

Characterizations of delay-insensitive communication
protocols
Citation for published version (APA):
Verhoeff, T. (1989). Characterizations of delay-insensitive communication protocols. (Computing science notes;
Vol. 8906). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://research.tue.nl/en/publications/1f30d59d-43f1-41e6-81f2-ff78d7486009

Characterizations of Delay-Insensitive

Communication Protocols

by

Tom Verhoeff

89/6

May, 1989

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. BoxS13
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

Characterizations of
Delay-Insensitive Communication Protocols

Tom Verhoeff

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513
NL-5600 MB EINDHOVEN

The Netherlands
wstomv@eutws1.uucp

wsintom@heitue5.bitnet

May 1989

Abstract

This paper studies protocols for asynchronous communication over an interface
consisting of unidirectional channels. In asynchronous communication, the sender
can initiate a transmission without cooperation of the receiver. Contrasting with
traditional data-flow networks, the channels that we consider do not synchronize
at the receiving end: messages, once on their way, are delivered regardless of the
readiness of the receiver to accept them. The situation where a message is delivered
to an unready receiver is called computation interference. A protocol is said to be
deiay-insensitive when it can be guaranteed-without making assumptions about
propagation delays-that computation interference cannot occur. We give several
characterizations of delay-insensitive protocols and a new prooHor the Fundamental
Characterization Theorem. The emphasis is on the mathematical treatment of the
concepts involved.

o Introduction and Overview

We begin by giving a physical motivation for our investigation. Consider a digital circuit
connected to its environment by an interface consisting of conducting wires. In the digital
mode of operation, circuit and environment communicate by exchanging discrete voltage
transitions. A voltage transition, once initiated, propagates along a wire to the receiver.
The receiving end, however, need not always be ready to process an incoming transition.

o

The reason for this is that the incoming transition may violate the assumptions underlying
the digital mode of operation.

For example, an OR-gate in the stable state with one input low, the other input high,
and-consequently-the output also high, cannot properly process transitions on both
inputs "simultaneously". The best that can happen when both inputs change is that the
output remains high or produces a pair of proper transitions (high to low and back to
high). But it is also possible that a non-digital pulse ensueso. What actually happens
when both inputs change depends intricately on the (relative) timing of the transitions
and the physical structure of the circuitry.

We are interested in communication protocols that guarantee adherence to the digital
mode assumptions even when no assumptions are made about the propagation delays
incurred in the connecting wires. Such protocols are called delay-insensitive. In order to
define and investigate such protocols we introduce a formal model for asynchronous two
party communication. The operational semantics is given in terms of a transition system.
The model includes the possibility to specify under what circumstances a party is ready
to accept which messages. Our model formalizes the Foam Rubber Wrapper Postulate
put forward in [3] as an approach to define delay-insensitivity. We are aware of the gap
between circuit physics on the one hand and transition-system semantics on the other. It
is not the validity of this type of semantics for circuits that we wish to question here.

In Section 1 we present the formal communication model, define our notion of delay
insensitivity, and state the Fundamental Characterization Theorem. Sections 2, 3, and 4
introduce auxiliary concepts and prove characterizations based on these concepts. Together
they constitute a new proof for the Fundamental Characterization Theorem. Finally, Sec
tion 5 summarizes the results and mentions some relationships with other work.

1 Delay-Insensitivity and the JTU-Rules

We start with the introduction of some terminology and notations. The two communicating
parties are referred to as Module and Environment. Let I and 0 be disjoint sets of symbols,
identifying the channels in the interface. The direction of symbols in I and 0 is said to be
input and output respectively. The directions are to be interpreted with respect to Module.
The sets I and 0 are fixed for the remainder of the paper. We denote their union by A.
Variables a through d range over A.

A trace is a member of A*, i.e. a finite-length sequence of symbols from A. It records a
communication history at one side of the interface. The contents of the messages commu
nicated is irrelevant for our problem. Hence, there is only the need to record the occurrence
of a communication action, for which we employ the symbol identifying the channel in
volved in that communication action. Variables s through z range over A*. The empty
trace is denoted by e: and concatenation of traces is denoted by juxtaposition. Trace t is a
prefix of trace s when (:3 u :: tu = s). Subset T of A* is called prefix-closed when

GIn fact, the pair of proper transitions may also degrade into a non-digital pulse when propagated along
the output wire, if no special precautions are taken.

1

(II s, t : sET /\ t prefix of s : t E T).

The length of trace t is denoted by £(t). The symbol bag of trace t is denoted by t#, that
is, t# is a mapping from A into the natural numbers such that t#a (the result of applying
t# to a) is the number of occurrences of symbol a in trace t.

A protocol specification, or specification for short, is a non-empty prefix-closed subset
of A *. It gives the set of communication histories allowed at both ends of the interface.
We define its operational semantics as a transition system. A transition system is a triple
(Q, q, -+), where Q is some set of states, q E Q is the initial state, and -+ <;;; Q X Q is the
transition relation. The transition system associated with specification T is

(A* X A*,(c,c),-+),
T

(0)

where -+ is the smallest relation such that
T

(t, u) -+ (ta, u) if a E 0 /\ ta E T
} (transmissions) T

(t, u) -+ (t, ua) if aEI /\ ua E T
T (1)

(t, u) -+ (ta, u) if aEI /\ t#a < u#a } T (receptions)
(t,u)-+(t,ua) if a E 0 /\ u#a < t#a

T

Thus, a state is a pair of traces over A, and in the initial state both traces of the pair
are empty. The left component of the pair can be thought of as the local state of Module
while the right component is associated with Environment. Outputs travel from Module
to Environment, inputs from Environment to Module.

The first transition rule expresses a state change where Module extends its local state
with an output symbol if the resulting local state belongs to the specification. Similarly,
the second transition rule expresses a state change where Environment's local state is
extended with an input symbol (which acts as a transmission initiated by Environment).
Hence, transmissions will only be initiated if they are in agreement with the specification.
The third transition rule expresses a state change where Module's local state is extended
with an input symbol if that symbol was sent more often (by Environment) than received
so far (by Module), i.e. if a message was on its way over the channel identified by that
symbol. Similarly, the fourth transition rule expresses a state change where Environment
receives an output (sent earlier by Module). Hence, a reception takes place only if the
corresponding transmission precedes it. Note, however, that at this stage receptions are
not required to obey the specification.

We call state (t, u) reachable under specification T when it can be reached from the
initial state via zero or more T-transitions, that is, when

(c, c) -1 (t, u), (2)

where.:':, denotes the transitive and reflexive closure of -+. The set of states reachable
T T

under T is denoted by rT. State (t,u) is called safe under T when (t,u) E TxT, that is,
when both local states belong to the specification. Specification T is delay-insensitive, or
DI for short, when

2

rT ~ TxT, (3)

that is, when all reachable states are safe. The situation where a reachable state is not
in agreement with the specification is called computation interference. It corresponds to a
possible violation of the digital mode assumptions. The central problem of this paper is
the characterization of delay-insensitivity.

We give three examples to illustrate these definitions.

Example 0 Consider the specification T = {e:} for arbitrary I and O. Its transition
relation is empty. The initial state is the only reachable state and, hence, rT = TxT.
Consequently, specification T is delay-insensitive. 0

Example 1 Assume I = {a, b} with a =I band 0 = 0. Now consider specification
T = {c:,a,ab}. For T's transition system we give two (of the three) maximal transition
sequences starting in the initial state. The first sequence consists of two transmissions
interleaved with the corresponding receptions:

(c:,c:) -t (c:,a) -t (a,a) -t (a,ab) -t (ab,ab).
T T T T

Thus, (ab,ab) E rT. Notice that the final state (ab,ab) is safe. The second sequence
consists of two transmissions followed by two receptions, where the order of the receptions
differs from the order of the corresponding transmissions:

(c:,c:) -t (c:,a) -t (c:,ab) -t (b,ab) -t (ba,ab).
T T T T

Thus, (ba, ab) E rT, but now the final state (ba, ab) is not safe, i.e. there is computation
interference. In fact, the intermediate state (b, ab) was already not safe. Therefore, the
specification T is not delay-insensitive.

This example also exhibits one of the complications inherent to asynchronous com
munication: Even if there are no messages on their way, then the local states of the
communicating parties may differ. D

Example 2 Assuming I = {a} and 0 = {b} define specification T by

T = {t I (V s : s prefix of t : 0 ~ t#a - t#b ~ In.
Thus, T consists of all traces in which symbols a and b alternate and which do not start
with b:

T = {c:, a, ab, aba, abab, ababa, . .. }.

Specification T describes a two-phase protocol. In each state, exactly one transition is
possible. Hence, there exists only one maximal transition sequence, which is infinite and
starts out

(c:,c:) (c:,a) -t (a,a) -t (ab,a) -t (ab,ab) -t ...
T T T T T

3

The two-phase protocol T is delay-insensitive, because all reachable states are safe. 0

In [4, 5] Udding gives a characterization of delay-insensitive specifications. He also deals
with transmission interference-which can occur when a channel carries more than one
message-but we will ignore that here: our channels have unbounded buffering capacity.
U dding defines the following predicates on specifications. We adhere to the names given
in [4].

Specification T satisfies Rule R3 (called Rl in [5]) when for all traces sand t, and
symbols a and b of the same direction we have

sabt E T = sbat E T. (4)

Specification T satisfies Rule R~ (called R~ in [5J) when for all traces sand i, and symbols a,
b, and c such that the direction of a and c differs from the direction of b, we have

sabic E T 1\ sbai E T => sbaie E T. (5)

Specification T satisfies Rule R~f (called R~f in [5]) when for all traces s and symbols a
and b of different direction we have

sa E T 1\ sb E T => sab E T. (6)

Remark for the curious: Rules Ro and Rl of [4J were already incorporated in our notion of
a specification. Rule R2 deals with transmission interference, which we decided to ignore
here.

We say that a specification satisfies the lTU-Rules when it satisfies Rules R 3 , R~, and
R~f. Notice that the specifications of Examples 0 and 2 trivially satisfy the JTU-Rules.
The specification of Example 1, however, satisfies Rules R~ and R~f but not Rule R 3 •

This paper is centered around the following theorem.

Theorem 0 (Fundamental Characterization Theorem of Delay-Insensitivity)
Specification T is DI if and only if it satisfies the JTU-Rules. 0

The implication from right to left is "hard" and was-in a slightly more general form-first
stated and proved in [4, Thm. 4. W. Several attempts at simplifying the proof have failed.
In this paper we present, what we belief to be, a simple proof. In a sense, the justification
of the JTU-Rules as given in [4J constitutes an informal proof of the implication from left
to right. This is the "easy" part. A formal proof of this part can also be found in [7].

1 Note on terminology: In [4] Udding defines delay-insensitivity directly in terms of the JTU-Rules and
he shows that it implies absence of computation interference, which he defines as (8) below.

4

2 Composability and Convexity

In this section we present three-fairly straightforward-characterizations of delay-insen
sitivity (Theorems 1, 2, and 3). They do not get very far in bridging the gap between
delay-insensitivity and the JTU-Rules, but they are useful nonetheless, since they take
us away from the definition of delay-insensitivity in terms of the operational transition
system.

We start by noting the following symmetry in the transition system S associated with
specification T. The transition system obtained from S by exchanging left and right com
ponents of states equals the transition system associated with T when the roles of 1 and 0
are exchanged. This symmetry will be referred to as 11 O-symmetry. Also notice that the
JTU-Rules are 110-symmetric, since they involve (in)equality of direction only.

The first characterization (Theorem 1 below) is based on the observation that the
initial state is safe and that transmission transitions do not disturb safety by definition.
Therefore, all reachable states are safe if and only if each reception transition from a safe
reachable state leads to a safe state. We have also incorporated some knowledge about
reachable states viz. that the number of receptions of a symbol cannot exceed the number
of its transmissions. This is formally expressed in

Property 0 For specification T and state (t, u) E rT we have

(Va: a E 1 : t#a :::: u#a) /I (Va: a EO: t#a 2 u#a). (7)

o

Therefore, if (t,u) E rT and t#a < u#a, then a rt 0 and, hence, a E 1.

Theorem 1 Specification T is Dr if and only if

(Vt,u,a (t,u) E rTn (T x T)
(t#a < u#a =;. ta E T) /I (u#a < t#a =;. ua E T)). (8)

Proof

Only if: Assuming T is DI we show (8). Let (t, u) E rT be such that t E T and u E T.
We derive

t#a < u#a
=;. { Property 0 }

a E 1 /I t#a < u#a
=;. { definition of --t }

T

(t,u) --t (ta,u)
T

=;. { definition of rT, using (t, u) E rT }
(ta, u) E rT

5

'* { T is assumed DI }
(ta,u) E (T x T)

'* { set calculus}
ta E T

The conjunct u#a < t#a '* ua E T follows from IIO-symmetry.

If: Assume T satisfies (8). We prove by induction on f(t) + f(u) that all states (t, u) E rT
are safe.

Base: f(t) + f(u) = 0, hence, t = I'; = u. The state (1';,1';) is safe because T is non-empty
and prefix-closed.

Step: C(t) + C(u) > 0, hence, we can find state (t', u') E rT such that

(t',u') -> (t,u).
T

(9)

On account of the induction hypothesis, using that C(t') + C(u') < C(t) + C(u), we know that
(t', u') is safe and, hence,

t' E T 1\ u' E T. (10)

We distinguish two cases: t' = t and u' = u. Because of I I O-symmetry we need only
investigate the case t' = t. In that case, u can be written as u' a for some symbol a.
Furthermore, t E T follows from (10). All that we need to show now is u'a E T. We derive
for the cases a E I and a EO, respectively:

aEI
'* { (9), u = u'a, and definition of --+ }

T

u'a E T

and

a E 0

'* { (9), u = u'a, and definition of --+, using t = t' }
T

u'#a < t'#a
'* { (8), using (t', u') E rT }

u'a E T

o

The preceding characterization can be simplified a little by introducing the composabil
ity2 relation e on A* defined as r(A*). That is, teu holds when (t,u) is reachable under
the specification A*. Specification A* does not restrict transmission transitions and, thus,
relation e captures only the restriction imposed by the condition that symbols arrive no
earlier than they were sent.

2The name 'composability' is taken from [4}.

6

Example 3 Assuming a E I and bE 0, we have c:Ca but ~(aCc:), and also baCab
but ~(abCba). 0

Relation C enjoys a number of nice properties.

Property 1 For specification T we have

rT n (T x T) = C n (T x T).

Furthermore, we have

a E I /\ ta C u - t#a < u#a /\ t C u

a E I /\ t C u =} t C ua

tCua =} (:3tO,tl:t=tOtl:tOCU)

and C is reflexive, i.e. for all t we have t C t.

(11)

(12)

(13)

(14)

o

Of course, on account of IIO-symmetry we also have dual forms of (12) through (14)
obtained by interchanging I and 0, and left- and right-hand arguments of C. For example,
the dual of (13) is: a E 0/\ uct =} uaCt.

We now give a characterization of delay-insensitivity in which reachability under the
specification in question has been traded for C.

Theorem 2 Specification T is DI if and only if

('it,u,a tET/\uET
: (a E I /\ ta C u =} ta E T) /\

(a E 0/\ tCua =} ua E T)).
(15)

Proof On account of Theorem 1 it is sufficient to prove the equivalence of (8) and (15).
We derive

('it,u,a: (t,u)ErTn(TxT)
: (t#a < u#a =} ta E T) /\ (u#a > t#a =} ua E T))

= { Property 1(11) }

('it,u,a: (t,u)ECn(TxT)
: (t#a < u#a =} ta E T) /\ (u#a > t#a =} ua E T))

{ predicate and set calculus}

('it, u, a (t, u) E (T x T)
: (t#a < u#a /\ tCu =} ta E T) /\

(u#a > t#a /\ t C u =} ua E T))

{ Property 1(12) }

('it,u,a (t,u)E(TxT)
(a E I /\ ta C u =} ta E T) /\
(aEO/\tCua =} uaET))

7

{ set calculus}
(Vt,u,a tETI\UET

(a E I 1\ ta C u =} ta E T) 1\

(a E 0 1\ t C ua =} ua E T))

This characterization can be further simplified:

Theorem 3 Specification T is Dr if and only if

(Vt,u,z:tETl\uET:tCzl\zCu =} ZET).

Specification T is called convex when it satisfies (16).

o

(16)

Proof On account of Theorem 2 it is sufficient to prove the equivalence of (15) and (16).

If: Assuming T is convex we derive (15). Let t E T and u E T. We derive

a E I 1\ ta C u
= { reflexivity of e on account of Property 1 }

a E I 1\ t C t 1\ ta C u
=} { Property 1(13) }

teta 1\ taCu
=} { (16) assumed, using t E T and u E T }

ta E T

The other conjunct follows I I O-symmetrically.

Only if: Assuming (15) we prove (16) by induction on the length of z.

Base: z = c. Since T is non-empty and prefix-closed we have z = c E T.

Step: z = z' a. Assuming t E T and u E T such that t C z and z C u, we show z' a E T.
We distinguish the cases a E I and a E O. Because of IIO-symmetry we consider only
the first case. Therefore, assume a E I. On account of Property 1(14), using a E I and
t C z' a, we can let t' be a prefix of t such that t' C z'. We derive

true

{ context so far}

i E T 1\ u E T 1\ i ' C z' 1\ a E I 1\ z' a C u

=} { t' is a prefix of t, T is prefix-closed, and Property 1(12) }

i' E T 1\ u E T 1\ i' C z' 1\ z' C u 1\ a E I 1\ z' a C u
=} { induction hypothesis, using R(z') < R(z) }

z'ET 1\ uET 1\ aEI 1\ z'aCu
=} { (15) assumed}

z'a E T

o

8

3 Inversions

In [8] a proof is given for 'the JTU-Rules imply convexity'. That proof is based on a
construction in terms of graphs. It is easy to understand if one is willing to accept some
intuitions about graphs. A complete formalization is still quite lengthy. We will not take
that road here. We postpone this implication and instead concentrate on the (easier)
converse.

Before we tackle the converse it is useful to get to know the composability relation C
a little better. We call (t'a, u'b) an inversion in (t, u) when

t' a is a prefix of t,
u' b is a prefix of u,
t'a#a> u'b#a, and
t'a#b < u'b#b.

The first condition expresses that t' a locates an occurrence of symbol a in trace t and,
similarly, u'b locates an occurrence of b in u on account of the second condition. The
third condition expresses that the occurrence of a in u, that corresponds to t'a, occurs
to the 'right' of u'b-if it exists at all. Similarly, the fourth condition expresses that the
occurrence of b in t which corresponds to u'b occurs to the 'right' of t'a. Hence, the order
of these occurrences of a and b in t differs from the order of the corresponding occurrences
in u. The set of inversions in state (t,u) will be denoted by inv(t,u). Inversion (t'a,u'b)
in (t, u) is called a t-neighbor inversion when t'ab is a prefix of t and t'a#b = u'#b, that
is, when these occurrences of a and b are adjacent in t.

Notice that the concept of inversion does not involve the directions of symbols, i.e., it is
independent of how A is partitioned into I and O. We will only be interested in inversions
in states (t, u) for which t# = u#. Let us look at an example.

Example 4 Assuming that symbols a, b, and e are distinct, there are three inversions

a b e a

e a a b

Figure 0: Inversion diagram for (abea, eaab)

in (abea,eaab). The set inv(abea,eaab) consists of (a,e), (ab,e), and (ab,eaa). Only one
of these, viz. (ab, e), is an abea-neighbor inversion. This is iIlustrated in Figure 0, where
line segments connect corresponding symbol occurrences. Each pair of intersecting line
segments corresponds to an inversion. 0

We draw the attention to some well-known properties of inversions to be used later on:

9

Property 2 For state (t,u) such that t# = u# we have

inv(t, u) is finite,
inv(t,u)=0 == t=u,
inv(t,u) oJ 0 = inv(t,u) contains a t-neighbor inversion.

If (ta, u'b) is a tabv-neighbor inversion in (tabv, u), then

inv(tbav,u) = inv(tabv,u) - {(ta,u'b)}.

Compos ability can be characterized in terms of inversions:

Property 3 For state (t,u) we have

tCu => (Vt',u',a,b: (t'a,u'b) E inv(t,u): a E 0 V bE 1)

and this is an equivalence if t# = u#.

D

(17)

D

Example 5 Assuming a E I and b E 0, we have seen in Example 3 that ,(abCba)
holds. State (ab, ba) has one inversion, viz. (a, b), for which '(a E 0 V bE 1). D

By the way, from Property 3 it follows (non-trivially) that C is transitive (hence, a pre
order), but we will not need that here.

We are now ready for

Theorem 4 If specification T is convex (cf. (16)), then it satisfies the JTU-Rules.

Proof Assume specification T is convex. Each JTU-Rule can be viewed as a special case
of convexity. We prove them one by one.

Rule R3: For traces sand t, and symbols a and b of the same direction we have, on
account of Property 3,

sabt C sbat C sabt C sbat.

Using convexity we now infer sabt E T == sbat E T and, hence, T satisfies R 3 .

Rule R~: For traces sand t, and symbols a, b, and e such that the direction of a and e
differs from that of b, we have, using Properties 3 and 1(13),

a EO=> sabie C sbate C sbat

a E I => sbat C sbate C sabie

On account of convexity we thus have that sabte E T /\ sbat E T implies sbate E T and,
hence, T satisfies R~.

Rule R~': For trace s and symbols a and b of different direction we have, using reflexivity
of C and Properties 1(12) and 1(13),

a EO=> saCsabCsb

a E I => sbCsabCsa

On account of convexity we then have that sa E T /\ sb E T implies sab E T and, hence,
T satisfies R~'. D

10

4 New Representation for Specifications

The major innovation in our proof of the Fundamental Characterization Theorem of Delay
Insensitivity is a new representation for specifications. This representation is based on
enhanced characteristic functions, or ECFs for short. An ECF is a mapping from A *
to {O, 1, 2}. The enhancement consists of the additional value 2 in the co-domain, which
enables us to distinguish two ways in which a trace does not belong to a specification. We
use . to denote functional application for ECFs, which has a weaker binding power than
concatenation, i.e. j·st stands for j.(st).

Let T be a specification. Observe that each trace t tj T can be uniquely written as
toat, such that to E T and toa tj T, since T is non-empty and prefix-closed. We now define
ECF fT by

{

0 if (3 to, a, t, : t = toat, /\ to E T /\ toa tj T : a E 0)
fT·t = 1 if t E T

2 if (3 to, a, t, : t = toat, /\ to E T /\ toa tj T : a E 1)

Let f = fT, then j enjoys the following properties:

(Fo)
(F,)
(Fz)
(F3)

j·e = 1
j·ta = j·t
j·ta ~ j·t
j·ta :::: j·t

if j·t"l1
if aE 0
if aEI

(18)

These follow immediately from the definition of fT and the fact that T is non-empty and
prefix-closed. Properties F, through F3 are readily generalized to

(Fn j·tu = f·t if f·t"l 1

(F~) j·tu ~ j·t if u E 0*

(F~) j·tu:::: j·t if u E 1*

by induction on the length of u. Furthermore, F,/\ Fz A F3 is equivalent to the conjunction
of

(F~') j·ta < j·t =:- j·t = 1 A f·ta = 0 A a E 0
(F~') j·ta> j·t =:- j·t = 1 A j·ta = 2 A a E I

For ECF f we define its trace set tj by

tj = {t I j·t = I}.

We now trivially have for T ~ A*

t(fT) = T.

(19)

(20)

We also claim that for ECF j satisfying Fo through F3 we have that tf is non-empty and
prefix-closed (viz. on account of Fo and F,) and that

11

f(tf) = f. (21)

We have thus established a one-one correspondence between specifications and ECFs satis
fying Fo through F3. Notice that exchanging the role of I and a corresponds to exchanging
the role of 0 and 2 in ECFs.

Using the ECF of a specification, the JTU-Rules can be condensed into a single rule.
We prove only an implication here; the converse will follow from Theorems 6, 7, and 4.

Theorem 5 If specification T satisfies the JTU-Rules then

(V s, a, b, t: a E a v bEl: fT·sabt s: fT·sbat). (22)

Predicate (22) will be called the Neighbor-Swap Rule.

Proof Assuming T satisfies the JTU-Rules we show that T satisfies the Neighbor-Swap
Rule. Because the co-domain of fT is {O, 1, 2} and

012
o < < <
1 > < <
2 > > <

it is sufficient to prove for all traces sand t, and symbols a and b such that a E a v bEl:

fT·sabt = 2 =? fT·sbat = 2 and

fT·sbat = 0 =? fT·sabt = O.

On account of 1/ a-symmetry we confine ourselves to the first of these. Therefore, also
assume that fT·sabt = 2. From the definition of fT now follows that we can find u and c
such that

uc prefix of sabt /I u E T /I uc ~ T /I eEl. (23)

Our goal is to show that fT·sbat = 2 as well. We distinguish four cases: uc prefix of s,
uc = sa, uc = sab, and sab prefix of u.

Case uc prefix of s: Then fT·sbat = 2 by (23) and the definition of fT.

Case uc = sa: We derive

uc = sa

= { trace calculus }

u=s/ls=a

=? { (23) }

sET /I sa ~ T /I a E I
=? { T is prefix-closed and a E a v bEl assumed}

sET /I sab ~ T 1\ a E I 1\ bEl

12

= { Rule R3 assumed }

sET 1\ sba if- T 1\ a E I 1\ bEl

=} { predicate calculus, doing case analysis on sb E T }

(s E T 1\ sb if- T 1\ b E I) V (sb E T 1\ sba if- T 1\ a E I)
=} { defini tion of fT }

fT·sbat = 2

Case uc = sab: We derive

uc = sab

{ trace calculus}

u = sa 1\ c = b
=} { (23) }

sa E T 1\ sab if- T 1\ bEl

=} { predicate calculus }

(sa E T 1\ sab if- T 1\ a E 0 1\ b E I) V (sa E T 1\ sab if- T 1\ a E I 1\ b E I)
=} { Rules R~' and R3 assumed and T is prefix-closed}

(s E T 1\ sb if. T 1\ bE I) V (s E T 1\ sba if. T 1\ a E I 1\ bE I)
=} { predicate calculus, doing case analysis on sb E T }

(s E T 1\ sb if. T 1\ b E I) V (sb E T 1\ sba if- T 1\ a E I)
=} { definition of fT }

fT·sbat = 2

Case sab prefix of u: Hence, we can write t = taet, such that u = sabta. We distinguish
two sub cases depending on the equality of the directions of a and b. For a and b having
the same direction we derive

u = sabta

=} { (23) }

sabta E T 1\ sabtae if- T 1\ eEl

= { Rule R3 assumed, using that a and b have same direction}

sbata E T 1\ sbatac if. T 1\ eEl

=} { defini tion of fT }

fT·sbat = 2

For symbols a and b with different directions we proceed as follows. From the assumption
a E 0 V bEl we now infer a E 0 1\ bEl and we derive

u = sabta

=} { (23) }

13

sabto E T 1\ sabtoc!f: T 1\ c E I

=} { Rule R~ assumed, using that a E 0 1\ bEl}

sabto E T 1\ sbatoc!f: T

Hence, we can find prefix vd of sbatoc such that vET but vd !f: T. On account of the
definition of fT it is sufficient to show dEl in order to have fT·sbat = 2. Finally, we
distinguish the five ways in which vd can be a prefix of sbatoc, viz. vd prefix of s, vd = sb,
vd = sba, vd prefix of sbato with sba prefix of v, and vd = sbatoc. The first case is excluded
by sET. In the second case we have d = bEl. The third case is excluded by sa E T
and Rule R~f. For the fourth case note that d E 0 is excluded by Rule R~ and the fact
that sabt,d is a prefix of sabto with sabto E T. In the last case we have d = c E I. This
completes the proof. 0

The Neighbor-Swap Rule can be generalized as follows:

Theorem 6 Specification T satisfies the Neighbor-Swap Rule (22) if and only if

(Vt, u: t C u : fT·t ::; fT.u).

We say that specification T is monotonic if it satisfies (24).

Proof

If: That (24) implies (22) follows immediately from

a E 0 V bEl = sabt C sbat,

which is a consequence of Property 3.

(24)

Only if: Assuming T satisfies the Neighbor-Swap Rule we prove that T is monotonic.
Let t and u be such that t C u. We first deal with the case where t# = u#. We prove
fT·t ::; fT·u by induction on the number of inversions in (t, u).

Base: inv(t, u) = 0. Hence, on account of Property 2 using t# = u#, we have t = u and,
thus, fT·t ::; fT·u.

Step: inv(t, u) =I 0. Hence, on account of Property 2 using t# = u#, there exists a
t-neighbor inversion in (t,u), say, (toa,uob). Therefore, we can write t = toabt,. From
Property 3 and assumption t C u follows a E 0 V bEl. We now derive

fT·t

{ t = toabt, }
fT·toabt,

< { T satisfies the Neighbor-Swap Rule by assumption, using a E 0 V bEl}

fT·tobat,

::; { induction hypothesis, using inv(tobat" u) C inv(toabt" u) by Property 2 }
fT·u

14

Finally, we consider the other case where t# # u#. In that case we can find v E 1* and
wE 0* such that tv# = uw# and tv C uw on account of Property 1(12). We now derive

fT·t
< { (F~), using v E I* }

fT·tv
< { first case, using tv# = uw# and tv C uw }

fT·uw
< { (Fn, using w E 0* }

fT·u

o

At last, we can close the gap between delay-insensitivity and the JTU-Rules:

Theorem 7 If specification T is monotonic (cf. (24)) then it is convex (cf. (16)).

Proof Assuming T is monotonic, we show that it is convex. Let t E T and u E T such
that t C z and z C u. We derive

1

{ definition of fT, using t E T }
fT·t

< { monotonicity assumed, using t C z }
fT·z

< { monotonicity assumed, using z C u }
fT·u

= { definition of fT, using u E T }
1

Hence, fT·z = 1 and from the definition of fT now follows z E T.

We conclude this section with the proof for Theorem 0:

o

Proof On account of Theorem 3 it is sufficient to show that convexity is equivalent to
the JTU-Rules. We show the two implications in one derivation:

T is convex

'* { Theorem 4 }
T satisfies the JTU-Rules

=> { Theorem 5 }
T satisfies the Neighbor-Swap Rule

{ Theorem 6}
T is monotonic

'* { Theorem 7 }
T is convex

o

15

5 Concluding Remarks

We have studied protocols for asynchronous communication between two parties over an
interface of directed channels. Non-empty prefix-dosed trace sets have been used to specify
communication protocols. Such a specification embodies restrictions on the initiation of
transmissions and the readiness for receptions, for both parties. An operational semantics
for the communication activity has been given in terms of a transition system. We have
defined the notion of a delay-insensitive protocol specification based on absence of com
putation interference as a correctness concern. This correctness concern derives from an
interpretation of the model as an abstraction of digital circuit physics.

The central problem of this paper has been the characterization of delay-insensitive
protocol specifications. In summary, we have shown that for all protocol specifications T
the following statements are equivalent:

• T is delay-insensitive (DI)

• T satisfies (8)

• T satisfies (15)

• T is convex (d. (16))

• T is monotonic (cf. (24))

• T satisfies the Neighbor-Swap Rule (d. (22))

• T satisfies the JTU-Rules

The characterization with JTU-Rules is due to [4J and that with convexity first appears
in [7]. The characterizations in terms of monotonicity and the Neighbor-Swap Rule are new.
Both are based on a new representation of protocol specifications by means of enhanced
characteristic functions. The Neighbor-Swap Rule and monotonicity have turned out to be
convenient stepping stones for a new proof of the Fundamental Characterization Theorem
of Delay-Insensitivity.

Because of its simplicity, the Neighbor-Swap Rule is preferable to the JTU-Rules, for
example, when checking a specification for delay-insensitivity. We should point out, how
ever, that Udding [4] used variations on the JTU-Rules to classify delay-insensitive spec
ifications. This classification is not obvious in terms of the Neighbor-Swap Rule and the
variations are also easier to check in the minimal-deterministic-state-graph representation
of specifications.

Dill's canonical process descriptions in [1] can be related to our's as follows. Protocol
specification T has canonical process description

(I,O,T,{t I fT·t = 2})

16

and canonical process description (1,0, S, F) corresponds to protocol specification S (recall
that the sets 1 and 0 are fixed in our context; the F-component of a canonical process
description is superfluous). Our new representation in terms of the enhanced characteristic
function is so nice because it maintains the 1 fO-symmetry and, thus, allows a uniform
treatment of the three sets S, F, and, (I U 0)* - (S U F).

The partial order r;;;: on specifications defined in [6J corresponds to the point-wise order
on enhanced characteristic functions. For specifications Sand T we have

S r;;;: T == (Vs:: fS·s':::: fT·s).

This property greatly simplifies the analysis of the r;;;:-Iattice of protocol specifications. The
alternative representation T' of specifications suggested in [6J consists of pairs

({t I fT·t.:::: I}, {t I fT·t = 2}).

Both these sets are C-upward closed for DI specifications. The relation nai of [6J enjoys
the property

Snai T = (V s,t: s Ct: fS·s':::: fT·t)

and, therefore, the ECF j of T's DI-equivalent, i.e. of lub.[TJ, satisfies

It = (MAXs: sct: fT·s).

In this paper we have dealt with the case of two parties communicating according to
a single protocol specification. In [OJ general networks of asynchronously communicating
processes are studied. There, it is also shown that the special case of a closed network
consisting of two processes with the same trace set plays an important role in defining a
denotational semantics.

The relationship with [2J by Josephs et al. is also prominent. Their relation r;;;: on traces
can be expressed as follows:

ur;;;:t == tCu II t#=u#.

They denote an asynchronous process by a pair (F, D) of trace sets satisfying certain
closure properties. Because of these closure properties, the trace sets F and D can be
reconstructed from F - D. The prefix-closures of these difference sets, i.e. F - D, precisely
span our space of Dr specifications.

In this paper we have investigated safety aspects only. Liveness aspects can be incor
porated, but this requires a more refined notion of protocol specification and, in general,
a more subtle way of defining the operational semantics. This will be reported on in a
separate paper. It results in a specification space isomorphic to the one presented in [2].

17

References

[OJ W. Chen, J. T. Udding, and T. Verhoeff. Networks of communicating processes and
their (de)-composition. In R. Backhouse and J. van de Snepscheut, editors, The Math
ematics of Program Construction, number 375 in Lecture Notes in Computer Science,
pages ??-?? Springer-Verlag, 1989.

[IJ D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. PhD thesis, C.S. Dept., Carnegie Mellon Univ., Pittsburgh, PA, Feb. 1988.

[2J M. B. Josephs, C. A. R. Hoare, and H. Jifeng. A theory of asynchronous processes. J.
ACM, (submitted), 1989.

[3J C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthesis of delay-insensitive mod
ules. In H. Fuchs, editor, 1985 Chapel Hill Conference on Very Large Scale Integration,
pages 67-86. Computer Science Press, 1985.

[4J J. T. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD thesis,
Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1984.

[5J J. T. Udding. A formal model for defining and classifying delay-insensitive circuits.
Distributed Computing, 1(4):197-204, 1986.

[6J J. T. Udding and T. Verhoeff. The mathematics of directed specifications. Technical
Report WUCS-88-20, Dept. of C.S., Washington Univ., St. Louis, MO, June 1988.

[7J T. Verhoeff. Notes on delay-insensitivity. Master's thesis, Dept. of Math. and C.S.,
Eindhoven Univ. of Technology, 1985.

[8J T. Verhoeff. DSG08. Notes of the Directed Specifications Group, Jan. 1989.

18

In this series appeared :

No. Author(s) Title
85/01 R.H. Mak The formal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace
H.M.J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R. Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for formal
K.M. vanHee specifications of information
M. V oorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an information
1. Paredaens system in several parallel systems
K.M. van Hee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and divergence
created by concealment in CSP

86/07 R.Gerth On proving communication
L. Shira closedness of distributed layers

86/08 R. Koymans Compositional semantics for
R.K. Shyamasundar real-time distributed
W.P. de Roever computing (Inf.&Control 1987)
R. Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R. Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Hooman A compositional proof theory
for real-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (lFIP86)

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

86/13 R Gerth Proving monitors revisited: a
W.P. de Roever fIrst step towards verifying

object oriented systems (Fund.
Informatica IX -4)

86/14 R. Koymans Specifying passing systems
requires extending temporal logic

87/01 R.Gerth On the existence of sound and
complete axiomatizations of
the monitor concept

87/02 Simon J. Klaver Federatieve Databases
Chris F.M. Verberne

87/03 G.J. Houben A formal approach to distri-
J .Paredaens buted information systems

87/04 T.Verhoeff Delay-insensitive codes -
An overview

87/05 R.Kuiper Enforcing non-determinism via
linear time temporal logic specifIcation.

87/06 RKoymans Temporele logica specifIcatie van message
passing en real-time systemen (in Dutch).

87/07 RKoymans Specifying message passing and real-time
systems with real-time temporal logic.

87/08 H.M.J.L. Schols The maximum number of states after
projection.

87/09 J. Kalisvaart Language extensions to study structures
L.RA. Kessener for raster graphics.
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff Three families of maximally nondeter-
ministic automata.

87/11 P.Lemmens Eldorado ins and outs.
SpecifIcations of a data base management
toolkit according to the functional model.

87/12 K.M. van Hee and OR and AI approaches to decision support
A.Lapinski systems.

87/13 J.C.S.P. van der Woude Playing with patterns,
searching for strings.

87/14 J. Hooman A compositional proof system for an occam-
like real-time language

87/15 C. Ruizing A compositional semantics for statecharts
R. Gerth
W.P. de Roever

87{16 R.M.M. ten Eikelder Normal forms for a class of formulas
J.C.F. Wilmont

87/17 K.M. vanRee Modelling of discrete dynamic systems
G.-J.Rouben framework and examples
I.L.G. Dietz

87{18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.J.Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.J. Rouben The R2 -Algebra: An extension of an
J. Paredaens algebra for nested relations

87/21 R. Gerth Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. vanHee Executable Specification for Information
GJ. Houben Systems
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 GJ. Houben The Nested Relational Algebra: A Tool to handle
J.Paredaens Structured Information
D.Tahon

88/05 K.M. vanHee Executable Specifications for Information Systems
G.J. Houben
L.J. Somers
M. V oorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
R. Gerth abstract way
W.P. de Roever

88/08 K.M. vanHee A Formal model for System Specification
G.J. Houben
L.J. Somers
M. V oorhoeve

88/09 A. T.M. Aerts A Tutorial for Data Modelling
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive
Circuits

88/11 G.J. Houben A graphical interface fonnalism: specifying nested
J.Paredaens relational databases

88/12 A.E. Eiben Abstract theory of planning

88/13 A. Bijlsma A unified approach to sequences, bags, and trees

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
RH. Mak recursive types

88/15 R Bos An introduction to the category theoretic solution
C. Hemerik of recursive domain equations

88/16 C.Hemerik Bottom-up tree acceptors
J.P.Katoen

88/17 KM. vanHee Executable specifications for discrete event
G.J. Houben systems
L.J. Somers
M. V oorhoeve

88/18 K.M. vanHee Discrete event systems: concepts and basic
P.M.P. Rambags results.

88/19 D.K Hammer Fasering en documentatie in software engineering.
KM. vanHee

88/20 K.M.van Hee EXSPECf, the functional part.
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar Reconstruction of a 3-D surface from its nonnal
vectors.

89/2 RH. Mak A systolic design for dynamic programming.
P.Struik

89/3 H.M.M. Ten Eikelder Some category theoretical properties related to
C. Hemerik a model for a polymorphic lambda-calculus.

89/4 J.Zwiers Compositionality and modularity in process
W.P. de Roever specification and design: A trace-state based

approach.

89/5 Wei Chen Networks of Communicating Processes and their
T.Verhoeff (De-)Composition.
J.T.Udding

89/6 T.Verhoeff Characterizations of Delay-Insensitive
Communication Protocols.

89n P.Struik A systematic design of a paralell program for
Dirichlet convolution.

	Abstract
	0. Introduction and overview
	1. Delay-Insensitivity and the JTU-Rules
	2. Composability and Convexity
	3. Inversions
	4. New Representation for Specifications
	5. Concluding Remarks
	References

