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Abstract: Many scientists have studied and improved the soft set theory, which is initiated by Molodtsov [33] and easily applied to
many problems having uncertainties from social life. The main purpose of our paper, is to introduce new soft separation axioms based
on the b-open soft sets which are more general than of the opensoft sets. We show that, the properties of soft b-Ti-spaces(i = 1,2)
are soft topological properties under the bijection and irresolute open soft mapping. Also, the property of being soft b-regular and soft
b-normal are soft topological properties under bijection,irresolute soft and irresolute open soft functions. Further, we show that the
properties of being soft b-Ti-spaces(i = 1,2,3,4) are hereditary properties.
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1 Introduction

In real life situation, the problems in economics,
engineering, social sciences, medical science etc. do not
always involve crisp data. So, we cannot successfully use
the traditional classical methods because of various types
of uncertainties presented in these problems. To exceed
these uncertainties, some kinds of theories were given
like theory of fuzzy set, intuitionistic fuzzy set, rough set,
bipolar fuzzy set, i.e. which we can use as mathematical
tools for dealings with uncertainties. But, all these
theories have their inherent difficulties. The reason for
these difficulties Molodtsov [33] initiated the concept of
soft set theory as a new mathematical tool for dealing
with uncertainties which is free from the above
difficulties. In [33,34], Molodtsov successfully applied
the soft theory in several directions, such as smoothness
of functions, game theory, operations research, Riemann
integration, Perron integration, probability, theory of
measurement, and so on. After presentation of the
operations of soft sets [31], the properties and
applications of soft set theory have been studied
increasingly [6,27,34]. Xiao et al.[44] and Pei and Miao
[37] discussed the relationship between soft sets and
information systems. They showed that soft sets are a

class of special information systems. In recent years,
many interesting applications of soft set theory have been
expanded by embedding the ideas of fuzzy sets [4,5,9,16,
25,29,30,31,32,34,35,47]. To develop soft set theory, the
operations of the soft sets are redefined and a uni-int
decision making method was constructed by using these
new operations [10].
Recently, in 2011, Shabir and Naz [40] initiated the study
of soft topological spaces. They defined soft topology as a
collection τ of soft sets overX . Consequently, they
defined basic notions of soft topological spaces such as
open soft and closed soft sets, soft subspace, soft closure,
soft nbd of a point, soft separation axioms, soft regular
spaces and soft normal spaces and established their
several properties. Min in [43] investigate some properties
of these soft separation axioms. In [17], Kandil et al.
introduced some soft operations such as semi open soft,
pre open soft, α-open soft and β -open soft and
investigated their properties in detail. Kandil et al. [24]
introduced the notion of soft semi separation axioms. In
particular they study the properties of the soft semi
regular spaces and soft semi normal spaces. The notion of
soft ideal was initiated for the first time by Kandil et
al.[20]. They also introduced the concept of soft local
function. These concepts are discussed with a view to find
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new soft topologies from the original one, called soft
topological spaces with soft ideal (X ,τ,E, Ĩ).
Applications to various fields were further investigated by
Kandil et al. [18,19,21,22,23,26]. The notion of supra
soft topological spaces was initiated for the first time by
El-sheikh and Abd El-latif [13]. They also introduced
new different types of subsets of supra soft topological
spaces and study the relations between them in detail. The
notion of b-open soft sets was initiated for the first time
by El-sheikh and Abd El-latif [12], which is extended by
Abd El-latif et al. in [1]. Maji et al. [29] initiated the
study involving both fuzzy sets and soft sets. In [8] the
notion of fuzzy soft set was introduced as a fuzzy
generalization of soft sets and some basic properties of
fuzzy soft sets are discussed in detail. Then, many
scientists such as X. Yang et al. [45], improved the
concept of fuzziness of soft sets. In [2], Karal and Ahmed
defined the notion of a mapping on classes of fuzzy soft
sets, which is a fundamental important in fuzzy soft set
theory, to improve this work and they studied properties
of fuzzy soft images and fuzzy soft inverse images of
fuzzy soft sets. Chang [11] introduced the concept of
fuzzy topology on a setX by axiomatizing a collectionT
of fuzzy subsets ofX . Tanay et al. [41] introduced the
definition of fuzzy soft topology over a subset of the
initial universe set while Roy and Samanta [39] gave the
definition f fuzzy soft topology over the initial universe
set. Some fuzzy soft topological properties based on
fuzzy semi open soft sets namely, fuzzy semi open soft
sets, fuzzy semi closed soft sets, fuzzy semi soft interior,
fuzzy semi soft closure fuzzy semi separation axioms and
fuzzy soft semi connectedness, were introduced by
Kandil et al. in [16,25].

The purpose of this paper, is to introduce the notion of
soft b-separation axioms. In particular we study the
properties of the soft b-regular spaces and soft b-normal
spaces. We show that ifxE is b-closed soft set for all
x ∈ X in a soft topological space(X ,τ,E), then(X ,τ,E)
is soft b-T1-space. Also, we show that if a soft topological
space(X ,τ,E) is soft b-T3-space, then∀ x ∈ X , xE is
b-closed soft set. This paper, not only can form the
theoretical basis for further applications of topology on
soft sets, but also lead to the development of information
systems.

2 Preliminaries

Definition 2.1.[33] Let X be an initial universe andE be
a set of parameters. LetP(X) denote the power set ofX
andA be a non-empty subset ofE. A pair (F,A) denoted
by FA is called a soft set overX , whereF is a mapping
given byF : A → P(X). In other words, a soft set overX
is a parametrized family of subsets of the universeX . For
a particulare ∈ A , F(e) may be considered the set ofe-
approximate elements of the soft set(F,A) and if e 6∈ A,
thenF(e) = φ i.e

FA = {F(e) : e ∈ A ⊆ E, F : A → P(X)}. The family of all
these soft sets overX denoted bySS(X)A.

Definition 2.2.[31] Let FA, GB ∈ SS(X)E . ThenFA is soft
subset ofGB, denoted byFA⊆̃GB, if

(1)A ⊆ B, and
(2)F(e)⊆ G(e), ∀e ∈ A.

In this case,FA is said to be a soft subset ofGB andGB is
said to be a soft superset ofFA, GB⊇̃FA.

Definition 2.3.[31] Two soft subsetFA and GB over a
common universe setX are said to be soft equal ifFA is a
soft subset ofGB andGB is a soft subset ofFA.

Definition 2.4.[6] The complement of a soft set(F,A),
denoted by (F,A)c, is defined by (F,A)c = (Fc

,A),
Fc : A → P(X) is a mapping given byFc(e) = X −F(e),
∀e ∈ A andFc is called the soft complement function of
F. Clearly,(Fc)c is the same asF and((F,A)c)c = (F,A).

Definition 2.5.[40] The difference between two soft sets
(F,E) and(G,E) over the common universeX , denoted by
(F,E)− (G,E) is the soft set(H,E) where for alle ∈ E,
H(e) = F(e)−G(e).

Definition 2.6.[40] Let (F,E) be a soft set overX andx ∈
X . We say thatx ∈ (F,E) read asx belongs to the soft set
(F,E) wheneverx ∈ F(e) for all e ∈ E. The soft set(F,E)
overX such thatF(e) = {x} ∀e ∈ E is called singleton soft
point and denoted byxE or (x,E).

Definition 2.7.[31] A soft set(F,A) overX is said to be a
NULL soft set denoted bỹφ or φA if for all e∈A, F(e) = φ
(null set).

Definition 2.8.[31] A soft set(F,A) overX is said to be an
absolute soft set denoted byÃ or XA if for all e∈A, F(e) =
X . Clearly, we haveX c

A = φA andφ c
A = XA.

Definition 2.9.[40] Let (F,E) be a soft set overX andx ∈
X . We say thatx ∈ (F,E) read asx belongs to the soft set
(F,E) wheneverx ∈ F(e) for all e ∈ E.

Definition 2.10.[31] The union of two soft sets(F,A) and
(G,B) over the common universeX is the soft set(H,C),
whereC = A∪B and for alle ∈C,

H(e) =







F(e), e ∈ A−B,
G(e), e ∈ B−A,
F(e)∪G(e), e ∈ A∩B .

Definition 2.11.[31] The intersection of two soft sets
(F,A) and(G,B) over the common universeX is the soft
set (H,C), where C = A ∩ B and for all e ∈ C,
H(e) = F(e) ∩ G(e). Note that, in order to efficiently
discuss, we consider only soft sets(F,E) over a universe
X in which all the parameter setE are same. We denote
the family of these soft sets bySS(X)E .

Definition 2.12.[48] Let I be an arbitrary indexed set and
L = {(Fi,E), i ∈ I} be a subfamily ofSS(X)E .

(1)The union of L is the soft set (H,E), where
H(e) =

⋃

i∈I Fi(e) for each e ∈ E . We write
˜⋃

i∈I(Fi,E) = (H,E).
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(2)The intersection ofL is the soft set(M,E), where
M(e) =

⋂

i∈I Fi(e) for each e ∈ E . We write
˜⋂

i∈I(Fi,E) = (M,E).

Definition 2.13.[40] Let τ be a collection of soft sets over
a universeX with a fixed set of parametersE, thenτ ⊆
SS(X)E is called a soft topology onX if

(1)X̃ , φ̃ ∈ τ, whereφ̃(e) = φ andX̃(e) = X , ∀e ∈ E,
(2)the union of any number of soft sets inτ belongs toτ,
(3)the intersection of any two soft sets inτ belongs toτ.

The triplet(X ,τ,E) is called a soft topological space over
X . A soft set(F,A) overX is said to be closed soft set in
X , if its relative complement(F,A)c is an open soft set.

Definition 2.14.[14] Let(X ,τ,E) be a soft topological
space. The members ofτ are said to be open soft sets in
X . We denote the set of all open soft sets overX by
OS(X ,τ,E), or when there can be no confusion byOS(X)
and the set of all closed soft sets byCS(X ,τ,E), or
CS(X).

Definition 2.15.[40] Let (X ,τ,E) be a soft topological
space and(F,E) ∈ SS(X)E . The soft closure of(F,E),
denoted bycl(F,E) is the intersection of all closed soft
super sets of(F,E) i.e
cl(F,E) = ∩̃{(H,E) :
(H,E) is closed so f t set and (F,E)⊆̃(H,E)}).

Definition 2.16.[48] Let (X ,τ,E) be a soft topological
space and(F,E) ∈ SS(X)E . The soft interior of(G,E),
denoted byint(G,E) is the union of all open soft subsets
of (G,E) i.e
int(G,E) = ∪̃{(H,E) :
(H,E) is an open so f t set and (H,E)⊆̃(G,E)}).

Definition 2.17.[48] The soft set(F,E)∈ SS(X)E is called
a soft point inXE if there existx ∈ X ande ∈ E such that
F(e) = {x} andF(eC) = φ for eacheC ∈ E −{e}, and the
soft point(F,E) is denoted byxe.

Definition 2.18.[48] The soft point xe is said to be
belonging to the soft set(G,A), denoted byxe∈̃(G,A), if
for the elemente ∈ A, F(e)⊆ G(e).

Theorem 2.1.[42] Let (X ,τ,E) be a soft topological
space. A soft pointxe∈̃cl(F,E) if and only if each soft
neighborhood ofxe intersects(F,E).

Definition 2.19.[40] Let (X ,τ,E) be a soft topological
space andY be a non null subset ofX . ThenỸ denotes the
soft set(Y,E) overX for whichY (e) = Y ∀e ∈ E.

Definition 2.20.[40] Let (X ,τ,E) be a soft topological
space,(F,E) ∈ SS(X)E andY be a non null subset ofX .
Then the sub soft set of(F,E) overY denoted by(FY ,E),
is defined as follows:

FY (e) =Y ∩F(e) ∀e ∈ E.

In other words(FY ,E) = Ỹ ∩̃(F,E).

Definition 2.21.[40] Let (X ,τ,E) be a soft topological
space andY be a non null subset ofX . Then

τY = {(FY ,E) : (F,E) ∈ τ}

is said to be the soft relative topology onY and(Y,τY ,E)
is called a soft subspace of(X ,τ,E).
Theorem 2.2.[40] Let (Y,τY ,E) be a soft subspace of a
soft topological space(X ,τ,E) and(F,E)∈ SS(X)E . Then

(1)If (F,E) is an open soft set inY andỸ ∈ τ, then(F,E)∈
τ.

(2)(F,E) is an open soft set inY if and only if (F,E) =
Ỹ ∩̃(G,E) for some(G,E) ∈ τ.

(3)(F,E) is a closed soft set inY if and only if (F,E) =
Ỹ ∩̃(H,E) for some(H,E) is τ-closed soft set.

Definition 2.22.[12] Let (X ,τ,E) be a soft topological
space and(F,E) ∈ SS(X)E. Then(F,E) is called a b-open
soft set if (F,E)⊆̃cl(int(F,E))∪̃int(cl(F,E)). The set of
all b-open soft sets is denoted byBOS(X ,τ,E), or
BOS(X) and the set of all b-closed soft sets is denoted by
BCS(X ,τ,E), or BCS(X).

Definition 2.23.[12] Let (X ,τ,E) be a soft topological
space and(F,E) ∈ SS(X)E. Then, the b-soft interior of
(F,E) is denoted bybSint(F,E)), wherebSint(F,E)) =
˜⋃{(G,E) : (G,E)⊆̃(F,E), (G,E) ∈ BOS(X)}.
Also, the b-soft closure of(F,E) is denoted by
bScl(F,E)), where bScl(F,E)) = ˜⋂{(H,E) : (H,E) ∈
BCS(X), (F,E)⊆̃(H,E)}.

Definition 2.24.[3] Let SS(X)A andSS(Y)B be families of
soft sets,u : X → Y andp : A → B be mappings. Letfpu :
SS(X)A → SS(Y)B be a mapping. Then;

(1)If (F,A) ∈ SS(X)A. Then the image of(F,A) under fpu,
written as fpu(F,A) = ( fpu(F), p(A)), is a soft set in
SS(Y)B such that
fpu(F)(b) =
{

∪x∈p−1(b)∩A u(F(a)), p−1(b)∩A 6= φ ,
φ , otherwise.

for all b ∈ B.
(2)If (G,B) ∈ SS(Y)B. Then the inverse image of(G,B)

under fpu, written as f−1
pu (G,B) = ( f−1

pu (G), p−1(B)),
is a soft set inSS(X)A such that

f−1
pu (G)(a) =

{

u−1(G(p(a))), p(a) ∈ B,
φ , otherwise.

for all a ∈ A.

The soft functionfpu is called surjective ifp and u are
surjective, also is said to be injective ifp and u are
injective.

Definition 2.25.[17,28,48]
Let (X ,τ1,A) and(Y,τ2,B) be soft topological spaces

and fpu : SS(X)A → SS(Y)B be a function. Then, the
function fpu is said to be

(1)The functionfpu is said to be continuous soft (cts-soft)
if f−1

pu (G,B) ∈ τ1 ∀ (G,B) ∈ τ2.
(2)The functionfpu is said to be open soft iffpu(G,A) ∈

τ2∀ (G,A) ∈ τ1.
(3)The function fpu is said to be b-irresolute soft if

f−1
pu (G,B) ∈ BOS(X)[ f−1

pu (F,B) ∈ BCS(X)]∀ (G,B) ∈
BOS(Y )[(F,B) ∈ BCS(Y )].
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(6)The function fpu is said to be irresolute b-open
(closed) soft if fpu(G,A) ∈ BOS(Y )[ fpu(F,A) ∈
BCS(Y )]∀ (G,A) ∈ BOS(X)[(F,A) ∈ BCS(Y )].

Theorem 2.3.[3] Let SS(X)A and SS(Y )B be families of
soft sets. For the soft functionfpu : SS(X)A → SS(Y)B,
the following statements hold,

(a)f−1
pu ((G,B)c) = ( f−1

pu (G,B))c∀ (G,B) ∈ SS(Y)B.
(b)fpu( f−1

pu ((G,B)))⊆̃(G,B)∀ (G,B) ∈ SS(Y)B. If fpu is
surjective, then the equality holds.

(c)(F,A)⊆̃ f−1
pu ( fpu((F,A)))∀ (F,A) ∈ SS(X)A. If fpu is

injective, then the equality holds.
(d)fpu(X̃)⊆̃Ỹ . If fpu is surjective, then the equality holds.
(e)f−1

pu (Ỹ ) = X̃ and fpu(φ̃A) = φ̃B.
(f)If (F,A)⊆̃(G,A), then fpu(F,A)⊆̃ fpu(G,A).
(g)If (F,B)⊆̃(G,B), then

f−1
pu (F,B)⊆̃ f−1

pu (G,B) ∀ (F,B),(G,B) ∈ SS(Y)B.
(h)f−1

pu [(F,B)∪̃(G,B)] = f−1
pu (F,B)∪̃ f−1

pu (G,B) and
f−1
pu [(F,B)∩̃(G,B)] = f−1

pu (F,B)∩̃ f−1
pu (G,B)

∀ (F,B),(G,B) ∈ SS(Y)B.
(I) fpu[(F,A)∪̃(G,A)] = fpu(F,A)∪̃ fpu(G,A) and

fpu[(F,A)∩̃(G,A)]⊆̃ fpu(F,A)∩̃ fpu(G,A)
∀ (F,A),(G,A) ∈ SS(X)A. If fpu is injective, then the
equality holds.

3 Soft b-separation axioms

Definition 3.1. Let (X ,τ,E) be a soft topological space
andx,y ∈ X such thatx 6= y. Then,(X ,τ,E) is called a soft
b-To-space if there exist b-open soft sets(F,E) and(G,E)
such that eitherx ∈ (F,E) andy 6∈ (F,E) or y ∈ (G,E) and
x 6∈ (G,E).

Proposition 3.1.Let (X ,τ,E) be a soft topological space
andx,y ∈ X such thatx 6= y. If there exist b-open soft sets
(F,E) and (G,E) such that eitherx ∈ (F,E) and
y ∈ (F,E)c or y ∈ (G,E) andx ∈ (G,E)c. Then,(X ,τ,E)
is soft b-To-space.Proof. Let x,y ∈ X such thatx 6= y. Let

(F,E) and (G,E) be b-open soft sets such that either
x ∈ (F,E) andy ∈ (F,E)c or y ∈ (G,E) andx ∈ (G,E)c. If
x ∈ (F,E) andy ∈ (F,E)c. Theny ∈ (F(e))c for all e ∈ E,
This implies that,y 6∈ F(e) for all e ∈ E. Therefore,
y 6∈ (F,E). Similarly, if y ∈ (G,E) andx ∈ (G,E)c, then
x 6∈ (G,E). Hence,(X ,τ,E) is soft b-To-space.

Theorem 3.1.A soft subspace(Y,τY ,E) of a soft b-To-
space(X ,τ,E) is soft b-To.

Proof. Let x,y ∈ Y such thatx 6= y. Thenx,y ∈ X such
that x 6= y. Hence, there exist b-open soft sets(F,E) and
(G,E) in X such that eitherx ∈ (F,E) andy 6∈ (F,E) or
y ∈ (G,E) andx 6∈ (G,E). Sincex ∈Y . Thenx ∈ Ỹ . Hence,
x ∈ Ỹ ∩̃(F,E) = (FY ,E), (F,E) is b-open soft set. Consider
y 6∈ (F,E), This implies that,y 6∈ F(e) for somee ∈ E.
Therefore,y 6∈ Ỹ ∩̃(F,E) = (FY ,E). Similarly, if y ∈ (G,E)
andx 6∈ (G,E), theny ∈ (GY ,E) andx 6∈ (GY ,E). Thus,
(Y,τY ,E) is soft b-To

Definition 3.2. Let (X ,τ,E) be a soft topological space
and x,y ∈ X such thatx 6= y. Then,(X ,τ,E) is called a
soft b-T1-space if there exist b-open soft sets(F,E) and
(G,E) such thatx ∈ (F,E) andy 6∈ (F,E) andy ∈ (G,E)
andx 6∈ (G,E).

Proposition 3.2.Let (X ,τ,E) be a soft topological space
andx,y ∈ X such thatx 6= y. If there exist b-open soft sets
(F,E) and(G,E) such thatx ∈ (F,E) andy ∈ (F,E)c and
y ∈ (G,E) and x ∈ (G,E)c. Then (X ,τ,E) is soft
b-T1-space.

Proof. It is similar to the proof of Proposition 3.1.

Theorem 3.2.A soft subspace(Y,τY ,E) of a soft b-T1-
space(X ,τ,E) is soft b-T1.

Proof. It is similar to the proof of Theorem3.

Theorem 3.3Let (X ,τ,E) be a soft topological space. If
xE is b-closed soft set inτ for all x ∈ X , then(X ,τ,E) is
soft b-T1-space.

Proof. Suppose thatx ∈ X andxE is b-closed soft set in
τ. Thenxc

E is b-open soft set inτ. Let x,y ∈ X such that
x 6= y. Forx ∈ X andxc

E is b-open soft set such thatx 6∈ xc
E

andy ∈ xc
E . Similarly yc

E is b-open soft set inτ such that
y 6∈ yc

E andx ∈ yc
E . Thus,(X ,τ,E) is soft b-T1-space over

X .

Definition 3.3. Let (X ,τ,E) be a soft topological space
andx,y ∈ X such thatx 6= y. Then(X ,τ,E) is called a soft
b-Hausdorff space or soft b-T2-space if there exist b-open
soft sets(F,E) and(G,E) such thatx ∈ (F,E), y ∈ (G,E)
and(F,E)∩̃(G,E) = φ̃ .

Theorem 3.4.For a soft topological space(X ,τ,E) we
have:
soft b-T2-space⇒ soft b-T1-space⇒ soft b-To-space.
Proof.

(1)Let (X ,τ,E) be a soft b-T2-space andx,y ∈ X such that
x 6= y. Then, there exist b-open soft sets(F,E) and
(G,E) such that x ∈ (F,E), y ∈ (G,E) and
(F,E)∩̃(G,E) = φ̃ . Since(F,E)∩̃(G,E) = φ̃ . Then,
x 6∈ (G,E), y 6∈ (F,E). Therefore, there exist b-open
soft sets(F,E) and (G,E) such thatx ∈ (F,E) and
y 6∈ (F,E) and y ∈ (G,E) and x 6∈ (G,E). Thus,
(X ,τ,E) is soft b-T1-space.

(2)Let (X ,τ,E) be a soft b-T1-space andx,y ∈ X such that
x 6= y. Then, there exist b-open soft sets(F,E) and
(G,E) such that x ∈ (F,E) and y 6∈ (F,E) and
y ∈ (G,E) and x 6∈ (G,E). Obviously then we have,
either x ∈ (F,E) and y 6∈ (F,E) or y ∈ (G,E) and
x 6∈ (G,E). Thus,(X ,τ,E) is soft b-To-space.

Remark 3.1.The converse of Theorem 3.4 is not true in
general, as shown in the following examples.

Examples 3.1.

(1)Let X = {a,b}, E = {e1,e2} and
τ = {X̃ , φ̃ ,(F1,E),(F2,E),(F3,E)} where
(F1,E),(F2,E),(F3,E) are soft sets overX defined as
follows:
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F1(e1) = X , F1(e2) = {b},
F2(e1) = {a}, F2(e2) = X ,
F3(e1) = {a}, F3(e2) = {b}.
Then,τ defines a soft topology onX . Also, (X ,τ,E)
is soft b-T1-space, but it is not a soft b-T2-space, for
a,b ∈ X and a 6= b, but there is no b-open soft sets
(F,E) and(G,E) such thata ∈ (F,E), b ∈ (G,E) and
(F,E)∩̃(G,E) = φ̃ .

(2)Let X = {a,b}, E = {e1,e2} and τ = {X̃ , φ̃ ,(F1,E)}
where(F1,E) is soft set overX defined as follows by
F1(e1) = X , F1(e2) = {b}.
Thenτ defines a soft topology onX . Also (X ,τ,E) is
soft b-To-space but not a soft b-T1-space, sincea,b ∈
X , a 6= b, but all the b-open soft sets which containsa
also containsb.

Theorem 3.5 A soft subspace(Y,τY ,E) of a soft
b-T2-space(X ,τ,E) is soft b-T2.

Proof. Let x,y ∈ Y such thatx 6= y. Thenx,y ∈ X such
that x 6= y. Hence, there exist b-open soft sets(F,E) and
(G,E) in X such that x ∈ (F,E), y ∈ (G,E) and
(F,E)∩̃(G,E) = φ̃ . It follows that,x ∈ F(e), y ∈ G(e) and
F(e) ∩ G(e) = φ for all e ∈ E. This implies that,
x ∈ Y ∩ F(e), y ∈ Y ∩ G(e) and F(e)∩ G(e) = φ for all
e ∈ E. Thus, x ∈ Ỹ ∩̃(F,E) = (FY ,E),
y ∈ Ỹ ∩̃(G,E) = (GY ,E) and(FY ,E)∩̃(GY ,E) = φ̃ , where
(FY ,E),(GY ,E) are b-open soft sets inY . Therefore,
(Y,τY ,E) is soft b-T2-space.

Definition 3.4. Let (X ,τ,E) be a soft topological space,
(G,E) be a b-closed soft set inX and x ∈ X such that
x 6∈ (G,E). If there exist b-open soft sets(F1,E) and
(F2,E) such that x ∈ (F1,E), (G,E)⊆̃(F2,E) and
(F1,E)∩̃(F2,E) = φ̃ , then (X ,τ,E) is called a soft
b-regular space. A soft b-regularT1-space is called a soft
b-T3-space.

Proposition 3.3.Let (X ,τ,E) be a soft topological space,
(G,E) be a b-closed soft set inX and x ∈ X such that
x 6∈ (G,E). If (X ,τ,E) is soft b-regular space, then there
exists a b-open soft set(F,E) such thatx ∈ (F,E) and
(F,E)∩̃(G,E) = φ̃ .

Proof. Obvious from Definition 3.4.

Proposition 3.4.Let (X ,τ,E) be a soft topological space,
(F,E) ∈ SS(X)E andx ∈ X . Then:

(1)x ∈ (F,E) if and only if xE⊆̃(F,E).
(2)If xE ∩̃(F,E) = φ̃ , thenx 6∈ (F,E).

Proof. Obvious.

Theorem 3.6.Let (X ,τ,E) be a soft topological space and
x ∈ X . If (X ,τ,E) is soft b-regular space, then:

(1)x 6∈ (F,E) if and only if xE ∩̃(F,E) = φ̃ for every b-
closed soft set(F,E).

(2)x 6∈ (G,E) if and only if xE ∩̃(G,E) = φ̃ for every b-
open soft set(G,E).

Proof.

(1)Let (F,E) be a b-closed soft set such thatx 6∈ (F,E).
Since (X ,τ,E) is soft b-regular space. Then, by
Proposition 3.3, there exists a b-open soft set(G,E)
such thatx ∈ (G,E) and(F,E)∩̃(G,E) = φ̃ . It follows
that, xE⊆̃(G,E) from Proposition 3.4 (1). Hence,
xE ∩̃(F,E) = φ̃ . Conversely, ifxE ∩̃(F,E) = φ̃ , then
x 6∈ (F,E) from Proposition 3.4 (2).

(2)Let (G,E) be a b-open soft set such thatx 6∈ (G,E). If
x 6∈ G(e) for all e ∈ E, then we get the proof. If
x 6∈ G(e1) and x ∈ G(e2) for somee1,e2 ∈ E, then
x ∈ Gc(e1) andx 6∈ Gc(e2) for somee1,e2 ∈ E. This
means that,xE ∩̃(G,E) 6= φ̃ . Hence, (G,E)c is b-
closed soft set such thatx 6∈ (G,E)c. It follows by (1)
xE ∩̃(G,E)c = φ̃ . This implies that,xE⊆̃(G,E) and so
x ∈ (G,E), which is contradiction withx 6∈ G(e1) for
somee1 ∈ E. Therefore,xE ∩̃(G,E) = φ̃ . Conversely,
if xE ∩̃(G,E) = φ̃ , then it obvious thatx 6∈ (G,E). This
completes the proof.

Corollary 3.1. Let (X ,τ,E) be a soft topological space
and x ∈ X . If (X ,τ,E) is soft b-regular space, then the
following are equivalent:

(1)(X ,τ,E) is soft b-T1-space.
(2∀ x,y ∈ X such thatx 6= y, there exist b-open soft sets

(F,E) and (G,E) such that xE⊆̃(F,E) and
yE ∩̃(F,E) = φ̃ andyE⊆̃(G,E) andxE ∩̃(G,E) = φ̃ .

Proof. Obvious from Theorem 3.6.

Theorem 3.7.Let (X ,τ,E) be a soft topological space and
x ∈ X . Then the following are equivalent:

(1)(X ,τ,E) is soft b-regular space.
(2)For every b-closed soft set(G,E) such that

xE ∩̃(G,E) = φ̃ , there exist b-open soft sets(F1,E)
and(F2,E) such thatxE⊆̃(F1,E), (G,E)⊆̃(F2,E) and
(F1,E)∩̃(F2,E) = φ̃ .

Proof.

(1) ⇒ (2) Let (G,E) be a b-closed soft set such that
xE ∩̃(G,E) = φ̃ . Then x 6∈ (G,E) from Theorem 3.6
(1). It follows by (1), there exist b-open soft sets
(F1,E) and (F2,E) such that x ∈ (F1,E),
(G,E)⊆̃(F2,E) and(F1,E)∩̃(F2,E) = φ̃ . This means
that, xE⊆̃(F1,E), (G,E)⊆̃(F2,E) and
(F1,E)∩̃(F2,E) = φ̃ .

(2) ⇒ (1) Let (G,E) be a b-closed soft set such that
x 6∈ (G,E). Then xE ∩̃(G,E) = φ̃ from Theorem 3.6
(1). It follows by (2), there exist b-open soft sets
(F1,E) and (F2,E) such that xE⊆̃(F1,E),
(G,E)⊆̃(F2,E) and (F1,E)∩̃(F2,E) = φ̃ . Hence,
x ∈ (F1,E), (G,E)⊆̃(F2,E) and (F1,E)∩̃(F2,E) = φ̃ .
Thus,(X ,τ,E) is soft b-regular space.

Theorem 3.8.Let (X ,τ,E) be a soft topological space. If
(X ,τ,E) is soft b-T3-space, then∀ x ∈ X , xE is b- closed
soft set.

Proof. We want to prove thatxE is b-closed soft set,
which is sufficient to prove thatxc

E is b-open soft set for
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all y ∈ {x}c. Since(X ,τ,E) is soft b-T3-space, then there
exist b-open soft sets(F,E)y and (G,E) such that
yE⊆̃(F,E)y and xE ∩̃(F,E)y = φ̃ and xE⊆̃(G,E) and
yE ∩̃(G,E) = φ̃ . It follows that,

⋃

y∈{x}c(F,E)y⊆̃xc
E . Now,

we want to prove that xc
E⊆̃

⋃

y∈{x}c(F,E)y. Let
⋃

y∈{x}c(F,E)y = (H,E), whereH(e) =
⋃

y∈{x}c F(e)y for
all e ∈ E. Sincexc

E(e) = {x}c for all e ∈ E from Definition
2.6. So, for all y ∈ {x}c and e ∈ E, xc

E(e) = {x}c =
⋃

y∈{x}c{y} =
⋃

y∈{x}c yE(e)⊆̃
⋃

y∈{x}c F(e)y = H(e).
Thus, xc

E⊆̃
⋃

y∈{x}c(F,E)y from Definition 2.2, and so
xc

E =
⋃

y∈{x}c(F,E)y. This means that,xc
E is b-open soft

set for ally ∈ {x}c. Therefore,xE is b-closed soft set.

Theorem 3.9.Every soft b-T3-space is soft b-T2-space.

Proof. Let (X ,τ,E) be a soft b-T3-space andx,y ∈ X such
that x 6= y. By Theorem 3.9,yE is b-closed soft set and
x 6∈ yE . It follows from the soft b-regularity, there exist b-
open soft sets(F1,E) and (F2,E) such thatx ∈ (F1,E),
yE⊆̃(F2,E) and(F1,E)∩̃(F2,E) = φ̃ . Thus,x∈ (F1,E), y∈
yE⊆̃(F2,E) and(F1,E)∩̃(F2,E) = φ̃ . Therefore,(X ,τ,E)
is soft b-T2-space.

Theorem 3.10.A soft subspace(Y,τY ,E) of a soft b-T3-
space(X ,τ,E) is soft b-T3.

Proof. By Theorem 3.2,(Y,τY ,E) is soft b-T1-space.
Now, we want to prove that(Y,τY ,E) is soft b-regular
space. Lety ∈ Y and (G,E) be a b-closed soft set inY
such thaty 6∈ (G,E). Then, (G,E) = (Y,E)∩̃(F,E) for
some b-closed soft set(F,E) in X from Theorem 2.2.
Hence,y 6∈ (Y,E)∩̃(F,E). But y ∈ (Y,E), so y 6∈ (F,E).
Since (X ,τ,E) is soft b-T3-space, so there exist b-open
soft sets(F1,E) and (F2,E) in X such thaty ∈ (F1,E),
(F,E)⊆̃(F2,E) and (F1,E)∩̃(F2,E) = φ̃ . Take
(G1,E) = (Y,E)∩̃(F1,E) and (G2,E) = (Y,E)∩̃(F2,E),
then (G1,E),(G2,E) are b-open soft sets inY such that
y ∈ (G1,E), (G,E)⊆̃(Y,E)∩̃(F2,E) = (G2,E) and
(G1,E)∩̃(G2,E)⊆̃(F1,E)∩̃(F2,E) = φ̃ . Thus,(Y,τY ,E) is
soft b-T3-space.

Definition 3.5 Let (X ,τ,E) be a soft topological space,
(F,E),(G,E) be b-closed soft sets inX such that
(F,E)∩̃(G,E) = φ̃ . If there exist b-open soft sets(F1,E)
and(F2,E) such that(F,E)⊆̃(F1,E), (G,E)⊆̃(F2,E) and
(F1,E)∩̃(F2,E) = φ̃ , then (X ,τ,E) is called a soft
b-normal space. A soft b-normalT1-space is called a soft
b-T4-space.

Theorem 3.11.Let (X ,τ,E) be a soft topological space
andx ∈ X . Then the following are equivalent:

(1)(X ,τ,E) is soft b-normal space.
(2)For every b-closed soft set(F,E) and b-open soft set

(G,E) such thatF,E)⊆̃(G,E), there exists a b-open
soft set (F1,E) such that (F,E)⊆̃(F1,E),
bScl(F1,E)⊆̃(G,E).

Proof.

(1) ⇒ (2) Let (F,E) be a b-closed soft set and(G,E) be a
b-open soft set such that(F,E)⊆̃(G,E). Then

(F,E),(G,E)c are b-closed soft sets such that
(F,E)∩̃(G,E)c = φ̃ . It follows by (1), there exist
b-open soft sets(F1,E) and (F2,E) such that
(F,E)⊆̃(F1,E), (G,E)c⊆̃(F2,E) and
(F1,E)∩̃(F2,E) = φ̃ . Now, (F1,E)⊆̃(F2,E)c, so
bScl(F1,E)⊆̃bScl(F2,E)c = (F2,E)c, where(G,E) is
b-open soft set. Also (F2,E)c⊆̃(G,E). Hence,
bScl(F1,E)⊆̃(F2,E)c⊆̃(G,E). Thus, F,E)⊆̃(F1,E),
bScl(F1,E)
⊆̃(G,E).

(2) ⇒ (1) Let (G1,E),(G2,E) be b-closed soft sets such
that (G1,E)∩̃(G2,E) = φ̃ . Then (G1,E)⊆̃(G2,E)c,
then by hypothesis, there exists a b-open soft set
(F1,E) such that G1,E)⊆̃(F1,E),
bScl(F1,E)⊆̃(G2,E)c. So (G2,E)⊆̃[bScl(F1,E)]c,
G1,E)⊆̃(F1,E) and [bScl(F1,E)]c∩̃(F1,E) = φ̃ ,
where(F1,E) and [bScl(F1,E)]c are b-open soft sets.
Thus,(X ,τ,E) is soft b-normal space.

Theorem 3.12.A b-closed soft subspace(Y,τY ,E) of a
soft b-normal space(X ,τ,E) is soft b-normal.

Proof. Let (G1,E),(G2,E) be b-closed soft sets inY such
that(G1,E)∩̃(G2,E) = φ̃ . Then(G1,E) = (Y,E)∩̃(F1,E)
and(G2,E) = (Y,E)∩̃(F1,E) for some b-closed soft sets
(F1,E),(F2,E) in X from Theorem 2.2. SinceY is sa
b-closed soft subset ofX . Then (G1,E),(G2,E) are
b-closed soft sets inX such that(G1,E)∩̃(G2,E) = φ̃ .
Hence, by soft b-normality there exist b-open soft sets
(H1,E) and (H2,E) such that (G1,E)⊆̃(H1,E),
(G2,E)⊆̃(H2,E) and (H1,E)∩̃(H2,E) = φ̃ . Since
(G1,E),(G2,E)⊆̃(Y,E), then(G1,E)⊆̃(Y,E)
∩̃(H1,E), (G2,E)⊆̃(Y,E)∩̃(H2,E) and
[(Y,E)∩̃(H1,E)]∩̃[(Y,E)∩̃(H2,E)] = φ̃ , where(Y,E)
∩̃(H1,E) and (Y,E)∩̃(H2,E) are b-open soft sets inY .
Therefore,(Y,τY ,E) is a soft b-normal space.

Theorem 3.13.Let (X ,τ,E) be a soft topological space. If
(X ,τ,E) is soft b-normal space andxE is b-closed soft set
in τ for all x ∈ X , then(X ,τ,E) is soft b-T3-space.

Proof. SincexE is b-closed soft set for allx ∈ X , then
(X ,τ,E) is soft b-T1-space from Theorem 3.3. Also
(X ,τ,E) is soft b-regular space from Theorem 3.7 and
Definition 3.5. Hence,(X ,τ,E) is soft b-T3-space.

4 Irresolute b-open soft functions

Theorem 4.1. Let (X ,τ1,A) and (Y,τ2,B) be soft
topological spaces andfpu : SS(X)A → SS(Y)B be a soft
function which is bijective and irresolute b-open soft. If
(X ,τ1,A) is soft b-To-space, then(Y,τ2,B) is also a soft
b-To-space.

Proof. Let y1,y2 ∈ Y such thaty1 6= y2. Since fpu is
surjective, then ∃x1,x2 ∈ X such that u(x1) = y1,
u(x2) = y2 andx1 6= x2. By hypothesis, there exist b-open
soft sets(F,A) and(G,A) in X such that eitherx1 ∈ (F,A)
andx2 6∈ (F,A), or x2 ∈ (G,A) andx1 6∈ (G,A). So, either
x1 ∈ FA(e) andx2 6∈ FA(e) or x2 ∈ GA(e) andx1 6∈ GA(e)
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for all e ∈ A. This implies that, either
y1 = u(x1) ∈ u[FA(e)] and y2 = u(x2) 6∈ u[FA(e)] or
y2 = u(x2) ∈ u[GA(e)] andy1 = u(x1) 6∈ u[GA(e)] for all
e ∈ A. Hence, eithery1 ∈ fpu(F,A) andy2 6∈ fpu(F,A) or
y2 ∈ fpu(G,A) andy1 6∈ fpu(G,A). Since fpu is irresolute
b-open soft function, thenfpu(F,A), fpu(G,A) are b-open
soft sets inY . Hence,(Y,τ2,B) is also a soft b-To-space.

Theorem 4.2 Let (X ,τ1,A) and (Y,τ2,B) be soft
topological spaces andfpu : SS(X)A → SS(Y)B be a soft
function which is bijective and irresolute b-open soft. If
(X ,τ1,A) is soft b-T1-space, then(Y,τ2,B) is also a soft
b-T1-space.

Proof. It is similar to the proof of Theorem 4.1.Theorem

4.3.Let (X ,τ1,A) and(Y,τ2,B) be soft topological spaces
and fpu : SS(X)A → SS(Y)B be a soft function which is
bijective and irresolute b-open soft. If(X ,τ1,A) is soft b-
T2-space, then(Y,τ2,B) is also a soft b-T2-space.

Proof. y1,y2 ∈ Y such thaty1 6= y2. Sincefpu is surjective,
then ∃x1,x2 ∈ X such thatu(x1) = y1, u(x2) = y2 and
x1 6= x2. By hypothesis, there exist b-open soft sets(F,A)
and (G,A) in X such thatx1 ∈ (F,A), x2 ∈ (G,A) and
(F,A)∩̃(G,A) = φ̃A. So x1 ∈ FA(e), x2 ∈ GA(e) and
FA(e)∩̃GA(e) = φ for all e ∈ A. This implies that,
y1 = u(x1) ∈ u[FA(e)], y2 = u(x2) ∈ u[GA(e)] for all e ∈ A.
Hence, y1 ∈ fpu(F,A), y2 ∈ fpu(G,A) and
fpu(F,A)∩̃ fpu(G,A) = fpu[(F,A)∩̃(G,A)] = fpu[φ̃A] = φ̃B
from Theorem 2.3. Sincefpu is irresolute b-open soft
function, thenfpu(F,A), fpu(G,A) are b-open soft sets in
Y . Thus,(Y,τ2,B) is also a soft b-T2-space.

Theorem 4.4. Let (X ,τ1,A) and (Y,τ2,B) be soft
topological spaces andfpu : SS(X)A → SS(Y)B be a soft
function which is bijective, b-irresolute soft and irresolute
b-open soft. If (X ,τ1,A) is soft b-regular space, then
(Y,τ2,B) is also a soft b-regular space.

Proof. Let (G,B) be a b-closed soft set inY and y ∈ Y
such that y 6∈ (G,B). Since fpu is surjective and
b-irresolute soft, then∃x ∈ X such thatu(x) = y and
f−1
pu (G,B) is b-closed soft set in X such that

x 6∈ f−1
pu (G,B). By hypothesis, there exist b-open soft sets

(F,A) and (H,A) in X such that x ∈ (F,A),
f−1
pu (G,B)⊆̃(H,A) and (F,A)∩̃(H,A) = φ̃A. It follows

that, x ∈ FA(e) for all e ∈ A and
(G,B) = fpu[ f−1

pu (G,B)]⊆̃ fpu(H,A) from Theorem 2.3.
So, y = u(x) ∈ u[FA(e)] for all e ∈ A and
(G,B)⊆̃ fpu(H,A). Hence, y ∈ fpu(F,A) and
(G,B)⊆̃ fpu(H,A) and
fpu(F,A)∩̃ fpu(H,A) = fpu[(F,A)∩̃(H,A)] = fpu[φ̃A] = φ̃B
from Theorem 2.3. Sincefpu is irresolute b-open soft
function. Then, fpu(F,A), fpu(H,A) are b-open soft sets
in Y . Thus, (Y,τ2,B) is also a soft b-regular space.
Theorem 4.5. Let (X ,τ1,A) and (Y,τ2,B) be soft

topological spaces andfpu : SS(X)A → SS(Y)B be a soft
function which is bijective, b-irresolute soft and irresolute
b-open soft. If(X ,τ1,A) is soft b-T3-space, then(Y,τ2,B)
is also a soft b-T3-space.

Proof. Since(X ,τ1,A) is soft b-T3-space, then(X ,τ1,A) is
soft b-regularT1-space. It follows that,(Y,τ2,B) is also a
soft b-T1-space from Theorem 4.2 and soft b-regular space
from Theorem 4.4. Hence,(Y,τ2,B) is also a soft b-T3-
space.

Theorem 4.6. Let (X ,τ1,A) and (Y,τ2,B) be soft
topological spaces andfpu : SS(X)A → SS(Y)B be a soft
function which is bijective, b-irresolute soft and irresolute
b-open soft. If (X ,τ1,A) is soft b-normal space, then
(Y,τ2,B) is also a soft b-normal space.

Proof. Let (F,B),(G,B) be b-closed soft sets inY such
that (F,B)∩̃(G,B) = φ̃B. Since fpu is b-irresolute soft,
then f−1

pu (F,B) and f−1
pu (G,B) are b-closed soft set inX

such that f−1
pu (F,B)∩̃ f−1

pu (G,B) = f−1
pu [(F,B)∩̃(G,B)] =

f−1
pu [φ̃B] = φ̃A from Theorem 2.3. By hypothesis, there

exist irresolute b-open soft sets(K,A) and (H,A) in X
such that f−1

pu (F,B)⊆̃(K,A), f−1
pu (G,B)⊆̃(H,A) and

(F,A)∩̃(H,A) = φ̃A. It follows that,
(F,B) = fpu[ f−1

pu (F,B)]⊆̃ fpu(K,A)
,(G,B) = fpu[ f−1

pu (G,B)]⊆̃ fpu(H,A) from Theorem 2.3
and fpu(K,A)∩̃ fpu(H,A) = fpu[(K,A)∩̃(H,A)] =

fpu[φ̃A] = φ̃B from Theorem 2.3. Sincefpu is irresolute
b-open soft function. Thenfpu(K,A), fpu(H,A) are
b-open soft sets inY . Thus, (Y,τ2,B) is also a soft
b-normal space.

Corollary 4.1. Let (X ,τ1,A) and (Y,τ2,B) be soft
topological spaces andfpu : SS(X)A → SS(Y)B be a soft
function which is bijective, b-irresolute soft and irresolute
b-open soft. If(X ,τ1,A) is soft b-T4-space, then(Y,τ2,B)
is also a soft b-T4-space.

Proof. It is obvious from Theorem 4.2 and Theorem 4.6.

5 Conclusion

Recently, many scientists have studied the soft set theory,
which is initiated by Molodtsov [33] and easily applied to
many problems having uncertainties from social life. In the
present work, we introduce the notion of soft b-separation
axioms. In particular we study the properties of the soft
b-regular spaces and soft b-normal spaces. We show that,
if xE is b-closed soft set for allx ∈ X in a soft topological
space(X ,τ,E), then(X ,τ,E) is soft b-T1-space. Also, we
show that if a soft topological space(X ,τ,E) is soft b-
T3-space, then∀ x ∈ X , xE is b-closed soft set. Also, we
show that the property of being b-Ti-spaces(i = 1,2) is
soft topological property under a bijection and irresolute
b-open soft mapping. Further, the properties of being soft
b-regular and soft b-normal are soft topological properties
under a bijection, b-irresolute soft and irresolute b-open
soft functions. Finally, we show that the property of being
b-Ti-spaces(i= 1,2,3,4) is a hereditary property. We hope
that, the results in this paper will help researcher enhance
and promote the further study on soft topology to carry out
a general framework for their applications in practical life.
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