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Abstract 

This paper studies protocols for asynchronous communication over an interface 
consisting of unidirectional channels. In asynchronous communication, the sender 
can initiate a transmission without cooperation of the receiver. Contrasting with 
traditional data-flow networks, the channels that we consider do not synchronize 
at the receiving end: messages, once on their way, are delivered regardless of the 
readiness of the receiver to accept them. The situation where a message is delivered 
to an unready receiver is called computation interference. A protocol is said to be 
deiay-insensitive when it can be guaranteed-without making assumptions about 
propagation delays-that computation interference cannot occur. We give several 
characterizations of delay-insensitive protocols and a new prooHor the Fundamental 
Characterization Theorem. The emphasis is on the mathematical treatment of the 
concepts involved. 

o Introduction and Overview 

We begin by giving a physical motivation for our investigation. Consider a digital circuit 
connected to its environment by an interface consisting of conducting wires. In the digital 
mode of operation, circuit and environment communicate by exchanging discrete voltage 
transitions. A voltage transition, once initiated, propagates along a wire to the receiver. 
The receiving end, however, need not always be ready to process an incoming transition. 
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The reason for this is that the incoming transition may violate the assumptions underlying 
the digital mode of operation. 

For example, an OR-gate in the stable state with one input low, the other input high, 
and-consequently-the output also high, cannot properly process transitions on both 
inputs "simultaneously". The best that can happen when both inputs change is that the 
output remains high or produces a pair of proper transitions (high to low and back to 
high). But it is also possible that a non-digital pulse ensueso. What actually happens 
when both inputs change depends intricately on the (relative) timing of the transitions 
and the physical structure of the circuitry. 

We are interested in communication protocols that guarantee adherence to the digital 
mode assumptions even when no assumptions are made about the propagation delays 
incurred in the connecting wires. Such protocols are called delay-insensitive. In order to 
define and investigate such protocols we introduce a formal model for asynchronous two
party communication. The operational semantics is given in terms of a transition system. 
The model includes the possibility to specify under what circumstances a party is ready 
to accept which messages. Our model formalizes the Foam Rubber Wrapper Postulate 
put forward in [3] as an approach to define delay-insensitivity. We are aware of the gap 
between circuit physics on the one hand and transition-system semantics on the other. It 
is not the validity of this type of semantics for circuits that we wish to question here. 

In Section 1 we present the formal communication model, define our notion of delay
insensitivity, and state the Fundamental Characterization Theorem. Sections 2, 3, and 4 
introduce auxiliary concepts and prove characterizations based on these concepts. Together 
they constitute a new proof for the Fundamental Characterization Theorem. Finally, Sec
tion 5 summarizes the results and mentions some relationships with other work. 

1 Delay-Insensitivity and the JTU-Rules 

We start with the introduction of some terminology and notations. The two communicating 
parties are referred to as Module and Environment. Let I and 0 be disjoint sets of symbols, 
identifying the channels in the interface. The direction of symbols in I and 0 is said to be 
input and output respectively. The directions are to be interpreted with respect to Module. 
The sets I and 0 are fixed for the remainder of the paper. We denote their union by A. 
Variables a through d range over A. 

A trace is a member of A*, i.e. a finite-length sequence of symbols from A. It records a 
communication history at one side of the interface. The contents of the messages commu
nicated is irrelevant for our problem. Hence, there is only the need to record the occurrence 
of a communication action, for which we employ the symbol identifying the channel in
volved in that communication action. Variables s through z range over A*. The empty 
trace is denoted by e: and concatenation of traces is denoted by juxtaposition. Trace t is a 
prefix of trace s when (:3 u :: tu = s). Subset T of A* is called prefix-closed when 

GIn fact, the pair of proper transitions may also degrade into a non-digital pulse when propagated along 
the output wire, if no special precautions are taken. 
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(II s, t : sET /\ t prefix of s : t E T). 

The length of trace t is denoted by £( t). The symbol bag of trace t is denoted by t#, that 
is, t# is a mapping from A into the natural numbers such that t#a (the result of applying 
t# to a) is the number of occurrences of symbol a in trace t. 

A protocol specification, or specification for short, is a non-empty prefix-closed subset 
of A *. It gives the set of communication histories allowed at both ends of the interface. 
We define its operational semantics as a transition system. A transition system is a triple 
(Q, q, -+), where Q is some set of states, q E Q is the initial state, and -+ <;;; Q X Q is the 
transition relation. The transition system associated with specification T is 

(A* X A*,(c,c),-+), 
T 

(0) 

where -+ is the smallest relation such that 
T 

(t, u) -+ (ta, u) if a E 0 /\ ta E T 
} (transmissions) T 

(t, u) -+ (t, ua) if aEI /\ ua E T 
T (1) 

(t, u) -+ (ta, u) if aEI /\ t#a < u#a } T (receptions) 
(t,u)-+(t,ua) if a E 0 /\ u#a < t#a 

T 

Thus, a state is a pair of traces over A, and in the initial state both traces of the pair 
are empty. The left component of the pair can be thought of as the local state of Module 
while the right component is associated with Environment. Outputs travel from Module 
to Environment, inputs from Environment to Module. 

The first transition rule expresses a state change where Module extends its local state 
with an output symbol if the resulting local state belongs to the specification. Similarly, 
the second transition rule expresses a state change where Environment's local state is 
extended with an input symbol (which acts as a transmission initiated by Environment). 
Hence, transmissions will only be initiated if they are in agreement with the specification. 
The third transition rule expresses a state change where Module's local state is extended 
with an input symbol if that symbol was sent more often (by Environment) than received 
so far (by Module), i.e. if a message was on its way over the channel identified by that 
symbol. Similarly, the fourth transition rule expresses a state change where Environment 
receives an output (sent earlier by Module). Hence, a reception takes place only if the 
corresponding transmission precedes it. Note, however, that at this stage receptions are 
not required to obey the specification. 

We call state (t, u) reachable under specification T when it can be reached from the 
initial state via zero or more T-transitions, that is, when 

(c, c) -1 (t, u), (2) 

where.:':, denotes the transitive and reflexive closure of -+. The set of states reachable 
T T 

under T is denoted by rT. State (t,u) is called safe under T when (t,u) E TxT, that is, 
when both local states belong to the specification. Specification T is delay-insensitive, or 
DI for short, when 
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rT ~ TxT, (3) 

that is, when all reachable states are safe. The situation where a reachable state is not 
in agreement with the specification is called computation interference. It corresponds to a 
possible violation of the digital mode assumptions. The central problem of this paper is 
the characterization of delay-insensitivity. 

We give three examples to illustrate these definitions. 

Example 0 Consider the specification T = {e:} for arbitrary I and O. Its transition 
relation is empty. The initial state is the only reachable state and, hence, rT = TxT. 
Consequently, specification T is delay-insensitive. 0 

Example 1 Assume I = {a, b} with a =I band 0 = 0. Now consider specification 
T = {c:,a,ab}. For T's transition system we give two (of the three) maximal transition 
sequences starting in the initial state. The first sequence consists of two transmissions 
interleaved with the corresponding receptions: 

(c:,c:) -t (c:,a) -t (a,a) -t (a,ab) -t (ab,ab). 
T T T T 

Thus, (ab,ab) E rT. Notice that the final state (ab,ab) is safe. The second sequence 
consists of two transmissions followed by two receptions, where the order of the receptions 
differs from the order of the corresponding transmissions: 

(c:,c:) -t (c:,a) -t (c:,ab) -t (b,ab) -t (ba,ab). 
T T T T 

Thus, (ba, ab) E rT, but now the final state (ba, ab) is not safe, i.e. there is computation 
interference. In fact, the intermediate state (b, ab) was already not safe. Therefore, the 
specification T is not delay-insensitive. 

This example also exhibits one of the complications inherent to asynchronous com
munication: Even if there are no messages on their way, then the local states of the 
communicating parties may differ. D 

Example 2 Assuming I = {a} and 0 = {b} define specification T by 

T = {t I (V s : s prefix of t : 0 ~ t#a - t#b ~ In. 
Thus, T consists of all traces in which symbols a and b alternate and which do not start 
with b: 

T = {c:, a, ab, aba, abab, ababa, . .. }. 

Specification T describes a two-phase protocol. In each state, exactly one transition is 
possible. Hence, there exists only one maximal transition sequence, which is infinite and 
starts out 

(c:,c:) ...... (c:,a) -t (a,a) -t (ab,a) -t (ab,ab) -t ... 
T T T T T 

3 



The two-phase protocol T is delay-insensitive, because all reachable states are safe. 0 

In [4, 5] Udding gives a characterization of delay-insensitive specifications. He also deals 
with transmission interference-which can occur when a channel carries more than one 
message-but we will ignore that here: our channels have unbounded buffering capacity. 
U dding defines the following predicates on specifications. We adhere to the names given 
in [4]. 

Specification T satisfies Rule R3 (called Rl in [5]) when for all traces sand t, and 
symbols a and b of the same direction we have 

sabt E T = sbat E T. (4) 

Specification T satisfies Rule R~ (called R~ in [5J) when for all traces sand i, and symbols a, 
b, and c such that the direction of a and c differs from the direction of b, we have 

sabic E T 1\ sbai E T => sbaie E T. (5) 

Specification T satisfies Rule R~f (called R~f in [5]) when for all traces s and symbols a 
and b of different direction we have 

sa E T 1\ sb E T => sab E T. (6) 

Remark for the curious: Rules Ro and Rl of [4J were already incorporated in our notion of 
a specification. Rule R2 deals with transmission interference, which we decided to ignore 
here. 

We say that a specification satisfies the lTU-Rules when it satisfies Rules R 3 , R~, and 
R~f. Notice that the specifications of Examples 0 and 2 trivially satisfy the JTU-Rules. 
The specification of Example 1, however, satisfies Rules R~ and R~f but not Rule R 3 • 

This paper is centered around the following theorem. 

Theorem 0 (Fundamental Characterization Theorem of Delay-Insensitivity) 
Specification T is DI if and only if it satisfies the JTU-Rules. 0 

The implication from right to left is "hard" and was-in a slightly more general form-first 
stated and proved in [4, Thm. 4. W. Several attempts at simplifying the proof have failed. 
In this paper we present, what we belief to be, a simple proof. In a sense, the justification 
of the JTU-Rules as given in [4J constitutes an informal proof of the implication from left 
to right. This is the "easy" part. A formal proof of this part can also be found in [7]. 

1 Note on terminology: In [4] Udding defines delay-insensitivity directly in terms of the JTU-Rules and 
he shows that it implies absence of computation interference, which he defines as (8) below. 
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2 Composability and Convexity 

In this section we present three-fairly straightforward-characterizations of delay-insen
sitivity (Theorems 1, 2, and 3). They do not get very far in bridging the gap between 
delay-insensitivity and the JTU-Rules, but they are useful nonetheless, since they take 
us away from the definition of delay-insensitivity in terms of the operational transition 
system. 

We start by noting the following symmetry in the transition system S associated with 
specification T. The transition system obtained from S by exchanging left and right com
ponents of states equals the transition system associated with T when the roles of 1 and 0 
are exchanged. This symmetry will be referred to as 11 O-symmetry. Also notice that the 
JTU-Rules are 110-symmetric, since they involve (in)equality of direction only. 

The first characterization (Theorem 1 below) is based on the observation that the 
initial state is safe and that transmission transitions do not disturb safety by definition. 
Therefore, all reachable states are safe if and only if each reception transition from a safe 
reachable state leads to a safe state. We have also incorporated some knowledge about 
reachable states viz. that the number of receptions of a symbol cannot exceed the number 
of its transmissions. This is formally expressed in 

Property 0 For specification T and state (t, u) E rT we have 

(Va: a E 1 : t#a :::: u#a) /I (Va: a EO: t#a 2 u#a). (7) 

o 

Therefore, if (t,u) E rT and t#a < u#a, then a rt 0 and, hence, a E 1. 

Theorem 1 Specification T is Dr if and only if 

(Vt,u,a (t,u) E rTn (T x T) 
(t#a < u#a =;. ta E T) /I (u#a < t#a =;. ua E T)). (8) 

Proof 

Only if: Assuming T is DI we show (8). Let (t, u) E rT be such that t E T and u E T. 
We derive 

t#a < u#a 
=;. { Property 0 } 

a E 1 /I t#a < u#a 
=;. { definition of --t } 

T 

(t,u) --t (ta,u) 
T 

=;. { definition of rT, using (t, u) E rT } 
(ta, u) E rT 
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'* { T is assumed DI } 
(ta,u) E (T x T) 

'* { set calculus} 
ta E T 

The conjunct u#a < t#a '* ua E T follows from IIO-symmetry. 

If: Assume T satisfies (8). We prove by induction on f(t) + f(u) that all states (t, u) E rT 
are safe. 

Base: f(t) + f(u) = 0, hence, t = I'; = u. The state (1';,1';) is safe because T is non-empty 
and prefix-closed. 

Step: C(t) + C(u) > 0, hence, we can find state (t', u') E rT such that 

(t',u') -> (t,u). 
T 

(9) 

On account of the induction hypothesis, using that C( t') + C( u') < C( t) + C( u), we know that 
(t', u') is safe and, hence, 

t' E T 1\ u' E T. (10) 

We distinguish two cases: t' = t and u' = u. Because of I I O-symmetry we need only 
investigate the case t' = t. In that case, u can be written as u' a for some symbol a. 
Furthermore, t E T follows from (10). All that we need to show now is u'a E T. We derive 
for the cases a E I and a EO, respectively: 

aEI 
'* { (9), u = u'a, and definition of --+ } 

T 

u'a E T 

and 

a E 0 

'* { (9), u = u'a, and definition of --+, using t = t' } 
T 

u'#a < t'#a 
'* { (8), using (t', u') E rT } 

u'a E T 

o 

The preceding characterization can be simplified a little by introducing the composabil
ity2 relation e on A* defined as r(A*). That is, teu holds when (t,u) is reachable under 
the specification A*. Specification A* does not restrict transmission transitions and, thus, 
relation e captures only the restriction imposed by the condition that symbols arrive no 
earlier than they were sent. 

2The name 'composability' is taken from [4}. 
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Example 3 Assuming a E I and bE 0, we have c:Ca but ~(aCc:), and also baCab 
but ~(abCba). 0 

Relation C enjoys a number of nice properties. 

Property 1 For specification T we have 

rT n (T x T) = C n (T x T). 

Furthermore, we have 

a E I /\ ta C u - t#a < u#a /\ t C u 

a E I /\ t C u =} t C ua 

tCua =} (:3tO,tl:t=tOtl:tOCU) 

and C is reflexive, i.e. for all t we have t C t. 

(11) 

(12) 

(13) 

(14) 

o 

Of course, on account of IIO-symmetry we also have dual forms of (12) through (14) 
obtained by interchanging I and 0, and left- and right-hand arguments of C. For example, 
the dual of (13) is: a E 0/\ uct =} uaCt. 

We now give a characterization of delay-insensitivity in which reachability under the 
specification in question has been traded for C. 

Theorem 2 Specification T is DI if and only if 

('it,u,a tET/\uET 
: (a E I /\ ta C u =} ta E T) /\ 

(a E 0/\ tCua =} ua E T)). 
(15) 

Proof On account of Theorem 1 it is sufficient to prove the equivalence of (8) and (15). 
We derive 

('it,u,a: (t,u)ErTn(TxT) 
: (t#a < u#a =} ta E T) /\ (u#a > t#a =} ua E T)) 

= { Property 1(11) } 

('it,u,a: (t,u)ECn(TxT) 
: (t#a < u#a =} ta E T) /\ (u#a > t#a =} ua E T)) 

{ predicate and set calculus} 

('it, u, a (t, u) E (T x T) 
: (t#a < u#a /\ tCu =} ta E T) /\ 

(u#a > t#a /\ t C u =} ua E T)) 

{ Property 1(12) } 

('it,u,a (t,u)E(TxT) 
(a E I /\ ta C u =} ta E T) /\ 
(aEO/\tCua =} uaET)) 
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{ set calculus} 
(Vt,u,a tETI\UET 

(a E I 1\ ta C u =} ta E T) 1\ 

(a E 0 1\ t C ua =} ua E T)) 

This characterization can be further simplified: 

Theorem 3 Specification T is Dr if and only if 

(Vt,u,z:tETl\uET:tCzl\zCu =} ZET). 

Specification T is called convex when it satisfies (16). 

o 

(16) 

Proof On account of Theorem 2 it is sufficient to prove the equivalence of (15) and (16). 

If: Assuming T is convex we derive (15). Let t E T and u E T. We derive 

a E I 1\ ta C u 
= { reflexivity of e on account of Property 1 } 

a E I 1\ t C t 1\ ta C u 
=} { Property 1(13) } 

teta 1\ taCu 
=} { (16) assumed, using t E T and u E T } 

ta E T 

The other conjunct follows I I O-symmetrically. 

Only if: Assuming (15) we prove (16) by induction on the length of z. 

Base: z = c. Since T is non-empty and prefix-closed we have z = c E T. 

Step: z = z' a. Assuming t E T and u E T such that t C z and z C u, we show z' a E T. 
We distinguish the cases a E I and a E O. Because of IIO-symmetry we consider only 
the first case. Therefore, assume a E I. On account of Property 1(14), using a E I and 
t C z' a, we can let t' be a prefix of t such that t' C z'. We derive 

true 

{ context so far} 

i E T 1\ u E T 1\ i ' C z' 1\ a E I 1\ z' a C u 

=} { t' is a prefix of t, T is prefix-closed, and Property 1(12) } 

i' E T 1\ u E T 1\ i' C z' 1\ z' C u 1\ a E I 1\ z' a C u 
=} { induction hypothesis, using R( z') < R( z) } 

z'ET 1\ uET 1\ aEI 1\ z'aCu 
=} { (15) assumed} 

z'a E T 

o 
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3 Inversions 

In [8] a proof is given for 'the JTU-Rules imply convexity'. That proof is based on a 
construction in terms of graphs. It is easy to understand if one is willing to accept some 
intuitions about graphs. A complete formalization is still quite lengthy. We will not take 
that road here. We postpone this implication and instead concentrate on the (easier) 
converse. 

Before we tackle the converse it is useful to get to know the composability relation C 
a little better. We call (t'a, u'b) an inversion in (t, u) when 

t' a is a prefix of t, 
u' b is a prefix of u, 
t'a#a> u'b#a, and 
t'a#b < u'b#b. 

The first condition expresses that t' a locates an occurrence of symbol a in trace t and, 
similarly, u'b locates an occurrence of b in u on account of the second condition. The 
third condition expresses that the occurrence of a in u, that corresponds to t'a, occurs 
to the 'right' of u'b-if it exists at all. Similarly, the fourth condition expresses that the 
occurrence of b in t which corresponds to u'b occurs to the 'right' of t'a. Hence, the order 
of these occurrences of a and b in t differs from the order of the corresponding occurrences 
in u. The set of inversions in state (t,u) will be denoted by inv(t,u). Inversion (t'a,u'b) 
in (t, u) is called a t-neighbor inversion when t'ab is a prefix of t and t'a#b = u'#b, that 
is, when these occurrences of a and b are adjacent in t. 

Notice that the concept of inversion does not involve the directions of symbols, i.e., it is 
independent of how A is partitioned into I and O. We will only be interested in inversions 
in states (t, u) for which t# = u#. Let us look at an example. 

Example 4 Assuming that symbols a, b, and e are distinct, there are three inversions 

a b e a 

e a a b 

Figure 0: Inversion diagram for (abea, eaab) 

in (abea,eaab). The set inv(abea,eaab) consists of (a,e), (ab,e), and (ab,eaa). Only one 
of these, viz. (ab, e), is an abea-neighbor inversion. This is iIlustrated in Figure 0, where 
line segments connect corresponding symbol occurrences. Each pair of intersecting line 
segments corresponds to an inversion. 0 

We draw the attention to some well-known properties of inversions to be used later on: 
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Property 2 For state (t,u) such that t# = u# we have 

inv(t, u) is finite, 
inv(t,u)=0 == t=u, 
inv(t,u) oJ 0 = inv(t,u) contains a t-neighbor inversion. 

If (ta, u'b) is a tabv-neighbor inversion in (tabv, u), then 

inv(tbav,u) = inv(tabv,u) - {(ta,u'b)}. 

Compos ability can be characterized in terms of inversions: 

Property 3 For state (t,u) we have 

tCu => (Vt',u',a,b: (t'a,u'b) E inv(t,u): a E 0 V bE 1) 

and this is an equivalence if t# = u#. 

D 

(17) 

D 

Example 5 Assuming a E I and b E 0, we have seen in Example 3 that ,(abCba) 
holds. State (ab, ba) has one inversion, viz. (a, b), for which '(a E 0 V bE 1). D 

By the way, from Property 3 it follows (non-trivially) that C is transitive (hence, a pre
order), but we will not need that here. 

We are now ready for 

Theorem 4 If specification T is convex (cf. (16)), then it satisfies the JTU-Rules. 

Proof Assume specification T is convex. Each JTU-Rule can be viewed as a special case 
of convexity. We prove them one by one. 

Rule R3: For traces sand t, and symbols a and b of the same direction we have, on 
account of Property 3, 

sabt C sbat C sabt C sbat. 

Using convexity we now infer sabt E T == sbat E T and, hence, T satisfies R 3 . 

Rule R~: For traces sand t, and symbols a, b, and e such that the direction of a and e 
differs from that of b, we have, using Properties 3 and 1(13), 

a EO=> sabie C sbate C sbat 

a E I => sbat C sbate C sabie 

On account of convexity we thus have that sabte E T /\ sbat E T implies sbate E T and, 
hence, T satisfies R~. 

Rule R~': For trace s and symbols a and b of different direction we have, using reflexivity 
of C and Properties 1(12) and 1(13), 

a EO=> saCsabCsb 

a E I => sbCsabCsa 

On account of convexity we then have that sa E T /\ sb E T implies sab E T and, hence, 
T satisfies R~'. D 
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4 New Representation for Specifications 

The major innovation in our proof of the Fundamental Characterization Theorem of Delay
Insensitivity is a new representation for specifications. This representation is based on 
enhanced characteristic functions, or ECFs for short. An ECF is a mapping from A * 
to {O, 1, 2}. The enhancement consists of the additional value 2 in the co-domain, which 
enables us to distinguish two ways in which a trace does not belong to a specification. We 
use . to denote functional application for ECFs, which has a weaker binding power than 
concatenation, i.e. j·st stands for j.( st). 

Let T be a specification. Observe that each trace t tj T can be uniquely written as 
toat, such that to E T and toa tj T, since T is non-empty and prefix-closed. We now define 
ECF fT by 

{ 

0 if (3 to, a, t, : t = toat, /\ to E T /\ toa tj T : a E 0) 
fT·t = 1 if t E T 

2 if (3 to, a, t, : t = toat, /\ to E T /\ toa tj T : a E 1) 

Let f = fT, then j enjoys the following properties: 

(Fo) 
(F,) 
(Fz) 
(F3) 

j·e = 1 
j·ta = j·t 
j·ta ~ j·t 
j·ta :::: j·t 

if j·t"l1 
if aE 0 
if aEI 

(18) 

These follow immediately from the definition of fT and the fact that T is non-empty and 
prefix-closed. Properties F, through F3 are readily generalized to 

(Fn j·tu = f·t if f·t"l 1 

(F~) j·tu ~ j·t if u E 0* 

(F~) j·tu:::: j·t if u E 1* 

by induction on the length of u. Furthermore, F,/\ Fz A F3 is equivalent to the conjunction 
of 

(F~') j·ta < j·t =:- j·t = 1 A f·ta = 0 A a E 0 
(F~') j·ta> j·t =:- j·t = 1 A j·ta = 2 A a E I 

For ECF f we define its trace set tj by 

tj = {t I j·t = I}. 

We now trivially have for T ~ A* 

t(fT) = T. 

(19) 

(20) 

We also claim that for ECF j satisfying Fo through F3 we have that tf is non-empty and 
prefix-closed (viz. on account of Fo and F,) and that 
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f(tf) = f. (21) 

We have thus established a one-one correspondence between specifications and ECFs satis
fying Fo through F3. Notice that exchanging the role of I and a corresponds to exchanging 
the role of 0 and 2 in ECFs. 

Using the ECF of a specification, the JTU-Rules can be condensed into a single rule. 
We prove only an implication here; the converse will follow from Theorems 6, 7, and 4. 

Theorem 5 If specification T satisfies the JTU-Rules then 

(V s, a, b, t: a E a v bEl: fT·sabt s: fT·sbat). (22) 

Predicate (22) will be called the Neighbor-Swap Rule. 

Proof Assuming T satisfies the JTU-Rules we show that T satisfies the Neighbor-Swap 
Rule. Because the co-domain of fT is {O, 1, 2} and 

012 
o < < < 
1 > < < 
2 > > < 

it is sufficient to prove for all traces sand t, and symbols a and b such that a E a v bEl: 

fT·sabt = 2 =? fT·sbat = 2 and 

fT·sbat = 0 =? fT·sabt = O. 

On account of 1/ a-symmetry we confine ourselves to the first of these. Therefore, also 
assume that fT·sabt = 2. From the definition of fT now follows that we can find u and c 
such that 

uc prefix of sabt /I u E T /I uc ~ T /I eEl. (23) 

Our goal is to show that fT·sbat = 2 as well. We distinguish four cases: uc prefix of s, 
uc = sa, uc = sab, and sab prefix of u. 

Case uc prefix of s: Then fT·sbat = 2 by (23) and the definition of fT. 

Case uc = sa: We derive 

uc = sa 

= { trace calculus } 

u=s/ls=a 

=? { (23) } 

sET /I sa ~ T /I a E I 
=? { T is prefix-closed and a E a v bEl assumed} 

sET /I sab ~ T 1\ a E I 1\ bEl 
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= { Rule R3 assumed } 

sET 1\ sba if- T 1\ a E I 1\ bEl 

=} { predicate calculus, doing case analysis on sb E T } 

(s E T 1\ sb if- T 1\ b E I) V (sb E T 1\ sba if- T 1\ a E I) 
=} { defini tion of fT } 

fT·sbat = 2 

Case uc = sab: We derive 

uc = sab 

{ trace calculus} 

u = sa 1\ c = b 
=} { (23) } 

sa E T 1\ sab if- T 1\ bEl 

=} { predicate calculus } 

(sa E T 1\ sab if- T 1\ a E 0 1\ b E I) V (sa E T 1\ sab if- T 1\ a E I 1\ b E I) 
=} { Rules R~' and R3 assumed and T is prefix-closed} 

(s E T 1\ sb if. T 1\ bE I) V (s E T 1\ sba if. T 1\ a E I 1\ bE I) 
=} { predicate calculus, doing case analysis on sb E T } 

(s E T 1\ sb if. T 1\ b E I) V (sb E T 1\ sba if- T 1\ a E I) 
=} { definition of fT } 

fT·sbat = 2 

Case sab prefix of u: Hence, we can write t = taet, such that u = sabta. We distinguish 
two sub cases depending on the equality of the directions of a and b. For a and b having 
the same direction we derive 

u = sabta 

=} { (23) } 

sabta E T 1\ sabtae if- T 1\ eEl 

= { Rule R3 assumed, using that a and b have same direction} 

sbata E T 1\ sbatac if. T 1\ eEl 

=} { defini tion of fT } 

fT·sbat = 2 

For symbols a and b with different directions we proceed as follows. From the assumption 
a E 0 V bEl we now infer a E 0 1\ bEl and we derive 

u = sabta 

=} { (23) } 
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sabto E T 1\ sabtoc!f: T 1\ c E I 

=} { Rule R~ assumed, using that a E 0 1\ bEl} 

sabto E T 1\ sbatoc!f: T 

Hence, we can find prefix vd of sbatoc such that vET but vd !f: T. On account of the 
definition of fT it is sufficient to show dEl in order to have fT·sbat = 2. Finally, we 
distinguish the five ways in which vd can be a prefix of sbatoc, viz. vd prefix of s, vd = sb, 
vd = sba, vd prefix of sbato with sba prefix of v, and vd = sbatoc. The first case is excluded 
by sET. In the second case we have d = bEl. The third case is excluded by sa E T 
and Rule R~f. For the fourth case note that d E 0 is excluded by Rule R~ and the fact 
that sabt,d is a prefix of sabto with sabto E T. In the last case we have d = c E I. This 
completes the proof. 0 

The Neighbor-Swap Rule can be generalized as follows: 

Theorem 6 Specification T satisfies the Neighbor-Swap Rule (22) if and only if 

(Vt, u: t C u : fT·t ::; fT.u). 

We say that specification T is monotonic if it satisfies (24). 

Proof 

If: That (24) implies (22) follows immediately from 

a E 0 V bEl = sabt C sbat, 

which is a consequence of Property 3. 

(24) 

Only if: Assuming T satisfies the Neighbor-Swap Rule we prove that T is monotonic. 
Let t and u be such that t C u. We first deal with the case where t# = u#. We prove 
fT·t ::; fT·u by induction on the number of inversions in (t, u). 

Base: inv(t, u) = 0. Hence, on account of Property 2 using t# = u#, we have t = u and, 
thus, fT·t ::; fT·u. 

Step: inv(t, u) =I 0. Hence, on account of Property 2 using t# = u#, there exists a 
t-neighbor inversion in (t,u), say, (toa,uob). Therefore, we can write t = toabt,. From 
Property 3 and assumption t C u follows a E 0 V bEl. We now derive 

fT·t 

{ t = toabt, } 
fT·toabt, 

< { T satisfies the Neighbor-Swap Rule by assumption, using a E 0 V bEl} 

fT·tobat, 

::; { induction hypothesis, using inv(tobat" u) C inv(toabt" u) by Property 2 } 
fT·u 
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Finally, we consider the other case where t# # u#. In that case we can find v E 1* and 
wE 0* such that tv# = uw# and tv C uw on account of Property 1(12). We now derive 

fT·t 
< { (F~), using v E I* } 

fT·tv 
< { first case, using tv# = uw# and tv C uw } 

fT·uw 
< { (Fn, using w E 0* } 

fT·u 

o 

At last, we can close the gap between delay-insensitivity and the JTU-Rules: 

Theorem 7 If specification T is monotonic (cf. (24)) then it is convex (cf. (16)). 

Proof Assuming T is monotonic, we show that it is convex. Let t E T and u E T such 
that t C z and z C u. We derive 

1 

{ definition of fT, using t E T } 
fT·t 

< { monotonicity assumed, using t C z } 
fT·z 

< { monotonicity assumed, using z C u } 
fT·u 

= { definition of fT, using u E T } 
1 

Hence, fT·z = 1 and from the definition of fT now follows z E T. 

We conclude this section with the proof for Theorem 0: 

o 

Proof On account of Theorem 3 it is sufficient to show that convexity is equivalent to 
the JTU-Rules. We show the two implications in one derivation: 

T is convex 

'* { Theorem 4 } 
T satisfies the JTU-Rules 

=> { Theorem 5 } 
T satisfies the Neighbor-Swap Rule 

{ Theorem 6} 
T is monotonic 

'* { Theorem 7 } 
T is convex 

o 
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5 Concluding Remarks 

We have studied protocols for asynchronous communication between two parties over an 
interface of directed channels. Non-empty prefix-dosed trace sets have been used to specify 
communication protocols. Such a specification embodies restrictions on the initiation of 
transmissions and the readiness for receptions, for both parties. An operational semantics 
for the communication activity has been given in terms of a transition system. We have 
defined the notion of a delay-insensitive protocol specification based on absence of com
putation interference as a correctness concern. This correctness concern derives from an 
interpretation of the model as an abstraction of digital circuit physics. 

The central problem of this paper has been the characterization of delay-insensitive 
protocol specifications. In summary, we have shown that for all protocol specifications T 
the following statements are equivalent: 

• T is delay-insensitive (DI) 

• T satisfies (8) 

• T satisfies (15) 

• T is convex (d. (16)) 

• T is monotonic (cf. (24)) 

• T satisfies the Neighbor-Swap Rule (d. (22)) 

• T satisfies the JTU-Rules 

The characterization with JTU-Rules is due to [4J and that with convexity first appears 
in [7]. The characterizations in terms of monotonicity and the Neighbor-Swap Rule are new. 
Both are based on a new representation of protocol specifications by means of enhanced 
characteristic functions. The Neighbor-Swap Rule and monotonicity have turned out to be 
convenient stepping stones for a new proof of the Fundamental Characterization Theorem 
of Delay-Insensitivity. 

Because of its simplicity, the Neighbor-Swap Rule is preferable to the JTU-Rules, for 
example, when checking a specification for delay-insensitivity. We should point out, how
ever, that Udding [4] used variations on the JTU-Rules to classify delay-insensitive spec
ifications. This classification is not obvious in terms of the Neighbor-Swap Rule and the 
variations are also easier to check in the minimal-deterministic-state-graph representation 
of specifications. 

Dill's canonical process descriptions in [1] can be related to our's as follows. Protocol 
specification T has canonical process description 

(I,O,T,{t I fT·t = 2}) 
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and canonical process description (1,0, S, F) corresponds to protocol specification S (recall 
that the sets 1 and 0 are fixed in our context; the F-component of a canonical process 
description is superfluous). Our new representation in terms of the enhanced characteristic 
function is so nice because it maintains the 1 fO-symmetry and, thus, allows a uniform 
treatment of the three sets S, F, and, (I U 0)* - (S U F). 

The partial order r;;;: on specifications defined in [6J corresponds to the point-wise order 
on enhanced characteristic functions. For specifications Sand T we have 

S r;;;: T == (Vs:: fS·s':::: fT·s). 

This property greatly simplifies the analysis of the r;;;:-Iattice of protocol specifications. The 
alternative representation T' of specifications suggested in [6J consists of pairs 

({t I fT·t.:::: I}, {t I fT·t = 2}). 

Both these sets are C-upward closed for DI specifications. The relation nai of [6J enjoys 
the property 

Snai T = (V s,t: s Ct: fS·s':::: fT·t) 

and, therefore, the ECF j of T's DI-equivalent, i.e. of lub.[TJ, satisfies 

It = (MAXs: sct: fT·s). 

In this paper we have dealt with the case of two parties communicating according to 
a single protocol specification. In [OJ general networks of asynchronously communicating 
processes are studied. There, it is also shown that the special case of a closed network 
consisting of two processes with the same trace set plays an important role in defining a 
denotational semantics. 

The relationship with [2J by Josephs et al. is also prominent. Their relation r;;;: on traces 
can be expressed as follows: 

ur;;;:t == tCu II t#=u#. 

They denote an asynchronous process by a pair (F, D) of trace sets satisfying certain 
closure properties. Because of these closure properties, the trace sets F and D can be 
reconstructed from F - D. The prefix-closures of these difference sets, i.e. F - D, precisely 
span our space of Dr specifications. 

In this paper we have investigated safety aspects only. Liveness aspects can be incor
porated, but this requires a more refined notion of protocol specification and, in general, 
a more subtle way of defining the operational semantics. This will be reported on in a 
separate paper. It results in a specification space isomorphic to the one presented in [2]. 
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