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O. Introduction

Hirzebruch and K odaira [4] have given characterizations of the
complex projective spaces. A similar characterization for the complex
hyperquadrics has been given by B rie sk o rn  [1 ]. (See also a recent
paper o f Morrow [8 ]  on these topics.) The purpose of the present
paper is to give slightly different characterizations o f these spaces.
Our motive is to give characterizations which will be useful in differ-
ential geometry of compact }Mier manifolds of positive curvature.
Our results are expressed in terms of the first Chern class of a mani-
fo ld . The first Chern class is closely related to the Ricci curvature
of a manifold. We refer the reader to the paper [6] fo r an  appli-
cation of results of this paper to 3-dimensional compact Kdhler mani-
folds of positive curvature. A similar characterization has been used
recently by Howard [ 5 ]  in his work on positively pinched Kdhler
manifolds.

Results which can be found in Hirzebruch's book [3 ]  are used
freely often without explicit references.

The cohomology o f  M  with coefficients in the sheaf a( F )  of
germs of holomorphic sections of a line bundle (or a vector bundle)
F  will be denoted by H * (M ; F) instead o f  H * (M ; n (F) ) . In

*), **) Both authors partially supported by NSF GP-16651.
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particular, H *(M ; 1 )  means H*(M ; s2), where s2 is  the sheaf of
germs of holomorphic functions.

1. Characterization of the projective spaces

The purpose of this section is to prove the following

Theorem 1 . 1 .  Let M  be an n-dimensional compact irreducible

complex space with an ample line bundle F .  I f

(1) (ci (F))"[M ] =1,

(2) dim H°(M ;

then M  is  biholomorphic to  a complex projective space P. o f  di-

mension n.

C orollary. Let M  be an n-dimensional compact complex mani-

fold w ith an ample line bundle F .  I f

c1 (M ) ( n + 1 ) c 1 (F),

then M  is  biholomorphic to a complex projective space P„.

P ro o f. W e need the following lemma.

Lemma 1. Let V  be a compact irreducible complex space. Let
E  and F  be line bundles over V . Le t s  be a nontriv ial section of
F  and put S=Z ero(s) =  { x EV ; s(x ) = 0 } . W rite S  as a sum  of
irreducible divisors S i , i.e ., S = E S , .  I f  these S i are all distinct,
i.e., no S i appears w ith  m ultip lic ity  greater than 1 ,  then  the
following sequence of sheaf  homomorphisms is exact:

0 —> S2(E) S2(EF) Z ( E F )  —> 0,

w here ( i)  t i  is  the multiplication by  s ,  ( i i )  S 2,(EF) is  the sheaf

defined by S2,(EF)I s =t2 (E F)Is  and 2 5 ( E F ) 1 ,=- 0 , ( i i i )  p  is  the
"restriction" map.

The proof is given in  [3 ;  p. 130] under the assumption that V
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and S  are both non-singular. But it  is  trivial to generalize it to
obtain the result stated in  Lemma 1. In this section, we shall use

Lemma 1  only when S  is irreducible. The general case will be needed
in the following section.

Let çoi , • • •, ço„,, be linearly independent elements o f H °(M ; F)

and define divisors D 1 , •••, D„,, by

D .,= Zero (q,,) j = 1, 2, • • •, n+ 1.

Since dim H °(M ; F ) 2 ,  each D . n o n em p ty . We define complex
subspaces

M = V ,D  V n_iD  V 2 D ••• D V0 D V 1 ,
where

v„,-DinDzn-na, k = 1, 2, • • • , n+1 .

Lemma 2 .  For each r,

(1) V—, is irreducible of dimension n— r w ith dual (c i (F))r;

(2) The sequence

O—  (ya i , • • •, ço,.) ---> H °  (M ; F)  - -> H ° (V ; F)

is  exact, where (çoi,•••,çar) is  the subspace o f  H ° ( M ; F )  spanned

by the sections ç 9 i , • • • ,  ça, and p  is  the restriction map.

Proof o f Lemma 2 .  The proof is by induction on r .  The case
r =0  is  trivial. Assume the lemma for r -1 . S ince V„_,.+1 is irre-
ducible and (p r is nontrivial on V„_,+ ,  by ( 2 ) ,  it follows that V.—
defined as the set of zeroes o f ça, on  Vn—r-F1 is a positive divisor of
V„—+1 and is  a  sum o f irreducible complex subspaces of dimension
n — r.  Put

f =c i ( F ) .

Since is the dual o f V,—,+ i  and f  is  the dual of D ,, it follows
that f  is  the dual of n Dr. Assum ing that V „_, is
reducible, we write

V ,,,= V '+ V" (with nontrivial V' and V").
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Since f '  is the dual o f Vo_„, we have

1 =f '[1 1 1 ]- ( f rf " - )[11/1] =f " - ' =f " - ' ± f" ' [V "]
(The first equality is by assumption (1 ) o f Theorem 1. 1 and the
third equality is by duality). Since F is ample, f "- '[ r ]  and f  [V " ]
are positive integers. Hence, f" [M ] is at least 2 .  This is a contra-
diction, thus proving that Vn_r is irreducible.

To prove (2), we apply Lemma 1 to V.-17.—+i, E = 1  and s=q,,.
Then S= V,,,. The exact sequence in Lemma 1 induces the following
exact sequence:

0 H°(V „,i; 1) — > 11 °
(17

,—,+1; F) H°(14_,.; F).

This means that the kernel of the restriction map

H °
(V._,+1; F) H°(V ,.; F)

is spanned by ç2,. (or more precisely, the restriction of 4a, to  V,_,+i)•
Combining this with (2 ) o f Lemma 2  for r -1, we obtain (2 ) for
r. This completes the proof of Lemma 2.

By setting r =n  in Lemma 2, we see that Vo is  a single point

and ,9„41 does not vanish at Vo . This proves the following

Lemma 3. H° (M ; F) has no base points, i.e., the holomorphic

sections of F has no common zeroes.

It is now easy to see that dim H °(M ; F)=n +1 . Let P„ be the

complex projective space of dimension n  defined as the set of hyper-

planes through the origin in H°(111; F), or equivalently, as the set

o f lines through the origin in the dual vector space of H° (M; F) .

We define a holomorphic mapping

j :  M

by setting, for each x EM,

j (x) = {ço E H° (M; F); ço(x)=0} .

(Since H °(M ; F)  has no base points, j ( x )  is  a  hyperplane in
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H ° ( M ; F ) ) .  Let G be the tautological ample line bundle over P„;

the fibre of G at y e P „  is the quotient of H °(M ; F) by the hyper-
plane corresponding to y .  We have also a natural bundle map

j : F

defind as follows. For each u G Z , consider an element y, of H° (M; F )

such that g9(x) This element yo. is determined uniquely up to a

section vanishing at x .  Hence, as an element of the fibre of G at

y =j( x ) ,  this element ço is well determined and is denoted by j ( u ) .

Lemma 4. The mapping j : M-->P„ is  bijective.

Proof of Lemma 4. Let y  be a point of P „.  It  is  a hyper-
plane in H °(M ; F) and let y9i , • • •, ç2„ be a basis for this hyperplane.
From the definition of the mapping j ,  it is clear that a point x  of
M  is mapped into y  by j  if and only i f  çoi , •••, y,„ vanish at X.

Applying Lemma 2  for r =n , we see that such a point x  exists and
is unique. This completes the proof o f Lemma 4 ,  and also that of
Theorem 1. 1.

To prove Corollary, we prove first

Lemma 5. Let M  be an n-dimensional compact complex mani-

fold w ith an ample line bundle F .  I f  ci (M ) ( n + l ) c i ( F ) ,  then

dim H°(M ; F")=dim H°(13 „; G") fo r  all integers

where G is  the tautological ample line bundle over P„.

Proof of Lemma 5. Put

P(k) = x (M ; F " ) =E ( - 1 ) ' dim Hi(M ; F"),

q (k )=x (P„; G ")=E (-1 ) ' dim H" (P,,; G").

Then p ( k )  and q ( k )  are polynomials o f degree n  in  k ,  (see [3;
p. 150] ) :

p(k)=.- ao-i-aik+ • • • + a„k" with n! a„— (ci(F))" [M] ,

q(k) = bo+ b i k + • + b „k" with n! (ci (G))"[P„] .
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To prove that these two polynomials coincide, it suffices to show that
they coincide at n + 1  distinct points k =0,—  1, •••, — n. By the
Kodaira vanishing theorem, we have (using c1(M )> 0 )

Hi (M ; 1) =0 for i>0.
Hence,

p(o)=x(m; 1) = dim H° (M ; 1)=1,

q(0)— x (P„;1)= dim H°(P„; 1)=1.

Since c1 ( F ) >0  and ci (G)>O, the vanishing theorem implies

H i(M ; F - 9= H'(P,,; G - 9 = 0  for k > 0  and 05i.<n— 1.

Since c1(M )— k •c1(F)>0 an d  c1(P„)— k-c1(G)>0 fo r k.‹ n ,  the
vanishing theorem implies

H' (M; F - 9 =  H° (M; F"K m )= 0 for k S n,

H"(P„; G - 9 = H" (P,,; G"K i,„) =0 for

where Ku  and  K i,„ denote the canonical line bundles of M  and P„.

Hence, p (— k) =q(—  k) for k =0,1, 2, • • •, n .  This shows

x (M ; Fk) =x(P„ ; G9 for all integers k.

I f  k  is  a  nonnegative integer, then H' (M; F 9 = H ( P „; G 9 - 0  for
i> 0  by the vanishing theorem. Hence,

dim H" (M; F")=x (M ; F9=x (P„; G ")= dim H° (P,,; G " )  for k>0.

This completes the proof of Lemma 5. In the course of the proof,
we have established p(k) =q (k )  for all k  and, in particular, a,=b„.

This implies

Lemma 6. Under the same assumption as in Lemma 5 ,  we

have (v i(F))"[M ] =1.

Lemma 6  implies Assumption (1 ) of Theorem 1 . 1 . Setting k =1

in  Lemma 5 , we obtain Assumption (2 )  o f Theorem 1. 1 , in fact,
dim H° (M; F ) = n + 1 .  Now Corollary follows immediately from
Theorem 1. 1.
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2. Characterization of the hyperquadrics

In this section we shall prove the following

Theorem 2. 1. Let M be an n-dimensional compact irreducible
complex space with an ample line bundle F .  I f

(1) (c i (F ))" [M ] = 2 ,
(2) dim H °(M ; F )=n+2 ,
(3) H i(M ; F ') = 0  fo r  h > 0  a n d  0 < in -1 ,

then M is biholomorphic with a hyperquadric in P„+ 1 .
I f  M  is non-singular, condition (3 ) is redundant.

Corollary. Let M be an n-dimensional compact complex mani-
fold with an ample line bundle F .  I f

ci (M )= n -c i ( f ) ,

then M is biholomorphic to a hyperquadric in P n + ,.

P ro o f.  L e t yoi, •••, ço„+2 be linearly independent elements of
H °(M ; F ) and define divisors D i by

Zero(go i ) for j=1, 2, •••, n+2.

Let d be the largest integer such that

V„= M, V ,  =  D i ,  V - 2= D inD 2, • • • ,

are all irreducible. Then

Lemma 1. For each r, 0<r<d,
(1) V„_r  is irreducible of dimension n—r with dual (c i (F ) ) ' ;
(2) The sequence

0 - - >  ( (P i ,  •  •  •  , ça,)H ° ( M ;  F ) H°(V„_,.; F)

is exact, where (çoi,••-, r )  i s  the subspace o f  H ° (M ; F ) spanned
by the sections çoi , ••-, ça, and p is the restriction map;

( 3 )  111 (V ,„; F - k) = 0  fo r h > 0  a n d  O in — r —1.
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Proof o f Lemma 1. The proof o f (1 ) an d  (2 ) is essentially
the same as that for Lemma 2 in the proof of Theorem 1. 1, but is
a little simpler since V„, • • , V„_, are irreducible by assumption.

To prove (3), we apply Lemma 1  in the section 1 to V= V._.+1 ,
E =F - h- 1 ,  F = F  and s=ça,. Then we have the following exact
sequence:

0 --...(2(F - 1 - 1) t2 ( F ) s7v „ F - ')

o f  sheaves over V._„ 1 . F rom  th is w e obta in  the following co-
homology exact sequence:

111( 7 ,—,+1; F') F-h) 1F+ 1 (V—r+1;

Now (3) follows from the inductive assumption of (3) for r — 1.
This completes the proof of Lemma 1.

Lemma 2. The integer d in Lemma 1  is less than n.

Proof o f Lemma 2 .  Otherwise, Vo would be irreducible of di-
mension 0, i. e., a single point (without multiplicity) with dual
(ci ( F ) ) " .  Hence,

(ci (F))"[]W ] =1[V 0]= 1,

condtradicting (1) o f  Theorem 2. 1. This completes the proof of

Lemma 2.

Lemma 3. Assume d < n - 2 .  Then W = vdrind,i is reducible
and is of the form

W =W ' +W ",

where W ' and W " are mutually distinct irreducible complex sub-
spaces of dimension n — d -1  satisfying

(1) (c1 (F))" - 1̀ - 1 [W I=(c1(F))" - d- l[ W "] =1;

(2) dim {ço I  ; H°(M ; F)} n—d,

(hence, dim H°( ; F ) n — d ) ,

dim liço ; Ç9EH°(M ;

(hence, d im H °(W "; F)n — d ).
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Proof o f Lemma 3. We put

f =c i (F ).

Since f  is the dual of Dd + i and f '  is  the dual of V fd÷1 is  the

dual o f W . Hence,

2 = f " [ M ]  ( f  d + 1  f  n — d- 1 ) [ M ]  f  n — d - 1 [HT]

By our definition of the integer d , W is reducible. But the equality

above shows that W can have at most two irreducible components.

Hence, it is a sum of two irreducible components:

W =  +  W ".

Clearly, the equality

2 _ f  [114 ] f rwi _ f f  n —d- 1 [ W //]

implies
f f n— d-1 [ HT"]

To prove that W' and W " are distinct, we consider them as

divisors in V,--d . Let F ' and F "  be the line bundles over V„._, defined

by divisors W' and W", respectively, and put

f '= c i ( F ' )  and f"— c i (F " ).
Then

F = F 'F "  and f = f ' + f "  on Vn—d

We have

2 —f" [114 ] = ( f d f " ) [ M ] = P — d[V—d] — ( f + f " ) ' [V — d ].

If f = f "  and n — d 2 , then the right hand side would be at least
4. Hence, f ' f " ,  which implies Wi *W".

To prove (2), we apply Lemma 1 in the proof of Theorem 1. 1

to V= V„_,, E=1, F =F  and S=q,d_ i i  so that S= W= W l + W ". Then

0 --> H°(V„_ d ; 1) —> H°(V„_d; F) H °(W ; F )

is exact. This means that the kernel of the restriction map

H°(V„_d; F) —> H°(W; F)
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is spanned by va ,, (more precisely, by its restriction to  Vn_d). Hence,
the kernel of the restriction map

H°(M ; F) H°(W ; F)

is spanned by çol, çO21 • • • çOr/1-1 •

Put
A =V n  w".

We prove that A  i s  a complex subspace of  codim ension 1 in W '

and  W ". To see that A  is  nonempty, it suffices to show that W is
connected, i.e., dim H °(W ; 1 )= 1 .  To see this, we apply Lemma 1
in the proof of Theorem 1.1 to V = F =F  and s=rçOrl-E1
so that S =W =W '+W ". Then

-->H°(V,_d ; F - 1 ) -->H°(V ,"; 1)-41°(W ; 1)---->H 1 (V ,,;F - 1 )

is  exact. Making use of (3) of Lemma 1 of this section (in the case
r=d , h =1 , i=0  and 1), we obtain dim H°(W ;1)= dim H°(V a ; 1)

= 1 .  This shows th a t W  is connected and hence A =W 'r1W " is
nonempty. Since F "  i s  the line bundle defined by the divisor W "
o f  V,–d , th e re  is  a  natural section v"E H °

(V,–,; F " )  such that
Zero ( " )  W " .  Then

A =W ' n w"= win Zero (q,") = {x G  ;  v."(X) = 0}

and hence A  is  of codimension 1 in W'. Similarly, A  is  of codimen-
sion 1 in W".

We shall show next that if  g9EH°(M ; F) i s  in  the  k ernel of

the restriction map

p ' : H°(M ; F) H°(W '; F),

then either ço i s  a linear com bination of  7 • •  •  7  V•d d  1  or W nZ ero(0

= W '.  If v. vanishes on W" as well as on W', then it vanishes on
W and, hence, is a  linear combination o f co co 2 ,  •  •  •  çOr1-11 b y  (2 ) of
Lemma 1. So assume thst v. does not vanish identically on W".
Then the set

w" n z e ro w  =  { x  W "; gx ) = 0}
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is a complex subspace of codimension 1 in W " and contains A . Since

f  n— d-2 [w „ n z e r o w ]  f a — d _ 1  [W"]
 1 ,

it follows that W" rl Zero (q)) is irreducible. Since dim [W" n zeroco]
= dim A and W "r1Zer0 (0  contains A, we may conclude that

W" fl Zero () = A.

This implies

Wn Zero ( 0  F r •

We shall now prove that the kernel of the restriction map

:  H °(M ; F) H °(W '; F),

which contains the subspace (to ••• , I is of dimension at most
d + 2 .  Let lir1o lr2eH °(M ; F) be sections which are in the kernel

of p '  but are not in (q ,  • • çod+i)• Then

w nzero(*o=w nzeroopo = W'.

Let x o be any point in W " — A .  Then * 1 (x 0 )* 0  and 4p2 (x 0 ) *O.
Choose nonzero constants a, and a2 such that d1kir1(x0) +a21/p2(x0) =0

and put

Then q ,  is in the kernel o f p l  and

Wn Zer0(49) D W / U {x0}.

Hence, ço is  a  linear combination o f çoi., •••, ÇOct-Fl• This proves our
assertion.

Hence,

dim p' (H°(M ; F)) dim H° (M; F) — (d+2) n —d.

Similarly,

dim p"(H°(M; F ) )d im H ° (M ;  F) —( d + 2 ) n —d,

where p "  :  H °(M ; F) - 2-11°(W "; F) is  the restriction map. This
completes the proof of Lemma 3.
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Applying results in section 1 to W ' and W ", we see that

dim H° (W' ; F)= dim Fr+ 1= n—d,
dim H° (W" ; F)= dim W "+1=n—  d

and hence that the restriction maps

p' : H°(M; F) H°(W '; F)
and

p "  :  H°(M; F) H°(W "; F)

are both surjective. Since H °(W '; F ) and H °(W "; F ) have no
base points (by Lemma 3  of section 1  applied to W ' and W "),  it
follows that H °(M ; F ) has no base points. We have just proved

Lemma 4. If d n-2, then H°(M; F) has no base points.

We shall now prove that H °(M ; F ) h as no base points even
when d = n-1. In this case, VI is  an irreducible curve. By Lemma 1,
dim H ° (V i ; F ) 3  and the three sections q,„, DI;-p2, restricted to
V1 , are linearly independent. Let ço be any nonzero element of
H °(M ; F ) which is a linear combination o f yon, ÇOn+2. Set V0,9,
= V, ri Zero(g9). Since I '  i s  the dual of V 1 ,  it follows that f "  is
the dual of V0 , 9,  and

= f " [M ] =2,

which means that V0 ,9,  consists o f either two distinct points or a
single points with multiplicity 2. Hence the set of base points of
H °(M ; F ) consists o f at most two points. Take two points p and
q on the curve V, which are not base points. Let 20, 21, 22 be three
complex numbers, not all zero, such that

Aogo„(P) + 21q, „+i(P) + 22§9„_12(P) =0,

20 0 „(q) + „“ ( q )  + 22 g0„+ 2 ( q )  -0.
Set

(13 =  20q, n+  2 1çOn+1+ 2 2(Pn-F2 E  H F ).

Suppose H°(M ; F) has base points. Then yo must vanish at the base
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points in addition to  the two points p  and q .  On the other hand,

we have shown that V 0 ,9 3  cannot contain more than two points. Hence,

we have proved the following

Lemma 5. In  all cases, H °(M ; F) has no base points.

Let P „,  be the complex projective space defined as the set of

hyperplanes through the origin in H° (M; F ) ,  or equivalently, as the
set of lines through the origin in the dual vector space of H°(M ; F).

We define a holomorphic mapping

j :  M  P „ ,

by setting, for each x  in M,

j(x )= {yo H°(M ; F); 49(x)=0}  .

Let G be the tautological ample line bundle over P. + 1 so that we
have a natural bundle map (see Section 1)

F G (i.e., _PG= F).

Lemma 6. The mapping j: M , P „, has the property that, for
each y G P „,, j - 1 ( y )  is  a f inite set.

Proof o f  Lemma 6. Let S  be any connected component of
j - 1 ( y ) .  Since j* G =F , it follows that Fi s is  a trivial line bundle.
On the other hand, since F  is ample, its restriction Fi s to  S  is also
ample. Hence, S must reduce to a single point. This proves Lemma 6.

Let Q„ be the image j ( M )  of M  in P„, 1 . It is  an irreducible
closed complex subspace of P, +1 , (see for instance [2] ), of dimension
n  (by Lemma 6 ) .  We claim that Q . is not a hyperplane in P .

If it were, the construction of j  shows that there would be a non-
trivial element q, o f H °(M ; F ) which vanishes identically on M.

This is absured. Hence, Q. is a hypersurface of degree Irt 2. For
each x E M , the rank of j  at x  which is by definition the codimension
o f j - 1 ( j( x ) )  in M  is equal to n  by Lemma 6. In general, if j  is
a holomorphic mapping o f a  complex space X  into a complex space
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Y of dimension n  and the rank of j  is  n  everywhere on X, then j
is  an open mapping (see [9 ; Satz 2 8 ] ). Hence,

L e m m a 7 . The m apping j:M -->Q„ is open.

For each y E Q „, let s , denote the number of points in the set
j ' ( y ) .  By Lemma 7, s y  i s  a lower semi-continuous function of y.
Since Q„ i s  a hypersurface of d eg ree  m 2 , a generic complex line
in P„ 4 .1 m eets Q„ a t  m  points, say Y i ,  •••, y„,. Then the same complex
line meets M  a t s,, + ••• + s,„, points (under j ) .  This means that if

• • •, ço„ are independent generic elements o f 11°(M ; F), then the
common zeros o f these sections consist o f s„+•••+s,,„ points. On
the other hand, since f " [M ] =2, it follows that

s,,+ ••• +sy ,„ 2.

This together with the inequality m >2  implies m = 2  and s,,=s„= 1.

This proves that Q„ i s  a hypersurface o f degree 2  and th at s,=1

for a generic y e Q „. Since s , is lower semi-continuous in y, it follows
that s,= 1 for a l l  y, i.e., j  i s  a bijective holomorphic mapping from
M  onto Q „. By Lemma 7, j" Q„— >M is also holomorphic (see also
[9 ; Satz 32]).

I f  M  is non-singular, condition (3 )  follows from the Kodaira

vanishing theorem. This completes the proof of Theorem 2.1.

To prove Corollary, we show

Lemma 8. Let M  be an n-dimensional compact complex mani-

f o ld  w ith  an ample line bundle  F. I f  ci(M )=n•c i ( F ) ,  then

ci (F)"[M ] = 2  and

dim H° (M ; F9 = dim H° (Q„; Gk) fo r  all

Proof o f Lemma 8. The proof is similar to that o f Lemma 5
in Section 1. We put

p(k )=x (M ; Fk )=E (-1)' d im H i(M ; Fk ),

q(k )=x (Q „; 09= E( - 1)' dim I-P(Q„; G").
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Then P(k ) and q (k )  are  polynomials of degree n  in  k:

p(k)=a0+ ai k+ • • • + a„k" with n! a„= (v i(F))'[M ],

q(k) =b o + b i k + • • • +b„k with n! bn = (c,(G))"[Q, ] .

Since el  (M )= n• c,(F)>O , the Kodaira vanishing theorem implies

H' (M ; 1)=0 for i> 0
and

p (o )= x (m ; 1 ) dim H° (M ; 1)=1,

q(0) =  x(Q„ ; 1)— dimH°(Q„; 1)=1.

Since c1 (F )>0  and c i (G)>O, the vanishing theorem implies

(M ; F - 0 = 11'(Q„; G - 0 =0 for k >0, 0<i<n—  1.

Since ci (M)— k • ci ( F ) >0  and  ci (Q„)— k • ci (G )>0  for k<n—  1, the
vanishing theorem and the duality theorem imply

H"(M ; F - 0= H°(M ; Fk .K m ) =0 for k <n - 1 ,

H" (Q„; G - ) = H (Q„; GkKQ „) =0 for 1,

where Km  an d  K Q „ denote the canonical line bundle o f  M  and Q„.

Since ci(F"K m )=n•c i (F)— c i (M ) =0  and M  has no Picard variety
(111 (M ; 1 )=0  by th e  vanishing theorem), we may conclude that
F"K m = 1. Similarly, we have also G"KQ „=1 . It follows that

dim H"(M ; F - ") = dim H °(M ; F"K m ) = dim H°(M ; 1)= 1,

dim H"(Q„; 0 - ') = dim H°(Q„; G'K Q „) = dim H°(Q„; 1)=1.

Hence,

p(—k)=q(—k) for k =0, 1, 2,• • n.

This implies that p(k) =q (k )  for all integers k , i.e.,

x(M; Fk)=x(Q„; G0 for all integers k.

The rest of the proof is the same a s  in  that of Lemma 5  in section
1. QED.
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3. Remarks

Let M  be a compact K511ler manifolds. Denote by H "(M ; Z )

the subgroup of H "(M ; C )  consisting elements which come from
H 2 (M ; Z ) .  In  other words, i f  j:11 2 (M; Z)-->H 2 (M ; C )  i s  the
natural homomorphism, then H "(M ; Z )=j(H 2 (M ; Z ))n.11 1 4 (M; C).
An element of H " (M ; Z )  is said to be positive if it is representable
by a positive closed (1, 1)-form . I f F  is  a line bundle over M , its
characteristic class ci ( F )  is an element of 111 4 (M ; Z ) .  By a theorem
of Kodaira, F  is ample if and only if ci (F )  is positive. Every element
of H " ( M ; Z )  is the characteristic class ci ( F )  o f some line bundle
F  according to a  result o f Kodaira and Spencer. It is therefore
possible to state the corollaries to Theorem 1. 1  and Theorem 2. 1
without referring to ample line bundles:

Corollary to Theorem 1. 1. Let M  be an n-dimensional com-
pact K ahler manifold. I f  there exists a positive element aE  H "

(M ; Z )  such that

ci (M )> (n+ 1)a,

then M  is biholomorPhic to a complex projective space P.

Corollary to Theorem 2. 1. Let M  be an n-dimensional com-
pact K ahler m anifo ld . If there exists a Positive element a c H "

(M ; Z )  such that

ci (M )=na,

then M  is biholomorphic to a hyperquadric in P„+ 1 .

The following result is perhaps not o f interest by itself but is
necessary in  our paper [6]. The proof is contained in  those of
Theorems 1. 1 and 2. 1.

Proposition 3. 1. Let M  be an n-dimensional compact irre-
ducible complex space with an ample line bundle F.
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(1) I f

(c i (F))" [11I] =1 and dim H° (M ; F) n,

then the set of base points (i.e., common zeros) o f  H °(M ; F) is
either empty or a singleton.

(2) I f

(ci(F))" [M  2, dim H° (M ; F)= n +1,

11'(M ; F - ")=0 fo r  h >0  and 0 <i<n - 1 ,

then the set of base points of H °(M ; F)  contains at most two
points,

A s in  Theorem 2. 1, i f  M  is non-singular, the condition Hi(M ;

F - h) = 0  in  (2 ) is redundant.
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