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Introduction 

In 1973, X. Fernique showed that Dudley's "metric entropy" sufficient condition for 

the a.s.  continuity of sample paths of Gaussian processes, is also necessary when the 

processes are stationary ([6], [7], [10]). In this paper we extend the Dudley-Fernique 

theorem to strongly stationary p-stable processes, l<p~<2. 

Let G be a locally compact Abelian group with dual group F. We say that a real 

(resp. complex) random process (X(t))t~6 is a strongly stationary p-stable process, 
0<p~<2, if there exists a finite positive Radon measure m on F such that for all 

tl . . . . .  tn E G and real (resp. complex) numbers al . . . . .  an we have 

Eexp i r e  ~ j=l ~ I ctyT(tJ) pdm(7)" 

We associate with (X(t))te6 a pseudo-metric dx on G defined by 

(fr \'" dx(s,t)= b,(s)-~,(t)l'm(d~)) , Vs, reG. (0.1) 

Let K be a fixed compact neighborhood of the unit element of G. Let N(K, dx; e) 
denote the smallest number of open balls of radius e, in the pseudo-metric dx, which 

cover K. We will always assume that K is metrizable. We can now state our main 

result. 

(1) This research was supported in part by a grant from the National Science Foundation. 
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THEOREM A. Let l<p~<2 and q be the conjugate of p, i.e. 1/p+l/q=l. Let 

(X(t))tEG be a strongly stationary p-stable process. Then (X(t)) ter  has a version with 

a.s. continuous sample paths if and only if 

Jq(d x) = (log N(K, dx; e))Jlqde < ~.  (0.2) 

Moreover, there exist constants ap(K)>0 and fv(K) depending only on p and K such 

that 

ap(K) {Jq (dx)+m(F)'O} <~ / supcP  P isuplX(t)l> c }}lip 
/ c>o t t~x (0.3) 

<~ f p(K) {Jq(dx)+m(F)l/P}. 

When p = 1 

~0 ~176 
J~(d x) = log + log N(K, dx; e) de < oo (0.4) 

is a necessary condition for (X(t))teK tO have a version with continuous sample paths 

and a lower bound of  the form (0.3), with Jq(dx) replaced by Joo(dx) can be obtained. 

We have not been able to determine if (0.4) is also a sufficient condition for 

(X(t))t~K to have a version with continuous sample paths when p =  1. The case p < l  is 

trivial since in this case the mere fact that m is a finite measure insures that the process 

(X(t))t~G has a.s. cont inuous paths. 

In the particular case that m is a discrete measure,  it is easy to see that the process 

must be of  the form 

X( t ; to )=  E ay Orb(t), tEG (0.5) 
yE F 

where {ae)yer  are complex numbers  satisfying Erer laelP< oo and where {0~) are 

i.i.d, complex valued p-stable random variables, i.e. 0y satisfies 

EexpiRe~Oe=exp-lz~' ,  VzEC.  

Thus (X(t; to))te ~ is a random Fourier  series. In this case the pseudo-metric dx(s, t) is 

dx(s,t)=(E,ay[Pl~(s)-y(t)[P] I/v, Vs, tEG. (0.6, 
\ ~ , l y E  
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Note that 0r=Re 0~, is the ordinary canonical real valued p-stable random variable, i.e. 

EexpitO=exp-It~', VtER and the above results apply also to the random Fourier 

series Ere r ar Or T( O, t E G. 

We are interested in the general question of the almost sure continuity or, equiv- 

alently, of the uniform convergence a.s. of random Fourier series with independent 

coefficients. That is, let {~r}~,er be independent symmetric, real or complex valued 

random variables defined on a probability space (Q, ~t, P), to E Q. When does 

Y(t;to) = E a r  ~r (w)Y(t), tEK, (0.7) 
yEF 

have a.s. continuous sample paths? In [21], under the conditions 

El~rl 2 .  . < oo and in fE l~r l>0  s u p  
rE F rE F 

we showed that (Y(t; O)) t E  K is a.s. continuous if and only if 

J2(d) = (log N(K, d; e))ll2 de < ~ 

where 

d(s,t)= lafb,(s)-~,( t ) l  z , Vs, t E G .  
\ r E  F 

Theorem A enables us to extend this result to random variables {~r}rer which do not 

have finite second moments. 

THEOREM B. Consider (Y(t))tEK as given in (0.7). 

(i) Assume that for l < p < 2  

e{l~rl>c)~c -p, v ~ , e r ,  V c > 0 .  

Then Jq(dr)<oo is sufficient for the a.s. continuity of (Y(t))teK, where Jq is defined in 

(0.2) and 

dr(s,t)= ( ~  larlPlY(s)-y(t)l") '/p, Vs, tEG. 
\ y E  r 

Moreover, we can find a constant Ap(K) depending only on p and K, such that 
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<<. Ap(K) Jq(dr)+ lael") ~. (0.8) 
c>O [ s ,  tEK  

(ii) Assume that there exists a c0>0 and 6>0 such that 

P{l~,l>c}>~6c -p, V~,EF, Vc>~co. 

Then for l < p ~ 2 ,  Jq(dr)< w is necessary for the a.s. continuity o f  (Y(t))te I~ and when 

p = l ,  Jo~(dr)<Oo is necessary for the a.s. continuity o f  (Y(t))teK, where Jo~ is defined 

in (0.4). 

When G is a compact group we can replace ap and tip in (0.3) by absolute 

constants independent of G. 

THEOREM C. Let G be a compact Abelian group. Consider (X(t))tec as defined 

in (0.5). Let  IlXlt=sup, ErlE~ra~,(0l. Then for  l<p~<2 and dx as in (0.6), 

  EIIXII (logN(G, dx; e))'/qdE+laol ~ fl EllXlI, (0.9) 

where ao is the coefficient o f  the character y(t)=l ,  VtEG, and tip is a constant 

depending only on p and independent o f  the group G. (Inequalities (0.9) are also valid 

with Re 0 r replacing Or.) 

It follows from (0.3) that if X1 and )(2 are two strongly stationary p-stable 

processes such that 

dx,(S,t)<-dx2(S,t), Vs, t E K ,  

then the a.s. continuity of (X2(t))ter implies that of (Xt(t)),er. (This result is made 

even more evident when G is compact and K=G by considering (0.9).) This is a rather 

surprising result since examples (cf. [8]) have shown that in general such variations of 

Slepian's lemma can not be extended from Gaussian to p-stable processes. 

In [21] we expressed the results referred to prior to Theorem B in terms of the non- 

decreasing rearrangement of the metric d. Theorems A, B and C can be stated in an 

analogous fashion. Note that dx(s, t) given in (0.1) satisfies dx(s, t)=dx(O,t-s) .  Let 

Ox(t-s)=dx(O, t - s )  and consider ox(u), u E K+K,  where K+K= {s+ t: s E K, t E K}. 

Let / t  denote Haar measure on G, normalized so that/~(K+K)= 1. For e>0 let 

#ox(e) = #( {x E K+ K : ox(x) < e}) (0.10) 
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and 

ax(U) = sup {e > 0:/~Ox(e) < u }. (0. I 1) 

The function Crx(U ) is non-decreasing on [0, 1] and is called the non-decreasing rear- 

rangement of ~rx(U). By (3.38) there exist constants b(p) depending only on p and Dp(K) 

depending only on p and K such that for l~<p~<2 

Dp(K)-~[m(F)~/P+Jq(dx) ] <~ m(F)J* + Ip(ax) 
(0.12) 

~< Dp(K) [re(F) '/p +Jq(dx) ] 

where we define 

i (ox) 
Jo u log 

du, (0.13) 

and set Jq(dx)=J| when p=  I. Furthermore, when G is compact and G=K then 

Dp(G) can be taken independent of G and when (X(t))telC is a random Fourier series, 

m(F)=E~,erlael p. Therefore, (0.3), (0.8) and (0.9) can be written with Ip(ax) replacing 

Jq(dx). 
In Section I we clarify what we mean by strongly stationary p-stable random 

processes and give a very useful representation for p-stable processes which was first 

shown to us by the authors of [17]. Section 2 is devoted to necessary conditons for 

continuity. Lemma 2.1 enables us to take all known necessary conditions for the a.s. 

continuity of Gaussian processes and obtain related necessary conditions for the a.s. 

continuity of p-stable processes. Not only do we extend Fernique's result, as we have 

mentioned in Theorems A, B and C, but we can also extend Sudakov's result which 

applies to non-stationary processes. As an application of the methods developed in 

Section 2 we show, in Theorem 2.12, that a contraction from a finite subset o f L  p into a 

Hilbert space has an extension with a relatively small norm to a mapping from L p to H. 

In Section 3 we consider sufficient conditions for a.s. continuity. Theorem 3.3 is a 

rather surprising result about the weak ! p norm of sequences of independent random 

variables that seems to be of independent interest. It is used in Corollary 3.5 to obtain a 

generalization of Daniels' theorem on the empirical distribution function to the case 

when the random variables are not identically distributed, (see also Remark 3.6). In 

Section 4 we indicate how the results mentioned in this introduction can be obtained 

from the results of Sections 1, 2 and 3. Finally, in Section 5 we apply these results to 

harmonic analysis following [25], [26] and Chapter 6 of [21]. 
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1. Representations of stable processes 

A real valued random variable 0 will be called p-stable of parameter cr if Vt E R 

Eexp iOt = exp-oPltl p (1.1) 

and a complex valued random variable 0 will be called p-stable of parameter ~ if for all 

zEC 

E exp i Re (~0) = E exp i (Re z U+ Im z V) 
(1.2) 

= e x p - ~ l z l  p 

where we write 0= U+iV, U, V real. By definition these variables are symmetric and in 

what follows we will only consider symmetric p-stable random variables and refer to 

them simply as p-stable. (In general stable random variables need not be symmetric cf. 

[9], Chapter XVII, w 4.) 

It is well known that a real valued p-stable random variable can be written as a 

product of two independent random variables one of which is Gaussian cf. [9], Chapter 

VI, w 2 h. This observation plays an important rrle in our work and also clarifies the 

relationship between real and complex valued p-stable random variables. 

LEMMA 1.1. Let 0(0) be a real (resp. complex) valued p-stable random variable o f  

parameter o and let g, g' be independent normal random variables with mean zero and 

variance o 2. There exists a positive random variable ~I(P) independent o f  g and g' such 

that 

0 = e ( p ) . g  (1.3) 

0 = 77(p) (g+ig') (I .4) 

where " ~ "  denotes "equal in distribution". 

Proof. As is well known for each 0<p~<l the function 2~--~e -~ is completely 

monotone on R +. Therefore there exists a random variable which we will denote by 

v(p) such that 

Eexp-Av(p) = exp-2  p, V~,/> 0. (1.5) 

For 0<p~<2 we take rl(p)=(2v(p/2)) 1/2. It is easy to check, by taking Fourier trans- 

forms, that (1.3) and (1.4) hold. 
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Note that r/(2)=X/-2 so in the case p=2  we get the standard definition of a real and 

complex valued normal random variable. However, only for p=2 ,  are the real and 

imaginary parts of 0 independent. 

We recall that for 0 < p < 2  a real valued p-stable random variable of parameter a 

satisfies 

lim 2PP{lO[>2 } = (c(p)a) p where c(p)-l= [(O~ sinv dv] -lIp. (1.6) 
2-,ao O p [.J0 J 

(This result is contained in [9], Chapter XVII, w 4, however in this special case one can 

show directly that 

o p = lim t-P(1-q~(t)) = i im-2 t  -p (l-cos2t)d(l-F(t)) 
t--,O t--,O 

fo fo = lira 2 sin v[t-P(1 -F(v/t))] dv = (c(p) oF sin v dv 
t--~O U p 

where 9 is the characteristic function and F the distribution function of 0.) 

It also follows that for 0 a complex valued p-stable random variable of parameter o 

lim )?P(101 > ~. ) = ( c 0 9 ) r ( p ) e )  p (I .7) 
~.---> o0 

where r(p)=(EIg2+g'2~~176 vp and g,g' are i.i.d, real valued mean zero normal 

random variables. 

It follows from (1.1) and (1.2) that if 01 . . . . .  0, are i.i.d, p-stable real (resp. 

complex) valued random variables, and if 3.1 . . . . .  3., are real (resp. complex) coeffi- 

cients, then 

0, ,~, = 01 I~,l" �9 (1.8)  
i=1 i=1 

Since by (1.6) and (1.7) we know that ElOdr<oo for each r<p we have 

(1.9) 

and 

sup ,II o   o l 
(1.10) 
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Moreover, if 0 is a real (resp. complex) valued p-stable random variable of parameter o, 

then 

(EIOF) t/r = oO(r,p) (= crr'(r,p)) (1.11) 

where 6(r,p), (6'(r,p)) depends only on r and p. 

Let T be a set. We will denote by R ~r) (resp. C ~ )  the space of all finitely 

supported families (a(t))tEr of real (resp. complex) numbers. Let 0<p~<2, we will say 

that a real (resp. complex) stochastic process is p-stable if there exists a positive 

measure m on R r (resp. C r) equipped with the cylindrical o-algebra such that 

Va E R (~ 

Eexpi~a(t)X(t)=exp-fl,~Era(t)fl(t),,r "dmq3), (1.12) 

a(t) I" 

(resp. Va E C (r~) 

E e x p i R e [ ~  a(t) X(t)] dm(fl). (1.13) 

Any measure m as above will be called a spectral measure of the process (S(t))tET. 
Clearly if (X(t))teT is a p-stable process, as defined above, then Va E R (T) (resp. C (r~) 

~teTa(t)X(t) is a real (resp. complex) valued p-stable random variable. This is, 

perhaps, the more usual definition of p-stable processes. 

Now let T be a locally compact Abelian group G with dual group F. F is called the 

character group of G, i.e. y E F is a continuous complex valued function such that Vs, 

tEG, [7(t)[---1 and 7(s)7(t)=7(s+t). A real (resp. complex) valued p-stable process 

(X(t))tEG will be called strongly stationary if it admits a representation as in (1.12) 

(resp. (1.13)) where the spectral measure m is a finite positive Radon measure support- 

ed on F. 

A strongly stationary process is stationary, since for (X(t))ter real and 

t 1 .. . . .  t. E T and t I +s .... , t .+s E T, E exp i E]=l ajX(tj+s)=E exp i E]=~ ajX(ti). This fol- 

lows from (1.12). In the complex case we say that (X(t))teT is stationary if for every 

tl ..... t .E T  the 2n dimensional real sequence (ReX(tl), ImX(tl) . . . . .  ReX(t.),  

ImX(t.)) is stationary. By (1.13) we see that in the complex case also a strongly 

stationary p-stable process is stationary. Conversely a stationary Gaussian process is 

strongly stationary but we will show later in this section that there are stationary p- 

stable processes which are not strongly stationary. 
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Let (X(t))ter be a real (resp. complex) valued p-stable process. It follows from 

(1.12) (resp. (1.13)) that 

X(s)-X(t)  ~ [fl(s)-fl(t)lP dm(fl) 0 (1.14) 

(resp. (1.14) with 0 replacing O) where 0 is a real (resp. 0 is a complex) valued p-stable 

random variable of parameter 1. We define a pseudo-metric for these processes by 

dx(s, t) = [fl(s)-fl(t)lPdm(fl) , Vs, tE T. (1.15) 

Clearly, dx(s, t) is a pseudo-metric and by (1.14) and (1.11) 

(EIS(s)-X(t)191/~ = ~(r, p) dx(s, t) (resp. d'(r, p) dx(s, t)) (I. 15') 

for 0<r<p.  Note that in both the real and complex case dx(s, t) is the parameter of 

X(s)-X(t). 

We shall now give some examples of strongly stationary processes. Let (0e)eer 

be an i.i.d, collection of complex valued p-stable random variables with parameter 

equal to 1. L e t  (ae)ee r be a family of real or complex coefficients satisfying 

Eeer [a~,lP<~. The process 

X(t)= E ay O• tEG (1.16) 
yEr  

is a strongly stationary, complex valued, p-stable random process on G with spectral 

measure 

m= E lael'ry, (1.17) 
yE F 

where b e is the unit point mass at ~, E F. For this process we have 

dx(s,t)= la~lPl~(t-s)-ll p . (1.18) 
yE 

The process ReX(t) is a strongly stationary real valued p-stable process. One can also 

use (1.12) directly to see that for (ay)eer real 

Y(t) = E ay r/y(g~ Re y+g'y Im y) (1.19) 
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where {r/r ) are i.i.d, copies of r/ given in Lemma 1.1 and {gr}, {g~) are i.i.d. (and 

independent of each other) normal random variables with mean zero and variance 1. In 

this case the spectral measure m and pseudo-metric dx(s, t) are the same as in (1.17) 

and (1.18). For p=2,  X(t) and Y(t) agree with the definitions of complex and real valued 

Gaussian random Fourier series (except for a constant multiple) considered in [21]. 

Also, as in the Gaussian case, one can obtain strongly stationary p-stable random 

processes with continuous spectral measure m by the usual procedure of approximating 

by integrals with respect to step functions and passing to the limit. In the complex case 

such processes are of the form 

Z =  fFyM(d~) (1.20/ 

where M is an independently scattered complex valued random p-stable measure. As in 

the discrete case the real and imaginary parts of M are not independent. Indeed, for 

AEF,  

M(A) ~ r/(p) (G(A)+iG'(A)) 

where G(A) and G'(A) are independent Gaussian random variables with mean zero and 

variance m(A) 2/0. For such processes 

dz(s,t)=(fl~,(s)-~,(t)lPm(d~,)) 1/~. (1.21) 

In the real case a process similar to (1.20) can be obtained as an extension of (1.19). 

Lemma I.I can be extended to processes. To do this we need to introduce some 

facts on sums of i.i.d, exponentially distributed random variables. Let X be a positive 

real valued random variable satisfying P(X>2)=e -~. Let {Xk} be i.i.d, copies of X and 

define 

Fj = X~ +)(2+... +Xs. (I .22) 

By [9], p. l0 

f0 2 x/-1 P[r j<  2 ] = (j_l)--~.e-Xdx (1.23) 

and for r<pj 
F(j-r/p) j-r/p. E[(Fj)-r/e] = F(j) (1.24) 
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The next lemma will be used frequently in what follows. 

LEMMA 1.2. Let  p > l ,  then 

C l ( j ~ l / p  C 2 
p - 1  <~ ap = E sup ~ < -  (1.25) 

where cl and c 2 are constants independent o f  p. 

Proof. Let v>~2. Then by (1.23) and the fact thatjJ/eJj!<~l we have 

P Fj< j ~ xJ-I 

.Io ( j -  1) ! 
_ _ d x  <~ v-pJ. 

Thus 

/ j \]/p ~ P E s u p / - - ,  ~<2el/p+ 2 [{J---]I/P>2 d2 
j<_, \ r j /  j=, el/p [ \ r j /  

] = e  |~p 2 +  - - d r  ~<e |~p 2P 1, 
L j= l  b"~ P - -  

(1.26) 

where we substitute ;~=ei/Pv in the integral in (1.26). To obtain the lower bound we use 

fo i x j-l-lIp fo j x J-j-lip E(I"j)-I/P I> ( j - 1 ) ~  e-xdx >! e-J ( j - l ) !  - - d x .  

As an alternate proof of the right side of (1.25) one can show by martingale 

arguments that P(supj (j/F~)>c)<. 1/c. 

The next lemma relates the Fj to the order statistics of the uniform distribution. 

For a proof see [4], Proposition 13.15. 

LEMMA 1.3. Let  {Uj}j= 1 ...... be i.i.d, copies o f  a random variable uniformly 

distributed on [0, 1]. Let  {U*}j= 1 ..... , denote the non-decreasing rearrangement o f  

{Uj}j= I ..... ,. Then for  Fj defined in (1.22) we have 

=| , , , , ,n  

Our object is to show that p-stable processes can be represented as mixtures of 

Gaussian processes. To do this we use a representation of p-stable processes which 

was pointed out to us by the authors of [17]. The next lemma is implied in [17] and is 

17-848289 Acta Mathematica 152. Imprim6 le 29 mai 1984 
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included in [18], in which there are additional references and a discussion of the history 

of this result. The simple proof that we give was shown to us by J. Zinn. 

LEMMA 1.4. Let  v be a symmetric real valued random variable with ElvlP<oo and 

let {vj} be i.i.d, copies o f  v. Then for  0 < p < 2  

ov 

X = Z (FJ)-'/PvJ (1.27) 
j=l  

is a symmetric p-stable random variable and 

lim 2Pc(Ix] > 2 ) = Elvl ~. (1.28) 

I f  0 < p < l  and v~O then the expression in (1.27) is a positive p-stable random 

variable and (1.28) remains valid. 

Proof. We first consider the case when v is symmetric, 0<p<2 .  Let  ~>0 be a 

random variable satisfying 

G(t) = P(~ > t) = t-P, t/> 1. (1.29) 

Let  {~j} be i.i.d, copies of  ~ such that {~j} and {vj} are independent of each other. 

Consider 

2 2 (,.30) 
j=l  j=l  j=l 

where {Uj}j= l ..... , are as given in Lemma 1.3. It is well known and easy to check that 

because { U j }  and {Oj} a r e  independent and {Vj) is i.i.d., 

jffil j=l 

where {UT}j= 1 ..... , is defined in Lemma 1.3. Using Lemma 1.3, (1.29) and (1.30) we get 

n -l/• ~j vj = (Fj)-vPvy. (1.31) 
jr1 j=l 

We also have by (1.29) that 

lira f P(l~v] > t ) = EIvIP ; 
t --~ oo 
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therefore it follows from [9], Chapter XVII, w 5 that ~v is in the domain of attraction of 

a p-stable random variable 0 (using the norming constants n~/P). Furthermore by the 

argument used to obtain c(p) following (1.6) we see that 0 has parameter 

fl(p)--(ElvlP/c(p)) ~/p. Since limn__,=(Fn+l/n)i/P=l a.s. by the strong law of large 

numbers, we get from (1.31) that (1.27) is also equal to 0 in distribution. Actually (1.27) 

converges a.s. To see this fix each realization of {Fj) and use the Three Series Theorem 

on the resulting sum of independent random variables. 

The same proof works when oi>0 since, for 0 < p < l ,  (1.31) remains valid. 

We proceed to develop the representation of p-stable processes. Let (S(t))tE T be 

a real (resp. complex) valued p-stable stochastic process admitting (see (1.12) and 

(1.13)) a finite spectral measure m. Let M p be the total mass of m (i.e. M~m(RT) lip 

(resp. M=-m(Cr) l/p) and let v be a renormalization of m so that v is a probability 

measure, i.e. v=M-Pm. Let { Yj} be a sequence of i.i.d. R r (resp. C T) valued random 

variables with probability distribution v. Let {Fj} be as defined in (1.22). Let {ej} be a 

Rademacher sequence (i.e. an i.i.d, sequence of symmetric random variables each one 

taking on the values +1); let {gj} be an i.i.d, sequence of mean zero Gaussian real 

(resp. complex) valued random variables normalized so that 

Elgj] p = 1, [resp. EIRegj[ p = II, (1.32) 

and let {wj} be equal to {a e '~'j} where {%} are i.i.d, random variables each one 

uniformly distributed on [0, 2zt] and a=((2~O-I.PlcosulPdu) -I/p, i.e. (wj} is a normal- 

ized Steinhaus sequence. We assume that all the sequences { Yj}, {Fj}, {ej}, {gj}, and 

{wy} are independent of the others. 

PROPOSITION 1.5. Let (S(t))tE T be a real (resp. complex) valued p-stable process 

as defined above. Then for 0 < p < 2  

V(t) = c(p) M ~ (Fj)-1/Pgj Yj(t), (1.33) 
j=l 

where {gj} is real (resp. complex), is equal in distribution to (X(t))te r. I f  (X(t))te r is 

complex then for O<p<2 

W(t) = c(p)M ~ (Fj)-ttPwj Yj(t), tE T, (1.34) 
j=l 

is equal in distribution to (X(t))tE T. I f  (X(t))tE T is real then Jor O<p<2 
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Z(t) = c(p)M ~ (F:)-~/Pei Y:(t), tET, (1.34') 
j = l  

is equal in distribution to (X(t))ter. 

Proof. The proof follows immediately from Lemma 1.4. Let (X(t))ter be real. 

Consider (1.33) with (gi} real. By hypothesis, for t~ . . . . .  tnET, and al, . . . , a ,  real 

E e x p i  ~ a j X ( t ) = e x p - f  li=~ ajfl(t)lPdm(fl). 

By the proof of Lemma 1.4 we have that Z]=~ ajV(tj) is a real valued p-stable random 

variable with parameter [M~ l al Y(tj)[P] vp. Therefore we have by (1, l) 

E expi ~ __ aj V(tj)= exp-MPE __ aj Y(t) 
j=l j = l  

P 

Therefore the finite joint distributions of (X(t))te r and (V(t))te r agree and this is what 

is meant by saying that the two processes agree in distribution. The proof for (W(t))tsr 

and for (V(t))ter in the complex case is entirely similar since EIRe wtlP=EIRegl~'=l 

for g~ complex. 

We use Proposition 1.5 to justify the following lemma which has probably been 

observed elsewhere. 

LEMMA 1.6. (a) Let T be an index set. Let (X(t))ter be a p-stable real (resp. 

complex) valued random process, 0<p<2,  admitting a finite spectral measure m. Then 

we can find probability spaces (if2, M, P) and (if2', M', P') and a real (resp. complex) 

valued stochastic process (ff'(t))te r defined on (~,  ~ ,  P ) x ( ~ ' ,  sg', P') such that: 

(i) The processes (~fl(t))te r and (X(O)te r have the same distribution. 

(ii) For each fixed w E ~, the random process (~(t; w, .))re r is a real (resp. 

complex) valued Gaussian process. 

(b) Moreover, if  T is a locally compact Abelian group G and if (X(t))ter is 

strongly stationary, then we can find (~r as above verifying the additional 

condition: For each fixed w E Q, the process (~q(t; co, .))re r is a stationary real (resp. 

complex) valued Gaussian process. 



p-STABLE RANDOM FOURIER SERIES 259 

In other words any p-stable process (resp. any strongly stationary p-stable pro- 

cess) with a finite spectral measure has a version which is a "mixture" o f  Gaussian 

(resp. stationary Gaussian) processes. 

Proof. This all follows immediately from Proposition 1.5. Let  {Fj}, { Yj.} and {gy} 

be as in Proposit ion 1.5. We can assume that { Y~} and {Fj-} are defined on a probability 

space (Q, •, P) and that {gj.} is defined on a probability space (Q',  ~/', P ') .  By Proposi- 

tion 1.5 the process  

~(t, 09, w' ) = c(p) M ~ (Fj(to)) -lIp Yj(t, w ) &(w') (1.35) 
j=l 

satisfies (a) parts (i) and (ii). Furthermore,  if (X(t))tET is strongly stationary then 

v=M-Pm (see remarks preceding Proposit ion 1.5) is concentrated on the characters of 

G. Therefore,  for w fixed, {Yj(t, w)} is a sequence of characters on G so that 

(~(t; to, .))t e r is stationary for each fixed w. (Actually, ~f(t; w, �9 ) is a Gaussian random 

Fourier  series of  the form (1.16) with p=2 . )  This settles both the real and complex case. 

Note  however that in (b) if (g(t))tET is a real valued strongly stationary p-stable 

process we still use complex valued normal variables {g_/} and replace (1.35) by 

9g(t; to, to') = c(p) M ~ (Fj(to)) -I/p Re Ys.(t, to)gflto'). (1.36) 
j=l 

With this definition it is clear that, for to fixed, (~T(t; to, "))tcr is a stationary Gaussian 

process  of  the form (1.9) with p=2. 

Remark 1.7. We will show that Jq(dx)<Oo is not a sufficient condition for continu- 

ity of  stationary p-stable processes.  In the process of doing this we will exhibit 

stationary p-stable processes  which are not strongly stationary. For simplicity we will 

consider the real case. The complex case is entirely similar. It is clear from (1.12) that a 

real valued p-stable process  (X(t))eer is stationary iff the measure m is stationary in 

L p, i.e. iff f IEt~r a(t) fl(t+r)lPdmq3) does not depend on r. (Incidentally, by (1.15) and 

(1.15') applied to Et~ra(t)X(t+r) instead of  X(t)-X(s)  we see that for 0 < p < 2 ,  a p- 

s table  p r o c e s s  (X(t))tE T is stationary iff it is stationary in L q for some (equivalently all) 

q<p. Compare this to the fact that a Gaussian process is stationary iff it is stationary in 

L2.) 

We shall consider  the following example. Let  G be a compac t  group and let 

(Y(t))e~T be a stationary, mean zero, Gaussian process  on G. Let  (Yj(t))t~r be i.i.d. 

copies of  Y and consider,  for l < p < 2 ,  
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X(t) = c(p) ~_j (F)-I/PYj(t), tEG. 
j= l  

(1.37) 

Thus X(t) is a p-stable process (it is precisely of the form (1.34')) and it is stationary 

since the expression .f [E~= 1 aifl(tj+r)~dm(fl), in this case, is exactly EIE~= I aj Y(tj+r)l p. 

Let I] I[| denote the sup-norm on G. It follows from Lemma 1.2 and 0.24) that 

cL Ell Y[l~ ~ EIIX[I~ ~ cp Ell YIl~, (1.38) 

for constants cp and c~>0. By (1.15) 

dx(s, t) = (E I Y(s)- Y(t)]P) TM = Op(EI Y(s)- Y(t)12) I/z = dr(s, t) 

where the middle equality is a well known property of Gaussian random variables. This 

enables us to see that (X( t ) ) tC=G , although stationary, is not strongly stationary, since 

by the Dudley-Fernique theorem (Y(t))t~.G has a version which is a.s. bounded (or 

continuous) iff 

f0 e))l/2 de < ~ (I. 39) (log N(G, dr; 

whereas by Theorem A, if (X(t))tec were strongly stationary then it would have a 

continuous version iff 

f0 (log N(G, e))l/qde < oo (1,40) dx; 

where 1/q+ 1/p= 1. It is easy to see using Remark 4.3 and by w l, Chapter VII, [21] that 

one can take for Y certain random Fourier series with decreasing coefficients such that 

(1.40) holds but (1.39) does not. This shows two things. That (X(t))te6 constructed as 

in (1.37) with this Y is not strongly stationary and that Jq(dx)<oo is not a sufficient 

condition for a stationary p-stable process to have a version with continuous paths. 

Finally, as another application of the representations of stable processes given in 

Lemma 1.4 and Proposition 1.5 we give an alternate proof of Lemma I. 1 (in the real 

case). By Lemma 1.4 a real valued p-stable random variable, 0<p<2,  can be represent- 

ed as 

(- 
j=l j=i 
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where {gj} are i.i.d, copies of g as given in Lemma 1.1. Furthermore,  by checking the 

Laplace transforms of (1.41) we see that 

v(p/2) ~ ' = ~ (r? -2/p 
j=l 

for some constant  2~, depending only on p. 

Remark  1.8. In some cases we can ol~tain Lemma 1.6 directly without having to 

appeal to the representation given in Proposition 1.5. Let  0~ . . . . .  0n be i.i.d, real valued 

p-stable random variables with parameter 1 and let Xl . . . . .  xn be in R r. Then the 

process 

X ( t ) =  E Oixi(t), t E T  (1.43) 
i ~= 1' 

is clearly p-stable with spectral measure 

m = ~ ~xi. 
i=l 

Now let (r h . . . . .  r/n) be i.i.d, random variables each with the same distribution as r/(p) 

(see Lemma 1.1) and let (gl . . . . .  gn) be i.i.d, real Gaussian random variables where gl 

has variance 1. We may as well assume that 011 . . . . .  r/n) is defined on some space 

(f~, M, P) while (gl . . . . .  g,0 is defined on ( ~ ' ,  M', P') .  Then the process 

n 

E ' ~(t ;w,w')= gi(o) )i"]i(O))xi(l ), t E T  
i=l 

has the same distribution as (X(t))teT since by (1.2) or (1.5), (Oi)i~n has the same 

distribution a s  O]igi)i<~n. The complex case is entirely similar except that we use (I .4). 

This same remark applies to infinite sums of the form (1.43) provided we know that 

the sum converges a.s. for each tET .  Therefore, it applies to random Fourier series 

such as (1.16) and, in fact, we have already shown this for real p-stable random Fourier 

series in (1.19). 

We will use the following notation with regard to metric entropy. Let  (T, d) be a 

complex space equipped with a pseudo-metric d. We will denote by N(T, d; e) the 

smallest number of open balls of  radius e in the pseudo-metric d which covers T. We 

introduce the function o(T, d; n) which is defined, for each integer n, by 
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o(T, d; n) = inf{6 > OIN(T, d; 6) <~ n}. (1.44) 

Le tp ,  q be such that l<p ,  q < ~  and 1/p+l/q=l. It is easy to check that 

(logN(T,d;e))Vqde<~ iff o(T,d;n) < ~ .  (1.45) 
,=2 n(log n) vp 

Actually, a simple calculation shows that 

(logN(T,d;e))Vqde = (logn)l/q[o(T,d;n-1)-o(T,d;n)] 
n=l 

= ~_~ o(T, d; n) [(log (n+ 1))Vq-(log n)l/q]. 
n=l 

Therefore, there exist constants ap>0 and bp depending only on p such that if l<p<oo 

o(T,d;n) 
ap 

n=1 n (log (n+ 1)) t/p f0 ~ 
~< (IogN(T, d ;6))1/qd6 

<~ be + o(T, d;n) 
=l n(log (n+ 1)) l/p" 

(1.46) 

Similarly, it follows that 

f0 = log + logN(T, d ) de < oo 6 
~ o(T,d;n) <co iff (1.47) 
n=l n log(n+l)  

and an inequality such as (1.46) can also be obtained. This result is used in the case 

p =  1. We will use the following notation 

L Jq(d)= (logN(T,d;e))UqlogN(T,d;e))Vqde, 2 ~ q <  ~,  (1.48) 

f0 ~ 
J~(d) = log + log N(T, d ; e) de. (I .49) 

Remark 1.9. In (1.47) if d is translation invariant, i.e. s, tE T and s+r ,  t+rET 

imply d(s+r, t+r)=d(s, t), the function o(T, d; n) is equivalent to o(1/n) where o(u) is 

the non-decreasing rearrangement of d(t+u, t). This function plays a major r61e in [21]. 

In this paper we find it useful to consider o(T, d; n) since we also obtain results when d 

is not translation invariant. 
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2. Lower bounds for p-stable processes 

Let (f2, M, P) and (f~', M', P ' )  be probability spaces and let (~'(t))t6T be a p-stable real 

or complex valued stochastic process on (•, M, P ) x ( Q ' ,  M', P') satisfying (ii) in Lemma 

1.6. 

For  all s, t in T we denote d(s, t) the parameter of the p-stable process ~C(t)-~(s), 

so that we have (in the real case) 

E e x p i 2 ( ~ ( t ) - ~ ( s ) )  = exp-dP(s,  t)121 p, V2 6R,  (2.1) 

and also, by (1.15'), Vr<p 

(El~( t)-  ~s)[') '/r = 6(r, p) d(s, t) 

where 6(r, p)>0 depends only on r and p. This shows that d is a pseudo-metric on T. 

We also introduce the " random pseudo-metric" do,, defined for each co 6 g2 as 

follows: for each s and t in T, we will denote by do,U, s) the parameter of the Gaussian 

variable ~f(t; co, . ) - ~ ( s ;  co, .). In the real (resp. complex) case this is simply 

do(s, t) = (�89 ~s)12) '/2, 

(resp. do(s, t) = �89 l~(t)-~(s)[2)'/2). 

Now, since (~~ co, "))ter is a Gaussian process we have, in the real case, 

E o, exp i~.(~(t; co, co ')-~(s;co,  co')) = exp -[212dZ(s, t), V26 R. 

To simplify notation we write 

and 

(see (1.44)). 

o(n) =o(T ,d;n)  

oo,(n) = o(T, do,; n) 

(2.2)  

The next lemma is the crucial result of this section. 

LEMMA 2.1. There is a subset g2oCf2 with P(g2o)>l/2, such that for  each co 6 g2 o, 

we haoe : 

a(n) Vn I> 1, (2.3) 
~176 >" fl(P) (log (n + 1))l/P- 1/2' 

where fl(p)>0 is a constant depending only on p and 0<p<2 .  
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The proof of  Lemma 2.1 is based on the following simple estimate: 

LEMMA 2.2. With the above notation we have for each s and t in T and all e>0, 

P{o) E f~: d~(s, t) <~ ed(s, t)} ~ e x p -  1 e---g, (2.4) 

where a=2p/(2-p), 0<p<2 ,  so that 1/a= 1/p-1/2. 

Proof o fLemma 2.2. Let  A =  {o9 E fl: do(s, t)<-ed(s, t)}. By (2.1) and (2.2) we have 

for each 2 E R 
E~ ~ 2 2  e x p - 2  d~(s, t) = exp-121 p dP(s, t). 

S e t t i n g  x=•2d2(s, t), this is 

Eo, e x p - x  (d2(s ' t )  ) =exp -xp/2, x >- O. (2.5) 
\ d2(s, t) 

Therefore by an exponential Chebysev inequality applied to x(d~(s, t)/d2(s, t)) we get 

P(A) ~< inf e x p -  (x p/z- E2X). 
x~>0 

This expression is minimized by x=(p/2e2) 2/(2-p) and we get (2.4). The same proof 

works in the complex case when (2.1) and (2.2) are suitably modified. 

Remark 2.3. Note that for a p-stable process we see by (2.5) that 

(do(s, t)/d(s, t))2~v(p/2) where v(p/2) was defined in Lemma 1.1. The distribution 

function of v(p/2) is known, see [9] Chapter XVII, w 6. 

Proof of  Lemma 2.1. Fix an integer n and let 6>0 be such that ~r(n)>6. This means 

that 

N(T, d; 6) > n. (2.6) 

We claim that there exist at least n+  1 elements t~ . . . . .  tn+~ in T such that 

d(ti, tk)>-6, Vl <-i4:k<~n+l. (2.7) 

To see this let M(6) be the maximal number of points say t~ . . . . .  t~t(6) in T such that 

d(ti, tk)~6, l<~i:4:k<~M(6), (these points are not necessarily unique). Then by the 

maximality of M(6), T is covered by M(6) open balls of radius 6 centered at 

tl . . . . .  tM(6). Thus N(T, d; 6)<~M(6) and so by (2.6) we get M(6)>-n+ 1. 
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By Lemma 2.2 we know that there is a constant K depending only on p such that 

for all l<~i#k<~n+l and all e>0, 

K P{toE s i, tk)<~ed(t i, tk) } ~<exp e ~ (2.8) 

This clearly implies by (2.7) that for all l<.i.k<~n+ 1 and all e>0, 

K P{to E f~l dto(ti, tk) <~ ed} <. e x p -  - -  
F. a 

Obviously, this implies 

P{toE Q inf do,(ti, tk)<ed} <- n 2 e x p - ~  �9 (2.9) 
1 <~i#k<~n + 1 

Suppose there exists an to such that o,o(n)<e6/2. This means that the set T can be 

covered by n open balls of radius e6/2 in the d,o pseudo-metric. Obviously, we can find 

two distinct points amongst {tl . . . . .  tn+l} lying in the same ball of radius e6/2. 

Therefore, 

inf d~,(t i, tk) < e6. 
I <~iW-k<~n+ l 

Thus we have the inclusion 

{to o,o(n)<~--~-62 }~{tol,<~iik~f+ ' d~,(t i, t k) < e6}, 

and so, by (2.9) 

P{w oo,(n)<e-~--~2 }<.n2ex p K 
F ct 

and finally, since 6<o(n) is arbitrary, 

p {to o~,(n)< eo(n) } < n2 K e x p -  - - .  
2 e a 

(2. lO) 

By (2.10) we have that for each/3>0 and each integer n~>l 

P{too~,(n)< 2 (logri~ 1)) I/a } ~< n 2 e x p - ~  l~ (n+ 1) 

~< n2(n+ 1)-x/a ~. 
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Therefore, 

{o9 oo( ) n < 
1 

rio(n) ) \  ~ n 2-K/fla (2.11) 
2(log(n+ l))Z/~ ~ ) <~ .=2 

and it is clear that we can find a /3>0,  depending only on p, so that the right side of 

(2.11) is less than 1/2. This completes the proof of  Lemma 2.1 since we can take 

g2~ = 2 o9 o~(n) >I rio(n) 
1 2 ( log ( - - - ~ I ) ) l / a  

and ri(p)=ri/2. 

We will also use the following variant of Lemma 2. l: 

LEMMA 2.4. In the above notation let q, . . . , tn  be arbitrary points in T. There 

exists a subset Q l c Q  with P ( f ] 0 > I / 2  such that for all o9 E f]l and all i, kE {1 . . . . .  n}, 

d(ti, tk) 
d~(ti' tk) >" 7(P) (log n) v~ ' (2.12) 

where 7(p)>0 is a constant depending only on p. (If  n= l we will consider both sides of  

(2.12) equal to zero.) 

Proof. By Lemma 2.2 we have that for all e>0 

K 
e x p -  - -  Ea 

where K is a constant  depending only on p. Therefore we can find a 7>0 sufficiently 

small so that 

n 2 e x p ( _ K  (logn)~ < 1 
\ 7 ~ / 2 

for all n~>2 and we get 

P (,<-i,~<~, {o9 d~ tk)<~ 
vd ( t i ' t k ) } )<  1 

(log n)I/a --2" 

This proves the lemma since we can choose such a y depending only on p. 

Our first application of  the preceding lemmas is a generalization of Slepian's 

lemma to the p-stable case. A number of people have observed that Slepian's lemma 

does not go over directly to p-stable processes (although we remarked following 



p-STABLE RANDOM FOURIER SERIES 267 

Theorem C that it does for strongly stationary p-stable processes). Nevertheless, we 

can obtain interesting generalizations by comparing general p-stable processes with 

Gaussian processes. 

THEOREM 2,5. Let T be a finite set o f  cardinality n, and let (X(t))tEr and 

(Y(t))tE T be two stochastic processes, real or complex, such that (X(t))tET is p-stable, 

0<p~<2 and (Y(t))ter is a Gaussian process (i.e. p=2). For each s, tE T, we denote by 

dr(s, t) and dx(s, t) the parameters of  Y(s) -  Y(t) and X(s ) -X( t )  respectively. Assume, 

d r ( s , t )~dx ( s , t ) ,  Ys, tET.  (2.13) 

Then, for each r<p, there exists a constant Bp, r depending only on r and p such that 

( t l/r ( E s, tersup tY(s)-Y(t)] r <~Bpr(logn) E s, tersup IX(s)-X(t)I r\l/r) �9 (2.14) 

In the real case, i f  l<p~<2, we also have 

E sup Y(t) <~ Bp, l(log n)l/P-VZE supX(t). 
tET tET 

(2.15) 

Furthermore when p=2 (2.14) holds for 0~<r~<2. 

Proof. Recall that the Sudakov version of Slepian's lemma (see [10], [1]) is simply 

(2.15) with p=2  and B2,t=l .  Our proof is based on this result. In the real case, by 

symmetry, we have 

E sup Y(t) = ~E sup I Y(s)- Y(t)l (2.16) 
tET s, tET 

and similarly for (X(t))te r. By a well known result of Fernique and Landau and Shepp 

(see e.g. [10]) we know that for any Gaussian process (Y(t))ter and any 0 < r < ~ ,  

~ 1  E sup IY(l)-Y(s)l ~ (E  sup IY(t)-Y(s)lr) ''r 
m r s, tET s, tET 

(2.17) 
~<A~E sup IY(t)-Y(s)l 

s, tET 

where At>0 is a constant depending only on r. Therefore, if (Y(t))tET and (X(t))ter 

are two Gaussian processes satisfying (2.13) we can use (2.15), (2.16) and (2.17) to 

obtain 

x ,/r A~ lie \ I/r (E sup IV(t) -g(s)l r) ~< k ,?up (2.18) \ s.,er X( t ) -X(s) lr )  " 
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We will now prove Theorem 2.5 in the real case, the complex case foUows by looking at 

the real and imaginary parts separately. We use Lemma 1.6 (a) and assume that 

(X(t))tET is defined on (g2,~C,P)x(f~',~C',P') and that for toEg2 fixed, the process 

(X(t;w, "))tET is a Gaussian process on (g2',~C',P'). Denote by do~(s, t) the parameter 

of the Gaussian variable X(t;w, . ) -X(s ;w,  .). Then by Lemma 2.4 we can find a set 

f ~ c f ~  with P(f20>I/2 such that for all co in f~  we have 

d~o(s, t) >I y(p) (log n)- l/a dx(s, t), Vs, t E T. 

By (2.13) we have that for all w in g21 

d~o(s, t) >- y(p) (log n)- l/a dr(s, t), Vs, t E T. 

Now, since both processes (Y(t))ter and (X(t;w, "))ter are Gaussian processes we 

apply (2.18) to obtain 

\ l/r 
E sup ]Y(t)- Y(s)[ r) <- (log n)t/ae(p)-l,X~(E~,lX(t; oJ, . ) -X(s;  ~o,.)r) '/r, (2.19) 

s, tET 

for each ~oEf2,. We raise both sides of (2.19) to the rth power, take the expectation 

with respect to g2~ and then take the rth root to obtain 

E sup IY( t ) -Y(s) l  ~ <<. ( logn)l/ay(p)-'A~ E sup IX(t ) -X(s) l  ~ 
s, tET s, tET 

This is exactly (2.14) withBp,,=21/ry(p) -I A~. (In the complex case use 2Bp, r.) Inequal- 

ity (2.15) is obtained by using (2.16) in (2.14) with r= l .  

The preceding result was used in the Gaussian case by Sudakov to prove the next 

statement in the particular case p=2. For p<2, Theorem 2.6 is the first non-trivial 

necessary condition for the a.s. continuity or boundedness of a general p-stable process 

of which we are aware. 

THEOREM 2.6. Let T be a compact metric space and let (S(t))tEr be a p-stable 

stochastic process, real or complex, with 0<p~<2. Let dx be as above and let q be the 

conjugate o f  p, i.e. 1/q+ l/p= l. 

(i) If (S(t))tE T has a.s. continuous sample paths then, necessarily 

lira e(log N(T, dx; ~) ) l /q  = O. (2.20) 
e~,o 

(ii)  f f  (X ( t ) ) t E  T has a.s. bounded sample paths then necessarily 
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sup e(log N(T, dx; d~)) I/q < O0 ; (2.21) 
e>O 

moreover, for each r<p 

sup dx '~E)) l /q  ~ C9'r" (E  s, t6TSUp IX(t)-X(s)I r) 
lit 

(2.22) 

where cp, r is a constant depending only on p and r. 

Proof. As in the proof of Theorem 2.5 we use Lemma 1.6 (a) and assume that 

(X(t))ter is defined on (g2,M,P)x(f2' ,M',P')  and that for each co6Q, (X(t;co, "))ter 

is a Gaussian process. By Fubini 's theorem if (X(t))ter has a.s. continuous sample 

paths then there exists a set g)~cg2 with P(g) l )=l  such that for co6f2! the process 

(X(t; co, .))re T is an a.s. continuous Gaussian process with respect to (g2', M', P') .  We 

apply Sudakov's  theorem, i.e. (2.20) and (2.21) with p = q = 2  (cf. [10]), to this process 

and obtain that for co 6 g21, 

lim e(logN(T, do,; e ) )  1/2 = 0 
e ~ o  

or, equivalently 

lim oo,(n) (log n) 1/2 = O. 
n ----) o0 

Using Lemma 2.1 we get 

lim if(n) (log n) l/q = 0 
n....~ ao 

or, equivalently (2.20). 

The argument for the first part of (ii) is similar to the above argument. It remains to 

prove (2.22). This is known in the Gaussian case, ([10], p. 83). For  any Gaussian 

process (Y(t))tE r we have 

sup e(log N(T, dr; •))1/2 ~ CE sup I Y(s)- Y(t)l 
e>0 s, t 6 T  

where C is an absolute constant.  We apply this inequality, for each co 6 Q, to the 

Gaussian process (X(t; co, �9 ))t e r and obtain 

exx 1/2 ~ CE supe(logN(T, oo,; )) ~ ~o, sup IX(t;co, co')-X(s;co, co')l 
e>0 s, tET 

<~ CAr(Eo/ suP IX(t;CO, CO')-X(s;CO, CO'), r) 
s, t 6 T  

I/r 
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where Ar is given in (2.17). Equivalently, this is 

) l/r 
sup tx~,(n) (log n) 1/2 ~< CA r E~,, sup IX(t; to, to' ) -X(s ;  w, to' )It 
n > 0  s, tET 

Finally, we have by Lemma 2. I 

de(,O)(supo (n)(logn)"2) r 
s, tET t k n > 0  

-~- \ ~ - - ~  sup,>0 o(n) (log n) vq , 

and this immediately implies (2.22). 

COROLLARY 2.7. Let  (01 . . . . .  On) be a p-stable sequence in R n (i.e. (O(t))te r is a 

p-stable stochastic process  with T= { 1,2 . . . . .  n}). Then for  r<p 

EsuPl0jl 1>Dr, p inf (ElOi-o,Ir)l/r (logn) '/q 
j l<~i~k<~n 

where Dr, v is a constant  depending only on p and r. 

Proof. We use (2.22). 

expressed as 

(2.23) 

By (1.15') the pseudo-metric for this process,  can be 

d( i, k) = 6(r ,  p)-~ (ElOi-Ok]'3 ~:r. 

Now, if d(i, k ) ~ 6  then N(T, d; 6/2)>n. Therefore by (2.22) and (2.16) 

Esup 10jl I> (Cp,r)-' (log n)l/qf~. 
J 

The result follows since we can take 6=infl~i.k~.d(i ,  k).  

Remark  2.8. The lower bound in (2.23) is best  possible to a constant multiple. Let  

l < p < 2  and let (g~ . . . . .  ~n) be i.i.d, symmetric Bernoulli random variables each one 

taking on the values +_2 -l/q, (1 /p+l /q=l ) .  Let {(gjl . . . . .  gj,)}:~=~ be i.i.d, copies of  

(gl, . . . ,  g,)- Consider  

(0, . . . . .  On) = 6( r, p )-  ' ~ (F)-'/v(gj, . . . . .  gj~). 
j=l 
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It follows by Proposition 1.5 that (01 . . . . .  On) is a p-stable sequence in R n. By (1:15'), 

Vi:~j= 1 ... . .  n 

(flOi__ Orl~ I/r = (EIEi__~j~)I/p = I 

and by Lemma 1.2 and (1.24) 

E sup }0kl-- E 
I <~k<~n 

sup ~ rjk l - -  (logn)Vq 
l~k~,, i:l J '*]  

where {rjk)~k= 1 are independent Rademacher random variables and the final estimate 

follows from the fact that 

j=l 

for 2 sufficiently large and c a constant. (See Lemma 3.1 below.) 

On the other hand if (01 . . . . .  On) are i.i.d, p-stable random variables, normalized so 

that (Eloi-ox) l:r; 1, it is elementary to check that 

E sup 10kl- n lip. 
l<~k<~n 

In this case (2.23) is very weak. 

The next theorem is an extension of Fernique's lower bound for a.s. continuous 

stationary Gaussian processes to strongly stationary p-stable processes, 1 ~<p<2. 

THEOREM 2.9. Let G be a locally compact Abelian group with dual group F and 

let K e G  be a f ixed compact neighborhood o f  0 in G. Let (X(t))tec be a strongly 

stationary p-stable random process with associated pseudo-metric dx. We assume that 

dx is continuous on G• 

Let l<p~<2. I f  (X(t))te6 has a.s. locally bounded paths, or equivalently, i f  

(X(t))tE K has a.s. bounded paths, then necessarily 

J q ( d  X) = (log N(K, dx; e))I/qd~ < ~ ,  (2 .24)  

where 1/p+ 1/q= 1. Moreover, for each r<p, we have 

Jq(dx)<~Fp,(K)(EsSUp . \" , ~((t)-Xfs)l') 

where Fp, r(K) is a constant depending only on p, r and K. 

(2.25) 

18-848289 Acta Mathematica 152. Imprim6 le 29 mai 1984 
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In the case p= 1, i f  (X(t))te x has a.s. bounded paths then necessarily 

J| x) = log + logN(K, dx; e) de < ~.  (2.26) 

Moreover, for  each r< 1 we have 

F, ,.(,0 (e sup (2.',7) 
' \ s, tEK / 

where FI,r(K) is a constant depending only on r and K. 

Proof. In the case q = p = 2 ,  (2.25) is due to Fernique, Assume now that l~<p<2 and 

consider (X(t))te~ as given in the hypothesis of  this theorem. By Lemma 1.6(b) we 

can consider that (X(t))tEG is defined on a product space ( f f~ ,M,P)•  and 

that for each fixed to E f~ the process (X(t; to , . ) ) t ec  is a stationary Gaussian process. 

Continuing the above notation, we have by Fernique's  lower bound for stationary 

Gaussian processes (cf. [10] p. 83, [9] p. 48), there is a constant fix such that 

~176 <<- fltc E,,,, a 2 Z  sup ~X(t;to, to')-X(s;to, to')l 
n=l n (log (n+ 1)) I/2 s, tEK 

<<" flx Ar ( E~~ s, texsup ~( (t; to' to' )-X(s; to' to' )lr) l/r 

where we also use (1.46) and (2.17). We now apply Lemma 2.1 t o  the process 

(X(t;to,to'))teK. We can find a set f2~cf~ with P ( f~0>l /2  so that for w e f t ,  

llr 

a2fl(p) E <~flg Ar s u p  ~((t;to, to ' ) -X(s ; to ,  to')l r n (log (n+ 1)) l/p o,' (2.28) 
n=l s, tEK 

If  we raise (2.28) to the rth power and integrate over t)l  we obtain 

a2fl(P) 2 o(n) <- fix A, 2 I/" E sup X(t ) -X(s)  I" �9 
,---I n (log (n+ I)) I/9 t.s~X 

Using (1.46) and the comment  immediately following (1.47) we get (2.25) and (2.27). 

The fact that (2.24) and (2,26) hold is implicit in the above proof. Fernique 's  result 

implies that 

< ~ a.s. w; 
a~,(n) 

n=l n (log (n+ I)) 1/2 
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hence we can find an w 6 ~ l  for which this holds. Then Lemma 2.1 implies that 

< oo o(n) 

,,=1 n ( log(n+ 1)) I* 
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and, afor t ior i  

and 

E sup IX(t)-X(s)lr< ~, Vr<p.  
s, t E T  

Moreover, there is a constant  A(r, p) depending only on r and p such that if M is either 

sups.tel-[X(t)-X(s) I or supteTX(t) we have for each r<p, 

) '* 
supcPP{M>c } <<- A(r,p)(EMr) yr. (2.29) 

\ c>0 

We refer the reader to [2] for details. 

Finally we note that when G is compact we can improve Theorem 2.9. 

COROLLARY 2.11. Let G be a compact group with the Haar measure of  G equal to 

I. Then under the hypotheses of  Theorem 2.7 

~o~(l~ <~FprE(  sup lX(t)-X(s)l~) \s,t~c 

f0 ~log * logN(G, dx;e)de <~ F, ,E  ( sup IX(t)-~((s)l r)'/r 
' \ s ,  t E G  

where Fp. r and FI, r are constants depending only on p and r and not on G. 

Proof. This is an immediate consequence of the proof of Theorem 2.9 and the 

corresponding result in the Gaussian case (cf. [21], p. 11). 

and this is equivalent to (2.24) (or (2.6) when p =  1) by (1.45) and (1.47). 

Remark 2.10. We recall that the Fernique-Landau-Shepp result on the integrabil- 

ity of semi-norms of  Gaussian random variables has an extension to the p-stable case. 

In particular, let (S(t))tE T (T is any set) be an a.s. bounded p-stable process. Then 

sup cPP ( sup IX (t)-X(s) I >c  ~ < oo 
c>0 \ s ,  t E T  / 
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The last result  of  this section, an application of  these methods to functional 

analysis, concerns  extensions of  nonlinear contractions on finite subsets of  L p. 

THEOREM 2.12. A s s u m e  l<p~<2. Let  (S, X,lt) be a measure space and T a finite 

subset  o f  Lt'(S,Y,kt) o f  cardinality n. Le t  H be a Hilbert space and let ~:  T-- .H be a 

contraction, i.e. 

II~'(s)-~(t)llH -< IIs-tllLoo, v Vs, t~ T. (2.30) 

Then there exists an extension dP: LP(Iz)--->H o f  ap such that 

ll4,(s)-4,(t)ll~ <. c~ (logn)~/alls-tllL~oo, Vs, tE LP(IO, (2.31) 

where 1/a= 1 /p-  1/2 and cp is a constant  depending only on p. 

Proof.  By classical results (cf. e.g. [5]) there exists a p-stable process (X(t))te L,~) 

such that the associated metric dx(s, t) satisfies 

dx(s,t)  =lls-tllL,0~), Vs, tE LP(/z). 

Using Proposit ion 1.5 it is easy to show this. Without loss of  generality we may assume 

that/z is a probabili ty measure  on S. We define for t E LP(a), 

X(t) = c09)o ~ g~(Fj)-I/Puj(t) 
j=l 

where uj(t)=t(u]) and {uj.} are i.i.d. S valued random variables with P(ujEA)=kt(A),  

VA EZ. The remaining terms are the same as in (1.34). It follows from (1.15) that,  with 

u(s)=s(u),  Vs E LP(a), 

dx(s, t) = lu(s)-u(t)l'd#(u)/ IIs-tl]L~, ). 

By L e m m a  1.6 we can as.sume that (X(t)),e Leo, ) is defined on (f2, M , P ) x ( ~ ' ,  M' ,P ' )  

and that for each to E g2, (X(t; to, "))re L, Cu) is a Gaussian process on (f~', M',P ' ) .  Let  

do(s, t) be the parameter  of  X(s; w, . ) - X ( t ,  to, .), i.e., 

do(s, t) = (aE, o, IX(s; w, �9 ) - X ( t ;  w, �9 )12)v2, (2.32) 

where a =  I/2 in the real case and a =  1/4 in the complex case. 
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By Lemma 2.4 there is a set f21cQ with P(Qi)>l /2  such that, for each to6Qi ,  we 

have 

Ils-tllL.~) ~< rq,)-I log n I/a do,(s, t), Vs, t fi T ,  

and, consequently, by (2.30) 

II'I'(s)-(I'(t)llH ~< ~,q,)-' (log n) I/a dto(s, t ) ,  ~ts, t E T. (2.33) 

For each to E f~  and t s T we define the function 

q)o,(X(t; to, �9 )) = q~(t) (2.34) 

and observe that by (2.33) and (2.32) 

Ila,~(x(s; to, .))-~b~,(x(t; to, ))11. = Ila'(s)- 'I '(t)ll .  

~< y(p)-' (log n) l/a HX (s'~ to," ) - X ( t ;  to, �9 )HL2(dp! ). 

Thus ~ ,  is a contraction on a subset of the Hilbert space L2(f~ ', P', sg') with values in 

a Hilbert space H. By a well known result (cf. [30], Theorem 11.3) q),o can be extended 

to a contraction on the whole space, i.e. dp~,: L2(f~ ', sr P')-->H such that 

II~(u)-,t,~,(v)ll,, ~ y(p)- '  (logn)'/~llu-oHL2(ap), Yu, o 6 Lz(Q ', M',P').  

Therefore, we have by (2.32) 

IIr .))-,I,~(x(t;to, "))11,, <- Y(P)-~(logn)l/~ d~,( s, t), Vs, tE LP(u). 

We define / -  

= P(t2,)- '  I ~ ( X ( t ;  to, ~(t) dP(w), 
J~ 

I 

so that we have, by (2.34) that ~( t )=~( t ) ,  VtE T and 

II~,(t)- 4,(s)ll,, ~< ~,(p)-' (log n) '/'~ �89 d,~(s, t) 

for all s, tELP(Iz). Furthermore by (1.15') 

dx(s, t )=  6(1 ,p)-l  Eo, E~,[X(s)-X( t) t 

= 6(1,p)-IEo~[6(1,E)-Jdo,(s,t)] = cp Eo, do,(s, t), 

where cp>O is a constant depending only on p. 
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Therefore, we finally have 

114'(s)- 4'(t)lln -< y(p)-~ (log n)t/a(2cp) -I dx(s ~ t ), 

which gives the desired result. 

Vs, t E LP(/t), 

3. A sufficient condition for a.s. continuity 

In this section we show that the "entropy condition" (i.e. Jq(dx)<Oo) is sufficient for 

the a.s. continuity of the sample paths o f  a strongly stationary p-stable process, 

l<p<2 .  The idea of the proof is different from that of Section 2. In Section 2 we 

considered p-stable processes as mixtures of Gaussian processes. Here we will Consid- 

er them as mixtures of certain Rademacher series which have tail behavior on the order 

of magnitude exp -6c  q as c--->oo, (6>0, l/p+ 1/q= 1). Since q>2 such series are "better 

behaved" than Gaussian variables which, of course, have tail behavior on the order of 

exp -6c  2 as c-->oo. It seems to us that it is necessary to use Rademacher rather than 

Gaussian series in what follows. 

We will need several preliminary results which are of independent interest. We 

begin by recalling some standard notation. Let 0<p<oo and let I be an index set. We 

denote by lp, | the space of all families (cti)iel of complex numbers such that 

and we define 

sup t p card {i E I : la,l > t } < oo 
t>0 

) l /p .  

II(ai)ie~ll~,~ = sup f card{/El: l a , l > t  ) 
\ t>0 

It is well known that for p > l ,  the functional IIltp,~ is equivalent to a norm on lp,~(l) 

with which lp. ~(/) is a Banach space. The space lp, o~(N)is often referred to as "weak 

lp,', (N denotes the integers). 

For any family (ai)iet of complex numbers tending to zero at infinity, we can 

define a sequence (6tn*)neN which is the non-increasing rearrangement of (lail)iel. It is 

well known and easy to check that 

II(ai)iel lie, | = sup nvpa*. (3.1) 
n~>l 

We note for further use that, obviously, 

lai] ~ Ifli[, ViEI ,  implies II(a,)ll,,~ ~ I1~)11,,~. (3.2) 



p-STABLE RANDOM FOURIER SERIES 277 

Let tp: R+---~R+ be an increasing convex function with qg(0)=0. For any probabil- 

ity space (t), M,P) we denote by L~(dP) the so called "Orlicz space" formed by all the 

measurable functions f." Q---~C for which there is a c>0  such that 

We equip this space with the norm 

Throughout this paper we will denote by ~pq the function 

Wq(X) = exp Ixl q -  1. 

The Orlicz space L~'(dP) will be used repeatedly. 

Let {ei)iet be a Rademacher sequence on some probability space. It is easy to 

check that for p<2 ,  lp~(1)=lz(19. Therefore, if (ai)iet is in lp~(1), the series 

S~,,iElaiF, i converges a.s. 

We can now state the first lemma. 

LEMMA 3.1. If (ai)~et belongs to lp, | l<p<2 ,  then S belongs to L~q(dP) and 

we have 

k~tll(ai)i~t lip, ~ <- HSH vq <~ kpll(ai)~, lip, ~ (3.3) 

where kp is a constant depending only on p. 

This Iemma is rather elementary. A proof is given in [25] and the result is 

mentioned in [28]. Quite possibly it was recorded earlier but we have not found such a 

reference. Since this result is important in what follows we will include the proof given 

in [25]. 

Proof. Clearly we may assume that I=N and (lakl)keN is non-increasing. We first 

show the right side of (3.3). Assume that sup, ni/Pla~l<<. 1 and let Sn= E~k=~ ak ek. Then for 

all c>0 

P(fSI > 2c) ~< e(ISnl > c)+etlS--Snl > C). 

We pick c=qnl/q>~x~=l k -vp, 1/p+l/q=l, so that P(ISnl>c)=O. By a well known esti- 

mate for subgaussian series (cf. [16], p. 43) we get 
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C2 - 1 

e(Is-s.I )~ 2 

~< 2 exp { - - ~  ( ~  k-2/P) -' } 

for all integers n. From this it is easy to see that 

IIsIl~q ~< k~ 

for some constant kp depending only on p. The right side of (3.3) follows by homogene- 

ity. 
n To prove the left side of (3.3) we first note that Ek=lek--n with probability 2 -n. 

Therefore 

qt ~ en 

for f l=(l+log2)  ~/q. It follows that 

(3.4) 

where fl depends only on q (or p). We also have that 

2 k=l ~q k<~n 

>>.p-'n'/.a* 

(3.5) 

and this completes the proof of the lemma. Note that the first inequality in (3.5) follows 

by convexity. The second inequality follows from the fact that 

I q 
Eexp ake k ~>Eexp 2 -1 inflakl ek 

\ k / k=l 
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which is a consequence of the contraction principle in the complex case (cf. [21], p. 45) 

and the last inequality follows from (3.4). 

The second lemma is a well known variant of Dudley's theorem (cf. [22]). 

LEMMA 3.2. Let (T, d) be a compact metric space and assume that for 0<q<  o0, 

Jq(d) = (log N(T, d;g) ) l /qde  < ~ .  

Then any random process (X(t))tE r in L~q(dP) satisfying 

IlX(t)-x(s)llwq <.d(s, t), Ws, tE T, (3.6) 

has a version with continuous sample paths and 

E sup IX(s)-X(t)l ~ Dq(Jq(d)+d) 
s, tET 

where d=SUps, tETd(S, t) and Dq is a constant depending only on q. 

We refer the reader to [21], p. 25 where a proof of this result is given for q=2. The 

case q>0 is entirely similar since (3.6) implies 

P[lx(s)-X(t)lL d(s, t) > u ]  ~<2e -I"lq, Vu>0.  

For a more general discussion see [26], [12], The following is the major new step in 

proving sufficient conditions for continuity of strongly stationary p-stable processes. It 

should also be of independent interest. 

THEOREM 3.3. Let {Z~} be a sequence o f  independent positive random variables. 

Then for any 0<p<oo and all c>0 

cPe(ll{Zn}llp~ > c  } ~<A supt e ZP(Z .> t )  (3.7) 
t > 0  n 

where 2=262. 

Proof. It is enough to show (3,7) with p= 1. The general case follows by applying 

(3.7) with p=  1 to the sequence {Z~}. Let 
0r 

A =  s u p t ~ P ( Z , > t )  
t > 0  n =  1 
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and assume that A~<I. For a fixed c>0 we will show 

P{II{Z~)II,, | > c} ~<~c-' (3.8) 

and, by homogeneity, this will conclude the proof of the theorem. Thus it remains to 

show (3.8). Let 

so that Z,,=max (U,,, V,,). Using the representation 

II{Z.)lh,| -- supt ~ l(z.>,} 
t>O n= l  

it is easy to see that 

Therefore 

II{ZAIh.. ~< I1{ UAlh.-  +1t{ v~}lh, ~. 

e{ l l {zAth , .  > 2c} 

<~ 

P{ll{ u ,}lh . .  > c  ) § v,)th.~ > c ) 

c-2Ell{ U,)ll~.| V, *O} (3.9) 

c'2Ell{ Un)ll~.| + ~ e{z, > c }. 
nml 

We now estimate the first term in the last line of (3.9). Let { U'} be an independent 

copy of { U,,} defined on (f~', ~ ' ,  P')  and let E' denote expectation with respect to this 

space. Note that since 

t ~P ' (Un>t)<~t  ~ P ( Z n > t )  
n = i  n = l  

we have 

s t ~  
supt l{vn>,) ~< sup t (l{vn>t}-P (U n t ))+t P(Zn> t ) 
t>0  n = !  t>0  L n= l  n ~ l  
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Using this we get 

E]I{ U"}II~' = = E (sup t ~ I{u">o) t>o n=l 

<~E t (llu.>ti-P'(U.>t)) +A 
\ t>0 n=l 

~<2E sup t (l{u.>t}-E'l{u,>o) +2 
\ t>0 .=1 

since A~<I. By convexity we can majodze the last term by 

2EE' t (l{u.>t}-l{u,>t}) +2. 
\ t >u  L ,,=1 J /  

(3. ]o) 

Now let {e,} be a Rademacher sequence independent of { U,} and { U~}. By symmetry 

(3.10') is equal to 

t E e. ltu,>t} +2 (3.11) ~<4E supt  enlw~ ~ +4E' Lsup ,=1 
L t>0 n=l 

2 

<~8E[supt E enil{v ~t}l +2. 
L t>~ n=l n ..1 

Let 

We use the following elementary lemma to estimate :the last expression. 

LEMMA 3.4. For any sequence {u,} of positive numbers we have 

E supt e. l{.,>t} <~ 8 /L2.. 
L ,>o n=! n=l 

Proof of Lemma 3.4. There is nothing to prove unless u,--->0 so assume that this is 

the case. Let {u*} be a non-increasing rearrangement of {u,}. Let ~: N--->N be a 

permutation such that u,~(,o=u*. We have 

k 

supt E e. l{..>t} =supu~ E e~.). (3.12) 
t>0 n=l k>~! n--I 

k 

S k = u ~ E t ~ .  ~ 
n=l 

(3.10') 
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and 
k 

n = l  

Following the argument used in the proof of Kronecker's lemma we have 

k 

= * Z  ( r . - r . - o  ,-1 S k ll  k u n 

n=l 

k - I  

T * = k-il~ Z r.(.:;', _i i . . l )  
n = l  

k - I  

�9 T ( '  * - 1  __/,/n~-I). <<- Tk+ukE sup l , "~,+J 
n = l  l<~n<~k 

Therefore 

so that 

sup Iakl ~ 2 sup ILl 
k~ l  k~ l  

( / (sup; E supS k ~<4E ITkl . 
\ k~>l } 

(3.13) 

k , It is obvious that T k is equal to E,= 1 u, e, in distribution. Hence by Levy's inequality 

(cf. [ 16]. p. 12) we have 

o0 ao 

EsupITkl2<,2Z U .2= 2 ~  u,.Z (3.14) 
k~ l  n = i  n = l  

Finally, (3.12), (3.13) and (3.14) give Lemma 3.4. 

Completion of proof of Theorem 3.3. Let us denote by E, expectation with respect 

to {en}. Let (f~, 3:, P) denote the probability space of {Z,} and let E, denote the 

corresponding expectation operator. For a fixed os E Q we have by Lemma 3.4 

E, s u p t E e  . l(u.(o,)> 0 ~<8 U2,,(o)). 
\ t>0  n = l  n= l  

Therefore, 

( )2 
EE~ sup t E e, l{v.(~o)> 0 ~< 8E UZ,(w) 

\ t>0  n=l n=l 
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= 8 Z e v 2 o  
n=l 

c 

= 8 2tP(U, > t ) dt 
n=l 

(3.15) 

16cA ~ 16c. 

Combining (3.9) and (3.10), and evaluating (3.10) by (3.11), Lemma 3.4 and (3.15) we 

obtain 

e(ll{Z.)lll=>2c } ~ 128 + 2 + 1  ~< 131/c 
C C 2 C 

for c~>l and of course it is also true for c< l .  This gives (3.8) with 2=262, concluding 

the proof of the theorem. 

The next corollary strengthens Theorem 3.3. It also generalizes a well known 

result on empirical distribution functions which is sometimes referred to as Daniels' 

theorem (cf. [271). 

COROLLARY 3,5. Let {Zn} be a sequence of independent positive random varia- 

bles. Assume that Z,~l P(Z,~t)<oo for all t>0. Let 

Then for all c>O 

where 2=262. 

Z* = sup 
t>0 

~-~1 {z.~>t) 
n = l  

• P(Z. >>- t) 
n=l 

cP(Z* > c) <- 2 (3.16) 

Proof. Note that 

N N 

sup t E l[zk>t] = sup t E l[z~t] 
t>0 k=l t>0 k=l 

and, similarly 

N N 

sup t E P(Zk > t) = sup t E P (Zk ~> t). 
t>0 k=l t>O k=l 
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Using these two equalities in (3.7), in the case p=  1, we get 

c e  s u p t  E I[zk~t]>C <~2supt  E e ( z k > ~ t )  
1. t>0  k=  1 t > 0  k= 1 

(3,17) 

where 2=262. Let 

) cp(t) = P(Zk  >i t) . 
k=l 

This function, q~(t), is non-decreasing, left continuous and has right hand limits. 

Therefore we can find a sequence of functions {q%(t)} such that q0,(t) is continuous, 

strictly increasing in t and is increasing in n, ~ ( 0 ) = 0  and lim~__>~ q~(t)=qo(t), Vt>0. 

By (3.17) with q%(ZD replacing Zk 

cP sup t I[,.(zk)>_t ] > c ~< 2 sup t P [q%(Z k) >I t]. (3.18) 
t>0  k = l  t>0  k = l  

We have 

N N 

sup t E P [q%(Zk) ~> t] = sup qg,(s) E e [q%(Zk) ~> q%(s)] 
t>O k = l  s>O k = l  

N 

= sup q%(s) E P (Zk >~ s } ~< 1, 
s>O k = l  

and similarly 

N N 

supt Z l[r = supq~ E I[zk~]" 
t > 0  k = l  s > 0  k = l  

Using these two relations in (3.18) we get 

cP t . - .  > c <. A. 
1. t>0  k = l  

(3.19) 

Now, since q%(s) increases monotonically to q~(s), 

lim cP sup q%(s) l[zk~s] > c = cP sup qg(s) l[z~s] > c . 
n ---~ ~ L s > 0  k=l k = l  

Using this in (3.19) we have 
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L J 
N 

E l[zk>~ l 
k=l >c  <.2 cP sup N 

s>O E P[Zk>~s] 

k=l 

and since this holds for all N we get (3.16). 

Remark 3.6. Daniels' theorem states that for {Z~}~= 1 ..... N i.i.d, with continuous 

[,N 1 P sup n= I 1 
t P{Z l~<t} > c  =-- 'c  Vc t>I .  (3.20) 

distribution function, 

Assume that Zn~>0, n = l  . . . . .  N. If we replace Z,, by Z~ -1 in Corollary 3.5 and take the 

sup over all t>O, we get 

rNl e L ,Up o - 7 -  - -  >c 
1 E p ( z n < ~ t  ) 
N n=l 

<~ - -  ( 3 . 2 1 )  
C 

where {Zn}n~N are not necessarily identically distributed. Therefore, in some sense, 

(3.21) is a robust form of the upper bound in Daniels" theorem. 

(While making final revisions of this paper prior to publication we discovered that 

(3.21) was proved by van Zuijlen [31], using completely different methods from ours. 

Furthermore, it is easy to see that (3.21) implies our Theorem 3.3. Nevertheless our 

proof seems to be more elementary than the one in [31]. Recently, Joel Zinn has found 

a new and simple proof of Theorem 3.3.) 

COROLLARY 3.7. Let 0<p<oo and let {Xy} be an i.i.d, sequence o f  random 

variables. Then if  ElXl~<oo the sequence {j-I/PXj} is a.s. in lp, ~(N) and we have 

cPP{ll(J -'~'xj} II~, ~ > c} ~ AEIX, I ~. (3.22) 

Afortiori, for O<r<p 

(~1( J-"%)ll~, o)'" ~ h .  ,(elxd") '" (3.23) 

where tip, r is a constant depending only on p and r. 
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Proof. The first inequality follows immediately from Theorem 3.3 and the well 

known observation that 

P(j-t/olXjI > c ) <<- P(IX, I >jr/Pc) ~< E Vc > 0. 
j= l  j= l  

The second inequality is a consequence of the classical identity 

E M  ~ = P ( M  r > c ) dc. (3.24) 

The next corollary is an immediate consequence of Theorem 3.3. 

COROLLARY 3.8. Le t  0<p<oo and let F be an arbitrary set. Le t  {~x}v~r be a 

family  o f  independent random variables such that 

P(l#~l>c)<~c-., w~,~r, Vc>0. (3,25) 

Let  {av}e~r be complex numbers such that 2v~rlay[P<oo. Then {ay~x}eer is a.s. 

in lp. o~(F) and we have 

e~ ~e}yE rile,= >c )~2 ~ layl', Vc> O. 
?EF  

Remark  3.9. (i) It is an elementary consequence of the Three Series Theorem that 

{av~v)xer is a.s. in lp+,(F) for each e>0 but that {av~v}vr is not necessarily in 

lp(F). The preceding corollary is a refinement of these observations i.e. {ax~x)~,r is 

in "weak lp". 

(ii) Theorem 3.3 and its corollaries are not valid if we drop the assumption of 

independence of the random variables. This is rather obvious except in the context of 

the last corollary. This point puzzled us for some time until W. Beckner kindly showed 

us a counter example. 

(iii) Corollary 3.8 can be obtained as a direct consequence of Doob's inequality. It 

is easy to see that 

Mt = E I%t" l{lar ~rt>t) 
xs r e(l% ~x[ > t ) '  t > 0  

is a martingale. By Doob's  maximal inequality we have 

ewe (sup M t > c -~ ~< sup E M  t = E layl ~" 
t>O t>O y E r  

(3.26) 
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Also, by (3.25) 

po E l{l%~yl>t} ~< M r  
yE F 

Using this in (3.26) we immediately obtain 

d'P(l[{ay ~e)re r[le,= >c )<~ E Jar[P" 
yE F 

This alternate proof has thc additional advantage that it yiclds Corollary 3.7 with a 

constant equal to I instead of 2, Wc suspect that thcrc is also a simpler proof of 

Theorem 3.3 based on martingale methods but wc have not bccn able to find onc. 

Wc can now prove a sufficicnt condition for a.s. continuity of strongly stationary 

p-stablc random processes. 

THEOREM 3:10. Let l < p < 2 < q < o o  where 1/p+ l /q=l.  Let G, F, K, (X(t))teG and 

m be as in Theorem A and let dx andJq(dx) be as given in (0.1) and (0.2). IfJq(dx)< oo 

then (X(t))tEK has a version with continuous sample paths. Moreover, we have 

E sup [X(s)-X(t)  t <~ cp(K) (Jq(dx)+m(r) 'tp) (3.27) 
s, tEK 

where cp(K) is a constant depending only on p and K. 

Proof. We may assume (multiplying (X( t ) ) tEG,  if necessary,  by re(F) -~/p) that m 

is a probability measure  on F. Let  { Yj}j~>I be an i.i.d, sequence of  random variables 

with values in F such that the probability distribution of  Y1 is equal to m. Let  {Fj}i~>~ 

and {wj}j>~l be as in Proposit ion 1.5. We take {Fj)j-~I, {Yj}j>~l and {wi}j-~>l to be 

independent of  each other and define them all on the probability space (f~, sO, P). Let  

{ej}j>~ be a Rademacher  sequence defined on a different probability space 

(g2', M' ,P ' ) .  The random process  

oo 

W(t; o9, m') = c(p) E ej(w') Ffl/t'(co) wj(oJ) Y~(t, to), t E G (3.28) 
j=l 

has the same distribution as (X(t))tec. This follows from Proposition 1.5 sincc (3.28) 

and (1.34) arc clcarly cqual in distribution. 

Wc introduce thc random metric 6o, defined for cach fixed ~o E • by 

do(s, t) = I I { r j ( ~ o ) - l / p w j ( ~ o ) ( Y ~ . ( s ; ~ o )  - Yj.(t;~o))}j.>lllo | Vs, t E G .  

19-848289 Acta Mathematica 152. Imprim6 le 29 mai 1984 
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Since [wj Yj[~<I we have, by (3.2), that 

sup 6o~(s, t) <~ 211(r'f'*lwil}li~, ~ ~< ~rll (r'f~/PIll~, 
s, tEG 

and by (1.25) and (3.23) 

(3.29) 

Since Yi takes values in F, 

E sup 6~(s, t)  ~ ~rap = Bp. (3.30) 
s, tEG 

it is clear that 6o,(s,t)=6~(O,t-s) and, similarly; 

dx(s, t)=dx(0, t -s) .  To simplify the notation we set cr, o(t-s)=6,o(s, t) and 

crx(t-s)=dx(s,t). Now, for fixed toEf~, consider W(s;w,~o')-W(t, to, to') as a Rade- 

macher series. By Lemma 3.1, we have 

[IW(s;to, . )-W(t; to,  ")ll~q ~< kp 6o,(s, t), Vs, tEG. (3.31) 

Therefore, by Lemma 3.2 and (3.29) 

Eo,, sup IW(t;to,-)-W(s;a~, - )1 ~< kpDq[Jq(6~,)+erll{Ff~/P}llp,~] (3.32) 
s, tEK 

where, as in (0.2), we have defined 

L Jq(t~o ) = ( l o g  N ( K ,  c)~; e))~/qde. 

Taking the expectation of (3.32) with respect to (f2, ~r P) and using (3.30) we get 

E sup IW(t)-W(s)l <~ kp Oq[E~ Jq(6~)+g A. (3.33) 
s, tEK 

To complete the proof of this theorem we will need the following lemma which will be 

proved after Remark 3.12. 

LEMMA 3.11. Let 6,o be a random, translation invariant, pseudo-metric on G. Let 

6(s, t) be the pseudo-metric defined by 

c)(s, t) = E,o 6,o(s, t), Vs, t E G. 

Then 

E~, Jq(C)~ <~ Aq(lO [ Jq(cS)+ E~ s, tEKSUp 6~(S, t ) ] ,  (3.34) 

where Aq(g) is a constant depending only on q and K. 
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Completion of proof of Theorem 3.10. Note that by Lemma 1.2, (3.2) and (3.23) 

O(s, t) = Eo~ Oo~(s, t) 

{:ur o } 
<~ Ctp(:tl2) hp, l dx(s, t )-- Zp dx(s, t ). 

Therefore, by (3.30) and (3.35) we get 

Jq(6)+E~, sup t~(s, t) <~Zp Jq(dx)+Bp. (3.36) 
s, t E K  

Finally, note that ifJq(dx) is finite then by Lemma 3.11 and (3.36), Jq(d,o) is finite a.s. 

with respect to (Q, ~ ,P ) .  It follows from (3.31) and Lemma 3.2 that there exists a set 

(2cf2, P(s such that for each w E ~ ,  W(t;to, .) has a version with continuous 

sample paths with respect to (f2' ,~' ,P').  Therefore, by Fubini's theorem (V(t))tEK 

has a version with continuous sample paths. Furthermore, by (3.33), (3.34) and (3.36) 

we have 

E sup Iw(t)-W(s)l <~ k~ Dq[Ap(K)Xp Jq(dx)+(Ap(K)+1)Bp] 
s, t E K  

<~ CR(IO [Jq(dx)+ 1]. 

Since (W(t))teK and (X(t))ter have the same distribution this completes the proof of 

Theorem 3.10. (The reader will recall that we have normalized so that re(F)= 1.) 

Remark 3.12. By (3.27) and (2.29) 

( supcPPIsuplX(s)-X(t)l>c})'/P<~A(1,p)Cp(K)(Jq(dX)+m(F)l/P). 
c>0 I s ,  t E K  

(3.37) 

This can also be proved by considering (W(t))ter instead of (X(t)),er and using an 

inequality of Hoffmann-JCrgensen (cf. [13]). In fact, it is also possible to slightly modify 

the proof of Theorem 3.10 and obtain the improved result (3.37) directly. 

Proof of Lemma 3.11. We use an idea which first appeared in [20] in a similar 

context. Since our argument is essentially the same as that of [21], Chapter II, Lemmas 

2.3 and 3.6, we will not give too many details (see also [I 1]). Note that the fact that the 

pseudo-metrics 6,o(s, t) are translation invariant is essential in this proof. 

First we will obtain (0.12). Consider ox(u)=dx(O, u) as defined prior to (0.10) and 
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Ox(U) as defined in (0. I 1). Clearly, we can find a number b(p)>0 large enough so that 

u -1 (log b(p)/u) -lIp is non-increasing on [0, 1]. Now, exactly as in the proof of (3.30), 

Chapter II, [21], we can find a constant Dp(K)>0 depending only on b and K such that 

<_ s...sup 

~< Op(K)[ sup dx(s,t)+Jq(dx) ] (3.38) 

where lp(ox) is defined in (0.13). This immediately gives (0.12) since 

SUps, tE K dx(S,  t)<~2m(F) lip. 

Recall that following (3.30) we defined o,o(u)=6,o(O, u). As we just did for ax(U), 

we define a,o(u) by (0.11). We now use (3.38) with ao~ and 60, instead of Ox and dx and 

obtain 

Dp(K)-I [Ls, tEKSUp (~to(s, t )-l-Jq(~w) ] ~ Ip(~to)dl -s,t~.KSup (~w(s, t ) 

~Dp(K)[sStl~pK (~o~(S,t)..~_jq(f~o)]" (3.39) 

We also define a(u)=6(O, u) so that, by the hypothesis of this lemma 

a(u) = Ecr, o(u). 

We have, by Lemma (2.3), Chapter II, [21], that 

E, olp(o,o) <~ Ip(o). (3.40) 

We can now obtain (3.34) since by (3.39), (3.40) and (3.38) with o and 6 instead of Ox 

and dx, we get 

E~176 <~ Dp(K) [ E~ Ip(~176 s,t~rsup 6~(s,t)] 

where at the last step we use the obvious inequality, SUps, tEK6(S,t) <- 

E~, SUps, t e K 6o~(s, t). 
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Aside from the representation of X(t) by W(t), none of the steps in the proof of 

Theorem 3.10 require that the process is exactly p-stable. To demonstrate this we will 

prove Theorem B, (i) in which the independent random variables {~} need not be 

stable. 

Proof of Theorem B, (i): This proof is similar to the proof of Theorem 3.10 but 

somewhat simpler since in this case, we can obtain an easier proof of Corollary 3.8 

using Remark 3.9, (iii). 

Let {ex}~e r be a Rademacher sequence defined o n  a probability space 

(if2', ~/', P'). Without loss of generality, we can replace Y(t) given in (0.7) by 

Y(t;to, to ' )=  Z ayey(oJ')~y(og)),(t), tfiK, 
r e  F 

defined on (f~xQ',  ~r P• By Lemmas 3.1 and 3.2 we have 

E~o, sup Ir(t;w,. ) -r (s;w,  ) l  ~< kpOqfJq(Oo,)+ sup 6~(s,t)] 
s, t E K  L s, tEK J 

where 

6,o(s, t) = II Flip, 

By Corollary 3.8 and (3.24) we have 

E~o 6,o(s, t) <<. bp dr(s, t) 

where bp is a constant depending only on p. Also by (3.2) 

and by Corollary 3.8 

sup 6o~(s, t) <~ 211{% ~x)xe flip, | 
$, l 

where C is constant. Finally, arguing as in Lemma 3.11 we get 
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The proof of Theorem B, (i) can now be completed exactly as in the proof of Theorem 

3.10 taking into account (2.29) (see also Remark 3.12). 

Remark 3.14. The only place that the nature of K came into the proof of Theorem 

3.10 or the proof of Theorem B, (i) was in (3.38). This is because the inequalities in 

(3.38) involve /t(K), kt(K+K) and /u(K+K+K+K), (where K+K+K+K={s+t+u+v:  

s E K, t E K, u E K, v E K}), and in general these three sets have different p measure. If 

G is a compact group we take K=G and of course K+K=G and K + K + K + K = G  so this 

problem does not arise. Therefore, for example, we can replace Ap(K) in (0.8) by Ap, a 

constant depending only on p and independent of G. 

Remark 3.15. Let {xj} be a sequence in an arbitrary Banach space. By an argument 
oo 

similar to that of Lemma 1.2 one can show that Ej=~ ej F)VPxj converges a.s. iff 

Z)~ 1 ej j-VPxj converges a.s. This reduces the study of p-stable processes to series of the 

latter form. As an example of this we can obtain an interesting relationship. To be 

specific, let v={v(t), rE[0, I]} be a real valued stochastic process with continuous 

sample paths satisfying supte to, n Elv(t)l p<~176 Let m denote the measure induced by v 

on C[0, 1] and let {vj} be i.i.d, copies of v. Then Z7=lejj-UPvj(t), t e l0 ,  1], converges 

uniformly a.s. iff the p-stable process with m as its spectral measure has a version with 

continuous sample paths. 

4. Proofs of Theorems A, B and C 

In this section we briefly mention how the results of Sections 2 and 3 are put together to 

prove Theorems A, B and C. We also mention some other results which follow easily 

from these theorems and some results in [21]. 

Proof of  Theorem A. The fact that Jq(dx)<Oo is a necessary and sufficient 

condition and that Joo(dx)< o~ is a necessary condition for X to have a version with 

continuous sample paths follows immediately from Theorem 2.9 and Theorem 3.10. To 

obtain the lower inequality in (0.3) we have by (3.27) of Theorem 3.10 that 

E sup IX(t)[ "~/P ~< EIX(0)I+Cp(K) (Jq(dx)+m(V)). 
t E K  

(4.1) 

Furthermore by (1.11) 

EIXo] -- 6 '( 1, p) m(r)'/P. (4.2) 



p-STABLE RANDOM FOURIER SERIES 293 

Using (4.1) and taking Remark 2.10 into account we get the lower inequality in (0.3). 

The upper inequality in (0.3) follows from (2.25) of Theorem 2.9, (4.2) and Remark 

2.10. 

Remark 4.1. The reader probably has noticed that the choice of the compact set K 

does not affect the qualitative results in this paper. Indeed, let (X(t))te6 be any 

stationary process (i.e. a process such that (X(t))tec has the same distribution as 

(X(t+s))tec for each s~-G). If K1 and Kz are two compact subsets of G with non- 

empty interiors, then (X(t))terl has a version with continuos sample paths iff 

(X(t))teK~ does. This is obvious since each of the sets K 1 and K 2 can be covered by 

finitely many translates of the other. Consequently, if G is the union of a countable 

sequence of compact sets, then (X(t))ter has a version with continuous sample paths 

iff the entire process (X(t))te ~ does also. Of course, this applies in the most important 

cases such as G=R n. 

Proof of  Theorem B. Part (i) was proved at the end of Section 3. Part (ii) follows 

from Theorem 2.9, applied in the case when the spectral measure m is discrete, and a 

comparison theorem from [14]. To be more specific suppose that (Y(t))ter is a.s. 

continuous, then by a result of Ito and Nisio (cf. Theorem 3.4, p. 95, [15]), 

E~era~y( t ) ,  tEK, must be a.s. convergent in C(K) in any chosen ordering. Let 

{Oe}yer be i.i.d, complex valued p-stable random variables. Since we assume in (ii) 

that 

inf P(I~I > e } (P(IO~I > c })-' 
yE F 

is bounded below for c sufficiently large, it follows from Theorem 5.1 [14] that the 

series EeeraeOey(t), tEK converges a.s. in C(K) and this implies, by Theorem 2.9 

that Jq(dx)<Oo, and when p=  l, Jo~(dx)< oo. (Even though Theorem 5.1 [14] is written 

for real valued random variables it is also valid for complex valued random variables. 

Also, clearly, we could have used it to prove Theorem B, (i) as well.) 

Remark 4.2. In [21] we consider series of the form 

Y(t) = E ay e~ ~y~,(t), tEK (4.3) 

where {ee} is a Rademacher sequence and {~} are complex valued random variables 

not necessarily independent but with {ey} and {~,} independent of each other. In this 
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case if we add the hypothesis suprE[~y[P<oo our proof shows that the series in (4.3) 

converges uniformly a.s. and we get an expression like (0.8) for the same dr  as in 

Theorem B but with the left side replaced by (E sups, re K IY(t)- Y(s)le) ~/p. This follows 

because ]]{ar ~• ~(u)-1])]]p, =~<(E lavlPl~vlp ly(u)- liP)t*. 

Remark 4.3. Exactly as in Chapter 7, w 2, [21] we can prove the following: Let 

(X(t))teT be a strongly stationary, real or complex valued p-stable process, l<p~<2. 

Then (S(t))t~G admits a version with paths bounded on the whole of G if and only if 

fo G (log N(G, e) ) l /qde  "~ c~ ax; (4.4) 

1/p+l/q=l. Moreover if (4.4) holds then the paths of (X(t))tec must be a.s. almost 

periodic functions on G. 

Remark 4.4. Let G = F = R  n and consider the random Fourier series 

where {Ok) are i.i.d. 

l<p~<2 

~_~a k O k e i<xk't>, t~. [ -1 ,  1]", (4.5) 
k=l 

real or complex valued p-stable random variables. Then for 

(E taY 
~ \!akE~,, < ~ (4.6) 

/ 

,=1 n(log(n+ 1)) lip 

is sufficient for the uniform convergence a.s. of the series (4.5), where 1"1 denotes the 

Euclidean norm on R n, This result follows because, exactly as in Chapter 7, w I, [21], 

we can show that (4.6) implies Jq(dx)<~, Up+l/q= 1. 

Now let G be the circle group and consider 

~ a~ O k e ikt, t ~. [0, 2z0. (4.7) 
k=l  

The expression given in (4.6) but with 2k=k is a sufficient condition for the series in 

(4.7) to converge uniformly a.s. for l~<p~<2. The new element here is that the result 

holds for p = l .  The proof is rather technical and we will not give it at this time. Now let 

[ak[ in (4.7) be non-increasing. In this case the series in (4.7) converges uniformly a.s. iff 

(4.6) holds (with 2k=k), l~<p~<2. This is proved by the same method used in [19] in the 
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case p=2 except that we must use the version of Slepian's lemma for strongly 

stationary p-stable processes mentioned right after the statement of Theorem C. 

It appears that Theorems 1.2 and 1.4, Chapter 7, [21] should also generalize for 

l<~p~<2. However, at this writing, we have not yet done this. 

Proof of Theorem C. Let us denote by/z normalized Haar measure on G and let ~o 

denote the identity element in F. We first observe that 

y, e0~ larl"}/ ~< layl'l~,(t)-ll" )'/vdlu(t ) 

<~sup{dx(s,t): s, tEG }. 

Therefore, if e<(Ey.r ~ larlp) ~/', we must have N(G, dx; e)>l and consequently 

(log 2) l/q layl p ~ Jq(dx). (4.8) 

We can now obtain the left side of (0.9) by using (4.8), (0.8), Remark 3.14 and the 

following elementary inequality: 

E sup IX(t)-S(s)l>~ Esup  [g(t)-fS(s)dlt(s) 
s, t E G  t E G  I Jo 

a' [ 

On the other hand it is obvious that 

E sup IX(s)-X(t)l <~ 2EIIXII 
s, t E G  

so that the right side of (0.9) follows immediately from Corollary 2.11. 

5. Applications to harmonic analysis 

Using some of the results of the preceding sections we will show that for l < p < 2  the 

space of all p-stable a.s. continuous random Fourier series can be identified with the 

predual of a certain space of multipliers. Since our methods are similar to those used (in 

the case p=2) in [24], in Chapter VI of [21], in [25] and in [26] we will not give too many 

details. 
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Let G be a compact Abelian group with discrete dual group F. We denote by/~ the 

normalized Haar measure on G. Recall that, by definition, a "pseudo-measure" f i s  a 

formal Fourier series f=E~,erf(7)7 such that sup~erlf(y)]<oo. Let l~<p~<oo. We 

denote by Fp the space of all pseudo-measures f such that Eyev If(7)[P< ~176 and equip 

this space with the norm 

Ilfll v. -- (~')1 p 

Let q3q denote the Orlicz function 

qDq(X) = x(1 +log (1 +x)) l/q. 

The functions ~q and q)q (which was defined prior to Lemma 3.1), are in duality, in the 

sense that L ~% is the dual of L ~, and the corresponding norms are equivalent. For 

l < p < 2  and 1/p+l/q=l, we will denote by A(p, q0q) the space of all functions f i n  Fp 

which can be written as 

f= ~h,,~k,, 
tl=l 

with 

We define 

IIh.llrpllk.ll~q < oo, 
n=l  

]lfHA6o.%)=inf{n=~lllh,llFp[]kn][%} 

where the infimum runs over all such representations. 

Let (O~,)~,~r be an i.i.d, sequence of p-stable random variables with parameter 1, 

defined on (ff~, M, P). We denote by C~.s. the space of all f in Fp such that the series 

E~,~rf(7) Oy7 is a.s. continuous, (0<p~2).  I f p > l  we equip this space with the norm 

where H I[c(c) is the standard sup-norm on the space of continuous functions on G. It is 

not hard to see that (C~.s, U L)  is a Banach space. I f p = l ,  we define 
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The space Cla.s. equipped with this "norm" is a quasi Banach space. I f p < l ,  it is easy to 

see that fbe longs  to C~a.~" iff Ere rlf(r')~'<oo, so this case is trivial. 

Let f be in Fp. For t E G, let fi be the translated function, i.e. fi(x)=f(t+x). We 

introduce the pseudo-metric d, y defined by 

df(s, t) = li L - f ,  llr, --- I f@)lPl~'(s)-y(t) l  ~ 

To simplify the notation we will write 

fO ~ 
Ep, r( f ) = (log N(G, df; e))'/rde+lf (0) I. 

We can now state the main result of this section. 

THEOREM 5.1. Let f be in Fp, l<p<2<q<oo ,  1/p+ 1/q= 1. The following properties 

are equivalent: 

(i) f belongs to C~.~., 

(ii) Ep, q(f)<~, 

(iii) f belongs to A(p, cpq). 

Moreover, ~ f  Up, I[/l[ AO~, %) and Ep, q(f ) are all equivalent quasi-norms, 

Proof. We only sketch the proof of the equivalence of the three functionals under 

consideration. By Theorem 2.1 in [26], we can immediately deduce that 

Ilfll AW, ~ <dp Ep, q( f  ) 

for some constant dp. From Theorem C, we have 

1 Evq(f)<~fUp<~C,pEp, q( f)  
c ' .  , 

for some constant C~. Therefore, it remains only to show that 

~ f ]p  ~< C~llf[I A(p, fffq) 

for some constant C~. This is an immediate consequence of the following lemma. 

LEMMA 5.2. I f  hE Fp and kE L ~q then h-~kE C'a.s. and moreover 
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~ h ~ k] p <<- C'~llhll~ llkll % 

for some constant Cp depending only on p. 

To prove Lemma 5.2 we will need the following lemma. 

LEMMA 5.3. Let (ee)eer be an i.i.d, sequence of  Rademacher random variables 

defined on some probability space (ff2',~l',P'). Let (ae)eer belong to lv,~(F). Then 

for almost all 09' 6 Q' the function Eye r ay ey(to') y is in LWq(dtz). Moreover, 

E~ ' l~raree (w ' )Y  [ ~oq ~rqll(ae)eerllP'~ 

for some constant rq. 

The proof of Lemma 5.3 is quite similar to that of Lemma 1.3, Chapter VI, [2 1] but 

using Lemma 3.1 instead of the corresponding result for p=q=2 .  

Proof of  Lemma 5.2. We begin by recalling that (0e)eer has the same distribution 

on f~ as (e~(oJ')0y(to))y~r has on f~xf~', ( to6fL w '6Q ' ) .  Let ay(to)=Oy(to)t~(7). 

Since h 6 F  v, by Corollary 3.8, (a~,(to))y~r6lp,~(F) o~ a.s. Therefore, by Lemma 5.3 

the function 

H~o,~o' (t) = ~ ay(to) e~,(to') y(t) 
),s F 

belongs f~xf~' a.s. to the space L~q(d/z). Moreover, we have 

IIE~,~, n~.~,llwq ~< C,(q)llhllF. (5.1) 

for some constant Cl(q). By a well known duality argument, since k belongs to 

L % and H~,,, o, belongs to L ~ a.s., the function Ho~.~,,.k belongs to C(G) almost surely 

and furthermore 

IIn~, ~, * kllc(c)<<- C2(q)[[n.,,,o, Ilwq Ilkll ~q (5.2) 

for some constant C2(q). Therefore, by (5.1) and (5.2) we have 

EIIH~,~, * kllc(~ <- C,(q) C2(q){[hllr. Ilkll %. 

This completes the proof of Lemma 5.2 and consequently of Theorem 5.1. 

When p and q are no longer assumed to be conjugates we can extend Theorem 5.1 

as follows: 



p-STABLE RANDOM FOURIER SERIES 299 

THEOREM 5.4. Assume l < p < 2 ,  I/p+ l/q=l and q<r<~.  Let f be in Fp. 

(i) Then f belongs to A(p,qgr) iff Ep, r(f)<oo and moreover, there is a constant 

Cp, r depending only on p and r such that 

Cp, lr Ep, r ( f  )<<_llfll A(p,~pr)~Cp, r Emr(f ), v fEa(p ,  Cpr). 

(ii) The space A(p, Cpr) coincides with the interpolation space [A(p, r 

obtained by the Lions-Peetre interpolation method (cf. [3]) where 0 is defined by the 

relation 1/r=(1-O)/q+O/oo. Moreover, the corresponding norms are equivalent on 

A(p, ~r). 

In the particular case p=q=2 Theorem 5.4 is proved in detail in [26]. Now that we 

have established Theorem 5.1 the general case l<p<2<q<r can be proved by a trivial 

modification of  the arguments of  [26]. 

Remark 5.5. Using the ideas of  [25] and [26] relating interpolation spaces and the 

functionals Ep, r( '),  along with the preceding results, it is not hard to prove the 

inclusions 

, Ca.s.]0,1 c Ca.s. C [ F , ,  Q.s.]o 

where [ ,  ]o denotes  the complex interpolation functor and I /p=(1-0) /1  +0/2, l < p < 2 .  

We do not know if C'Va.~. (or equivalently A(p, q~q)) coincides with a suitable interpola- 

tion space either between F I and cZa.~, or between Cla.~. and 2 C 
a . s . -  

Remark 5.6. (i) It would be quite interesting to find a direct proof  of  the fact that 

the functional Ep, r is equivalent to a norm if 1/p+l/r<.l and l<p~<2. It is not hard to 

see that this is no longer the case if 1/p+l/r>l. However,  we conjecture that Ev, r is 

equivalent to a norm when 1/p+l/r<~l and p>2 .  (Unfortunately we can not find a 

substitute for Theorems 5.1 and 5.4 in this case.) Note  that for p > 2 ,  1/p+I/q=l, it is 

rather clear that II" IIAO,, ~0q) and Ep, q(. ) are no longer equivalent functionals. This can be 

seen by considering lacunary series. 

(ii) By a well known comparison principle (cf. [14]) we know that if l<pl<p2~<2 

~f]p2<~C(Pl,P2)~f~pl , VfE C~., 

where C(pl, P2) is a constant  depending only on P l and P2. By Theorem 5.1 this implies 

Err,q2( f ) <~ C'(p,,P2)Evvq,(f ) (5.3) 
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where 1/pl+l/ql=l ,  1]p2+l/q2=l and C'(pl,p2) is a constant  depending only on Pl 

and P2. However ,  we know of  no direct p roof  of  (5.3). 

(iii) I t  is natural  to raise the following question: Problem: Is (5.3) true if 

2<-pl<pz<-oo? In part icular,  is E~o, ~(f) dominated by a multiple of  Ez, z(f)?  

Remark 5.7. Le t  (O~)~,er be as above. By exact ly  the same proof  as the p roof  of  

Corol lary 1.10, Chapte r  VI,  [21], we can show that for each p ,  l < p < 2 ,  there is a 

number  6p>O such that: Fo r  any finite subset  A c F  of  cardinality n, we have 

El  yEAZ a~ Oy 7 c(c) ~ c) P n'/P (l~ n)l/q l--n yEAZ lay I" (5.4) 

On the other  hand it follows easily f rom the results of  Section 3 that 
i 

I ~  Okeik' <<-Cp E nl/p (log(n+ l)) l/q 

I k= l C(G) 

for some constant  Cp independent  o f  n. Therefore  the left side of  (5.4) is essentially 

minimal when (7)7~A are consecut ive  integers. 
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