
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Computer Science and Engineering Faculty 
Publications Computer Science & Engineering 

12-1-1999 

Characterizations of Classes of Programs by Three-Valued Characterizations of Classes of Programs by Three-Valued 

Operators Operators 

Anthony K. Seda 

Pascal Hitzler 
pascal.hitzler@wright.edu 

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse 

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons, 

Databases and Information Systems Commons, OS and Networks Commons, and the Science and 

Technology Studies Commons 

Repository Citation Repository Citation 
Seda, A. K., & Hitzler, P. (1999). Characterizations of Classes of Programs by Three-Valued Operators. 
Proceedings of the 5th International Conference on Logic Programming and Nonmonotonic Reasoning, 
357-371. 
https://corescholar.libraries.wright.edu/cse/81 

This Conference Proceeding is brought to you for free and open access by Wright State University’s CORE Scholar. 
It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized 
administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fcse%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fcse%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fcse%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fcse%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fcse%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fcse%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


Characterizations of Classes of Programs by

Three�Valued Operators

Pascal Hitzler� and Anthony Karel Seda�

� National University of Ireland� Cork� Ireland�
phitzler�ucc�ie�

WWW home page� http���maths�ucc�ie��pascal�index�html
� National University of Ireland� Cork� Ireland�

aks�ucc�ie�
WWW home page� http���maths�ucc�ie��seda�index�html

Abstract� Several important classes of normal logic programs� includ�
ing the classes of acyclic� acceptable� and locally hierarchical programs�
have the property that every program in the class has a unique two�
valued supported model� In this paper� we call such classes unique sup�

ported model classes� We analyse and characterize these classes by means
of operators on three�valued logics� Our studies will motivate the de�ni�
tion of a larger unique supported model class which we call the class of
���accessible programs� Finally� we show that the class of ���accessible
programs is computationally adequate in that every partial recursive
function can be implemented by such a program�

Proceedings of the �th International Conference on Logic Programmingand Non�
Monotonic Reasoning �LPNMR����� El Paso� Texas� December� 	���
 Springer
Lecture Notes in Arti�cial Intelligence Vol
 	�
�� 	���� pp
 
���
�	


� Introduction

A good deal of recent research in logic programming has been put into the
determination of standard� or intended� models for normal logic programs
 Some
standard semantics� such as the well�founded semantics ��	��� or the stable model
semantics ��	���� are applicable to very large classes of programs
 However� whilst
the general applicability of these semantics is certainly desirable� the study of
these large classes of programs has a natural practical limitation� it is possible to
assign standard models to logic programs for which useful interpreters have not
yet been implemented� and for which it is questionable whether or not this ever
will be possible
 It is therefore reasonable to study smaller classes of programs
whose behaviour is more controlled� so long as these classes are large enough for
practical purposes


On the other hand� certain classes of logic programs have been de�ned purely
in order to study termination and computability properties
 For instance� the
acyclic programs of Cavedon ��� �initially called locally ��hierarchical programs



by him� are precisely the terminating programs� and were shown by Bezem ���
to be able to compute all the total computable functions� see also �	�
 Next� the
class of acceptable programs ��
�� was introduced by Apt and Pedreschi
 Such
programs are left�terminating and� conversely� left�terminating non��oundering
programs are acceptable
 In fact� the class of all acceptable programs strictly con�
tains the acyclic programs but� nevertheless� is not computationally adequate�
i
e
 not every partial recursive function can be implemented by such a program

Finally� the class of all locally hierarchical programs was introduced in ���
 How�
ever� this class� which also contains all acyclic programs� is computationally
adequate under Prolog if the use of safe cuts is allowed ���
��


All the programs contained in the classes mentioned in the previous para�
graph have a common property� they have unique supported models
 These
classes will be called here unique supported model classes
 In fact� they even
have unique three�valued models under Fitting�s Kripke�Kleene semantics ��		��

Thus� the programs in question leave little doubt about the semantics� i
e
 the
model� which is to be assigned to them as standard model and� in addition� they
have interesting computational properties under existing interpreters� as noted
above


In this paper� we will analyse and characterize unique supported model classes
by means of certain three�valued logics� and study computability properties of
these
 In particular� in Section � we will introduce three di�erent three�valued
logics and their associated consequence operators� and study the relationships
between them
 In Sections 

	 and 

�� we will characterize acceptable and locally
hierarchical programs by means of the behaviour of these operators
 We will also
give constructions of their canonical level mappings


Prompted by the studies of acceptable and locally hierarchical programs� we
will de�ne a new class of programs which we call the ���accessible programs
 We
study this class in Section 


� where it is shown that the ���accessible programs
contain the acceptable and the locally hierarchical programs
 Moreover� we will
show that each ���accessible program has a unique supported model� that each
has a canonical level mapping� and that the class of ���accessible programs is
computationally adequate under SLDNF�resolution


Many�valued logics have been employed in several studies of the semantics of
logic programs
 In particular� they have been used to assign special truth values
to atoms which possess certain computational behaviour such as being non�
terminating ��		� ����� being ill�typed ���	��� being �oundering ������ or failing
when backtracking �����
 The motivation for the de�nitions of the three�valued
logics we will be using in this paper comes from a couple of sources
 Primarily�
these logics are formulated in order to allow for easy analysis and characterization
of the programs or classes of programs in question by using the logic to mimic the
de�ning property of the program or class of programs
 This idea is akin to some of
those considered in the papers just cited� see also ���� and is a component of work
being undertaken by the authors in �	�� where a program transformation which
outputs a locally hierarchical program� when input an acceptable one� is used
in the characterization of acceptable programs given in �	��
 Natural questions�



partly answered here� then arise as to the di�erent ways that di�erent classes of
programs can be characterized
 On the other hand� the present work can also
be viewed as a contribution to the asymmetric semantics proposed by Fitting
and Ben�Jacob in �	
� where it is noted that certain di�erences between Pascal�
LISP and Prolog� for example� are easily described in terms of three�valued logic

Thus� �	
� is also a source of motivation for our de�nitions
 However� we note
that all programs analysed herein do have unique supported models� therefore the
third truth value unde�ned will only be used for obtaining the unique supported
two�valued model
 Hence� interpretations of unde�ned from the point of view of
computation �such as non�halting� are not actually necessary in this paper


Preliminaries and Notation

Our notation basically follows �	��� but we will include next a short review of
the main terminology used
 Given a normal logic program P � we work over an
arbitrary preinterpretation J �complete generality is needed in �	�� and hence
also in this companion paper�
 We refer to variable assignments which map into
the domainD of J as J�variable assignments� the underlying �rst order language
of P will be denoted by L
 By BP�J � we denote the set of all J�ground instances
of atoms in L
 Thus� BP�J is the set of all p�d�� � � � � dn�� where p is an n�ary
predicate symbol in L and d�� � � � � dn � D
 An element A � p�d�� � � � � dn� of BP�J

is called a J� v��ground� instance or J��ground� instance of an atomic formula
A� � p�t�� � � � � tn� in L if there exists a J�variable assignment v such that A� j
v � A� meaning that ti j v � di for i � 	� � � � � n� where t j v is the denotation of a
term t relative to J and v
 Since each ti j v � D� any J�instance of A� is variable
free
 This extends easily to literals L� where L � �A� � �p�t�� � � � � tn�� say

Thus� the symbol �p�d�� � � � � dn� is called a J� v��ground� instance or J��ground�
instance of the literal L if there exists a J�variable assignment v such that
p�t�� � � � � tn� j v � p�d�� � � � � dn�
 We often loosely refer to J�ground instances
of atoms and of literals as J�ground atoms and J�ground literals respectively
or even as ground atoms and ground literals respectively if J is understood

In accordance with ���� De�nition 	�� we write groundJ �P � for the set of all
J��ground� instances of clauses� or J�ground clauses� or simply ground clauses�
in P � the latter term being used� of course� when again J is understood
 Thus�
typically� ifA� � L�� � � � � Ln is a clause in P � then A

� j v � L� j v� � � � � Ln j v is an
element of groundJ �P �� where v is a J�variable assignment such that A � A� j v is
a J�instance of A� and Li j v is a J�instance of Li for i � 	� � � � � n
 All elements of
groundJ �P � are obtained thus from some clause and some J�variable assignment


Example �� As an example of a normal logic program� we give the following
program from �
� for computing the transitive closure of a graph


r�X�Y�E� V �� m��X�Y �� E�

r�X�Z�E� V �� m��X�Y �� E���m�Y� V �� r�Y� Z�E� �Y jV ��

m�X� �XjT ���

m�X� �Y jT ��� m�X�T �



e�a�� for all a � N

Here� N denotes a �nite set containing the nodes appearing in the graph as
elements
 In the program� uppercase letters denote variable symbols� lowercase
letters constant symbols� and lists are written using square brackets as usual
under Prolog
 One evaluates a goal� r�x� y� e� �x�� where x and y are nodes and
e is a graph speci�ed by a list of pairs denoting its edges
 The goal is supposed to
succeed when x and y can be connected by a path in the graph
 The predicate m
implements membership of a list
 The last argument of the predicate r acts as an
accumulator which collects the list of nodes which have already been visited in
an attempt to reach y from x
 The transitive closure program has been studied
in detail in �
�	��


The set of all two�valued interpretations based on J for a given normal pro�
gram P will be denoted by IP�J 
 Elements of IP�J are called J�interpretations
and are called J�models of P if they are also models of P 
 The set IP�J is a
complete lattice with respect to the ordering � de�ned by I � K if and only
if I j� A implies K j� A for every A � BP�J 
 In order to simplify notation�
we note that IP�J can be identi�ed with the power set �BP�J and the order�
ing � is then indeed set�inclusion
 For I � IP�J � we set cI � BP�J n I
 With
this convention and following ���� Section ��� in classical two�valued logic we
write I j� p�d�� � � � � dn� �respectively I j� �p�d�� � � � � dn�� if p�d�� � � � � dn� � I

�respectively p�d�� � � � � dn� �� I�
 By abusing the meaning of conjunction� and
its notation� in the obvious way �see ���� Section ���� it is now meaningful to
write I j� L� j v� � � � � Ln j v� where L� j v� � � � � Ln j v denotes a �conjunction�
L� j v � � � �� Ln j v of J�instances of literals


The immediate consequence operator TP�J for a given program P is de�ned
as usual as a mapping on IP�J as follows �where body denotes a conjunction of
J�instances of literals��

TP�J �I� � fA � BP�J j there exists A� body in groundJ �P � with I j� bodyg�

Finally� recall from ��� that a two�valued J�interpretation M is a supported J�
model of P if and only ifM �together with Clark�s Equality Theory� is a J�model
of the Clark�completion of P if and only if TP�J �M � � M 


� Three�Valued Semantics

A three�valued J�interpretation of a program P is a pair �T� F � of disjoint sets
T� F � BP�J 
 Given such a J�interpretation I � �T� F �� a J�ground atom A is
true �t� in I if A � T � false �f� in I if A � F � and unde�ned �u� otherwise� �A is
true in I i� A is false in I� �A is false in I i� A is true in I and �A is unde�ned
in I i� A is unde�ned in I


Given I � �T� F �� we denote T by I� and F by I�
 Thus� I � �I�� I��
 If
I� � I� � BP�J � we call I a total three�valued J�interpretation of the program
P 
 Total three�valued interpretations can be identi�ed with elements of IP�J 




Given a program P � the set IP�J�� of all three�valued J�interpretations of P
forms a complete partial order �in fact� complete semi�lattice� with the ordering
	 de�ned by

I 	 K if and only if I� � K� and I� � K�

with least element �
� 
� which we will denote by �
 Notice that total three�
valued J�interpretations are maximal elements in this ordering


In our present context� it will be su�cient to give truth tables for conjunction
and disjunction� and we will make use of three di�erent three�valued logics which
we are now going to de�ne
 It should be noted here that the truth tables for
disjunction are the same in all three logics and that disjunction is commutative


The �rst logic� which we will denote by L�� evaluates conjunction as in Fit�
ting�s Kripke�Kleene semantics �		� �in fact� as in Kleene�s strong three�valued
logic� see �	
��
 Fitting�s work built on ���� and was subsequently studied in the
literature by Kunen in �	��� Apt and Pedreschi in �
�� and Naish in ��	�
 Dis�
junction will be evaluated di�erently though� as indicated by the truth table in
Table 	


Table �� Truth tables for the logics L�� L�� and L�

Logic L� Logic L� Logic L�

p q p � q p � q p � q p � q p � q p � q

t t t t t t t t
t u u u u u u u

t f f t f t f t
u t u u u u u u
u u u u u u u u

u f f u u u u u
f t f t f t f t
f u f u f u u u
f f f f f f f f

Operator �P�� �P�� �P��

The second three�valued logic� L�� will be used for studying acceptable pro�
grams and is non�commutative under conjunction
 It will be su�cient to evaluate
u � f to u instead of f and leaving the truth table for L� otherwise unchanged

This way of de�ning conjunction was employed in ��� and ���� see also the dis�
cussion of LISP in �	
�
 The truth table is again given in Table 	


The third logic� L�� will be used for studying locally hierarchical and acyclic
programs
 For this purpose� we use a commutative version of L� where we evalu�
ate f � u to u instead of f� see the discussion in �	
� of Kleene�s weak three�valued
logic in relation to Pascal
 The truth table is shown in Table 	




Let P be a normal logic program� and let Li denote one of the three�valued
logics above� where i � 	� � or 

 Corresponding to each of these logics we de�ne
an operator FP�J on IP�J�� as follows
 For I � IP�J��� let FP�J�I� � �T� F � where
T denotes the set

fA � BP�J j there is A� body � groundJ �P � s
t
 body is truei in Ig�

and F denotes the set

fA � BP�J j for every A� body � groundJ �P �� body is falsei in Ig�

Of course� truei and falsei here denote truth respectively falsehood in the logic
Li
 Notice that if A is not the head of any clause in P � then A is false in FP�J �I�
for any I


It is clear that FP�J is monotonic in all three cases
 We set FP�J �� � ��

FP�J �� � FP�J �FP�J � ��
 	�� for � a successor ordinal� and

FP�J �� �
�

���

FP�J �� for � a limit ordinal


Since FP�J is monotonic� it has a least �xed point which is equal to FP�J ��
for some ordinal � called the closure ordinal of P �for the chosen logic Li�


Throughout the sequel� we will denote FP�J by �P��� �P�� or �P�� if the chosen
logic is correspondingly L�� L� or L�
 The appropriate symbol is also included in
Table 	 for ease of reference
 Note that the behaviour of each of these operators
depends only on the evaluation of conjunction
 In fact� �P�� is the very same
operator as used in �		�


Proposition �� Let P be a normal logic program and let I� I �� I�� � IP�J�� be
such that I 	 I� 	 I��� Then we have

�P���I� 	 �P���I
�� 	 �P���I

����

Proof� The following observations are clear from the given truth tables� and
indeed su�ce
 If a body of a clause is true �false� in L�� then it is true �false� in
L�
 If it is true �false� in L�� then it is true �false� in L�


The following result is taken from �	�� generalizing a result in �
�


Proposition �� Let P be a normal logic program and let I � �I�� cI�� be a
total three�valued J�interpretation for P � Then I is a �xed point of �P�� if and
only if I� is a �xed point of TP�J � Furthermore� if �P�� has exactly one �xed
point M and M is total� then M� is the unique �xed point of TP�J �

Proposition �� Let P be a normal logic program� let FP�J denote �P�i� for
i � 	� �� 
� and assume that M � FP�J �� is total� where � is the corresponding
closure ordinal of P � Then M� is the unique two�valued supported J�model of
P �

Proof� By totality of M and the previous results we obtain M� as a �xed point
of TP�J 
 Since M is the least �xed point of FP�J and is maximal in IP�J��� it is
the unique �xed point of FP�J which �nishes the proof




Given a J�ground atom A which occurs as the head of an element A� C of
groundJ �P �� we form the J�pseudo clause� or simply pseudo clause� A � �iCi

whose body �iCi is the �possibly in�nite� disjunction of the bodies Ci of all
clauses in groundJ �P � whose head is A� we call A the head of the pseudo clause
A � �iCi
 The set of all such pseudo clauses will be denoted by P �
 It will be
convenient to assign �truth� values to �iCi� relative to the logics Li by in fact
assigning truth values to arbitrary disjunctions of literals and then employing the
same sort of abuse for �disjunctions� of J�ground literals which was established
earlier for conjunction
 This is done as follows� �iCi will be assigned value true
�t� i� at least one Ci is true and none are unde�ned� it will be assigned value
unde�ned �u� i� at least one Ci is unde�ned� it will be assigned value false �f�
i� all the Ci are false
 These de�nitions are the natural extension to possibly
in�nite disjunctions of the values given iteratively to �nite disjunctions by the
truth tables in Table 	


Letting FP�J denote any one of the �P�i� for i � 	� �� 
� we de�ne an operator
FP� on IP�J�� as follows
 For I � IP�J��� set FP��I� � �T� F �� where T is the set
of all J�ground atoms which occur as the head of a pseudo clause in P � whose
body is true in I� and F is the set of all J�ground atoms which occur as the head
of a pseudo clause whose body is false in I
 As before� �P��i will denote FP�

when the chosen logic is Li� i � 	� �� 

 Note that FP� is again monotonic for
any choice of underlying logic
 Ordinal powers FP� �� are de�ned as for FP�J 


Example 	� We give an example illustrating the program transformationP �
 Let
P be the �propositional� program

a� b

a� c

b�

c� c

then P � is

a� b � c

b�

c� c

Let I be the three�valued interpretation �fbg� 
�
 Then �P���I� � �fa� bg� 
��
which is also the least �xed point of �P��
 However� since c is unde�ned in I� we
have �P����I� � �fbg� 
�� which is the least �xed point of �P���
 The di�erence
between �P�� and �P��� results from the way in which disjunction is de�ned�
see the following proposition� Proposition �
 In fact� in this context it is worth
noting an observation made by one of the referees of this paper� as follows
 In
classical two�valued logic� the programs �a � b� � �a � c� and a � �b � c� are
equivalent simply because of the distributive laws and De Morgan�s law that
�b � �c and ��b � c� are equivalent
 In the Logics Li� i � 	� �� 
� �b � �c and
��b� c� are not equivalent as can easily be veri�ed by� for example� taking b to



be true and c to be unde�ned
 In fact� the rule a� �b� c� with disjunctive body
is weaker �leaves more unde�ned� than the two separate rules a� b and a� c


Proposition �� Let P be a normal logic program and let I� I �� I�� � IP�J�� be
such that I 	 I� 	 I��� Then we have

�P����I� 	 �P����I
�� 	 �P����I

����

and for F denoting any of the �i� for i � 	� �� 
� we have

FP� �I� 	 FP�J �I� and FP� �I�� � FP�J�I�
��

Proof� The proof is along the same lines as the proof of Proposition 	 noting
that in a disjunction �iCi which is true� no Ci is unde�ned


� Unique Supported Model Classes

��� Acceptable Programs

Acceptable programs were introduced in �
� and were shown to be strongly re�
lated to left�terminating programs
 Given a normal logic program P � a level
mapping for P is a mapping l from J�ground atoms to an ordinal �
 We always
assume that l is extended to J�ground literals by setting l��A� � l�A� for every
J�ground atom A
 A level mapping which maps into � will be called an ��level
mapping
 Following �
�� we de�ne a subset P� of P as follows


De�nition �� Let P be a normal logic program and let p� q be predicate symbols
occurring in P �
�i� We say that p refers to q if there is a clause in P with p in its head and q in
its body�
�ii� We say that p depends on q if �p� q� is in the re
exive� transitive closure of
the relation refers to�
�iii� The set of predicate symbols in P which occur in a negative literal in the
body of a clause in P is denoted by NegP �
�iv� The set of predicate symbols in P on which the predicate symbols in NegP
depend is denoted by Neg�P � For convenience� we will denote this set simply by
N �
�v� We de�ne P� to be the set of clauses in P which contain a predicate symbol
from N in the head�

The following de�nition is the generalization to an arbitrary preinterpretation
J of the de�nition of acceptability given in �
� for the Herbrand preinterpretation


De�nition �� Let P be a normal logic program� let l be an ��level mapping for
P � and let I be a �two�valued� J�model for P whose restriction to the predicate
symbols in N is a supported J�model of P�� Then P is called J�acceptable



with respect to l and I if� for every clause A � L�� � � � � Ln in groundJ �P �� the
following implication holds for all i � f	� � � � � ng�

if I j�
i���

j��

Lj then l�A� � l�Li��

A program is called J�acceptable with respect to l if l is a level mapping and
there exists a J�model I such that the program is J�acceptable with respect to l

and I� A program is called J�acceptable� or just acceptable if J is understood�
if it is J�acceptable with respect to some level mapping and some J�model�

Example �� The transitive closure program given in Example 	 is Herbrand�
acceptable� for details of the model and level mapping required� see �
�


We are able to characterize J�acceptable programs by means of the operator
�P���� and we do this next
 We will need the following proposition from �	��


Proposition �� Suppose that P is J�acceptable with respect to a level mapping
l� Then MP�J � �P�� � � is total� M�

P�J is the unique supported J�model of P

and P is J�acceptable with respect to l and M�

P�J �

Lemma �� Let P be J�acceptable� Then M � �P��� �� is total� Furthermore�
M � �P����� and M� is the unique supported J�model of P �

Proof� Let l be a level mapping with respect to which P is J�acceptable
 By
Proposition �� P is J�acceptable with respect to l and M�

P�J 
 Assume that there
is a J�ground atom A which is unde�ned in M 
 Without loss of generality we
can assume that l�A� is minimal
 Then by de�nition of L�� there is precisely one
pseudo clause in P � of the form A � �iCi in which at least one of the Ci� say
C�� is unde�ned
 Thus� there must occur a left�most J�ground body literal B in
C� which is unde�ned in M � and this ground literal is to the left in C� of the
�rst ground literal which is false in M 
 Hence� all ground literals occurring to
the left of B must be true in M 
 Since M 	 MP�J by Proposition �� all these
ground literals must also be true in M�

P�J 
 By acceptability of P we therefore
conclude that l�B� � l�A�� contradicting the minimality of l�A�
 By Proposition
�� the second statement holds
 The last statement follows from Proposition 



De�nition �� Let P be J�acceptable� De�ne its canonical level mapping as fol�
lows� lP �A� is the lowest ordinal � such that A is not unde�ned in �P���� ���	��

Proposition 	� Let P be J�acceptable� Then lP is an ��level mapping and P

is J�acceptable with respect to lP and MP�J � Furthermore� if l is another level
mapping with respect to which P is J�acceptable� then lP �A� 	 l�A� for all
A � BP�J � In particular� lP is exactly the canonical level mapping de�ned in

����



Proof� By the previous lemma� lP is indeed an ��level mapping

Let A be the head of a J�ground clause C in P with lP �A� � n
 Then the

body �iCi of the corresponding pseudo clause in P � is either true or false �i
e

is not unde�ned� in N � �P��� � n
 If �iCi is true� each Ci evaluates to true
or false in N 
 If Ci evaluates to true in N �and at least one must�� then all
J�ground literals in Ci are true in N � and therefore have level less than or equal
to n 
 	
 If Ci evaluates to false in N � then there must be a ground literal in
Ci which is false in N such that all ground literals occurring to the left of it are
true in N 
 Moreover all these ground literals are not unde�ned in N and hence
have level less than or equal to n
 	
 A similar argument applies if �iCi is false
in N 
 Since N 	MP�J � it is now clear that the clause C satis�es the condition
of acceptability given in De�nition � with respect to lP and MP�J 


Now let l be another level mapping with respect to which P is J�acceptable

By Proposition �� P is J�acceptable with respect to l and MP�J 
 Let A � BP�J

with l�A� � n
 We show by induction on n that l�A� � lP �A�
 If n � �� then
A appears only as the head of unit clauses� and therefore lP �A� � �
 Now let
n � �
 Then in every clause with head A� the left pre�x of the corresponding
body� up to and including the �rst ground literal which is false inMP�J � contains
only ground literals L with l�L� � n
 By the induction hypothesis� lP �L� � n

for all these ground literals L and� consequently� lP �A� 	 l�A� by de�nition of
lP 


The last statement follows from �	��� where it is shown that the given mini�
mality property characterizes lP 


We are now in a position to characterize J�acceptable programs


Theorem �� Let P be a normal logic program� Then P is J�acceptable if and
only if M � �P����� is total�

Proof� By Lemma 	 it remains to show that totality of M implies acceptability

De�ne the ��level mapping lP for P as in De�nition 

 Since M is total� lP
is indeed an ��level mapping for P 
 We will show that P is J�acceptable with
respect to lP and M 


Arguing as in the proof of the previous proposition� let A be the head of a J�
ground clause C in P with lP �A� � n
 Then the corresponding body C evaluates
to true or false in N � �P����n
 If it evaluates to true in N � then all J�ground
literals in C are true in N � and therefore have level less than or equal to n 
 	

If it evaluates to false in N � then there must be a ground literal in C which is
false in N such that all ground literals occurring to the left of it are true in N 

Again� all these ground literals are not unde�ned in N and hence have level less
than or equal to n 
 	
 Since N 	 M� the clause C satis�es the condition of
acceptability given in De�nition �


In �	��� it was shown that the class of programs which terminate under Chan�s
constructive negation ��	��� coincides with the class of programs which are ac�
ceptable with respect to a model based on a preinterpretation whose domain
is the Herbrand universe and contains in�nitely many constant and function
symbols
 We therefore obtain the following result




Theorem �� A normal logic program P terminates under Chan�s constructive
negation if and only if �P����� is total� where �P��� is computed with respect to a
preinterpretation whose domain is the Herbrand universe and contains in�nitely
many constant and function symbols�

��� Locally Hierarchical Programs

Locally hierarchical programs were introduced in ���� for the special case of the
Herbrand base� as a natural generalization of acyclic programs
 They were further
studied in ��� and in ��
� �and also called strictly level�decreasing there�
 Here�
we consider them over an arbitrary preinterpretation J and our de�nition and
subsequent results are therefore completely general


De�nition �� A normal logic program P is called locally hierarchical if there
exists a level mapping l � BP�J � �� where � is some countable ordinal� such
that for every clause A � L�� � � � � Ln in groundJ �P � we have l�A� � l�Li� for
all i� If� further� � � �� we call P acyclic�

We will now give a new characterization of these programs along the lines of
Theorem 	� using the operator �P���


Lemma �� Let P be locally hierarchical with respect to the level mapping l and
let A � BP�J be such that l�A� � �� Then A is true or false in �P� �� � �� � 	��
In particular� there exists an ordinal �P such that �P�����P is total�

Proof� The proof is by trans�nite induction on �
 The base case follows directly
from the fact that if � � �� then A appears as head of unit clauses only
 Now let
� � � �	 be a successor ordinal
 Then all J�ground literals appearing in bodies
of clauses with head A have level less than or equal to �
 By the induction
hypothesis� they are all not unde�ned in �P��� � �� � 	� and therefore A is
either true or false in �P��� � �� � 	�
 If � is a limit ordinal� then all ground
literals occurring in bodies of clauses with head A have level strictly less than
�
 Hence� by the induction hypothesis and since � is a limit ordinal� all these
ground body literals are not unde�ned in �P��� ��� and therefore A is true or
false in �P���� ��� 	�


Corollary �� Let P be a locally hierarchical program with level mapping l �
BP�J � � and let M � �P����� Then M is total and MP�J � M� is the unique
supported J�model of P �

Proof� By Propositions 	 and �� we have �P��� � � 	 �P�� � � 	 �P�� � � for all
ordinals �
 Since �P��� �� is total by Lemma �� the given statement holds using
Proposition 



De�nition �� Let P be locally hierarchical� De�ne the canonical level mapping
lP of P as a function lP � BP�J � �P where lP �A� is the least ordinal � such
that A is true or false in �P���� ��� 	��



Proposition 
� Let P be locally hierarchical with respect to some level mapping
l� Then lP is a level mapping for P and� for all A � BP�J � we have lP �A� 	 l�A��
Furthermore� the notion of canonical level mapping as de�ned here coincides with
the same notion de�ned by di�erent methods in 
	���

Proof� The mapping lP is indeed a level mapping by Lemma �
 Let A � BP�J

with l�A� � �
 We show the given minimality statement by trans�nite induction
on �
 If � � �� then A appears as the head of unit clauses only� and so lP �A� � �

If � � � � 	 is a successor ordinal� then all J�ground literals L occurring in
bodies of clauses with head A have level l�L� 	 �
 By the induction hypothesis�
we obtain lP �L� 	 � for all those ground literals� and so lP �A� 	 � � l�A� by
construction of lP 
 If � is a limit ordinal� then all ground literals L occurring in
bodies of clauses with head A have level l�L� � �
 Since lP �L� 	 l�L� and since
� is a limit ordinal� we obtain that all these ground literals L are not unde�ned
in �P����� and therefore lP �A� 	 � � l�A� as desired


The last statement follows since the minimality property just proved charac�
terizes the canonical level mapping as was shown in ��
�


Note that it is an easy corollary of the previous results that if a program P

is acyclic� then �P� ���� is total


Theorem �� A normal logic program P is locally hierarchical if and only if
�P����� is total for some ordinal �� It is acyclic if and only if �P����� is total�

Proof� Let P be a normal logic program such that �P��� � � is total for some
�
 We de�ne a mapping l � BP�J � � by analogy with the de�nition of the
canonical level mapping for locally hierarchical programs
 From the de�nion of
L� it is now obvious that P is indeed locally hierarchical with canonical level
mapping l
 The reverse was shown in the previous proposition
 The statement
for acyclic programs now follows immediately as well


��� �
��Accessible Programs

Our investigations of J�acceptable and locally hierarchical programs suggest we
de�ne a class of programs by the property that �P��� �� is total for some ordinal
�
 We will do this next and show also that this class is computationally adequate


De�nition 	� A normal logic program P will be called a ���accessible program
if �P��� �� is total for some ordinal ��

Theorem �� Every ���accessible program has a unique supported J�model� Fur�
thermore� the class of ���accessible programs contains all J�acceptable and all
locally hierarchical programs�

Proof� Immediate by Propositions 
 and �


De�nition 
� The canonical level mapping l� for a given ���accessible program
is de�ned as follows� For every A � BP�J � set l

��A� � �� where � is the minimal
ordinal such that A is true or false in �P���� ��� 	��



The following is immediate by Proposition �


Proposition �� If P is J�acceptable or locally hierarchical with canonical level
mapping lP � then l��A� � lP �A� for all J�ground atoms A�

Proposition 
� Let P be ���accessible with unique supported J�model M � Let
C be an arbitrary element of groundJ �P �� let A be its head� and let l��A� � ��
Then the following property ��� holds� Either the body of C is true in M � in which
case every J�ground literal L in this body has level l��L� � �� or there exists
a ground body literal B in C which is false in M � and in this case l��B� � ��
Furthermore� if l is a level mapping for P which satis�es ���� then l��A� 	 l�A�
for every A � BP�J �

Proof� Since P is ���accessible� every body of every J�ground clause with head
A is either true or false in �P�����
 In particular� the body of C is true or false
in �P��� � �
 If it is true� then all J�ground literals L in the body are true in
�P��� �� and so l��L� � � by de�nition of l�
 If the body is false� then there is
a ground body literal B which is false in �P������ and again by de�nition of l�

we obtain l��B� � l�A�

The minimality property of l� is shown by trans�nite induction along the

same lines as in the proofs of the Propositions � and �


It was shown in ��
� that the class of all locally hierarchical programs is
computationally adequate in the sense that every partial recursive function can
be computed with such a program if the use of safe cuts is allowed
 For ���
accessible programs� the cut need not be used� and we will show this next
 The
proof basically shows that given a partial recursive function� there is a de�nite
program as given in �	�� which computes that function
 This program will turn
out to be a ���accessible program


Theorem �� Let f be a partial recursive function� Then there exists a de�nite
���accessible program which computes f �

Proof� We will make use of the de�nite program Pf given in �	�� Theorem �
���
and we refer the reader to the proof of this theorem for details
 It is easily seen
that we have to consider the minimalization case only
 In �	��� the following
program Pf was given as an implementation of a function f which is the result
of applying the minimalization operator to a partial recursive function g� which
is in turn implemented by a predicate pg
 We abbreviate X�� � � � � Xn by X


pf �X�Y �� pg�X� �� U �� r�X� �� U� Y �

r�X�Y� �� Y ��

r�X�Y� s�V �� Z�� pg�X� s�Y �� U �� r�X� s�Y �� U� Z�

This program is not ���accessible
 However� we can replace it with a program
P �
f which has the same procedural behaviour and is ���accessible
 In fact� we

replace the de�nition of r by

r�X�Y� �� Y ��

r�X�Y� s�V �� Z�� pg�X� s�Y �� U �� r�X� s�Y �� U� Z�� lt�Y� Z��



where the predicate lt is in turn de�ned as

lt��� s�X�� �

lt�s�X�� s�Y ��� lt�X�Y �

and is obviously ���accessible
 By a straightforward analysis of the original pro�
gram Pf � it is clear that the addition of lt�y� z� in the second de�ning clause of
r does not alter the behaviour of the program
 Since lt and pg are ���accessible�
it is now easy to see that r is ���accessible� and so therefore is P �

f 


It is worth noting that negation is not needed here in order to obtain full
computational power� so Theorem � strenghtens the result of �	�� referred to in
the proof of Theorem �
 By contrast� as already noted� de�nite locally hierarchi�
cal programs seem not to provide full computational power
 Regardless of some
known drawbacks in SLDNF�resolution� it is interesting to know that relative to
it the class of all ���accessible programs has full computational power � neither
the class of acyclic nor even the class of J�acceptable programs has this property


� Conclusions

The rather simple characterizations of the classes discussed in this paper are a
contribution to exploring the �space� of all normal programs� a task which ap�
pears not yet to have been addressed very extensively
 Both the class of locally
hierarchical programs and the class of J�acceptable programs are natural gener�
alizations of acyclic programs� the �rst can be understood as a generalization in
semantical terms� and the second as a generalization expressing termination


The results presented in this paper establish a common framework which
highlights more clearly the di�erences and the similarities between these gen�
eralizations� each can be obtained uniquely by suitably de�ning conjunction
in the underlying three�valued logic whilst retaining a �xed meaning for dis�
junction
 Our approach then leads naturally to the de�nition of the class of
all ���accessible programs� by choosing yet another de�nition of conjunction

This class is remarkable for two reasons� �i� each program in it has a unique
supported J�model� and �ii� the class itself has full computational power under
SLDNF�resolution whilst containing all J�acceptable and all locally hierarchical
programs� but not all de�nite programs
 However� a simple syntactical descrip�
tion of this class and how it relates to other better known classes is not yet
known to us� nor is the complexity of deciding if a program is ���accessible


Other classes of programs may well be susceptible to the sort of analysis
presented here� and this also is ongoing research of the authors
 As already
noted in the Introduction� such an investigation carries forward the suggestion
made in �	
� that asymmetric semantics is worthy of further study


Acknowledgements The authors wish to thank three anonymous referees for their
comments which substantially helped to improve the style of this paper

The �rst named author acknowledges �nancial support under grant SC������	
from Enterprise Ireland




References

�� Apt� K�R�� Bezem� M�� Acyclic Programs� In� Warren� D�H�D�� Szeredi� P� �Eds�	�
Proceedings of the Seventh International Conference on Logic Programming� MIT
Press� Cambridge MA� �

�� pp� ��
����

�� Apt� K�R�� Blair� H�A�� Walker� A�� Towards a Theory of Declarative Knowledge�
In� Minker� J� �Ed�	� Foundations of Deductive Databases and Logic Programming�
Morgan Kaufmann Publishers Inc�� Los Altos� �
��� pp� �
����

�� Apt� K�R�� Pedreschi� D�� Reasoning about Termination of Pure Prolog Programs�
Information and Computation ��� ��

�	 ��
���


�� Andrews� J�H�� A Logical Semantics for Depth��rst Prolog with Ground Negation�
Theoretical Computer Science ��� ����	 ��


	 �������

�� Bidoit� N�� Froidevaux� C�� Negation by default and unstrati�able logic programs�
Theoretical Computer Science �� ��

�	 ������

�� Barbuti� R�� De Francesco� N� Mancarella� P� Santone� A�� Towards a Logical Se�
mantics for Pure Prolog� Science of Computer Programming 	
 ����	 ��

�	 �����
�


� Bezem� M� Characterizing Termination of Logic Programs with Level Mappings� In�
Lusk� E�L�� Overbeek R�A��Eds�	� Proceedings of the North American Conference on
Logic Programming� MIT Press� Cambridge MA� �
�
� pp� �
���

�� Cavedon� L�� Continuity� Consistency� and Completeness Properties for Logic Pro�
grams� In� Levi� G�� Martelli� M� �Eds�	� Proceedings of the �th International Con�
ference on Logic Programming� MIT Press� Cambridge MA� �
�
� pp� �
�����


� Cavedon L�� Acyclic Logic Programs and the Completeness of SLDNF�Resolution�
Theoretical Computer Science �� ��

�	 ���
�

��� Chan� D�� Constructive Negation Based on the Completed Database� In� Proc� of
the �th Int� Conf� and Symp� on Logic Programming� �
��� pp� �������

��� Fitting� M�� A Kripke�Kleene Semantics for General Logic Programs� J� Logic Pro�
gramming 
 ��
��	 �
�����

��� Fitting� M�� Metric Methods� Three Examples and a Theorem� J� Logic Program�
ming 
� ��	 ��

�	 ������


��� Fitting� M�� Ben�Jacob� M�� Strati�ed� Weak Strati�ed� and Three�Valued Seman�
tics� Fundamenta Informaticae XIII ��

�	 �
���

��� Van Gelder� A�� Ross� K�A�� Schlipf� J�S�� The Well�Founded Semantics for General
Logic Programs� Journal of the ACM 	� ��	 ��

�	 �������

��� Gelfond� M�� Lifschitz� V�� The Stable Model Semantics for Logic Programming� In�
Kowalski� R�A�� Bowen� K�A� �Eds�	� Proceedings of the �th International Conference
and Symposium on Logic Programming� MIT Press� �
��� pp� ��
������

��� Hitzler� P�� Seda� A�K�� Acceptable Programs Revisited� Preprint� Department of
Mathematics� University College Cork� Cork� Ireland� �


� pp� ����

�
� Kunen� K�� Negation in Logic Programming� J� Logic Programming � ��
�
	 ��
�
���

��� Lloyd� J�W�� Foundations of Logic Programming� Second Edition� Springer� Berlin�
�
��

�
� Marchiori� E�� On Termination of General Logic Programs with respect to Con�
structive Negation� J� Logic Programming 
� ��	 ��

�	 �
��


��� Mycroft� A�� Logic Programs and Many�valued Logic� In� Fontet� M�� Mehlhorn� K�
�Eds�	� STACS ��� Symposium of Theoretical Aspects of Computer Science� Paris�
France� �
��� Proceedings� Lecture Notes in Computer Science� Vol� ���� Springer�
�
��� pp� �
�����



��� Naish� L�� A Three�Valued Semantics for Horn Clause Programs� Technical Report

���� University of Melbourne� pp� ����

��� Seda� A�K�� Topology and the Semantics of Logic Programs� Fundamenta Infor�
maticae 
� ��	 ��

�	 ��
����

��� Seda� A�K�� Hitzler� P�� Strictly Level�decreasing Logic Programs� In� Butter�eld�
A�� Flynn� S� �Eds�	� Proceedings of the Second Irish Workshop on Formal Methods
�

� �IWFM�
�	� Electronic Workshops in Computing� British Computer Society�
�


� ����


	Characterizations of Classes of Programs by Three-Valued Operators
	Repository Citation

	tmp.1408373390.pdf.XWYHj

