Ω → R be a continuous random variable and let q1 (x) ≡ 1 and q2 (x) = e
θ
γ

{
1−

(
G(x;η)

)−γ}
for

x ∈ R. Then, the random variable X has pd f (12) if and only if the function ξ defined in Theorem 1 is of the form

ξ (x) =
1
2

e
θ
γ

{
1−

(
G(x;η)

)−γ}
, x ∈ R.
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Corollary 1.5. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.5. The random
variable X has pd f (12) if and only if there exist functions q2 and ξ defined in Theorem 1 satisfying the following
differential equation

ξ′ (x)
ξ (x) − q2 (x)

= θg (x; η)
(
G (x; η)

)−γ−1
, x ∈ R.

Remark 1.6. The general solution of the differential equation in Corollary 1.5 is

ξ (x) = e
− θ
γ

{
1−

(
G(x;η)

)−γ} [
−

∫
θg (x; η) e

θ
γ

{
1−

(
G(x;η)

)−γ}
(q1 (x))−1 q2 (x) + D

]
,

where D is a constant.

Proposition 1.6. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

1 + λ − 2λθ
(
1−e−(αx)β

)
1+(θ−1)

(
1−e−(αx)β

)
−1

and

q2 (x) = q1 (x)
[
1 + (θ − 1)

(
1 − e−(αx)β

)]−1
for x > 0. The random variable X has pd f (16) if and only if the function ξ

defined in Theorem1 has the form

ξ (x) =
1
2

{[
1 + (θ − 1)

(
1 − e−(αx)β

)]−1
+ θ−1

}
, x > 0.

Corollary 1.6. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.6. The
random variable X has pd f (16) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
(θ − 1) βαβxβ−1e−(αx)β

[
1 + (θ − 1)

(
1 − e−(αx)β

)]−2[
1 + (θ − 1)

(
1 − e−(αx)β

)]−1 − θ−1
, x > 0.

Remark 1.7. The general solution of the differential equation in Corollary 1.6 is

ξ (x) =
{[

1 + (θ − 1)
(
1 − e−(αx)β

)]−1
− θ−1

}  −
∫ (θ−1)βαβxβ−1e−(αx)β

[
1+(θ−1)

(
1−e−(αx)β

)]−2

{[
1+(θ−1)

(
1−e−(αx)β

)]−1−θ−1
}2

(q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant.
Remark 1.8. Proposition 1.6, Corollary 1.6 and Remark 1.7 were mentioned incorrectly in Nofal et al. (2017).
Proposition 1.7. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

[
δθ + (1 − e−ηx)θ

]2
and q2 (x) =

q1 (x) (1 − e−ηx)θ for x > 0. The random variable X has pd f (18) if and only if the function ξ defined in Theorem1 has
the form

ξ (x) =
1
2

{
1 +

(
1 − e−ηx)θ} , x > 0.

Corollary 1.7. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.7. The
random variable X has pd f (18) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
η θe−ηx (1 − e−ηx)θ−1

1 − (1 − e−ηx)θ
, x > 0.

Remark 1.9. The general solution of the differential equation in Corollary 1.7 is

ξ (x) =
[
1 − (

1 − e−ηx)θ]−1
[
−

∫
η θe−ηx (

1 − e−ηx)θ−1 (q1 (x))−1 q2 (x) dx + D
]
,

where D is a constant.
Proposition 1.8. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

[
1 +

[
G (x; ζ)

]λ]2
and q2 (x) =

q1 (x)
[
G (x; ζ)

]λ for x > 0. The random variable X has pd f (20) if and only if the function ξ defined in Theorem1 has the
form

ξ (x) =
1
2

{
1 +

[
G (x; ζ)

]λ} , x > 0.
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Corollary 1.8. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.8. The
random variable X has pd f (20) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
λg (x; ζ)

[
G (x; ζ)

]λ−1

1 − [
G (x; ζ)

]λ , x > 0.

Remark 1.10. The general solution of the differential equation in Corollary 1.8 is

ξ (x) =
[
1 − [

G (x; ζ)
]λ]−1

[
−

∫
λg (x; ζ)

[
G (x; ζ)

]λ−1 (q1 (x))−1 q2 (x) dx + D
]
,

where D is a constant.

Proposition 1.9. Let X : Ω→ (0,∞) be a continuous random variable and let q1 (x) =
{

1 − λ + 2λ
[
1 − exp

{
−αx − γ

(
1
x

)β}]ϕ}−1

and q2 (x) = q1 (x)
[
1 − exp

{
−αx − γ

(
1
x

)β}]
for x > 0. The random variable X has pd f (22) if and only if the function ξ

defined in Theorem1 has the form

ξ (x) =
ϕ

ϕ + 1

1 − exp

−αx − γ
(

1
x

)β
 , x > 0.

Corollary 1.9. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.9. The
random variable X has pd f (22) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=

ϕ
{
α
x2 + βγ

(
1
x

)β+1
}

exp
{
−αx − γ

(
1
x

)β}
1 − exp

{
−αx − γ

(
1
x

)β} , x > 0.

Remark 1.11. The general solution of the differential equation in Corollary 1.9 is

ξ (x) =

1 − exp

−αx − γ
(

1
x

)β
−1

 −
∫
ϕ
{
α
x2 + βγ

(
1
x

)β+1
}
×

exp
{
−αx − γ

(
1
x

)β}
(q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant.
Proposition 1.10. Let X : Ω → R be a continuous random variable and let q1 (x) ≡ 1 and q2 (x) = exp

[
θG (x; η)

]
for

x ∈ R. The random variable X has pd f (24) if and only if the function ξ defined in Theorem1 has the form

ξ (x) =
1
2

{
eθ + exp

[
θG (x; η)

]}
, x ∈ R.

Corollary 1.10. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.10. The
random variable X has pd f (24) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x)
ξ (x) − q2 (x)

=
θg (x; η) exp

[
θG (x; η)

]
eθ − exp

[
θG (x; η)

] , x > 0.

Remark 1.12. The general solution of the differential equation in Corollary 1.10 is

ξ (x) =
{
eθ − exp

[
θG (x; η)

]}−1
[
−

∫
θg (x; η) exp

[
θG (x; η)

]
q2 (x) dx + D

]
,

where D is a constant.

Proposition 1.11. Let X : Ω→ (0,∞) be a continuous random variable and let q1 (x) =
{
a(1 + λ) − λ (a + b)

[
1 − e−(αx)β

]b
}−1

and q2 (x) = q1 (x)
[
1 − e−(αx)β

]a
for x > 0. The random variable X has pd f (26) if and only if the function ξ defined in

Theorem1 has the form

ξ (x) =
1
2

{
1 +

[
1 − e−(αx)β

]a}
, x > 0.
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Corollary 1.11. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.11. The
random variable X has pd f (26) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
aβαβxβ−1e−(αx)β

[
1 − e−(αx)β

]a−1

1 −
[
1 − e−(αx)β

]a , x > 0.

Remark 1.13. The general solution of the differential equation in Corollary 1.11 is

ξ (x) =
{
1 −

[
1 − e−(αx)β

]a}−1
 −

∫
aβαβxβ−1e−(αx)β×[

1 − e−(αx)β
]a−1

(q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant.
Proposition 1.12. Let X : Ω → R be a continuous random variable and let q1 (x) = exp

{
λ
{
1 −

[
G (x;ψ)

]a}b}
and

q2 (x) = q1 (x)
{
1 −

[
G (x;ψ)

]a}b
for x ∈ R. The random variable X has pd f (28) if and only if the function ξ defined in

Theorem1 has the form
ξ (x) =

1
2

{
1 +

{
1 −

[
G (x;ψ)

]a}b}
, x ∈ R.

Corollary 1.12. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.12. The
random variable X has pd f (28) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
abλg (x;ψ)

[
G (x;ψ)

]a−1 {
1 −

[
G (x;ψ)

]a}b−1

1 −
{
1 −

[
G (x;ψ)

]a}b , x ∈ R.

Remark 1.14. The general solution of the differential equation in Corollary 1.12 is

ξ (x) =
{
1 −

{
1 −

[
G (x;ψ)

]a}b}−1
 − ∫

abλg (x;ψ)
[
G (x;ψ)

]a−1 {
1 −

[
G (x;ψ)

]a}b−1

× (q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant.
Proposition 1.13. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

[
1 − exp

(
−θx−2

)]1−b
and

q2 (x) = q1 (x) exp
(
−θx−2

)
for x > 0. The random variable X has pd f (30) if and only if the function ξ defined in

Theorem1 has the form
ξ (x) =

1
2

{
1 + exp

(
−θx−2

)}
, x > 0.

Corollary 1.13. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.13. The
random variable X has pd f (30) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
aθx−3 exp

(
−θx−2

)
1 − exp

(−θx−2) , x > 0.

Remark 1.15. The general solution of the differential equation in Corollary 1.13 is

ξ (x) =
{
1 − exp

(
−θx−2

)}−1
[
−

∫
aθx−3 exp

(
−θx−2

)
(q1 (x))−1 q2 (x) dx + D

]
,where

Disaconstant.
Proposition 1.14. LetX:Ω → (0,∞) be a continuous random variable and let q1 (x) =

√
1 − exp

(−θx−2) and q2 (x) =
q1 (x) exp

(
− θ2 x−2

)
for x > 0. The random variable X has pd f (32) if and only if the function ξ defined in Theorem1 has

the form
ξ (x) =

1
2

{
1 + exp

(
− θ

2
x−2

)}
, x > 0.

Corollary 1.14. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.14. The
random variable X has pd f (32) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
θx−3 exp

(
− θ2 x−2

)
1 − exp

(
− θ2 x−2

) , x > 0.
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Remark 1.16. The general solution of the differential equation in Corollary 1.14 is

ξ (x) =
{
1 − exp

(
− θ

2
x−2

)}−1 [
−

∫
θx−3 exp

(
− θ

2
x−2

)
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.15. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

(
eλ − eλe−βxα

)1−a
and q2 (x) =

q1 (x)
(
eλe−βxα − 1

)
for x > 0. The random variable X has pd f (34) if and only if the function ξ defined in Theorem1 has

the form
ξ (x) =

b
b + 1

(
eλe−βxα − 1

)
, x > 0.

Corollary 1.15. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.15. The
random variable X has pd f (34) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
bαβλxα−1eλe−βxα

eλe−βxα − 1
, x > 0.

Remark 1.17. The general solution of the differential equation in Corollary 1.15 is

ξ (x) =
{
eλe−βxα − 1

}−1
[
−

∫
bαβλxα−1eλe−βxα

(q1 (x))−1 q2 (x) dx + D
]
,

where D is a constant.
Proposition 1.16. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

(
αxβeλx

)1−a
and q2 (x) =

q1 (x) eλx−αxβeλx
for x > 0. The random variable X has pd f (36) if and only if the function ξ defined in Theorem1 has the

form
ξ (x) =

1
2

e−αxβeλx
, x > 0.

Corollary 1.16. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.16. The
random variable X has pd f (36) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= αxβ−1 (β + x) eλx, x > 0.

Remark 1.18. The general solution of the differential equation in Corollary 1.16 is

ξ (x) = eαxβeλx
[
−

∫
αxβ−1 (β + x) eλx−αxβeλx

(q1 (x))−1 q2 (x) dx + D
]
,

where D is a constant.

Proposition 1.17. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =
[
1 + λ − 2λ

(
1 + αx−θ

)−β]−1

and q2 (x) = q1 (x)
(
1 + αx−θ

)−β
for x > 0. The random variable X has pd f (38) if and only if the function ξ defined in

Theorem1 has the form
ξ (x) =

1
2

{
1 +

(
1 + αx−θ

)−β}
, x > 0.

Corollary 1.17. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.17. The
random variable X has pd f (38) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
αβθx−θ−1

(
1 + αx−θ

)−β−1

1 − (
1 + αx−θ

)−β , x > 0.

Remark 1.19. The general solution of the differential equation in Corollary 1.17 is

ξ (x) =
{
1 −

(
1 + αx−θ

)−β}−1
[
−

∫
αβθx−θ−1

(
1 + αx−θ

)−β−1
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.

Proposition 1.18. Let X : Ω → R be a continuous random variable and let q1 (x) =
{

1 − e
θ
γ

(
1−

(
G(x;η)

)−γ)}1−α
and
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q2 (x) = q1 (x) e
θ
γ

(
1−

(
G(x;η)

)−γ)
for x ∈ R. The random variable X has pd f (40) if and only if the function ξ defined in

Theorem1 has the form

ξ (x) =
1
2

e
θ
γ

(
1−

(
G(x;η)

)−γ)
, x ∈ R.

Corollary 1.18. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.18. The
random variable X has pd f (40) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= θg (x; η)
(
G (x; η)

)−γ−1
, x ∈ R.

Remark 1.20. The general solution of the differential equation in Corollary 1.18 is

ξ (x) = e
− θ
γ

(
1−

(
G(x;η)

)−γ) [
−

∫
θg (x; η)

(
G (x; η)

)−γ−1
e
θ
γ

(
1−

(
G(x;η)

)−γ)
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.19. Let X : Ω→ (0,∞) be a continuous random variable and let

q1 (x) =
{[

1 −
(
1 + λ

1+λ xβ
)

e−λxβ
]α
+

(
1 + λ

1+λ xβ
)

e−λxβ
}2

and q2 (x) = q1 (x)
[
1 −

(
1 + λ

1+λ xβ
)

e−λxβ
]α

for x > 0. The random
variable X has pd f (42) if and only if the function ξ defined in Theorem1 has the form

ξ (x) =
1
2

{
1 +

[
1 −

(
1 +

λ

1 + λ
xβ

)
e−λxβ

]}
, x > 0.

Corollary 1.19. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.19. The
random variable X has pd f (42) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
αβλ2xβ−1

(
1 + xβ

)
e−λxβ

[
1 −

(
1 + λ

1+λ xβ
)

e−λxβ
]α−1

1 −
[
1 −

(
1 + λ

1+λ xβ
)

e−λxβ
]α , x > 0.

Remark 1.21. The general solution of the differential equation in Corollary 1.19 is

ξ (x) =
{

1 −
[
1 −

(
1 +

λ

1 + λ
xβ

)
e−λxβ

]α}−1

×[
−

∫
αβλ2xβ−1

(
1 + xβ

)
e−λxβ ×

[
1 −

(
1 +

λ

1 + λ
xβ

)
e−λxβ

]α−1
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.20. Let X : Ω → R be a continuous random variable and let q1 (x) = e−αe−ex

and q2 (x) = q1 (x) e−ex
for

x ∈ R. The random variable X has pd f (44) if and only if the function ξ defined in Theorem1 has the form

ξ (x) =
1
2

e−ex
, x ∈ R.

Corollary 1.20. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.20. The
random variable X has pd f (44) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= ex, x ∈ R.

Remark 1.22. The general solution of the differential equation in Corollary 1.20 is

ξ (x) = eex
[
−

∫
exe−ex

(q1 (x))−1 q2 (x) dx + D
]
,

where D is a constant.

Proposition 1.21. Let X : Ω → R be a continuous random variable and let q1 (x) =
ϕ(λx)

{
[ΦS N (x;λ)]α+

[
ΦS N (x;λ)

]α}2

ϕ(x)[ΦS N (x;λ)]α−1
[
ΦS N (x;λ)

]α−1 and

q2 (x) = q1 (x)Φ (λx) for x ∈ R. The random variable X has pd f (46) if and only if the function ξ defined in Theorem1
has the form

ξ (x) =
1
2

{
1 + [Φ (λx)]2

}
, x ∈ R.
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Corollary 1.21. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.21. The
random variable X has pd f (46) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
2λϕ (λx)Φ (λx)
1 − [Φ (λx)]2 , x ∈ R.

Remark 1.23. The general solution of the differential equation in Corollary 1.21 is

ξ (x) =
{
1 − [Φ (λx)]2

}−1
[
−

∫
2λϕ (λx)Φ (λx) (q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.22. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

(
x
α

)τ(1−k) (1−γ1[k,( x
α )τ])1−λ

(1−p{1−γ1[k,( x
α )τ]})λ−3

and q2 (x) = q1 (x) exp
(
−

(
x
α

)τ)
for x > 0. The random variable X has pd f (48) if and only if the function ξ defined in

Theorem1 has the form
ξ (x) =

1
2

exp
(
−

( x
α

)τ)
, x > 0.

Corollary 1.22. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.22. The
random variable X has pd f (48) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
τ

α

( x
α

)τ−1
, x > 0.

Remark 1.24. The general solution of the differential equation in Corollary 1.22 is

ξ (x) = exp
(( x
α

)τ) [
−

∫
τ

α

( x
α

)τ−1
exp

(
−

( x
α

)τ)
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.

Proposition 1.23. Let X : Ω→ (0,∞) be a continuous random variable and let q1 (x) =

1−


(1 + λ)

(
1 − µθ+1+θx

µθ+1 e−θx
)

−λ
(
1 − µθ+1+θx

µθ+1 e−θx
)2




1−α

1−
1−


(1 + λ)

(
1 − µθ+1+θx

µθ+1 e−θx
)

−λ
(
1 − µθ+1+θx

µθ+1 e−θx
)2



α
β−1

and q2 (x) = q1 (x)
[
1 + λ − 2λ

(
1 − µθ+1+θx

µθ+1 e−θx
)]2

for x > 0. The random variable X has pd f (50) if and only if the func-
tion ξ defined in Theorem1 has the form

ξ (x) =
1
2


[
1 + λ − 2λ

(
1 − µθ + 1 + θx

µθ + 1
e−θx

)]2

+ (1 + λ)2

 , x > 0.

Corollary 1.23. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.23. The
random variable X has pd f (50) if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
4λθ2 (µθ + 1)−1 (µ + x) e−θx

(
1 − µθ+1+θx

µθ+1 e−θx
)

{[
1 + λ − 2λ

(
1 − µθ+1+θx

µθ+1 e−θx
)]2 − (1 + λ)2

} , x > 0.

Remark 1.25. The general solution of the differential equation in Corollary 1.23 is

ξ (x) =


[
1 + λ − 2λ

(
1 − µθ + 1 + θx

µθ + 1
e−θx

)]2

− (1 + λ)2


−1

×[
−

∫
4λθ2 (µθ + 1)−1 (µ + x) e−θx

(
1 − µθ + 1 + θx

µθ + 1
e−θx

)
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.24. Let X : Ω → R be a continuous random variable and let q1 (x) =

[
1 − (Φ (x))λ

]1−φ
and q2 (x) =
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q1 (x) (Φ (x))λ for x ∈ R. The random variable X has pd f (51) , for q = 0 , if and only if the function ξ defined in
Theorem1 has the form

ξ (x) =
1
2

{
1 + (Φ (x))λ

}
, x ∈ R.

Corollary 1.24. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.24. The random
variable X has pd f (51) , for q = 0, if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the
following differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
λ exp

(
− x2

2

)
(Φ (x))λ−1

√
2π

{
1 − (Φ (x))λ

} , x ∈ R.

Remark 1.26. The general solution of the differential equation in Corollary 1.24 is

ξ (x) =
{
1 − (Φ (x))λ

}−1
[
−

∫
λ
√

2π
exp

(
− x2

2

)
(Φ (x))λ−1 (q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.

Proposition 1.25. Let X : Ω → R be a continuous random variable and let q1 (x) =
q−1{1−eqx}

{
(γ1[q−2,q−2eqx])1−λ

}
{
1−(γ1[q−2,q−2eqx])λ

}φ−1 and

q2 (x) = q1 (x) exp
{
q−1x − q−2eqx

}
for x ∈ R. The random variable X has pd f (51) , for q , 0 , if and only if the function

ξ defined in Theorem1 has the form

ξ (x) =
1
2

exp
{
q−1 − q−2eqx

}
, x ∈ R.

Corollary 1.25. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.25. The random
variable X has pd f (51) , for q , 0, if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the
following differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=

[
q−1 − q−1eqx

]
exp

{
q−1x − q−2eqx

}
1 − exp

{
q−1x − q−2eqx} , x ∈ R.

Remark 1.27. The general solution of the differential equation in Corollary 1.25 is

ξ (x) =
{
1 − exp

{
q−1x − q−2eqx

}}−1
 − ∫ [

q−1 − q−1eqx
]

exp
{
q−1x − q−2eqx

}
×

(q1 (x))−1 q2 (x) dx + D

 ,
where D is a constant.

Proposition 1.26. Let X : Ω → (0, 1) be a continuous random variable and let q1 (x) =
{
1 − exp

[
−

(
x

1−x

)β]}1−λ
and

q2 (x) = q1 (x) exp
[
−

(
x

1−x

)β]
for x ∈ (0, 1) . The random variable X has pd f (53) , if and only if the function ξ defined in

Theorem1 has the form

ξ (x) =
1
2

exp
[
−

( x
1 − x

)β]
, x ∈ (0, 1) .

Corollary 1.26. Let X : Ω → (0, 1) be a continuous random variable and let q1 (x) be as in Proposition 1.26. The
random variable X has pd f (53) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= βxβ−1 (1 − x)−(β+1) , x ∈ (0, 1) .

Remark 1.28. The general solution of the differential equation in Corollary 1.26 is

ξ (x) =
[( x

1 − x

)β] [
−

∫
βxβ−1

(1 − x)β+1 exp
[
−

( x
1 − x

)β]
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.27. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) = (1 + βx)−1 and q2 (x) =

q1 (x) e−αx for x > 0. The random variable X has pd f (57) , if and only if the function ξ defined in Theorem1 has the form

ξ (x) =
1
2

e−αx, x > 0.
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Corollary 1.27. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.27. The
random variable X has pd f (57) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= α, x > 0.

Remark 1.29. The general solution of the differential equation in Corollary 1.27 is

ξ (x) = eαx
[
−

∫
αe−αx (q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.

Proposition 1.28. Let X : Ω→ (0,∞) be a continuous random variable and let q1 (x) =
{
1 − e−λαx − (1−e−λα(β+1)x)

(β+1)

}−1
and

q2 (x) = q1 (x) e−λx for x > 0. The random variable X has pd f (59) , if and only if the function ξ defined in Theorem1
has the form

ξ (x) =
1
2

e−λx , x > 0.

Corollary 1.28. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.28. The
random variable X has pd f (59) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= λ, x > 0.

Remark 1.30. The general solution of the differential equation in Corollary 1.27 is

ξ (x) = eλx
[
−

∫
λe−λx (q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.29. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) = (1 + βx)−1 and q2 (x) =
q1 (x) e−αx for x > 0. The random variable X has pd f (63) , if and only if the function ξ defined in Theorem1 has the
form

ξ (x) =
1
2

e−αx , x > 0.

Corollary 1.29. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.29. The
random variable X has pd f (63) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= α, x > 0.

Remark 1.31. The general solution of the differential equation in Corollary 1.29 is

ξ (x) = eαx
[
−

∫
αe−αx (q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.30. Let X : Ω→ (0,∞) be a continuous random variable and let

q1 (x) =
[
1 − λ + 2λe−(

x
α )β

]−1 {
1 + (λ − 1) e−(

x
α )β − λe−2( x

α )β
}1−ν

and q2 (x) = q1 (x) e−(
x
α )β for x > 0. The random variable

X has pd f (65) , if and only if the function ξ defined in Theorem1 has the form

ξ (x) =
1
2

e−(
x
α )β , x > 0.

Corollary 1.30. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.30. The
random variable X has pd f (65) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
β

α

( x
α

)β−1
, x > 0.

Remark 1.32. The general solution of the differential equation in Corollary 1.30 is

ξ (x) = e( x
α )β

[
−

∫
β

α

( x
α

)β−1
e−(

x
α )β (q1 (x))−1 q2 (x) dx + D

]
,
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where D is a constant.
Proposition 1.31. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

(
1 − e1−(1+αx)β

)1−λ
and

q2 (x) = q1 (x) e1−(1+αx)β for x > 0. The random variable X has pd f (69) , if and only if the function ξ defined in
Theorem1 has the form

ξ (x) =
1
2

e1−(1+αx)β , x > 0.

Corollary 1.31. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.31. The
random variable X has pd f (69) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= αβ (1 + αx)β−1 , x > 0.

Remark 1.33. The general solution of the differential equation in Corollary 1.31 is

ξ (x) = e(1+αx)β−1
[
−

∫
αβ (1 + αx)β−1 e1−(1+αx)β (q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant.
Proposition 1.32. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

(
1 − e−xc

+ αe−xc
)θ+1

and

q2 (x) = q1 (x) e1−(1+αx)β for x > 0. The random variable X has pd f (71) , if and only if the function ξ defined in
Theorem1 has the form

ξ (x) =
1
2

e−xc
, x > 0.

Corollary 1.32. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.32. The
random variable X has pd f (71) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= cxc−1, x > 0.

Remark 1.34. The general solution of the differential equation in Corollary 1.32 is

ξ (x) = exc
[
−

∫
cxc−1e−xc

(q1 (x))−1 q2 (x) dx + D
]
,

where D is a constant.
Proposition 1.33. Let X : Ω→ R be a continuous random variable and let

q1 (x) ≡ 1 and q2 (x) = exp
{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
}

for x ∈ R. The random variable X has pd f (75) ,
if and only if the function ξ defined in Theorem1 has the form

ξ (x) =
1
2

{
1 − exp

{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
}}
, x ∈ R.

Corollary 1.33. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition 1.33. The random
variable X has pd f (75) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=

g(x;η)
G(x;η)

{
cd

[
− ln

(
G (x; η)

)]d−1
+ ab

[
− ln

(
G (x; η)

)]b−1
}
×

exp
{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
}

1 − exp
{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
} , x ∈ R.

Remark 1.35. The general solution of the differential equation in Corollary 1.33 is

ξ (x) =
{
1 − exp

{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
}}−1

× −
∫ g(x;η)

G(x;η)

{
cd

[
− ln

(
G (x; η)

)]d−1
+ ab

[
− ln

(
G (x; η)

)]b−1
}
×

exp
{
−c

[
− ln

(
G (x; η)

)]d − a
[
− ln

(
G (x; η)

)]b
}

q2 (x) dx + D

 ,
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where D is a constant.
Proposition 1.34. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

(
1 − e−λα1 x

)−1 (
1 − e−λα2 x

)−1

and q2 (x) = q1 (x) e−λx for x > 0. The random variable X has pd f (77) , if and only if the function ξ defined in Theorem1
has the form

ξ (x) =
1
2

e−λx, x > 0.

Corollary 1.34. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.34. The
random variable X has pd f (77) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= λ, x > 0.

Remark 1.36. The general solution of the differential equation in Corollary 1.34 is

ξ (x) = eλx
[
−

∫
λe−λx (q1 (x))−1 q2 (x) dx + D,

]
where D is a constant.
Proposition 1.35. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

(
1 − e−λ(αx)β

)−υ
and q2 (x) =

q1 (x) e−λxβ for x > 0. The random variable X has pd f (78) , if and only if the function ξ defined in Theorem1 has the
form

ξ (x) =
1
2

e−λxβ , x > 0.

Corollary 1.35. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.35. The
random variable X has pd f (78) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

= λβxβ−1, x > 0.

Remark 1.37. The general solution of the differential equation in Corollary 1.35 is

ξ (x) = eλxβ
[
−

∫
λβe−λxβ (q1 (x))−1 q2 (x) dx + D,

]
where D is a constant.
Proposition 1.36. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) = e(x/θ)λ and q2 (x) =
q1 (x)

(
1 − e−(x/θ)λ

)2
for x > 0. The random variable X has pd f (80) , if and only if the function ξ defined in Theo-

rem1 has the form
ξ (x) =

1
2

{
1 +

(
1 − e−(x/θ)λ

)2}
, x > 0.

Corollary 1.36. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1.36. The
random variable X has pd f (80) , if and only if there exist functions q2 and ξ defined in Theorem1 satisfying the following
differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=

2λ
θ

(
x
θ

)λ−1
e−(x/θ)λ

(
1 − e−(x/θ)λ

)
1 −

(
1 − e−(x/θ)λ

)2 , x > 0.

Remark 1.38. The general solution of the differential equation in Corollary 1.36 is

ξ (x) =
{
1 −

(
1 − e−(x/θ)λ

)2}−1
×[

−
∫

2λ
θ

( x
θ

)λ−1
e−(x/θ)λ

(
1 − e−(x/θ)λ

)
(q1 (x))−1 q2 (x) dx + D,

]
where D is a constant.

2.2 Characterization in Terms of Hazard Function

The hazard function, hF , of a twice differentiable distribution function, F, satisfies the following first order differential
equation

f ′(x)
f (x)

=
h′F(x)
hF(x)

− hF(x).
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It should be mentioned that for many univariate continuous distributions, the above equation is the only differential
equation available in terms of the hazard function. In this subsection we present non-trivial characterizations of EGLFR
(for α = 1) , McG (for a = b = c = 1) , Go-G , EGGP (for b = 1) , BIR (for a = 1) , BWP (for a = 1) , EGG (for α = 1),
NEPL (for α = 1), EGGG, ETQL (for λ = 0, β = 1), ERK (for λ = 1), AEE, NEE , ETW (for ν = 1), ENHE (for λ = 1),
GW (for θ = 1), GAW-G (for b = 0 or d = 0), GB distributions in terms of the hazard function, which are not of the above
trivial form.
Proposition 2.1. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (2) (for β < 0
and α = 1) if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − b
a + bx

hF (x) =
β(a + bx)2[

1 − β
(
ax + b

2 x2
)]2 , x > 0.

Proof. If X has pd f (2) for β < 0 and α = 1, then clearly the above differential equation holds. If the differential
equation holds, then

d
dx

{
(a + bx)−1 hF (x)

}
=

β(a + bx)[
1 − β

(
ax + b

2 x2
)]2

=
d
dx


[
1 − β

(
ax +

b
2

x2
)]−1

 ,
from which we arrive at the hazard function corresponding to the pd f (2) .
Remark 2.1. Similar Propositions can be stated for the cases II and III.
A Proposition similar to that of Proposition 2.1 will be stated (without proof) for each one of the distributions listed in
subsection 2.1.
Proposition 2.2. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (4) (for
a = b = c = 1) if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − γhF (x) = 0, x > 0.

Proposition 2.3. Let X : Ω → R be a continuous random variable. The random variable X has pd f (12) if and only if
its hazard function hF (x) satisfies the following differential equation

h′F (x) − g′ (x; η)
g (x; η)

hF (x) = θ (γ + 1) (g (x; η))2
(
G (x; η)

)−γ−2
, x ∈ R.

Proposition 2.4. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (20) if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − g′ (x; ζ)
g (x; ζ)

hF (x) = 2λ
[
g (x; ζ)

]2 × λ − 1

1 − [
G (x; ζ)

]2λ +
2λ

[
G (x; ζ)

]3λ−1[
1 − [

G (x; ζ)
]2λ

]2

 , x > 0.

Proposition 2.5. Let X : Ω → R be a continuous random variable. The random variable X has pd f (28) ,for b = 1, if
and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − g′ (x;ψ)
g (x;ψ)

hF (x) = aλ
[
g (x;ψ)

]2
[
G (x;ψ)

]a−1 ×{[
(a − 1) + aλ

[
G (x;ψ)

]a−1
]

exp
{
−λ

[
G (x;ψ)

]a} − (a − 1)
}

(
1 − exp

{
−λ

[
G (x;ψ)

]a})2 ,

x ∈ R.
Proposition 2.6. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (30) ,for a = 1,
if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − 2θx−3hF (x) =
2θb exp

(
−θx−2

) [(
2θx−2 + 3

)
exp

(
−θx−2

)
− 3

]
x4 [

1 − exp
(−θx−2)]2 , x > 0.
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Proposition 2.7. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (34) ,for a = 1,
if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (α − 1) x−1hF (x) = bαβλxα−1 d
dx

e−βxαeλe−βxα

eλe−βxα − 1

 , x > 0,

or

h′F (x) + αβxβ−1hF (x) = bαβλe−βxα d
dx

 xα−1eλe−βxα

eλe−βxα − 1

 , x > 0.

Proposition 2.8. Let X : Ω → R be a continuous random variable. The random variable X has pd f (40) ,for α = 1, if
and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − g′ (x; η)
g (x; η)

hF (x) = αθ (γ + 1) (g (x; η))2
(
G (x; η)

)−γ−2
, x ∈ R.

Proposition 2.9. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (42) ,for α = 1,
if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (β − 1) x−1hF (x) =
β2λ2x2(β−1)(

1 + λ + λxβ
)2 , x > 0.

Proposition 2.10. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (48), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) +
τ

α

( x
α

)τ−1
hF (x) =

λτ exp
(
−

(
x
α

)τ)
αΓ (k)

d
dx


(

x
α

)τk−1 (
1 − γ1

[
k,

(
x
α

)τ])−1(
1 − p{1 − γ1

[
k,

(
x
α

)τ]})
 , x > 0.

Remark 2.2. For k = 1, the above differential equation has the following simpler form

h′F (x) − τ − 1
x

hF (x) = −
λτ2 p

(
x
α

)2(τ−1)
exp

(
−

(
x
α

)τ)
α2

(
1 − p exp

(
−

(
x
α

)τ))2 , x > 0.

Proposition 2.11. Let X : Ω → (0,∞) be a continuous random variable. The random variable X, has pd f (50), for
λ = 0, β = 1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (µ + x)−1 hF (x) = − αθ3 (µ + x)
(µθ + 1 + θx)2 , x > 0.

Proposition 2.12. Let X : Ω → (0, 1) be a continuous random variable. The random variable X, has pd f (53), for
λ = 1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (β − 1) x−1hF (x) = β (β + 1) xβ−1 (1 − x)−(β+2) , x ∈ (0, 1) .

Proposition 2.13. Let X : Ω → (0,∞) be a continuous random variable. The random variable X, has pd f (57) if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (1 + βx)−1 hF (x) = −α3β (1 + βx) (α + β + αβx)−2 , x > 0.

Proposition 2.14. Let X : Ω → (0,∞) be a continuous random variable. The random variable X, has pd f (63), if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − 1
1 + λx

hF (x) = − α3β (1 + βx)
(α + β + αβx)2 , x > 0.

Proposition 2.15. Let X : Ω → (0,∞) be a continuous random variable. The random variable X, has pd f (65), for
ν = 1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (β − 1) x−1hF (x) =
νβ

α

(
x
β

)β−1 d
dx

1 − λ + 2λe−(
x
α )β

λ − 1 − λe−(
x
α )β

 , x > 0.
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Proposition 2.16. Let X : Ω → (0,∞) be a continuous random variable. The random variable X, has pd f (69), for
λ = 1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − α (β − 1)
1 + αx

hF (x) = 0, x > 0.

Proposition 2.17. Let X : Ω → (0,∞) be a continuous random variable. The random variable X, has pd f (71), for
θ = 1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (c − 1) x−1hF (x) = (1 − α) c2x2(c−1)e−xc
, x > 0.

Proposition 2.18. Let X : Ω→ R be a continuous random variable. The random variable X, has pd f (73), for d = 0, if
and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − g′ (x; η)
g (x; η)

hF (x)

=
ab (g (x; η))2

[
− ln

(
G (x; η)

)]b−2 {
b − 1 − ln

(
G (x; η)

)}
(
G (x; η)

)2 , x ∈ R.

Proposition 2.19. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (80) if and
only if its hazard function hF (x) satisfies the following differential equation

h′F (x) − (λ − 1) x−1hF (x) =
6λ2

θ2

( x
θ

)2(λ−1)
e−(x/θ)λ , x > 0.

2.3 Characterization in Terms of the Reverse (or reversed) Hazard Function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined as

rF (x) =
f (x)
F (x)

, x ∈ support o f F.

In this subsection we present characterizations of EGLFR, McG (for b = 1) , Kw-TEMW (for b = 1 , λ = 0) , ALLGE ,
Po-G , EGGP (for a = 1) , BIR (for b = 1) , BWP (for b = 1), GMW (for a = 1), TW (for λ = 0), PWR (for µ = 0, σ = 1),
OLLSN (for µ = 0, σ = 1), EGGG (for λ = 1), ETQL (for λ = 0), ERK, ETW, ENHD, GWW (for α = 1) distributions
(without proofs) in terms of the reverse hazard function.
Proposition 3.1. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (2) (for β < 0)
if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − b
a + bx

rF (x) = α (a + bx)
d
dx


(
1 − β

(
ax + b

2 x2
)) 1

β−1

1 −
(
1 − β

(
ax + b

2 x2
))1/β

 , x > 0.

Proposition 3.2. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (4) (for b = 1)
if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − γrF (x) = −
acθ2eγx exp

(
θ
γ

(eγx − 1)
)

(
exp

(
θ
γ

(eγx − 1)
)
− 1

)2 , x > 0.

Proposition 3.3. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (6) (for b = 1,
λ = 0) if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) +
(
θ + γβxβ−1

)
rF (x) = αae−(θx+γxβ) d

dx

{
θ + γβxβ−1

1 − e−(θx+γxβ)

}
, x > 0.

Proposition 3.4. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (18) if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + η rF (x) = η θδθe−ηx d
dx

 1

(1 − e−ηx)
[
δθ + (1 − e−ηx)θ

]
 , x > 0.
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Proposition 3.5. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (20) if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − g′ (x; ζ)
g (x; ζ)

rF (x) = −λ [
g (x; ζ)

]2

1 − λ [
G (x; ζ)

]λ−2
+

[
G (x; ζ)

]λ[
1 +

[
G (x; ζ)

]λ]2

 , x > 0.

Proposition 3.6. Let X : Ω → R be a continuous random variable. The random variable X has pd f (24) if and only if
its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − g′ (x; η)
g (x; η)

rF (x) = −θ
2 [

g (x; η)
]2 exp

[
θG (x; η)

]{
exp

[
θG (x; η)

] − 1
} , x ∈ R.

Proposition 3.7. Let X : Ω → R be a continuous random variable. The random variable X has pd f (28) if and only if
its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − g′ (x;ψ)
g (x;ψ)

rF (x) = b (b − 1) λ
[
g (x;ψ)

]2 [
G (x;ψ)

]b−1 ×{[
(b − 1) − bλ

[
G (x;ψ)

]b−1
]

exp
{
λ
[
G (x;ψ)

]b
}
− (b − 1)

}
(
exp

{
λ
[
G (x;ψ)

]b
}
− 1

)2 ,

x ∈ R. Proposition 3.8. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (30) ,for
b = 1, if and only if its reverse hazard function rF (x) satisfies the following differential equation

h′F (x) + 3x−1hF (x) = 0, x > 0.

Proposition 3.9. Let X : Ω→ (0,∞) be a continuous random variable. The random variable X has pd f (34) ,for b = 1,
if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + αβxβ−1rF (x) = aαβλe−βxα d
dx

 xα−1eλe−βxα

eλ − eλe−βxα

 , x > 0.

Proposition 3.10. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (36) ,for
a = 1, if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − λrF (x) = βxβ−2 (β − 1 + λx) eλx, x > 0.

Proposition 3.11. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (38) ,for
λ = 0, if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + (θ + 1) x−1rF (x) = α2βθ2x−2(θ+1)(1 + αx−θ)−2, x > 0.

Proposition 3.12. Let X : Ω→ R be a continuous random variable. The random variable X has pd f (44) if and only if
its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − rF (x) = αex d
dx

 eαe−
x−ex

eα − eαe−x

 , x ∈ R.

Proposition 3.13. Let X : Ω→ R be a continuous random variable. The random variable X has pd f (46) if and only if
its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − λϕ (x)
Φ (λx)

rF (x) = 2αΦ (λx)
d
dx

 ϕ (x)
[
ΦS N (x; λ)

]α−1

ΦS N (x; λ)
{
[ΦS N (x; λ)]α +

[
ΦS N (x; λ)

]α}
 , x ∈ R.

Proposition 3.14. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (48) ,for
λ = 1, if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) − τ − 1
x

rF (x) =
τ(1 − p) exp

(
−

(
x
α

)τ)
αΓ (k)

d
dx


(

x
α

)τk−1 (
γ1

[
k,

(
x
α

)τ])−1

1 − p{1 − γ1

[
k,

(
x
α

)τ]}
 , x > 0.
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Proposition 3.15. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (50) ,for
λ = 0, if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + θrF (x) =
αβθ2

µθ + 1
e−θx d

dx

 (µ + x)
(
µθ+1+θx
µθ+1 e−θx

)α−1

1 −
(
µθ+1+θx
µθ+1

)α
e−αθx

 , x > 0.

Proposition 3.16. Let X : Ω → (0, 1) be a continuous random variable. The random variable X has pd f (53) , if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) +
βxβ−1

(1 − x)β+1 rF (x) = λβ exp
[
−

( x
1 − x

)β] d
dx


xβ−1 (1 − x)−(β+1)

1 − exp
[
−

(
x

1−x

)β]
 , x > 0.

Proposition 3.17. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (65) , if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) +
β

α

(
x
β

)β−1

rF (x) =
νβ

α

d
dx


(

x
α

)β−1
[
1 − λ + 2λe−(

x
α )β

]
1 + (λ − 1)e−(

x
α )β − λe−2( x

α )β

 , x > 0.

Proposition 3.18. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (69) , if and
only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + αβ (1 + αx)β−1 rF (x) = λαβe1−(1+αx)β d
dx

{
(1 + αx)β−1

1 − e1−(1+αx)β

}
, x > 0.

Proposition 3.19. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pd f (78) , for
α = 1 , if and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + λβxβ−1rF (x)

=
λβ (υ + 1) xβ−2e−λxβ

{
(β − 1)

(
1 − e−λxβ

)
− λβxβe−λxβ

}
(
1 − e−λxβ

)2 , x > 0.

2.4. Characterization Based on the Conditional Expectation of Certain Function of the Random Variable

In this subsection we employ a single function ψ (or ψ1) of X and characterize the distribution of X in terms of the
truncated moment of ψ (X) (or ψ1 (X)). The following propositions have already appeared in Hamedani’s previous work
(2013), so we will just state them here which can be used to characterize some of the distributions listed in Section 1.

Proposition H1. Let X : Ω → (e, f ) be a continuous random variable with cd f F . Let ψ (x) be a differentiable
function on (e, f ) with limx→e+ ψ (x) = 1. Then for δ , 1 ,

E
[
ψ (X) | X ≥ x

]
= δψ (x) , x ∈ (e, f ) ,

if and only if
ψ (x) = (1 − F (x))

1
δ−1 , x ∈ (e, f )

Proposition H2. Let X : Ω → (e, f ) be a continuous random variable with cd f F . Let ψ1 (x) be a differentiable
function on (e, f ) with limx→ f − ψ1 (x) = 1. Then for δ1 , 1 ,

E
[
ψ1 (X) | X ≤ x

]
= δ1ψ1 (x) , x ∈ (e, f )

implies
ψ1 (x) = (F (x))

1
δ1
−1
. x ∈ (e, f )

Remarks 4.1. (A) For (e, f ) = (0,∞), α = 1, ψ (x) =
(
1 − β

(
ax + b

2 x2
))

and δ = 1
1+β , Proposition H1 provides

a characterization of EGLFR for β < 0 . (B) For (e, f ) = (0,∞) , ψ1 (x) = 1 −
(
1 − β

(
ax + b

2 x2
))1/β

and δ1 =
α
α+1

66



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 1; 2018

, Proposition H2 provides a characterization of EGLFR for β < 0. Statements similar to (A) and (B) can be made for
Cases II and III as well. (C) For (e, f ) = (0,∞), b = c = 1, ψ (x) = exp

(
− θ
γ

(eγx − 1)
)

and δ = 1
2 , Proposition

H1 provides a characterization of McG distribution. (D) For (e, f ) = (0,∞) , λ = 0, ψ (x) = 1 −
[
1 − e−(θx+γxβ)

]αa

and δ = b
b+1 , Proposition H1 provides a characterization of Kw-TEMW distribution. (E) For (e, f ) = (0,∞), b = 1

, ψ1 (x) = 1 − exp
(
− θ
γ

(eγx − 1)
)

and δ1 =
c

c+1 , Proposition H2 provides a characterization of McG distribution. (F)

For (e, f ) = (0,∞) , b = 1, λ = 0, ψ1 (x) = 1 − e−(θx+γxβ) and δ = αa
1+αa , Proposition H2 provides a characterization of

Kw-TEMW distribution. (G) For (e, f ) = R, b = 1, λ = 0, ψ (x) = e1−
(
G(x;η)

)−γ
and δ = θ

γ+θ
, Proposition H1 provides a

characterization of Go-G distribution. (H) For (e, f ) = (0,∞) , a = 1, ψ (x) = 1 − exp
(
−θx−2

)
and δ = b

b+1 , Proposition

H1 provides a characterization of BIR distribution. (I) For (e, f ) = (0,∞) , b = 1, ψ1 (x) = exp
(
−x−2

)
and δ1 =

aθ
aθ+1

, Proposition H2 provides a characterization of BIR distribution. (J) For (e, f ) = (0,∞) , a = 1, ψ (x) = 1−eλe−βxα

1−eλ and
δ = b

b+1 , Proposition H1 provides a characterization of BWP distribution. (K) For (e, f ) = (0,∞) , b = 1, ψ1 (x) =
eλ−eλe−βxα

eλ−1 and δ1 =
a

a+1 , Proposition H2 provides a characterization of BWP distribution. (L) For (e, f ) = (0,∞) , a = 1,
ψ (x) = e−xβeλx

and δ = α
α+1 , Proposition H1 provides a characterization of GMW distribution. (M) For (e, f ) = (0,∞) ,

λ = 0, ψ1 (x) =
(
1 + αx−θ

)−1
and δ1 =

β
β+1 , Proposition H2 provides a characterization of TD distribution. (N) For

(e, f ) = R, ψ1 (x) = 1 − e
θ
γ

(
1−

(
G(x;η)

)−γ)
and δ1 =

α
α+1 , Proposition H2 provides a characterization of EGG distribution.

(O) For (e, f ) = (0,∞) , α = 1, ψ (x) =
(
1 + λ

1+λ xβ
)1/λ

e−xβ and δ = λ
λ+1 , Proposition H1 provides a characterization

of NEPL distribution. (P) For (e, f ) = (0,∞) , ψ (x) = 1 − γ1[k,( x
α )τ]

1−p{1−γ1[k,( x
α )τ]} and δ = λ

λ+1 , Proposition H1 provides

a characterization of EGGG distribution. (Q) For (e, f ) = (0,∞) , λ = 0, β = 1, ψ (x) =
(
µθ+1+θx
µθ+1 e−θx

)
and δ = α

α+1

, Proposition H1 provides a characterization of ETQL distribution. (R) For (e, f ) = (0,∞) , ψ (x) =
(
α+β+αβx
α+β

)1/α
e−x

and δ = α
α+1 , Proposition H1 provides a characterization of AEE distribution. (S ) For (e, f ) = (0, 1) , ψ (x) =

exp
[
−

(
x

1−x

)β]
and δ = 1

2 , Proposition H1 provides a characterization of ERK distribution. (T ) For (e, f ) = (0,∞) ,

ψ (x) =
(
α+β+αβx
α+β

)1/α
e−x and δ = α

α+1 , Proposition H1 provides a characterization of NEE distribution. (U) For

(e, f ) = (0,∞) , ψ1 (x) = 1 − e1−(1+αx)β and δ = λ
λ+1 , Proposition H2 provides a characterization of ENHE distribution.

(V) For (e, f ) = R, ψ (x) =
(
exp

{
−

[
− ln

(
G (x; η)

)]b
})a

and δ = a
a+1 , Proposition H1 provides a characterization of

GAW-G distribution. (W) For (e, f ) = (0,∞) , α = 1, ψ1 (x) = 1− e−λxβ and δ1 =
υ+1
υ+2 , Proposition H2 provides a

characterization of Gww distribution. (X) For (e, f ) = (0,∞) , ψ (x) = e−(x/θ)λ
(
3 − 2e−(x/θ)λ

)1/2
and δ = 2

3 , Proposition
H1 provides a characterization of GB distribution.

3. Infinite Divisibility

Bondesson (1979) showed that all the members of the following families

f (x) = C xβ−1 (1 + c xα)−γ , x > 0 , 0 < α ≤ 1 , (B1)

f (x) = C xβ−1 exp {−c xα} , x > 0 , 0 < |α| ≤ 1 , (B2)

f (x) = C xβ−1 exp
{
−

(
c1x + c2x−1

)}
, x > 0,−∞ < β < ∞, (B3)

f (x) = C x−1 exp
{
− (

log x − µ)2 /
(
2σ2

)}
, x > 0, (B4)

where the natural restrictions are put on the unspecified parameters, are infinitely divisible. The last one is the lognormal
density.
Remark 3.1. Bondesson (1992, Theorem 6.2.4) pointed out that multiplying densities (B1) − (B4) by C1 (δ + x)−ν for
δ > 0 and ν > 0 , will result in densities which are also infinitely divisible.
Remark 3.2. The distributions, listed in Section 1, whose densities (or densities of their transformations) can be ex-
pressed, in view of Remark 3.1, in the form (B2) are: EGLFR for α = 1, β = b = 0 ; Kw-TEMW for θ = λ = 0, 0 < β < 1
; the pd f of Y = e−sX , where X has TEE distribution with a = 2, α = 1 ; BWP for a = 1, λ = 0 and 0 < β ≤ 1 ; GMW
for a = 1, λ = 0 ; AEE α ≤ 1 ; NEE for α ≤ 1. The pd f of Y = esX , where X has LE distribution can be written in the
form of (B1). The pd f of the distribution BIR (for b = 1) can be written in the form of (B4).
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4. Concluding Remarks

In designing a stochastic model for a particular modeling problem, an investigator will be vitally interested to know if
their model fits the requirements of a specific underlying probability distribution. To this end, the investigator will vitally
depend on the characterizations of the selected distribution. A good number of recently introduced distributions which
have important applications in many different fields have been mentioned in this work. Certain characterizations of these
distributions have been established. We hope that these results will be of interest to the investigators who may believe
their models have distributions mentioned here and are looking for justifying the validity of their models. It is known
that determining a distribution is infinitely divisible or not via the existing representations is not easy. We have used
Bondesson’s classifications to show that some of the distributions taken up in this work are infinitely divisible. This could
be helpful to some researchers. Finally, we like to mention that the distributions mentioned in this work may be a source
of preventing duplications of so called newly proposed distributions.
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Cordeiro, G.M., Aristizábal, W.D., Suárez, D.M., & Lozano, S. (2015). The gamma modified Weibull distribution.
Chilean J.of Statistics, 6(1), 37-48.

da Silva Braga, A., Cordeiro, G.M., & Ortega, E.M.M., A new skew-bimodal distribution with applications. (Commun.
Statist. Theo-Meth. forthcoming).

Elbatal, I., & Aryal, G. (2015). Transmuted Dagum distribution with applications. Chilean J.of Statistics, 6(2), 31-45.

68



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 1; 2018

Elbatal, I., El Gebaly, Y.M., & Amin, E.A. (2017).The beta generalized inverse Weibull geometric distribution and its
applications, Pak.j.stat.oper.res. XIII(1), 75-90.

Elbatal, I., Mansour, M.M., & Ahsanullah, M. (2016). The additive Weibull-geometric distribution: theory and applica-
tions. JSTA, 15, 125-141.

Glänzel, W. A characterization theorem based on truncated moments and its application to some distribution families,
Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986). Vol. B, Reidel, Dordrecht, 1987, 75–
84.

Glänzel, W. (1990). Some consequences of a characterization theorem based on truncated moments. Statistics: A Journal
of Theoretical and Applied Statistics, 21(4),613–618.

Glänzel, W., & Hamedani, G.G. (2001). Characterizations of univariate continuous distributions. Studia Sci. Math.
Hungar., 37,83-118.
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for some d < b (a = −∞, b = ∞
might as well be allowed. Let X : Ω → H be a continuous random variable with the distribution function F and let q1

and q2 be two real functions defined on H such that

E
[
q2 (X) | X ≥ x

]
= E

[
q1 (X) | X ≥ x

]
ξ (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that the equation ξq1 = q2 has no real solution in the interior
of H. Then F is uniquely determined by the functions q1, q2 and ξ , particularly

F (x) =
∫ x

a
C

∣∣∣∣∣ ξ′ (u)
ξ (u) q1 (u) − q2 (u)

∣∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = ξ′ q1
ξq1−q2

and C is the normalization constant, such that∫
H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the sense of
weak convergence (see, Glänzel [2]), in particular, let us assume that there is a sequence {Xn} of random variables with
distribution functions {Fn} such that the functions q1n , q2n and ξn (n ∈ N) satisfy the conditions of Theorem 1 and
let q1n → q1 , q2n → q2 for some continuously differentiable real functions q1 and q2 . Let, finally, X be a random
variable with distribution F . Under the condition that q1n (X) and q2n (X) are uniformly integrable and the family {Fn}
is relatively compact, the sequence Xn converges to X in distribution if and only if ξn converges to ξ , where

ξ (x) =
E

[
q2 (X) | X ≥ x

]
E

[
q1 (X) | X ≥ x

] .
This stability theorem makes sure that the convergence of distribution functions is reflected by corresponding convergence
of the functions q1 , q2 and ξ , respectively. It guarantees, for instance, the ’convergence’ of characterization of the
Wald distribution to that of the Lévy-Smirnov distribution if α→ ∞.

A further consequence of the stability property of Theorem 1 is the application of this theorem to special tasks in statistical
practice such as the estimation of the parameters of discrete distributions. For such purpose, the functions q1, q2
and, specially, ξ should be as simple as possible. Since the function triplet is not uniquely determined it is often
possible to choose ξ as a linear function. Therefore, it is worth analyzing some special cases which helps to find
new characterizations reflecting the relationship between individual continuous univariate distributions and appropriate in
other areas of statistics.
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