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Characterizations Based on Cumulative
Residual Entropy of First-Order Statistics
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Department of Statistics, School of Mathematical Sciences,
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Two different distributions may have equal cumulative residual entropy (CRE), thus
a distribution cannot be determined by its CRE. In this article, we explore properties
of the CRE and study conditions under which the CRE of the first-order statistics can
uniquely determines the parent distribution. Weibull family is characterized through
ratio of the CRE of the first-order statistics to its expectation. We have also some
bounds for the CRE of residual lifetime of a series system.

Keywords Cumulative residual entropy; Order statistics; Residual lifetime
distribution; Shannon information; Series system; Weibull family.

Mathematics Subject Classification Primary 62G30; Secondary 62E10, 62B10,
94A17.

1. Introduction

In information theory, entropy is a measure of the uncertainty associated with
a random variable. This concept was introduced by Shannon (1948). Shannon
entropy represents an absolute limit on the best possible lossless compression of any
communication. Shannon entropy of a discrete random variable X with possible
values �x1� x2� � � � � xn� and probability mass function p is defined as

H�X� = −
n∑

i=1

p�xi� log p�xi��

The formula

H�X� = −
∫ +�

−�
f�x� log f�x�dx�

where f denotes the probability density function (pdf) of the continuous random
variable X, is an extension of the Shannon entropy and is usually referred to as the
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3646 Baratpour

differential entropy. Shannon entropy has been used as a major tool in information
theory on in almost every branch of science and engineering. Numerous entropy
and information indices, among them Renyi entropy, were developed and used in
various disciplines and contexts.

Rao et al. (2004) introduced a new measure of information that extends the
Shannon entropy to continuous random variables, and called it cumulative residual
entropy (CRE). He showed that it is more general than the Shannon entropy and
possesses more general mathematical properties than the Shannon entropy. It can
easily computed from sample data and its estimation asymptotically converges
to the true value. CRE has applications in reliability engineering and computer
vision, for more details see Rao (2005). This measure is based on the cumulative
distribution function (cdf) F and is defined as follows:

CRE�X� = −
∫ +�

0
p��X� > x� log p��X� > x�dx�

In reliability theory, CRE is based on survival function �F�x�, and is defined as

CRE�X� = −
∫ +�

0
F�x� log F�x�dx�

In this article, we suppose X is a positive continuous random variable. If we use
change of variable u = F�x�, then

CRE�X� = −
∫ 1

0

u log u
f�F−1�1− u��

du� (1)

where F−1 is the inverse function of F .
Suppose that X1� � � � � Xn are independent and identically distributed (iid)

observations from cdf F�x� and pdf f�x�. The order statistics of the sample is defined
by the arrangement of X1� � � � � Xn from the smallest to the largest, denoted as
X1�n ≤ X2�n ≤ · · · ≤ Xn�n. These statistics have been used in a wide range of problems,
including robust statistical estimation, detection of outliers, characterization of
probability distributions and goodness-of-fit tests, entropy estimation, analysis of
censored samples, quality control and strength of materials; for more details,
see Arnold et al. (1992), David and Nagaraja (2003), and references therein. Also,
in reliability theory, order statistics are used for statistical modeling. The mth order
statistics in a sample of size n represents the life length of a �n−m+ 1�-out of-n
system.

Ebrahimi (1996) defined the concept of dynamic Shannon entropy and obtained
some properties of that. Since then several attempts have been made to extend that,
see Asadi et al. (2005a,b). Asadi and Zohrevand (2007) proposed a dynamic form
of CRE and obtained some of its properties. The CRE for the residual lifetime
distribution of a system with survival function Ft�x� = P�X − t > x �X> t� =
F�x+t�

F�t�
, is

CRE�X� t� = −
∫ �

t
F t�x� log Ft�x�dx�

It is clear that, for t = 0, CRE�X� t� = CRE�X�.
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Cumulative Residual Entropy 3647

The aim of this article is characterizing the parent distributions based on the
CRE of first-order statistics. It is shown that the equality of the CRE in first-order
statistics can determine uniquely the parent distribution. The rest of this article
is organized as follows. Section 2 contains some characterizations based on the
first-order statistics �X1�n�; also, we characterize Weibull distribution based on the
ratio of the CRE�X1�n� to the E�X1�n�. In Sec. 3, we also have some characterization
based on CRE of the residual lifetime distribution.

2. Characterization Based on First-Order Statistics

Let X1�n be the first-order statistic in a random sample of size n from a positive
and continuous random variable X with cdfF and pdff , then the cdf of X1�n is
given by

FX1�n
�x� = 1− F

n
�x��

Thus,

CRE�X1�n� = −n
∫ �

0
F

n
�x� log F�x�dx�

By change of variable u = F�x�, we have

CRE�X1�n� = −n
∫ 1

0

un log u
f�F−1�1− u��

du� (2)

First, let us look at the following examples.

Example 2.1. Suppose X has a Pareto(	� 
) distribution, with shape parameter 	 >
0 and scale parameter 
 > 0. That is, the pdf f�x� is given by f�x� = 	
	

x	+1 , x ≥ 
.
Using (1) and (2), the CRE�X� and the CRE�X1�n� are as follows:

CRE�X� = 	


�	− 1�2
� 	 > 1

= +�� 	 ≤ 1�

and

CRE�X1�n� =
n	


�n	− 1�2
� 	 >

1
n

= +�� 	 ≤ 1
n
�

Let 	 > 1 and �1 = CRE�X�− CRE�X1�n�, then � ≥ 0, that means for 	 > 1,
uncertainty of X is more than X1�n. Similarly, this property is obtained for every 	
and 
 if we replace CRE�X� and CRE�X1�n� by H�X� and H�X1�n�, respectively. We
can also show that for n > 1

	
� �1 is an increasing function of n.

Example 2.2. A non negative random variable X is Weibull distributed, if its cdf is

F�x� = 1− exp�−�qxq�� � > 0� q > 0� x > 0�
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3648 Baratpour

where � and q are, respectively, scale and shape parameters. We can show that
E�X� = 1

�
�1+ 1

q
� and CRE�X� = 1

�q
�1+ 1

q
�. Thus, CRE�X�

E�X�
= 1

q
. If q = 1, then X is

standard exponential distributed and this ratio is equal 1.
By (2), we have

CRE�X1�n� =
n

�q

∫ 1

0
un−1�− log u�

1
q du

= 1

�qn
1
q



(
1+ 1

q

)
�

On the other hand, E�X1�n� = 1

�n
1
q
�1+ 1

q
�. Thus, CRE�X1�n�

E�X1�n�
= 1

q
. This result shows

that for all n, in Weibull family, this ratio is constant. If q = 1, then for standard
exponential distribution this ratio is equal 1, for all n. We also have

�2 = CRE�X�− CRE�X1�n� =
1
�q



(
1+ 1

q

)(
1− 1

n
1
q

)
≥ 0�

for all n and is increasing in n.
In the following theorem, we show that only in Weibull family the ratio CRE�X1�n�

E�X1�n�

is constant. The following lemma is used in the following theorem. It is known
in the literature as Müntz-Szász Theorem, which is often invoked in moment-
based characterization theorems; see Kamps (1998) and Borwein and Erdelyi (1995,
Sec. 4.2).

Lemma 2.1. For any increasing sequence of positive integers �nj� j ≥ 1}, the sequence
of polynomials �xnj � is complete on L�0� 1�, if and only if

∑�
j=1 n

−1
j = +�.

Theorem 2.1. Suppose that X1� � � � � Xn are positive, independent and identically
distributed (iid) observations from an absolutely continuous cdf F�x� and pdf f�x�. Then
F belong to Weibull family, if and only if CRE�X1�n�

E�X1�n�
= c �>0�, for all n = nj� j ≥ 1�

such that
∑+�

j=1 n
−1
j = +�.

Proof. By Example 2.1, necessity is trivial, hence it remains to prove the sufficiency
part. By using change of variable �F�x� = u in E�X1�n� =

∫ �
0 nxf�x��Fn−1�x�dx,

we have

E�X1�n� = n
∫ 1

0
F−1�1− u�un−1du� (3)

Using (2) and (3), we have

CRE�X1�n�

E�X1�n�
= −

∫ 1
0

un log u
f�F−1�1−u��

du∫ 1
0 F−1�1− u�un−1du

� (4)

If (4) coincides c, we can conclude that

∫ 1

0
un−1

[
u log u

f�F−1�1− u��
+ cF−1�1− u�

]
du = 0� (5)
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Cumulative Residual Entropy 3649

If (5) holds for n = nj , j ≥ 1, such that
∑+�

j=1 n
−1
j = +�, then from Lemma 2.1, we

have

�1− v� log�1− v�

f�F−1�v��
+ cF−1�v� = 0 a�e� v ∈ �0� 1��

Since d
dv
F−1�v� = 1

f�F−1�v��
, it then follows:

�1− v� log�1− v�
d

dv
F−1�v�+ cF−1�v� = 0 a�e� v ∈ �0� 1��

After solving this differential equation, we can result that F−1�v� = c1�− log�1−
v��c, v ∈ �0� 1�, thus F�x� = 1− exp

(−� x
c1
�

1
c

)
, x > 0. This means that F belong to the

Weibull family.

Theorem 2.2. Let X and Y be two positive random variables with pdfs f�x� and g�x�
and absolutely continuous cdfs F�x� and G�x�, respectively. Then F and G belong to
the same family of distributions, but for a change in location, if and only if

CRE�X1�n� = CRE�Y1�n��

for n = nj� j ≥ 1 such that
∑+�

j=1 n
−1
j is infinite.

Proof. The necessity is trivial, hence it remains to prove the sufficiency part. By (2),
if CRE�X1�n� = CRE�Y1�n�, then we have

∫ 1

0
un log u

[
1

f�F−1�1− u��
− 1

g�G−1�1− u��

]
du = 0� (6)

If (6) holds for n = nj , j ≥ 1, such that
∑+�

j=1 n
−1
j = �, then from Lemma 2.1 we can

conclude that f�F−1�t�� = g�G−1�t��, 0 < t < 1. Since d
dv
F−1�t� = 1

f�F−1�t��
, we have

d
dv
F−1�t� = d

dv
G−1�t�, 0 < t < 1. It then follows that F−1�t� = G−1�t�+ d, 0 < t < 1.

This means F and G belong to the same family of distributions, but for a location
shift.

Baratpour et al. (2007, 2008) obtained Similar properties based on Shannon
entropy and Renyi entropy of order statistics and record values.

3. Characterizations Based on CRE of Residual Lifetime of Series Systems

An important method of improving the reliability of a system is to build redundancy
to it. A common structure of redundancy is the k-out-of-n systems and an important
special of it is series systems (see, e.g., Xie and Lai, 1996).

A series system consisting of n components, is a system which functions if
and only if all of its n components function. Let X1� X2� � � � denote the lifetimes
of n component of a series system. We assume that Xis are continuous and iid
random variables with common distribution function F and survival function �F .
Let also X1�n� X2�n� � � � � Xn�n be the ordered lifetimes of the components. Then X1�n

represents the lifetime of that series system with survival function �FX1�n
�x� = �Fn�x�,
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3650 Baratpour

x > 0. The survival function of X1�n − t given that X1�n > t, is �FX1�n�t
�x� = (�F�t+x�

�F�t�
)n
,

where X1�n − t is called residual lifetime of system. Now the CRE for the residual
lifetime distribution of a series system with survival function �FX1�n�t

�x� is

CRE�X1�n�t� = −
∫ �

0
FX1�n�t

�x� log FX1�n�t
�x�dx

= −
∫ �

t

(
F�x�

F�t�

)n

log
(
F�x�

F�t�

)n

dx

= − 1

�F�t��n

∫ �

t
�F�x��n log�F�x��ndx + n log F�t�

∫ �

t

(
F�x�

F�t�

)n

dx

= − 1

�F�t��n

∫ �

t
�F�x��n log�F�x��ndx + n log F�t�mX1�n

�t�� (7)

where mX1�n
�t� = E�X1�n − t �X1�n > t� is the mean residual lifetime (MRL) of system.

Now we get some lower bounds for CRE�X1�n�. By (7) and noting that
log�F�t� ≤ 0, we conclude that

CRE�X1�n�t� ≤ − 1

�F�t��n

∫ �

t
�F�x��n log�F�x��ndx

≤ − 1

�F�t��n

∫ �

0
�F�x��n log�F�x��ndx = 1

�F�t��n
CRE�X1�n��

Thus, for all t,

CRE�X1�n� ≥ �F�t��nCRE�X1�n�t��

By non negativity of CRE, from (7) we conclude that

mX1�n
�t� ≤ − 1

n� log F�t���F�t��n
∫ �

t
�F�x��n log�F�x��ndx

≤ − 1

n� log F�t���F�t��n
∫ �

0
�F�x��n log�F�x��ndx

= 1

n� log F�t���F�t��n CRE�X1�n��

Thus for all t,

CRE�X1�n� ≥ n� log F�t���F�t��nmX1�n
�t�

Theorem 3.1. Let X and Y be two positive random variables with pdfs f�x� and g�x�
and absolutely continuous cdfs F�x� and G�x�, respectively. Then F and G belong to
the same family of distributions, but for a change in location and scale, if and only if
for t > 0

CRE�X1�n�t� = CRE�Y1�n�t��

for n = nj , j ≥ 1 such that
∑+�

j=1 n
−1
j is infinite.
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Proof. The necessity is trivial, hence it remains to prove the sufficiency part. If
for all n = nj , j ≥ 1 such that

∑+�
j=1 n

−1
j is infinite, CRE�X1�n�t� = CRE�Y1�n�t�, then

by Theorem 2.2, X �X > t and Y � Y > t have a same distribution but for a change
in location parameter, that is ft�x� = gt�x + c�, where ft and gt are, respectively,
pdfs of X �X > t and Y � Y > t. Thus, f�x� = �F�t�

G�t�
g�x + c�, that means F and G belong

to the same family of distributions, but for a change in location and scale.

Remark 3.1. Similar result given in this article holds for last order statistic (Xn�n)
if in definition of CRE, we substitute �F by F , which needs to define other new
uncertainty measure.
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