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OPERATORS ON VECTOR-VALUED FUNCTION SPACES
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(Communicated by Joseph A. Ball)

Abstract. We characterize compact and completely continuous disjointness
preserving linear operators on vector-valued continuous functions as follows:
a disjointness preserving operator T : C0(X, E) → C0(Y, F ) is compact (resp.
completely continuous) if and only if

Tf =
∑

n

δxn ⊗ hn(f) for all f ∈ C0(X, E),

where hn : Y → B(E, F ) is continuous and vanishes at infinity in the uniform
(resp. strong) operator topology, and hn(y) is compact (resp. hn is uniformly
completely continuous).

1. Introduction

Let X be a locally compact Hausdorff space, and let E be a real or complex
Banach space. Let C0(X, E) be the Banach space of all continuous E-valued func-
tions on X, vanishing at infinity and equipped with the supremum norm. We write
C(X, E) instead of C0(X, E) in case X is compact. For each f in C0(X, E), the coz-
ero of f , denoted by coz(f), is defined to be the open set coz(f) = {x ∈ X : f(x) �=
0}. A linear operator T from C0(X, E) into C0(Y, F ) is disjointness preserving if
T preserves disjointness of cozeros of functions, that is, coz(Tf) ∩ coz(Tg) = ∅
whenever coz(f) ∩ coz(g) = ∅. Equivalently, ‖Tf(y)‖‖Tg(y)‖ = 0 for all y ∈ Y
whenever ‖f(x)‖‖g(x)‖ = 0 for all x ∈ X.

Disjointness preserving operators between general vector lattices were considered
by several authors (see, e.g., [2, 1, 4]). Lately such operators were studied between
the spaces of real or complex-valued continuous functions under the name of sep-
arating operators (see, e.g., [8, 5]), or between Fourier algebras (e.g. [6]). It was
shown that a bounded disjointness preserving operator is a weighted composition
operator. In the recent paper [9], a concrete representation is given for compact,
weakly compact and completely continuous disjointness preserving operators from
C0(X) into C0(Y ).
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948 JYH-SHYANG JEANG AND YING-FEN LIN

Jamison and Rajagopalan in [7] studied disjointness preserving operators on
vector-valued continuous functions. They gave a necessary and sufficient condition
for such operators to be compact. In this paper, we shall give a representation of
disjointness preserving operators T : C0(X, E) → C0(Y, F ) that are compact or
completely continuous. Indeed, such an operator T can be written as a countable
sum of atoms δxn

⊗ hn with some corresponding properties.

2. Characterizations of the operator δx ⊗ h

Let x be a fixed point in X and δx be the point evaluation. Let h be a map
from Y into B(E, F ), the Banach space of all bounded linear operators from E into
F . A linear map δx ⊗ h sending E-valued functions on X to F -valued functions on
Y is defined by

δx ⊗ h(f)(y) = h(y)(f(x)) for all y ∈ Y.

Let (B(E, F ), SOT) be the locally convex space with the strong operator topology.
The map h is said to be continuous in the strong operator topology if h : Y →
(B(E, F ), SOT) is continuous. If h : Y → (B(E, F ), SOT) vanishes at infinity, we
say that h vanishes at infinity in the strong operator topology. Similarly, we say that
h : Y → B(E, F ) is continuous in the uniform operator topology when we consider
B(E, F ) as a Banach space.

The following observation follows immediately from the Closed Graph Theorem.

Proposition 2.1. δx⊗h maps C0(X, E) into C0(Y, F ) if and only if h is continuous
and vanishes at infinity in the strong operator topology. Moreover, ‖δx ⊗ h‖ =
supy∈Y ‖h(y)‖, and the linear map δx ⊗ h : C0(X, E) → C0(Y, F ) is automatically
bounded.

In the following, we characterize the compactness and complete continuity of
the bounded linear operator δx ⊗ h from C0(X, E) into C0(Y, F ). In case X and
Y are compact, the following lemma was given in [3, Theorem 2.1] by a different
approach.

Lemma 2.2. The bounded linear operator δx ⊗ h from C0(X, E) into C0(Y, F ) is
compact if and only if h : Y → B(E, F ) is continuous and vanishes at infinity in
the uniform operator topology and h(y) is a compact operator for each y in Y .

Proof. For the necessity, it is clear that for every y in Y , the bounded linear operator
h(y) is compact. Suppose that h was not continuous at some point y0 ∈ Y in the
uniform operator topology. There exists an ε > 0, a net {yλ}λ converging to y0 in Y
and a net {eλ}λ in E with ‖eλ‖ = 1 for all λ such that ‖h(yλ)(eλ)−h(y0)(eλ)‖ ≥ ε
for all λ. Let {fλ}λ be in C0(X, E) such that fλ(x) = eλ and ‖fλ‖ = 1. By the
compactness of δx ⊗ h and passing to a subnet, we can assume that δx ⊗ h(fλ)
converges to some g in C0(Y, F ). Then ‖δx ⊗ h(fλ)− g‖ < ε/3 for all λ eventually,
and we have that ‖h(y)(eλ) − g(y)‖ = ‖δx ⊗ h(fλ)(y) − g(y)‖ < ε/3 for all y ∈ Y
and all λ eventually. Since g is in C0(Y, F ), we have

‖h(yλ)(eλ) − h(y0)(eλ)‖
≤‖h(yλ)(eλ) − g(yλ)‖ + ‖g(yλ) − g(y0)‖ + ‖g(y0) − h(y0)(eλ)‖ < ε

for all λ eventually, a contradiction. Therefore, h is continuous on Y in the uniform
operator topology. By a similar argument as above, we have that h vanishes at
infinity in the uniform operator topology.
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For the sufficiency, let {fn}n be in C0(X, E) with ‖fn‖ = 1 and let U be
an ultrafilter in N. For each y in Y , by the compactness of h(y), we have that
g(y) = limU h(y)(fn(x)) exists. It is sufficient to show that g is in C0(Y, F ). For
each y0 in Y , since

‖g(y) − g(y0)‖ = lim
U

‖h(y)(fn(x)) − h(y0)(fn(x))‖

≤ lim
U

‖h(y) − h(y0)‖ ‖fn(x)‖ ≤ ‖h(y) − h(y0)‖

and h is continuous on Y in the uniform operator topology, this implies that g
is continuous at y0. It remains to show that g vanishes at infinity. Since ‖h(y)‖
vanishes at infinity, for every ε > 0, there is a compact subset Kε of Y such that
‖h(y)‖ < ε for all y �∈ Kε. We have that ‖g(y)‖ = limU ‖h(y)(fn(x))‖ < ε for all
y �∈ Kε. Therefore, g is in C0(Y, F ). �

Recall that a bounded linear operator T : C0(X, E) → C0(Y, F ) is completely
continuous if {Tfn}n is a null sequence for every weakly null sequence {fn}n in
C0(X, E). Let h : Y → B(E, F ) be continuous and vanishing at infinity in the
strong operator topology. We say that h is uniformly completely continuous on
Y if, for every weakly null sequence {en}n in E, {h(·)(en)}n is a uniformly null
sequence.

Lemma 2.3. The bounded linear operator δx ⊗ h : C0(X, E) → C0(Y, F ) is com-
pletely continuous if and only if h is uniformly completely continuous on Y .

Proof. The necessity is trivial. For the sufficiency, if {fn}n is a weakly null sequence
in C0(X, E), then the sequence {en}n = {fn(x)}n is weakly null in E. Since h is
uniformly completely continuous, for each ε > 0, there is a positive integer Nε such
that

‖δx ⊗ h(fn)‖ = sup
y∈Y

‖δx ⊗ h(fn)(y)‖

= sup
y∈Y

‖h(y)(en)‖ < ε for all n ≥ Nε.

Hence δx ⊗ h is completely continuous. �

Corollary 2.4. Suppose that h : Y → B(E, F ) is continuous and vanishes at
infinity in the uniform operator topology, and h(y) is completely continuous for
every y in Y . Then h is uniformly completely continuous on Y . Consequently, the
bounded linear operator δx ⊗ h is completely continuous.

Proof. Let {en}n be a weakly null sequence in E. Without loss of generality, we can
assume that ‖en‖ ≤ 1 for all n. For every ε > 0, let Kε be a compact subset of Y
such that ‖h(y)‖ < ε for all y �∈ Kε. For each y ∈ Y , the set Uy = {y′ ∈ Y : ‖h(y′)−
h(y)‖ < ε/2} is open in Y by the continuity of h. There are finitely many points
y1, y2, . . . , yk in Kε such that Kε ⊆

⋃k
i=1 Uyi

. For each i = 1, 2, . . . , k, since h(yi)
is completely continuous, there is a positive integer Ni such that ‖h(yi)(en)‖ < ε/2
for all n ≥ Ni. Let N = max{N1, . . . , Nk}. Then for each y ∈ Kε, we have y ∈ Uyi

for some yi in Y , and ‖h(y)(en)‖ ≤ ‖h(y)(en)−h(yi)(en)‖+ ‖h(yi)(en)‖ < ε for all
n ≥ N . On the other hand, for all y �∈ Kε, we have ‖h(y)(en)‖ ≤ ‖h(y)‖ ‖en‖ < ε
for all n. Hence h is uniformly completely continuous on Y . By Lemma 2.3, δx ⊗h
is completely continuous. �
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To close this section, we give a parallel result for the operator δx⊗h being weakly
compact. In the case that X and Y are compact, it was given in [3, Theorem 3.1]
by a different approach.

Lemma 2.5. Let h : Y → B(E, F ) be continuous and vanishing at infinity in the
uniform operator topology. If h(y) is weakly compact for every y in Y , then δx ⊗ h
is a weakly compact operator from C0(X, E) into C0(Y, F ).

Proof. Let {fn}n be a sequence in C0(X, E) with ‖fn‖ = 1. Then the sequence
{en}n = {fn(x)}n is bounded in E with ‖en‖ ≤ 1. Let U be an ultrafilter in N.
Since h(y) is weakly compact for each y ∈ Y , we have that g(y) = wk-limU h(y)(en)
exists in F . It is sufficient to show that g is in C0(Y, F ). For every v∗ ∈ F ∗, the
dual space of F ,

|v∗(g(y)) − v∗(g(y0))| = lim
U

|v∗(h(y)(en)) − v∗(h(y0)(en))|

≤ ‖v∗‖ ‖h(y) − h(y0)‖

and

|v∗(g(y))| = lim
U

|v∗(h(y)(en))| ≤ ‖v∗‖‖h(y)‖.

We have ‖g(y) − g(y0)‖ ≤ ‖h(y) − h(y0)‖ and ‖g(y)‖ ≤ ‖h(y)‖. Hence, g is in
C0(Y, F ) followed from the assumption of h. �

3. Compact and completely continuous

disjointness preserving operators

Let T be a disjointness preserving bounded linear operator from C0(X, E) into
C0(Y, F ). Set Y∞ = {y ∈ Y ∪{∞} : δy◦T = 0} and Y ′ = {y ∈ Y ∪{∞} : δy◦T �= 0}.
From [3], such an operator T can be represented as, for all f ∈ C0(X, E),

Tf |Y∞ ≡ 0 and Tf(y) = h(y)(f(ϕ(y))) for all y in Y ′,(1)

where ϕ : Y ′ → X is continuous and h : Y ′ → B(E, F ) is continuous and vanishes at
infinity in the strong operator topology. Hence, for each x in X, the linear operator
δx ⊗ h : C0(X, E) → C0(Y, F ) is well defined and bounded by Proposition 2.1.

In this section, we first consider the case where the disjointness preserving linear
operator T is completely continuous. The main result is in the following.

Theorem 3.1. Let T be a bounded disjointness preserving linear operator from
C0(X, E) into C0(Y, F ). Then the following are equivalent.

(i) T is completely continuous.
(ii) There are a sequence {xn}n of distinct points in X and a norm null and

mutually disjoint sequence {hn}n such that

Tf =
∑

n

δxn
⊗ hn(f) for all f ∈ C0(X, E),

where each hn : Y → B(E, F ) is continuous and vanishes at infinity in the
strong operator topology and is uniformly completely continuous.

To prove this theorem, we need the following results. Let us start with an
elementary one.

Lemma 3.2. Let fn be in C0(X, E) with ‖fn‖ = 1. If the fn are mutually disjoint,
then fn → 0 weakly.
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Note that the operator T carries the form in (1). We shall characterize the
properties of h and ϕ in the following lemmas.

Lemma 3.3. Let xn be distinct points in ϕ(Y ′) and yn in Y ′ such that ϕ(yn) = xn.
Then limn→∞ ‖h(yn)‖ = 0.

Proof. We may assume on the contrary that there were an ε > 0 and a sequence
{en}n in E with ‖en‖ = 1 such that ‖h(yn)(en)‖ ≥ ε for all n ∈ N. We discuss the
following two cases.

Case I. Suppose that every neighborhood V of x1 contains all but finitely many
of the xn. That is, x1 is the limit of {xn}n. If z is a cluster point of {xn}n

in X ∪ {∞}, then each neighborhood of z contains infinitely many xn and thus
intersects with every neighborhood of x1. Since X is Hausdorff, we have x1 = z.

Now, let Vn be a compact neighborhood of xn such that Vn ∩ Vm = ∅ for all
n, m ≥ 2 and n �= m. Choose fn ∈ C0(X, E) such that coz(fn) ⊆ Vn, fn(xn) = en

and ‖fn‖ = 1. Then {fn}∞n=2 is mutually disjoint and, by Lemma 3.2, fn → 0
weakly. Since T is completely continuous, we have Tfn → 0 in norm. But

‖Tfn‖ ≥ ‖Tfn(yn)‖ = ‖h(yn)(fn(ϕ(yn)))‖ = ‖h(yn)(en)‖ ≥ ε,

a contradiction.
Case II. Suppose there exists a compact neighborhood V1 of x1 such that there

are infinitely many xn outside V1. Passing to a subsequence if necessary, we can
assume that V1 contains x1 but not x2, x3, . . . . Analogously, in view of Case I,
we may assume that for each xn there exists a compact neighborhood Vn of xn

containing no other xm. Indeed, we can assume that Vn ∩Vm = ∅ whenever n �= m.
Proceeding as in Case I, we will get a contradiction again. �

Lemma 3.4. For each x in ϕ(Y ′), we have that ϕ−1(x) is an open subset of Y .

Proof. Suppose that ϕ−1(x) was not open in Y . Then ϕ−1(x) was not relatively
open in the open set Y ′. In particular, ϕ−1(x) contains a point y not interior to
ϕ−1(x). That is, there exists a net {yλ}λ of Y ′ such that yλ ∈ Y ′ \ ϕ−1(x) and
yλ → y in Y ′. Then limλ→∞ h(yλ) = h(y) �= 0 in the strong operator topology. We
may assume that there is an ε > 0 and e ∈ E with ‖e‖ = 1 such that ‖h(yλ)(e)‖ > ε
for all λ. By Lemma 3.3, the range of the net {xλ}λ = {ϕ(yλ)}λ consists of only
finitely many points in X. However, xλ = ϕ(yλ) → ϕ(y) = x. Hence, xλ = x for
all λ eventually, a contradiction. Therefore, ϕ−1(x) is open in Y . �

For each x in ϕ(Y ′), let Yx = {y ∈ Y ′ : ϕ(y) = x} = ϕ−1(x). Then Y ′ =⋃
x∈ϕ(Y ′) Yx is a disjoint union.

Corollary 3.5. Each Yx is closed and open in Y ′.

Let hx = χYx
· h, where χYx

is the characteristic function of Yx. Note that hx

and hx′ are disjoint whenever x �= x′ in ϕ(Y ′).

Corollary 3.6. For each x ∈ ϕ(Y ′), the operator hx can be continuously extended
to Y ∪ {∞} in the strong operator topology by setting hx|Y∞ = 0.

Proof. By Corollary 3.5, we have that hx is continuous on Y ′ in the strong operator
topology. Let {yλ}λ be a net in Yx such that yλ → y0 for some y0 ∈ Y∞. If hx(yλ)
did not converge to 0 in the strong operator topology, then there is an ε > 0 and
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e in E such that ‖hx(yλ)(e)‖ = ‖h(yλ)(e)‖ > ε for all λ. For each f in C0(X, E)
with f(x) = e in E, we have

‖Tf(yλ)‖ = ‖h(yλ)(f(ϕ(yλ)))‖ = ‖h(yλ)(f(x))‖ > ε for all λ.

Hence ‖Tf(y0)‖ ≥ ε. But y0 ∈ Y∞, and so we have that Tf(y0) = 0. It is
a contradiction. Therefore, hx can be extended continuously to Y ∪ {∞} in the
strong operator topology by setting hx|Y∞ = 0. �

Lemma 3.7. For each n = 1, 2, . . . , the set {x ∈ ϕ(Y ′) : supy∈Yx
‖hx(y)‖ > 1/n}

is finite. Thus, ϕ(Y ′) is a countable set.

Proof. Suppose our assertion were not true. Then there are distinct x1, x2, . . .
in ϕ(Y ′) such that supy∈Yxk

‖hxk
(y)‖ > 1/n for all k. Let yk ∈ Y ′ such that

‖hxk
(yk)‖ > 1/n and thus ϕ(yk) = xk for each k. But by Lemma 3.3, we

have limk→∞ ‖hxk
(yk)‖ = 0, a contradiction. Hence, the set {x ∈ ϕ(Y ′) :

supy∈Yx
‖hx(y)‖ > 1/n} is finite. Consequently,

ϕ(Y ′) =
∞⋃

n=1

{x ∈ ϕ(Y ′) : sup
y∈Yx

‖hx(y)‖ > 1/n}

is countable. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose T is completely continuous. In view of Lemma 3.7,
we can write ϕ(Y ′) = {x1, x2, . . . }. Each Yn = ϕ−1(xn) is relatively open and
closed in the open set Y ′ by Lemma 3.4 and Corollary 3.5. For each n ∈ N, let
hn = χYn

· h. Then hn is continuous on Y , vanishes at infinity in the strong
operator topology by Corollary 3.6, and ‖hn‖ → 0 by Lemma 3.7. Note that the
hn are mutually disjoint.

Observe that for all xn in ϕ(Y ′), we have h(y)(f(ϕ(y))) = hn(y)(f(xn)), since
ϕ is constantly xn on Yn. Hence, for each y ∈ Y ′ and f ∈ C0(X, E),

Tf(y) = h(y)(f(ϕ(y))) =
∑

y∈Yn

h(y)(f(ϕ(y))) =
∑

n

hn(y)(f(xn)).

By Corollary 3.6, we can write

Tf =
∞∑

n=1

δxn
⊗ hn(f) for all f ∈ C0(X, E).

In fact, since {hn}n is mutually disjoint and converges to 0 in norm, the sum
T =

∑
n δxn

⊗ hn converges in the operator norm. Moreover, it is clear that
δxn

⊗hn is completely continuous, and we have that each hn is uniformly completely
continuous on Y by Lemma 2.3.

Conversely, since each hn is uniformly completely continuous on Y , we have that
δxn

⊗hn is completely continuous by Lemma 2.3. As we know that the norm limit of
completely continuous operators is completely continuous (e.g. [10, p. 301]), hence
T =

∑
n δxn

⊗ hn is completely continuous. �

For compact disjointness preserving linear operators, there are parallel results
such as the following.
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Lemma 3.8. Suppose the disjointness preserving operator T : C0(X, E) →
C0(Y, F ) is compact with the form in (1). Then hx can be extended to Y ∪ {∞} as
a norm continuous operator by setting hx|Y∞ = 0 for each x in ϕ(Y ′).

Proof. By the compactness of T , we have that h is continuous and vanishes at
infinity in the uniform operator topology [3]. By Corollary 3.5, hx is continuous on
Y ′ in the norm topology. Let {yλ}λ be a net in Yx such that yλ → y0 for some y0

in Y∞. If hx(yλ) did not converge to 0 in norm, then, by passing to a subnet, we
could assume that ‖h(yλ)‖ = ‖hx(yλ)‖ > ε for some ε > 0. Then there would be a
net {eλ}λ in E such that ‖eλ‖ = 1 and ‖h(yλ)(eλ)‖ > ε. Let {fλ}λ be in C0(X, E)
such that fλ(x) = eλ and ‖fλ‖ = 1. By the compactness of T and passing to a
subnet, we have Tfλ → g in norm for some g ∈ C0(Y, F ). More precisely, there is
a λ0 > 0 such that

‖h(y)(eλ) − g(y)‖ = ‖Tfλ(y) − g(y)‖ < ε/2 for all y ∈ Y and λ ≥ λ0.

This implies that ‖g(yλ)‖ > ε/2 for all λ ≥ λ0, and then ‖g(y0)‖ ≥ ε/2. On the
other hand, it follows from y0 ∈ Y∞ that Tfλ(y0) = 0 for all λ. We have g(y0) = 0,
a contradiction. Hence, hx can be continuously extended to Y ∪{∞} in the uniform
operator topology by setting hx|Y∞ = 0. �

Theorem 3.9. Let T : C0(X, E) → C0(Y, F ) be a bounded disjointness preserving
linear operator. Then the following are equivalent.

(i) T is compact.
(ii) There are a sequence {xn}n of distinct points in X and a norm null and

mutually disjoint sequence {hn}n such that

T =
∑

n

δxn
⊗ hn,

where each hn : Y → B(E, F ) is continuous and vanishes at infinity in the
uniform operator topology, and hn(y) is compact for every y ∈ Y .

Proof. By using Lemmas 2.2 and 3.8, the theorem follows from similar arguments
as in the proof of Theorem 3.1. �
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