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Abstract We give characterizations of radial Fourier multipliers as acting on radial
L p functions, 1 < p < 2d/(d + 1), in terms of Lebesgue space norms for Fourier
localized pieces of the convolution kernel. This is a special case of corresponding
results for general Hankel multipliers. Besides L p − Lq bounds we also characte-
rize weak type inequalities and intermediate inequalities involving Lorentz spaces.
Applications include results on interpolation of multiplier spaces.
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1 Introduction

The purpose of this paper is to study convolution operators with radial kernels acting
on radial L p functions in R

d . We are interested in the boundedness properties of such
operators on L p

rad, the space of radial L p functions. It turns out (perhaps surprisingly)
that for a large range of p one can actually prove a characterization in terms of the
convolution kernel. Moreover, we also obtain characterizations for the weak type
(p, p) inequality, or, more generally, results involving the interpolating Lorentz spaces
L p,σ

rad for p ≤ σ ≤ ∞. Here L p,σ
rad denotes the subspace of radial functions of the
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Lorentz space L p,σ (Rd). Recall that we have the strict inclusion L p,σ1 ⊂ L p,σ2 for
σ1 < σ2. The space L p,∞

rad is the usual weak type p space, and of course L p,p
rad = L p

rad.
Let K ∈ S ′(Rd) be a radial convolution kernel, and denote by TK the convolution

operator f �→ TK f = K ∗ f . We shall always assume that the Fourier transform ̂K is
locally integrable; this is a trivial necessary condition for L p boundedness (and also
for L p → Lq boundedness with q ≤ 2). Now consider the scaled kernels

Kt = t−d K (t−1·).

Note that estimates for TK imply appropriately scaled estimates for TKt , t > 0. Let
� be any radial Schwartz function whose Fourier transform is compactly supported
in R

d\{0}. By using dilation invariance and testing the convolution with Kt on �, we
get a trivial necessary condition for L p,1

rad → L p,σ boundedness of TK , namely that

sup
t>0

‖� ∗ Kt‖L p,σ < ∞. (1.1)

Our main result is that (1.1) for a single nontrivial radial � is also sufficient for the
convolution to map L p

rad to L p,σ .

Theorem 1.1 Let K be radial and let TK be the associated convolution operator.
Suppose d > 1, 1 < p < 2d

d+1 , and p ≤ σ ≤ ∞. Then the following statements are
equivalent:

(a) There is a radial Schwartz-function � (not identically zero) for which condition
(1.1) is satisfied.

(b) TK extends to a bounded operator mapping L p,1
rad (Rd) to L p,σ

rad (Rd).

(c) TK extends to a bounded operator mapping L p
rad(R

d) to L p,σ
rad (Rd).

As a consequence one can show that if in addition ̂K is compactly supported
away from the origin then the L p boundedness of TK is equivalent with K ∈ L p

rad.
Cf. Sect. 10 for this and somewhat stronger results for boundedness on Lorentz spaces.
We remark that the condition p < 2d/(d + 1) is necessary since for p ≥ 2d/(d + 1)

there are radial L p kernels whose Fourier transforms are unbounded and compactly
supported in R

d\{0}, cf. the comment following Corollary 1.5.
It is convenient to formulate these characterizations for more general Fourier–

Bessel (or Hankel) transforms of functions in R
+. As it is well known ([33], Chap.

IV) the Fourier transform of radial functions can be expressed in terms of integral
transforms on functions defined on R

+, which is equipped with the measure rd−1dr .
To be specific we define the Fourier transform of a Schwartz function g in R

d by
ĝ(ξ) ≡ FRd [g](ξ) = ∫

g(y)e−i〈y,ξ〉dy. We recall that if g is radial, g(x) = f (|x |)
then its Fourier transform is radial and is given by

ĝ(ξ) = (2π)d/2Bd f (ρ), |ξ | = ρ, (1.2)
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where Bd denotes a Fourier–Bessel transform acting on functions on the half line. This
transform can be defined for all real parameters d > 1, and it is given by

Bd f (ρ) =
∞
∫

0

f (s)Bd(sρ)sd−1ds (1.3)

where

Bd(ρ) = ρ− d−2
2 Jd−2

2
(ρ) (1.4)

and Jα denotes the standard Bessel function. This definition is closely related with the
classical (or nonmodified) Hankel transform given by

Hα f (x) =
∞
∫

0

√
xy Jα(xy) f (y)dy;

indeed Bd = M− d−1
2

H d−2
2

M d−1
2

where the multiplication operator Mc is defined by

Mc f (r) := rc f (r). The operator Bd is just the modified Hankel transform Hν ≡ Hmod
ν

used in most papers on the subject, with the reparametrization Hmod
ν = B2ν+2. We

prefer our notation only because of the connection with radial Fourier multipliers
when d is an integer. For d = 1 one recovers the cosine transform. If d > 1 is an
integer then the function Bd in (1.4) represents (up to a constant) the Fourier transform
of the surface measure on the unit sphere in R

d . For general d ≥ 1 the functions
Bd are eigenfunctions with respect to the second order Bessel differential operator
L = −D2 − d−1

ρ
D; here D = d/dρ.

In what follows let

dµd = rd−1dr (1.5)

and let L p(µd) be the Lebesgue space of measurable functions f with

‖ f ‖L p(µd ) =
⎛

⎝

∞
∫

0

| f (r)|prd−1dr

⎞

⎠

1/p

< ∞.

We continue to use the notation ‖ f ‖p for the standard L p norm on R (with respect
to Lebesgue measure). Let S(R+) be the space of (restrictions to R

+ of) even C∞
functions on R for which all derivatives decrease rapidly; then Bd is an isomorphism
of S(R+), an isometry of L2(R+, µd), and Bd = B−1

d . Clearly the space S(R+) is
dense in L p(µd). It is also useful to note that the space Bd(C∞

0 ) is dense in L p(µd) for
1 < p < ∞; here C∞

0 is the class of C∞ functions with compact support in (0,∞).
This statement is proved in Theorem 4.7 of [36]. Clearly, if m is locally integrable on
R

+ the operator Tm defined by
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Tm f (r) = Bd [mBd f ](r) (1.6)

is well defined for f ∈ Bd(C∞
0 ). We remark that L1(µd) is a commutative Banach

algebra with respect to a certain convolution structure [17], and the operators (1.6)
can then be regarded as generalized convolutions. However in this paper we shall not
need to make use of the precise definition of the convolution structure.

We now formulate necessary and sufficient characterizations for L p → Lq boun-
dedness for Tm as well as extensions to Lorentz space inequalities. Our main charac-
terization is in terms of size properties of the one-dimensional Fourier transform of
localizations of m.

Theorem 1.2 Let m ∈ L1
loc(R

+) and let φ be a C∞ function compactly supported
in R+ (not identically zero). Suppose 1 < d < ∞, 1 < p < 2d

d+1 , p ≤ q < 2 and
p ≤ σ ≤ ∞. Then the following statements are equivalent.

(i) Tm extends to a bounded operator Tm : L p,ω(µd) → Lq,σ (µd), for ω =
min{σ, q}.

(ii) Tm extends to a bounded operator Tm : L p,1(µd) → Lq,σ (µd).
(iii)

sup
t>0

t
d
(

1
p − 1

q

)

‖Bd [φm(t ·)]‖Lq,σ (µd ) < ∞. (1.7)

(iv) With kt (x) = F−1
R

[φm(t ·)](x), the condition

sup
t>0

t
d
(

1
p − 1

q

)

∥

∥

∥(1 + | · |)− d−1
2 kt

∥

∥

∥

Lq,σ ((1+|x |)d−1dx)
< ∞ (1.8)

holds.

Condition (1.8) is simpler when q = σ , and in this case we see that Tm is bounded
from L p(µd) to Lq(µd) (and in fact from L p,q(µd) to Lq(µd)) if and only if

sup
t>0

t
d
(

1
p − 1

q

)

⎛

⎝

∞
∫

−∞
|kt (x)|q (1 + |x |)(d−1)(1− q

2 )dx

⎞

⎠

1
q

< ∞; (1.9)

here again 1 < p < 2d
d+1 and now p ≤ q ≤ 2 (for the case q = 2 see Sect. 8).

Theorem 1.1 is an immediate consequence of Theorem 1.2. If K = F−1
Rd [m(| · |)]

and g(x) = f (|x |) then TK g(x) = Tm f (|x |), by (1.2), and the condition (1.7) is
equivalent with

sup
t>0

td(1/p−1/q)
∥

∥

∥F−1
Rd [φ(| · |)m(t | · |)]

∥

∥

∥

Lq,σ (Rd )
< ∞. (1.10)
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Alternatively, after rescaling, one can express this condition using the homogeneous
Besov type space Ḃ−d/p′,∞(Lq,σ ). Namely for radial K (with ̂K ∈ L1

loc) and �t :=
F−1[φ(t | · |)],

‖TK ‖L p
rad(Rd )→Lq,σ

rad (Rd ) ≈ ‖K‖Ḃ−d/p′,∞(Lq,σ )

≈ sup
t>0

t−d/p′ ∥
∥�1/t ∗ K

∥

∥

Lq,σ . (1.11)

Note that the expression on the right hand side becomes a norm only after considering
the quotient of the space of distributions modulo polynomials; however, the (neces-
sary) assumption that ̂K is locally integrable excludes polynomials (and even nonzero
constants). As a special case (using the more familiar notation when q = σ ) the ope-
rator TK maps boundedly L p

rad(R
d) → Lq

rad(R
d) if and only if ̂K is locally integrable

and K ∈ Ḃq
−d/p′,∞.

We remark that no characterizations for p �= 1 seem to have been observed before;
however, almost sharp results on compactly supported multipliers on L p

rad(L2
sph) spaces

on R
d , are in [22], in the sense that the exponent (d − 1)(1 − p/2) in (1.9) is replaced

by (d −1)(1− p/2)+ε. Arai [1] proved a similar result with ε-loss for global Hankel
multipliers, essentially by combining arguments in [22] and [28]. We also note that
the necessity of the condition (1.7) is trivial, and the necessity of conditions related
to (1.8) is known from [16,27], and [1]; cf. also Sect. 4 for an elementary proof of
the implication (i i i) �⇒ (iv) in Theorem 1.2. Finally, note that Theorem 1.2
can be combined with transplantation theorems for nonmodified Hankel transforms
([17,24,35,36]) to derive results on some other weighted L p spaces.

We state two consequences of the above characterizations concerning the structure
of multiplier spaces. It is convenient to define M

p,q
d , for 1 < p ≤ q ≤ 2 as the space

of all locally integrable functions m for which Tm extends to a bounded operator from
L p(µd) to Lq(µd), and the norm is given by the operator norm of Tm .

A first implication of Theorem 1.2 is that local multiplier conditions imply global
ones; we state the case for p = q. Namely for nontrivial φ ∈ C∞

c (R+) one has the
following equivalence.

Corollary 1.3 For d > 1, 1 < p < 2d
d+1 ,

‖m‖M
p,p
d

≈ sup
t>0

‖φm(t ·)‖M
p,p
d

. (1.12)

It is well known that the analogue of this corollary for d = 1 and even classes of
continuous Fourier multipliers in M p on the real line is false, see examples by Littman
et al. [21] and by Stein and Zygmund [34].

Another failing analogy to M p(R) concerns the subject of interpolation. As a
straightforward consequence of the characterization we obtain an interpolation
result with respect to the second complex interpolation method [·, ·]θ , introduced
by Calderón (see [4], and [2], p. 88). In contrast, an extension of a result of Zafran
([38]), states that the space M p(R), 1 < p < 2, is not an interpolation space for any
pair (M p0 , M p1) with p0 < p < p1, see Appendix A.
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Corollary 1.4 Suppose 1 < di < ∞, 1 < pi <
2di

di +1 , pi ≤ qi ≤ 2, for i = 0, 1,
moreover that (1/p, 1/q, d) = (1 − ϑ)(1/p0, 1/q0, d0) + ϑ(1/p1, 1/q1, d1) with
0 < ϑ < 1. Then

[

M
p0,q0
d0

,M
p1,q1
d1

]ϑ = M
p,q
d . (1.13)

This result follows from interpolation of certain Fourier-localized versions of weighted
L p spaces [which are defined by (1.8)], see Lemma 2.5 below. For a related result on
real interpolation see Sect. 10.

Finally by standard arguments using Hölder’s inequality and Plancherel’s theorem
condition (1.8) implies the known sufficient criteria of Hörmander type ([14]), which
are formulated using localized L2-Sobolev spaces; these were termed S(2, α) in [7]
and W BV2,α (with α > 1/2) in [15]. The following endpoint bounds in terms of
localized versions of Besov spaces seem to be new; it is an optimal estimate within
the class of L2-smoothness assumptions. Recall ‖g‖B2

a,q
≈ (

∑∞
k=0 2kaq‖ĝ‖q

L2(Ik )
)1/q

where I0 = [−1, 1] and Ik = {ξ ∈ R : 2k−1 ≤ |ξ | ≤ 2k}, for k > 1.

Corollary 1.5 For 1 < d < ∞, 1 < p < 2d
d+1 , p ≤ q ≤ 2,

‖m‖M
p,q
d

� sup
t>0

t
d
(

1
p − 1

q

)

‖φm(t ·)‖B2
a,q

, a = d

(

1

q
− 1

2

)

. (1.14)

Here, and in what follows, the notation � indicates that in the inequality an unspecified
constant is involved which may depend on d, p, q. Since the space B2

1/2,p contains
unbounded functions for p > 1 the corollary does not extend to the endpoint p =
q = 2d/(d + 1).
This paper. In Sect. 2, we gather various facts on Bessel functions, Littlewood–Paley
inequalities, interpolation and elementary convolution inequalities on weighted spaces,
needed later in the paper. In Sect. 3, we derive some pointwise bounds for the kernels of
multiplier transformations, assuming that the multipliers are compactly supported in
(1/2, 2). In Sect. 4, we prove the necessity of the conditions, namely the implications
(i) �⇒ (ii) �⇒ (iii) �⇒ (iv) of Theorem 1.2. The proof of the main implication
(iv) �⇒ (i) is contained in Sect. 5–9. In Sect. 5, we discuss the basic decomposition
into Hardy type and singular integral operators. The crucial estimate for the main
Hardy-type operator is proved in Sects. 6 and 7 contains estimates for better behaved
operators (in particular singular integrals) for which we do not need the full strength
of assumption (1.8). In Sect. 8, we give the straightforward proof of the L p → L2

bounds and then conclude in Sect. 9 the proof of the implication (iv) �⇒ (i) by
an interpolation. In Sect. 10, we give the short proofs of the Corollaries and briefly
discuss a further result on real interpolation and an improved version of our results for
multipliers which are compactly supported away from the origin. Some open problems
are mentioned in Sect. 11. An Appendix A is included with the above mentioned non-
interpolation results for Fourier multipliers.
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2 Preliminaries

Asymptotics for Bessel functions. In order to relate the Hankel transforms of multi-
pliers to the one-dimensional Fourier transform we need to use standard asymptotics
for Bessel functions [see [10], 7.13.1(3)], namely for |x | ≥ 1,

Bd(x) =
M
∑

ν=0

cν,d cos
(

x − d−1
4 π

)

x−2ν− d−1
2

+
M
∑

ν=0

c̃ν,d sin
(

x − d−1
4 π

)

x−2ν− d+1
2 + x−M

˜EM,d(x)

with c0,d = (2/π)1/2, and the derivatives of ˜EM,d are bounded. Thus one may also
write down expansions for the derivatives and, after writing the cosine and sine terms
as combinations of exponentials and applying the previous formula with M replaced
by M + k one also gets, for |x | ≥ 1,

B(k)
d (x) =

M
∑

ν=0

(c+
ν,k,deix + c−

ν,k,de−i x )x−ν− d−1
2 + x−M EM,k,d(x) (2.1)

where c±
0,0,d = (2π)−1/2e∓i d−1

4 π and the EM,k,d have bounded derivatives:

|E (k1)
M,k,d(x)| ≤ C(M, k, k1, d). (2.2)

Littlewood–Paley inequalities. Let η ∈ C∞(R+) with compact support away from
0. Let L j f = Bd [η(2− j ·)Bd f ]. Then for 1 < p < ∞ there are the inequalities

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

|L j f |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p(µd )

≤ C p‖ f ‖L p(µd ), (2.3)

∥

∥

∥

∥

∥

∥

∑

j∈Z

L j f j

∥

∥

∥

∥

∥

∥

L p(µd )

≤ C ′
p

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p(µd )

; (2.4)

indeed (2.3) and (2.4) are dual to each other with C ′
p = C p′ , 1/p + 1/p′ = 1. By

the real (Lions–Peetre) interpolation method the spaces L p(µd) can be replaced by
L p,σ (µd), for any σ .

For the proof of (2.3), (2.4) we note that the operators

f �→
∑

j

±L j f
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are bounded on L p(µd), 1 < p < ∞, with operator norm independent of the choice
of signs ±. This follows for example by (a non-sharp version of) the Hörmander type
multiplier criterion for modified Hankel transforms in Gasper and Trebels [14]; for
the case of integer d one could simply use standard results in R

d specialized to ra-
dial functions ([31]). Now the inequalities (2.3), (2.4) follow by the usual averaging
argument using Rademacher functions (see [31], Chap. IV, Sect. 5.2), and a duality
argument.

Remarks on Lorentz spaces. We assume that � is a measure space with given
σ -algebra and underlying measure µ. We refer to a thorough discussion of Lorentz
spaces to [33]. There the definition of Lq,σ is given in terms of rearrangements of
f and it is shown that this definition is equivalent to a norm when 1 < q < ∞,
1 ≤ σ ≤ ∞. Instead of the rearrangement function one can also use the distribution
function and it is easy to check (on simple functions) that an equivalent quasi-norm
on Lq,σ is given by

‖ f ‖Lq,σ ≈
( ∞
∑

�=−∞
2�σ

[

µ
({

x ∈ � : | f (x)| > 2�
})]σ/q

)1/σ

(2.5)

(with the natural �∞ analogue for σ = ∞). For the manipulation of vector-valued
functions we shall need the following inequality.

Lemma 2.1 Let 1 < q < r , 1 ≤ σ ≤ ∞ and let {Fj } be a sequence of measurable
functions on �. Then

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|Fj |r
⎞

⎠

1/r
∥

∥

∥

∥

∥

∥

∥

Lq,σ

≤ C(q, σ, r)

⎛

⎝

∑

j

∥

∥Fj
∥

∥

ω

Lq,σ

⎞

⎠

1/ω

, ω = min{σ, q}.

(2.6)

Proof Consider measurable functions H on �×Z. We first claim that for 1 < q < r ,
1 ≤ σ ≤ ∞

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|H(·, j)|r
⎞

⎠

1/r
∥

∥

∥

∥

∥

∥

∥

Lq,σ (�)

≤ c(q, σ, r)‖H‖Lq,σ (�×Z). (2.7)

For the case q = σ this follows by applying the imbedding �q ↪→ �r and then Fubini’s
theorem (interchanging a sum and an integral). For arbitrary σ it follows by applying
the real method of interpolation. Now, we apply (2.5) to the right hand side of (2.7)
and estimate for σ ≥ q
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‖H‖Lq,σ (�×Z) �

⎛

⎜

⎝

∑

�

2�σ

⎛

⎝

∑

j

µ
({

x : |H(x, j)| > 2�
})

⎞

⎠

σ/q
⎞

⎟

⎠

1/σ

�

⎛

⎝

∑

j

(

∑

�

2�σ µ
({

x : |H(x, j)| > 2�
})σ/q

)q/σ
⎞

⎠

1/q

�

⎛

⎝

∑

j

‖H(·, j)‖q
Lq,σ

⎞

⎠

1/q

;

here we have used Minkowski’s inequality for the sequence space �σ/q . If σ < q we
use instead the imbedding �σ/q ⊂ �1 and estimate ‖H‖Lq,σ (�×Z) by

⎛

⎝

∑

�

2�σ
∑

j

(

µ
({

x : |H(x, j)| > 2�
}))σ/q

⎞

⎠

1/σ

≈
⎛

⎝

∑

j

‖H(·, j)‖σ
Lq,σ

⎞

⎠

1/σ

.

��
Elementary inequalities for weighted norms. To handle expressions such as (1.8)
we need some elementary inequalities on convolutions and dilations.

Lemma 2.2 Let a ≥ 0, and γ > a + 1. Suppose that g, ζ are Lebesgue measurable
on R and ζ satisfies

|ζ(x)| ≤ C1(1 + |x |)−γ . (2.8)

Then for q1 ≥ q ≥ 1

(∫

|g ∗ ζ(x)|q1(1 + |x |)aq1dx

)1/q1

� C1

(∫

|g(x)|q(1 + |x |)aqdx

)1/q

.

(2.9)

Also

(∫

|g(t x)|q(1 + |x |)aqdx

)1/q

≤ t−1/q max{1, t−a}
(∫

|g(x)|q(1 + |x |)aqdx

)1/q

.

(2.10)

Proof For q = q1 the left hand side of (2.9) is dominated by a constant times

∫

(1 + |y|)−γ

(∫

|g(x − y)|q(1 + |x |)aqdx

)1/q

dy

≤
∫

(1 + |y|)−γ+ady

(∫

|g(x)|q(1 + |x |)aqdx

)1/q
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where we have used 1 + |x | ≤ (1 + |x − y|)(1 + |y|). The integral is finite since
γ > a + 1.

The analogue of (2.9) for q1 = ∞ is also valid; we estimate (assuming momentarily
q > 1)

|g ∗ ζ(x)|(1 + |x |)a

� C1

(∫

|g(x − y)(1 + |x − y|)a |qdy

)1/q
(

∫

(1 + |y|)−γ q ′
(1 + |x |)aq ′

(1 + |x − y|)aq ′ dy

)1/q ′

where the first term is the desired expression on the right hand side of (2.9) and the
second term is � (

∫

(1 + |y|)(a−γ )q ′
dy)1/q ′

, hence finite. A similar argument holds
for q = 1. We have now proved the asserted bound for q1 = ∞ and q1 = q and the
intermediate cases follow by interpolation.

Inequality (2.10) follows from (1 +|x |/t) ≤ max{t−1, 1}(1 +|x |) and a change of
variable. ��

We shall need the following Lorentz space variant of Lemma 2.2 which will be
used repeatedly.

Lemma 2.3 Let α > qβ 1 < q < ∞, 1 ≤ σ ≤ ∞, and let dνα = (1 + |x |)αdx (as a
measure on R). Suppose that ζ satisfies (2.8) for some γ > 1 − β + α/q. Then

∥

∥

∥

∥

g ∗ ζ

(1 + | · |)β
∥

∥

∥

∥

Lq,σ (να)

� C1

∥

∥

∥

∥

g

(1 + | · |)β
∥

∥

∥

∥

Lq,σ (να)

(2.11)

and
∥

∥

∥

∥

g(t ·)
(1 + | · |)β

∥

∥

∥

∥

Lq,σ (να)

� t−1/q max{1, t−α/q+β}
∥

∥

∥

∥

g

(1 + | · |)β
∥

∥

∥

∥

Lq,σ (να)

(2.12)

Proof Define Mβ f := (1 + |x |)β f (x) and let Sζ f (x) = ζ ∗ f . Then the assertion
is equivalent with the claim that M−β Sζ Mβ is bounded on Lq,σ (να). Since 1 <

q < ∞ and restriction on γ also involves a strict inequality the general Lorentz space
estimate follows from the case q = σ by real interpolation. The Lq(να) boundedness
of M−β Sζ Mβ is in turn equivalent to the inequality (2.9) for the choice q = q1 and
aq = α − βq. We may apply (2.9) since γ > a + 1 = 1 − β + α/q. The proof of
(2.12) is similar. ��
Independence of the localizing function. Let a ≥ 0, b ∈ R, 1 ≤ p ≤ 2. Let φ

be a smooth function supported on a compact subinterval of (0,∞), and assume that
φ is not identically zero. It will be convenient to denote by LF(p, a, b) the space of
all m which are integrable over every compact subinterval of (0,∞) and satisfy the
condition

sup
t>0

tb

⎛

⎝

∞
∫

−∞

∣

∣

∣F−1
R

[φm(t ·)](x)

∣

∣

∣

p
(1 + |x |)apdx

⎞

⎠

1/p

≤ A (2.13)

for some finite A. Here LF refers to localization and to the Fourier transform.
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We use Lemmas 2.2 and 2.3 to prove that the choice of the cutoff function φ in (2.13)
and (1.8) does not matter. Moreover we wish, for suitable φ, use discrete conditions
where the sup is taken over dyadic t . To formulate these choose ϕ ∈ C∞

c ( 1
2 , 2) with

the property that

∑

j∈Z

ϕ2(2− j s) = 1, s > 0. (2.14)

Lemma 2.4 Let 1 < q < ∞, 1 ≤ σ ≤ ∞.
(i) Suppose

sup
t>0

tb

∥

∥

∥

∥

∥

|F−1
R

[φm(t ·)]
(1 + | · |)β

∥

∥

∥

∥

∥

Lq,σ (να)

≤ A < ∞ (2.15)

holds for some φ ∈ C∞
c (R+) which is not identically zero. Let η ∈ C∞

c (R+). Then the
expression analogous to (2.13), but with φ replaced by η, is bounded by C A, where
C does not depend on m.

(ii) With ϕ ∈ C∞
c ( 1

2 , 2) satisfying (2.14) the left hand side of (2.15) is bounded by

C sup
j

2 jb

∥

∥

∥

∥

∥

|F−1
R

[ϕm(2 j ·)]
(1 + | · |)β

∥

∥

∥

∥

∥

Lq,σ (να)

. (2.16)

Proof We begin by observing that
∫∞

0 φ2(τ s) dτ
τ

= c > 0 independent of s. Hence
η(s)m(ts) = c−1

∫∞
0 φ2(τ s)η(s)m(ts)τ−1dτ and since if s is taken from a compact

subset of (0,∞) the integral reduces to an integral over [ε, ε−1] for some ε ∈ (0, 1).
Thus

F−1[η(s)m(ts)] =
1/ε
∫

ε

�τ ∗
(

τ−1kt/τ (τ
−1·)

) dτ

τ

where �τ = F−1[φ(τ ·)η] and kt = F−1[φm(t ·)]. Now the assertion (i) follows
immediately from (2.11) and (2.12). (ii) is proved similarly; the details are left to the
reader. ��
Interpolation. Interpolation results for the spaces LF(p, a, b) are analogous to those
for localized potential spaces in [5,7], with a very similar proof; therefore, we only give
a sketch. We denote by [·, ·]ϑ , [·, ·]ϑ the complex interpolation methods of Calderón
(see [4], and also Chap. 4 in [2]).

Lemma 2.5 Let a0, a1 ≥ 0, b0, b1 ∈ R and 1 ≤ p0, p1,≤ 2. Suppose that
(a, b, p−1) = (1 − ϑ)(a0, b0, p−1

0 ) + ϑ(a1, b1, p−1
1 ) and 0 < ϑ < 1. Then

[LF(p0, a0, b0), LF(p1, a1, b1)]
ϑ = LF(p, a, b). (2.17)

123



G. Garrigós, A. Seeger

Proof (Sketch of proof) Let ‖K‖L(p,a) := (
∫∞
−∞ |K (t)|p(1 + |t |)apdt)1/p and denote

by �∞
b (L(p, a)) be the space of sequences of L(p, a) functions {G j } j∈Z for which

sup j 2 jb‖G j‖L(p,a) < ∞. Weighted L p spaces can be interpolated by the complex
method (see [2], Chap. 5) and we have

L(p, a) = [L(p0, a0), L(p1, a1)]ϑ .

By a result of Calderón ([4], Sect. 13.6)

�∞
b (L(p, a)) = [

�∞
b0

(L(p0, a0)), �
∞
b1

(L(p1, a1))
]ϑ (2.18)

and one has to show that LF(p, a, b) is a retract of �∞
b (L(p, a)); i.e. there are bounded

linear operators

A : LF(p, a, b) → �∞
b (L(p, a)) ,

B : �∞
b (L(p, a)) → LF(p, a, b) ,

so that B ◦ A is the identity on LF(p, a, b). These maps are given by

[Am] j = F−1[ϕm(2 j ·)] , (2.19)

BG =
∑

k∈Z

ϕ(2−k ·)̂Gk(2
−k ·) . (2.20)

A is bounded by definition of the LF(p, a, b) norm and the boundedness of B is
straightforward; one uses Lemma 2.2. Also B ◦ A is the identity on LF(a, b, p), by
(2.14). This shows (2.17), the details are left to the reader. ��
Remark The analogues of these theorems for localized potential spaces are proved
by Connett and Schwartz in [7], see also [5]. In [7] it is also noted that the ana-
logue of (2.17) fails for the [·, ·]ϑ method (and their argument applies here as well).
In addition, if LFo(p, a, b) denotes the closed subspace of functions for which the
expressions 2 jb‖F−1

R
[ϕm(2 j ·)]‖L p((1+|x |)apdx) tend to 0 as | j | → ∞, then one also

has [LFo(p0, a0, b0), LFo(p1, a1, b1)]ϑ = LFo(p, a, b). This is analogous to a result
in [7] on localized potential spaces.

3 Kernel estimates

Assume that the multiplier m has compact support in [ 1
2 , 2]. Here, we give pointwise

estimates for the kernel of multiplier transformations involving two Bessel transforms
Ba , Bb of possibly different orders; however, the main interesting case is of course
a = b = d. We can write for a, b > 0

Ba[mBb f ](r) =
∫

Ka,b[m](r, s)sb−1 f (s)ds (3.1)
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where the kernel is given by

Ka,b(r, s) ≡ Ka,b[m](r, s) =
∞
∫

0

m(ρ)Ba(ρr)Bb(ρs)ρa−1dρ. (3.2)

Proposition 3.1 Let a ≥ 1, b ≥ 1, N > 1 and let m be integrable and supported in
[ 1

2 , 2]. Then for β, γ = 0, 1, 2, . . .

∣

∣∂β
r ∂

γ
s Ka,b[m](r, s)

∣

∣

≤ CN ,β,γ

∑

(±,±)

(1 + r)−
a−1

2 (1 + s)−
b−1

2

∫ |F−1
R

[m](±r ± s − u)|
(1 + |u|)N

du.

(3.3)

Proof We begin with a preliminary observation, which we shall use several times,
namely the inequality

(1 + R)−M
∫ |g(u)|

(1 + |u|)N1
du ≤ C(1 + R)−M+N1

∫ |g(R + u)|
(1 + |u|)N1

du; (3.4)

this is (similar to the statement in Lemma 2.2) a consequence of the triangle inequality
and a translation in the integral.

Let χ be a C∞ function so that χ(s) = 1 for s ∈ (1/2, 2) and χ is supported in
(1/4, 4). If r, s ≤ 1 then the function

ρ �→ h(ρ) = χ(ρ)ρa−1+β+γ B(β)
a (ρr)B(γ )

b (ρs)

is smooth and has a rapidly decaying Fourier transform, with bounds uniform in
r, s ≤ 1. Denote the Fourier transform by u �→ λ(r, s, u). We may apply duality for
the Fourier transform and estimate (with κ = F−1

R
[m])

|∂β
r ∂

γ
s Ka,b[m](r, s)| =

∣

∣

∣

∣

∫

κ(u)λ(r, s, u)du

∣

∣

∣

∣

≤ CN1,β,γ

∫ |κ(u)|
(1 + |u|)N1

du.

(3.5)

Clearly this term is bounded by a suitable constant times any of the terms on the right
hand side of (3.3), as long as r, s ≤ 1.

Next, we consider the case s ≤ 1, r ≥ 1/2 and use the asymptotic expansion (2.1)
for Ba(ρr) and its derivatives. We assume that the parameter M is chosen large, in
order to use (3.4), in fact we require M > 2N + (a + b)/2.
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This yields

∂β
r ∂

γ
s Ka,b(r, s) =

∑

±

M
∑

ν=0

r− a−1
2 −ν

∫

m(ρ)e±irρη±
ν,β,a,b(s, ρ)dρ

+ r−M
∫

m(ρ)ωM,β,γ,a,b(r, s, ρ)dρ

where

η±
ν,β,a,b(s, ρ) = c±

ν,β,aχ(ρ)ρ
a−1

2 +β+γ−ν B(γ )

b (sρ) ,

ωM,β,γ,a,b(r, s, ρ) = ρ−M+β+γ+a−1 EM,β,a(rρ)B(γ )

b (sρ) .

The terms in the sum can be realized as convolutions of κ with rapidly decaying

functions, multiplied with r− a−1
2 −ν . These terms are bounded by

r− a−1
2

∫ |κ(∓r − u)|
(1 + |u|)N

du

and since s � 1 this also implies the bound by the sum of terms on the right hand side
of (3.3). For the error term we argue as above, using duality to estimate

r−M
∣

∣

∣

∣

∫

κ(u)ω̂M,β,γ,a,b(r, s, u)du

∣

∣

∣

∣

� r−M+N
∫ |κ(u)|

(1 + |u|)N
du

and the desired estimate follows from using (3.4), recall M > 2N + (a − 1)/2.
The estimations for the case r � 1 and s � 1 are similar, the roles of r and s are

reversed.
Finally, to handle the case r, s ≥ 1/2 we use the asymptotic expansion (2.1) for

both Ba(ρs) and Bb(ρr), again with large M . We then write

∂β
r ∂

γ
s Ka,b(r, s) =

∞
∫

0

m(ρ)ρa−1+β+γ B(β)
a (rρ)B(γ )

b (sρ)dρ

as

∑

ν,ν′

∑

±,±
c±
ν,β,ac±

ν′,γ,br− a−1
2 −νs− b−1

2 −ν′
∫

m(ρ)ρ
a−b

2 +β+γ−ν−ν′
eiρ(±r±s)dρ

+
∑

ν

∑

±
c±
ν,β,ar− a−1

2 −νs−M
∫

m(ρ)ρ
a−1

2 +β+γ−ν−M EM,γ,b(ρs)e±iρr dρ

+
∑

ν′

∑

±
c±
ν′,γ,bs− b−1

2 −ν′
r−M

∫

m(ρ)ρa− b+1
2 +β+γ−ν′−M EM,β,a(ρr)e±iρsdρ

+ (rs)−M
∫

m(ρ)ρa−1+β+γ−2M EM,β,a(ρr)EM,γ,b(ρs)dρ. (3.6)
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The first (double) sum in (3.6) is clearly bounded by the right hand side of (3.3). The
second, third and fourth terms are bounded, by the previous arguments by a constant
times

r− a−1
2 s N−M

∫ |κ(∓r + u)|
(1 + |u|)N

du, s− b−1
2 r N−M

∫ |κ(∓s + u)|
(1 + |u|)N

du,

and (rs)N−M
∫ |κ(u)|(1+|u|)−N du, respectively. However, by using inequality (3.4)

and the condition M > 2N + (a + b)/2 these terms are seen to be also bounded by
the right hand side of (3.3). ��

Proposition 3.1 is mainly interesting as an estimate for general multipliers. However
for the proof of necessary conditions we record a straightforward consequence for
smooth multipliers, in the special case where a = 1, b = d.

Corollary 3.2 Let d ≥ 1 and let χ ∈ C∞ be supported in [1/4, 4]. Then for any
M ≥ 0

|B1[χBd f ](r)| ≤ CM

∞
∫

0

| f (s)|sd−1

(1 + |r − s|)M (1 + s)
d−1

2

ds.

Proof We use the estimate of Proposition 3.1 in conjunction with a simple convolution
inequality which is based on the rapid decay of F−1[χ ]. ��

4 The implications (i) �⇒ (ii) �⇒ (iii) �⇒ (iv) of Theorem 1.2

Proof of (i) �⇒ (i i) This follows from L p,1(µd) ⊂ L p,σ (µd), for σ ≥ 1, with
continuous imbedding. ��

Proof of (i i) �⇒ (i i i) We use the dilation formula

Bd [g(t−1·)](r) = tdBd [g](tr). (4.1)

If φ ∈ C∞
c (R+) then the function f1 := Bdφ belongs to L p,1(µd) for all p and has

positive norm. Now set ft = t−d(1−1/p)Bd [φ(t−1·)]; then the L p,1(µd) norm of ft is
independent of t . Let ‖m‖ denote the L p,1(µd) → Lq,σ (µd) operator norm of Tm .
We may estimate

‖ f1‖L p,1(µd )‖m‖ = ‖ ft‖L p,1(µd )‖m‖ ≥ ‖Bd [mBd ft ]‖Lq,σ (µd )

= t−d(1−1/p)‖Bd [φ(t−1·)m]‖Lq,σ (µd ) = td(1/p−1/q) ‖Bd [m(t ·)φ]‖Lq,σ (µd )

which proves the implication. ��
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Proof of (i i i) �⇒ (iv) Let uev(t, ρ) the even extension of φ(ρ)m(tρ) to R. Let
ht := F−1

R
[uev(t, ·)]. We claim that it suffices to show

∥

∥

∥(1 + | · |)− d−1
2 ht

∥

∥

∥

Lq,σ (ν)
� ‖Bd [φm(t ·)]‖Lq,σ (µd ) , q < 2, (4.2)

where dν(x) = (1 + |x |)d−1dx . Indeed if (4.2) holds let ζ ∈ S(R) so that ̂ζ is
supported in (1/4, 4) and̂ζ (ρ) = 1 on [1/2, 2]. Then kt = ζ ∗ ht and an application
of (2.11) shows that we can replace ht by kt in (4.2).

We proceed to show (4.2). First observe that φm(t ·) is an L2 function; namely by
assumption (iii) and the Hausdorff–Young inequality it belongs to the dual space of
Lq,σ (µd) and in view of its support to L2. Since B1 is the cosine transform and since
B2

d is the identity on L2 functions the inequality (4.2) follows from

∥

∥

∥(1 + (·))− d−1
2 B1[χBd g]

∥

∥

∥

Lq,σ ((1+r)d−1dr)
� ‖g‖Lq,σ (µd ), q ≤ 2, (4.3)

applied to g = Bd [φm(t ·)]. Here the function χ is assumed to be smooth and supported
in (1/4, 4) and equal to one on the support of φ. This inequality is related to and could
be derived from the more sophisticated transplantation theorems of Stempak [35] and
Nowak and Stempak [24] on the composition of nonmodified Hankel transforms, but
(4.3) has an easy direct proof: we first note that (4.3) follows by real interpolation
from the Lq inequalities, i.e. the case q = σ . Thus it suffices to show

‖B1[χBd g]‖Lq ((1+r)(d−1)(1−q/2)dr) � ‖g‖Lq (µd ). (4.4)

This in turn follows easily from Corollary 3.2 and an estimate of Hardy type. Indeed
changing variables s = r + u and an application of Minkowski’s inequality yields

‖B1[χBd g]‖Lq ((1+r)(d−1)(1−q/2)dr)

�
∞
∫

−∞
(1 + |u|)−N

⎛

⎝

∞
∫

r=−u

(1 + r)(d−1)(1−q/2) | f (r + u)|q(r + u)(d−1)q

(1 + |r + u|) d−1
2 q

dr

⎞

⎠

1/q

du.

We use the estimate (1 + r)α � (1 + |r + u|)α(1 + |u|)α for α = (d − 1)(1 − q/2).
Thus the last displayed term is seen to be bounded by

C

∞
∫

−∞
(1 + |u|)−N+(d−1)(1−q/2)

⎛

⎝

∞
∫

−u

| f (r + u)|q(r + u)d−1dr

⎞

⎠

1/q

du

which for large N is � ‖ f ‖Lq (µd ). This shows (4.4) and finishes the proof of the
implication (i i i) �⇒ (iv). ��
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5 Sufficiency: the basic decomposition

In this section, we begin the proof of the main implication (iv) �⇒ (i) of Theorem
1.2. Let ϕ ∈ C∞

c ( 1
2 , 2) as in (2.14). Let κ j (r) = F−1

R
[ϕm(2 j ·)], let

A j (q, σ ) =
∥

∥

∥(1 + | · |)− d−1
2 κ j

∥

∥

∥

Lq,σ (ν)
(5.1)

with dν = (1 + |x |)d−1dx , and

A ≡ A(p, q, σ ) := sup
j

2 jd( 1
p − 1

q ) A j (q, σ ). (5.2)

Define

K j = Kd,d [ϕm(2 j ·)] (5.3)

(cf. (3.2)) and

T j f (r) =
∫

2 jd K j (2
j r, 2 j s) f (s)sd−1ds. (5.4)

Define Littlewood–Paley cutoffs L j , ˜L j by Bd [L j f ](ρ) = ϕ(2− jρ)Bd f (ρ) and
Bd [˜L j f ](ρ) = η(2− jρ)Bd f (ρ) where η is supported in (1/4, 4) and equal to 1 on
the support of ϕ. Then Bd [mBd f ] = ∑

j L j T j
˜L j f . We apply (the Lorentz space

analogues of) the Littlewood–Paley inequalities (2.3), (2.4) (one with the L j , the
other one with the ˜L j ). Using also Lemma 2.4 (which justifies the use of the specific
cutoff function ϕ in (2.14)) we see that Theorem 1.2 follows from the inequalities for
vector-valued functions { f j } j∈Z,

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|T j f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

Lq,σ (µd )

� A(p, q, σ )

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p,ω(µd )

. (5.5)

For a further decomposition we introduce the notation

χn(r) = χ[2n ,2n+1](r)

and decompose a.e. into three parts

T j f =
∑

n∈Z

χn

⎛

⎜

⎜

⎝

∑

m< j+n−5

+
∑

j+n−5≤m
≤ j+n+5

+
∑

m> j+n+5

T j [ f χm− j ]

⎞

⎟

⎟

⎠

. (5.6)
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The first term will contribute to a Hardy type (or Hilbert integral type) opera-
tor whose estimate needs the full strength of the assumption. The second term will
contribute to a singular integral operator, for vector-valued functions, whose estima-
tion however will not require the full strength of our assumption. We consider the
third term as an “error” term which contributes again to a better behaved Hardy type
operator.

We let

Hj,m f =
∑

n>m− j+5

χnT j [χm− j f ], (5.7)

S j,n,i f = χnT j [χn+i f ], (5.8)

E j,m f =
∑

n<m− j−5

χnT j [χm− j f ]. (5.9)

By (5.6)

T j =
∑

m∈Z

Hj,m +
∑

n∈Z

5
∑

i=−5

S j,n,i +
∑

m∈Z

E j,m .

We now state the main estimates regarding these three terms. The implicit constants
may depend on the parameters p, q, σ, ε, d. For the main term we have

Proposition 5.1 For m ∈ Z, 1 < p ≤ q < 2, 1 ≤ σ ≤ ∞
∥

∥Hj,m f ‖Lq,σ (µd )

� min

{

2
−m

(

d
(

1
p − 1

2

)

− 1
2

)

, 2
m d

p′
}

2
jd
(

1
p − 1

q

)

A j (q, σ )‖ f ‖L p,∞(µd). (5.10)

Note that in the range of interest, 1 < p < 2d
d+1 , these estimates can be summed in m.

The estimation of the remaining two terms (5.8), (5.9) does not need the full strength
of our assumptions. To formulate the appropriate weaker hypotheses let, for ε ≥ 0,
1 ≤ u < 2

B j (ε, u) =
⎛

⎝

∞
∫

−∞
|κ j (x)|u(1 + |x |)uεdx

⎞

⎠

1/u

, (5.11)

B(ε, p, q) = sup
j

2 jd(1/p−1/q) B j (ε, u(p, q)), where
1

u(p, q)
=

1
p + 1

q − 1
2
p − 1

.

(5.12)
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Proposition 5.2 Let ε > 0, 1 < p ≤ q < 2, 1 ≤ σ ≤ ∞, and let θ ≡ θ(p, q) =
( 1

p − 1
q )/( 1

p − 1
2 ). For m ∈ Z,

∥

∥E j,m f ‖Lq,σ (µd ) � B(4ε(1 − θ), p, q) min{2−m(1−θ)ε, 2m(1−θ)(d−1)}‖ f ‖L p,σ (µd ).

(5.13)

The square-function estimates associated to {S j,n,i } j∈Z can be seen as estimates
for vector-valued singular integrals under the assumption B(ε, p, q) < ∞, for small
ε > 0.

Proposition 5.3 For n ∈ Z, −5 ≤ i ≤ 5, 1 < p < 2,

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|S j,n,i f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

Lq,σ (µd )

� B(ε, p, q)

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p,σ (µd )

. (5.14)

To see that the conditions of Propositions 5.2 and 5.3 are less restrictive than the
condition (1.8) we note

Lemma 5.4 Suppose p < 2d
d+1 , p ≤ q < 2, and 1

u = p−1+q−1−1
2p−1−1

. Then there is

ε = ε(p, q) > 0 so that B j (ε, u) � A j (q, σ ), for all σ ≤ ∞.

Proof We begin by observing that (1 + |x |)−α belongs to the Lorentz space Lρ,1(ν)

if and only if αρ > d. Now write

B j (ε, u) =
(

∫ |κ(x)|u
(1 + |x |)u d−1

2

(1 + |x |)εu+ d−1
2 u+1−ddν(x)

)1/u

with dν(x) = (1+|x |)d−1. Note that by assumption the Lq/u,∞(ν) norm of |κ j |u(1+
|x |)−u(d−1)/2 is bounded by A j (q,∞)u . Thus it suffices to check that for sufficiently
small ε the function

Vε(x) = (1 + |x |)εu+ d−1
2 u+1−d

belongs to L(q/u)′,1(ν). This holds under the condition (d −1)(1−u/2) > d(1−u/q).

Since u−1 = p−1+q−1−1
2p−1−1

a straightforward computation shows that the condition is
equivalent to an inequality which is independent of q ∈ [p, 2), namely just p <

2d/(d + 1). ��
For later use let us also observe that B(ε) ≡ B(ε, p, p) is independent of p, namely

B(ε) = sup
j

‖κ j‖L1((1+|x |)εdx). (5.15)

Moreover, for some real interpolations, we shall need the following locally uniform
control on the constants B(ε, p, q).
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Lemma 5.5 Let 1 < p ≤ q < 2 and ε > 0. Then there exist constants C, η > 0
(depending on ε, p, q) so that for all p̃ ∈ (p−η, p+η) and q̃ satisfying 1

p̃ − 1
q̃ = 1

p − 1
q

we have

B(ε/2, p̃, q̃) ≤ C B(ε, p, q).

Proof We first observe that when u1 ≥ u

B j (ε, u1) ≤ Cε B j (ε, u). (5.16)

Indeed, this follows from the fact that the Fourier transform of κ j is compactly sup-
ported and therefore can be written as a convolution with a Schwartz function; we then
apply Lemma 2.2.

On the other hand, if u1 < u, by Hölder’s inequality we have

B j (ε/2, u1) ≤ Cε,u,u1 B j (ε, u), (5.17)

provided we choose 1
u1

< 1
u + ε

2 . Now let p − η < p̃ < p + η and define q̃

so that p̃−1 − q̃−1 = p−1 − q−1, where η = η(ε, p, q) > 0 is chosen so that
|u( p̃, q̃)−1 − u(p, q)−1| < ε/4. Then using either (5.16) or (5.17) and p̃−1 − q̃−1 =
p−1 − q−1 the asserted estimate follows. ��
Proof of Theorem 1.2, given Propositions 5.1, 5.2, 5.3 We need to estimate the
square-function on the left hand side of (5.5) with T j replaced by one of the terms
∑

m Hj,m ,
∑

n∈Z

∑5
i=−5 S j,n,i , and

∑

m E j,m .
Observe that Hj,m f j = Hj,m[ f jχm− j ] and we bound

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

∣

∣

∣

∣

∣

∑

m

Hj,m f j

∣

∣

∣

∣

∣

2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

Lq,σ (µd )

≤
∑

m

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|Hj,m[ f jχm− j ]|2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

Lq,σ (µd )

≤
∑

m

⎛

⎝

∑

j

∥

∥Hj,m[ f jχm− j ]
∥

∥

ω

Lq,σ (µd )

⎞

⎠

1/ω

, ω = min{q, σ }.

Here, we have used Minkowski’s inequality for the m-summation, followed by Lemma
2.1. Let δ(p) = min{d/p′, d(1/p − 1/2) − 1/2} then δ(p) > 0 for 1 < p < 2d

d+1
and by Proposition 5.1 the last expression in the displayed formula is bounded by
C A(p, q, σ ) times

∑

m∈Z

2−|m|δ(p)

⎛

⎝

∑

j

∥

∥ f jχm− j
∥

∥

ω

L p,∞(µd )

⎞

⎠

1/ω

�
∑

m∈Z

2−|m|δ(p)

⎛

⎝

∑

j

∥

∥ f jχm− j
∥

∥

ω

L p,ω(µd )

⎞

⎠

1/ω
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�
∑

m∈Z

2−|m|δ(p)

∥

∥

∥

∥

∥

sup
j

| f jχm− j |
∥

∥

∥

∥

∥

L p,ω(µd )

�
∥

∥

∥

∥

∥

sup
j

| f j |
∥

∥

∥

∥

∥

L p,ω(µd )

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p,ω(µd )

.

Here, in order to bound the second expression, we have used (2.5), and the assumption
that ω ≥ p, together with the disjointness of the intervals [2m− j , 2m− j+1). This
completes the proof of the L p,ω(�2, µd) → Lq,σ (�2, µd)bound for {∑m Hj,m f j } j∈Z.
The terms {∑m E j,m f j } j∈Z are estimated similarly, given Proposition 5.2 and Lemma
5.4.

Concerning the terms S j,n,i , let us consider the L p → Lq estimates. We recall
S j,n,i f j = χn S j,n,i [ f jχn+i ] and use Proposition 5.3, for fixed i , and n. In view of
the cutoffs χn(r), χn+i (s), −5 ≤ i ≤ 5 the uniform Lebesgue space estimate of
Proposition 5.3 also gives an L p(µd) estimate for the sum,

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

∣

∣

∣

∣

∣

∣

∑

n

S j,n,i f j

∣

∣

∣

2
)1/2

∥

∥

∥

∥

∥

∥

Lq (µd )

≤ Cε,p B(ε, p, q)

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p(µd )

.

We sum in i ∈ {−5, . . . , 5} and by Lemma 5.4 we obtain the desired L p → Lq

estimate for the singular integral part in the range 1 < p < 2d/(d + 1). By real
interpolation (and Lemma 5.5) this extends to the L p,σ → Lq,σ estimates.

6 Proof of Proposition 5.1

Let In = [2n, 2n+1], and Rn = [2n,∞). We estimate

∥

∥

∥

∥

∥

∥

∑

n>m− j+5

χnT j [ f χm− j ]
∥

∥

∥

∥

∥

∥

Lq,σ (µd )

≤
∥

∥

∥

∥

χRm− j+5

∫

2 jd |K j (2
j ·, 2 j s)|| f (s)|χm− j (s)s

d−1ds

∥

∥

∥

∥

Lq,σ (µd )

= 2− jd/q

∥

∥

∥

∥

∥

∥

∥

χRm+5

∫

Im

|K j (·, s)|| f (2− j s)|sd−1ds

∥

∥

∥

∥

∥

∥

∥

Lq,σ (µd )

(6.1)

by changes of variables in s and r .
We now use the kernel estimate of Proposition 3.1 and set

W j (x) =
∫ |κ j (x − u)|

(1 + |u|)N
du. (6.2)
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We apply Minkowski’s inequality (i.e. the continuous form of the triangle inequality
in the Lorentz space Lq,σ which is a Banach space) and see that the expression (6.1)
is controlled by

2− jd/q
∫

Im

| f (2− j s)| sd−1

(1 + s)
d−1

2

∑

(±,±)

∥

∥

∥

∥

∥

χRm+5

W j (± · ±s)

(1 + ·) d−1
2

∥

∥

∥

∥

∥

Lq,σ (µd )

ds.

It is now crucial that in the inner norm the functions are restricted to the set where
r ≥ 2m+5 while s ≤ 2m+1. We may therefore change variables and use the bound
(1 + |r − s|) ≥ c(1 + r) in this range, so that

∥

∥

∥

∥

∥

χRm+5

W j (± · ±s)

(1 + ·) d−1
2

∥

∥

∥

∥

∥

Lq,σ (µd )

�
∥

∥

∥

∥

∥

W j

(1 + | · |) d−1
2

∥

∥

∥

∥

∥

Lq,σ (ν)

, s ≤ 2m+1,

where dν = (1 + |x |)d−1dx . By Lemma 2.3 the term on the right hand side is also

controlled by
∥

∥

∥κ j (1 + | · |)− d−1
2

∥

∥

∥

Lq,σ (ν)
, which is A j (q, σ ).

Thus, we see that the expression (6.1) is bounded by

C2 jd(1/p−1/q) A j (q, σ )

∫

Im

2− jd/p| f (2− j s)|(1 + s)−(d−1)/2sd−1ds.

It remains to bound the s-integral. It is easy to check that the restriction of �(s) =
(1 + s)−(d−1)/2 to the interval Im belongs to L p′,1(Im, µd) and satisfies the bounds

‖χm�‖L p′,1(µd )
�
{

2−m(d(1/p−1/2)−1/2) if m ≥ 0,

2md/p′
if m ≤ 0,

and thus, by duality

∫

Im

2− jd/p| f (2− j s)| sd−1

(1 + s)
d−1

2

ds ≤ ‖χm�‖L p′,1(µd )
‖2− jd/p f (2− j ·)‖L p,∞(µd )

� min{2−m(d(1/p−1/2)−1/2), 2md/p′ }‖ f ‖L p,∞(µd ).

This finishes the proof. ��

7 More L p estimates

In this section, we consider the case p = q of Propositions 5.2 and 5.3; the general
case will be handled in Sect. 9. The results of this section together with the previous
section complete the proof of Theorem 1.2 in the case p = q. In what follows we
shall assume p = σ in the proof of Proposition 5.3 since the L p,σ boundedness
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results follow then by interpolation and replacing ε with ε/2. Moreover, we prove the
statement of Proposition 5.2 for the case p = q = σ with the constant B(ε) (rather
than B(4ε)), and the factor 4 is included in the statement of the proposition to account
for interpolations needed for the general case (cf. also Lemma 5.5).

Proof of Proposition 5.2, p = q = σ . We begin with the estimate (6.1) which is still
valid but continue differently since now n + j ≤ m − 5, thus r � s. Let I ∗

m =
[2m−1, 2m+2]. Set h p, j (s) = 2− jd/p f (2− j s)s

d−1
p . Then the right hand side of (6.1)

is estimated by

∑

(±,±)

⎛

⎜

⎝

∑

n≤m− j−5

∫

In+ j

∣

∣

∣

∣

∣

∣

∣

∫

Im

|W j (±r ± s)|
(1 + s)

d−1
2

h p, j (s)s(d−1)/p′

(1 + r)
d−1

2

ds

∣

∣

∣

∣

∣

∣

∣

p

rd−1dr

⎞

⎟

⎠

1/p

�
∑

(±,±)

⎛

⎜

⎝

2m−3
∫

0

∣

∣

∣

∣

∣

∣

∣

∫

I ∗
m

|W j (±y)|
(1 + y)

d−1
2

[χmh p, j ](y ± r)dy

∣

∣

∣

∣

∣

∣

∣

p

2
m(d−1)

p
p′ rd−1

(1 + r)
d−1

2 p
dr

⎞

⎟

⎠

1/p

.

If m > 0 this is dominated by

C
∑

±
2−mε

∫

|W j (y)|(1 + |y|)ε
(∫

∣

∣[χmh p, j ](y ± r)
∣

∣

p
dr

)1/p

dy

� 2−mε‖κ j‖L1((1+|·|)εdy)‖ f χm− j‖L p(µd ).

If m < 0 we may instead estimate 2m(d−1)p/p′
rd−1 ≤ 2m(d−1)p; this yields the bound

2m(d−1)‖κ j‖1‖ f χm− j‖L p(µd )

instead. This finishes the proof. ��

Proof of Proposition 5.3, p = q = σ . We use standard arguments for singular inte-
grals for �2-valued kernels and functions. First, by orthogonality,

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|S j,n,i f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L2(µd )

≤

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|T j [ f jχn−i ]|2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L2(µd )

� sup ‖̂κ j‖∞

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L2(µd )

.
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To prove the L p(µd) bounds for 1 < p < 2 it suffices, by the Marcinkiewicz inter-
polation theorem, to prove the weak type (1, 1) inequality

µd

⎛

⎜

⎝

⎧

⎪

⎨

⎪

⎩

r :
⎛

⎝

∑

j

|S j,n,i f j |2
⎞

⎠

1/2

> λ

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠ � Bλ−1

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L1(µd )

; (7.1)

here B = B(ε) as in (5.15).
Set h j (s) = f j (s)(2−ns)d−1χn+i (s), so that |h j | and | f j | are of comparable size

on In+i . For fixed λ > 0 we make a Calderón–Zygmund decomposition of the �2

valued function {h j }, at height λ/B (see [31]). We thus decompose h j = g j + b j

where ‖�g‖L∞(�2) ≤ λ/B, ‖�g‖L1(�2,ds) + ‖�b‖L1(�2,ds) � ‖�h‖L1(�2,ds). Furthermore,
b j = ∑

ν b j,ν so that b j,ν is supported in a dyadic subinterval Jν of In+i , with
center sν and length 2Lν . The interiors of the intervals Jν are disjoint, and we have
|Jν |−1

∫

Jν
|�bν(s)|�2 ds � λ/B and

∑

ν |Jν | ≤ Bλ−1‖�h‖L1(�2,ds). Finally,
∫

b j,νds =
0 for all j, ν.

Note that S j,n,i f j = S j,n,i �g j +∑

ν S j,n,i �b j,ν where g j (s) = g j (s)(2n/s)d−1 and
b j,ν(s) = b j,ν(s)(2n/s)d−1. We estimate

µd
({

r ∈ In+i : |{S j,n,ig j (r)}|�2 > λ/2
})

� λ−2 B2‖�g‖2
L2(�2,µd )

� λ−1 B‖�g‖L1(�2,µd ) � λ−1 B‖ �f ‖L1(�2,µd ). (7.2)

For each interval Jν let J ∗
ν denote the interval with same center and tenfold length.

Also let � = ∪ν J ∗
ν then

µd(�) � 2n(d−1)
∑

|Jν | � Bλ−12n(d−1)‖�h‖L1(�2,ds) � Bλ−1‖�h‖L1(�2,µd ). (7.3)

It remains to estimate

µd

⎛

⎜

⎝

⎧

⎪

⎨

⎪

⎩

r ∈ In\� :
⎛

⎝

∑

j

∣

∣

∣

∣

∣

S j,n,i

[

∑

ν

b j,ν

]∣

∣

∣

∣

∣

2
⎞

⎠

1/2

> λ/2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠ (7.4)

� λ−1
∫

In\�

⎛

⎝

∑

j

∣

∣

∣

∣

∣

S j,n,i

[

∑

ν

b j,ν

]∣

∣

∣

∣

∣

2
⎞

⎠

1/2

rd−1dr

� λ−12n(d−1)
∑

ν

∑

j

∫

In\J∗
ν

∣

∣S j,n,ib j,ν(r)
∣

∣ dr. (7.5)

Note that

S j,n,ib j,ν(r) = 2n(d−1)

∫

2 jdK j (2
j r, 2 j s)b j,ν(s)ds.
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To estimate the integral in (7.5) we distinguish the cases j ≥ −Lν , j ≤ −Lν . Note
that Lν ≤ n + 5 as Jν ⊂ In+i .

If j ≥ −Lν (≥ −n − 5) we use the kernel estimate of Proposition 3.1 and obtain,
with the notation W j in (6.2) and r, s ≈ 2n

|S j,n,ib j,ν(r)| �
∑

±,±

2 jd2n(d−1)

(1 + 2 j r)
d−1

2 (1 + 2 j s)
d−1

2

∫

W j (±2 j r ± 2 j s)|b j,ν(s)|ds

�
∑

±,±

∫

2 j W j (±2 j r ± 2 j s)|b j,ν(s)|ds

and if r /∈ J ∗
ν then |r − s| ≈ |r − sν | > 2Lν . Consequently,

∫

In\J∗
ν

∣

∣S j,n,ib j,ν(r)
∣

∣ dr �
∫

|x |>2 j+Lν

|W j |(x)dx
∫

|b j,ν(s)|ds

� 2−( j+Lν )ε B(ε)
∥

∥b j,ν
∥

∥

L1(ds) . (7.6)

If j < −Lν we use the cancellation of the b j,ν to write

∣

∣S j,n,ib j,ν(r)
∣

∣ = 2n(d−1)

∣

∣

∣

∣

∫

2 jd
[

K j (2
j r, 2 j s) − K j (2

j r, 2 j sν)
]

b j,ν(s)ds

∣

∣

∣

∣

� 2n(d−1)2 j+Lν

1
∫

σ=0

∫

2 jd
∣

∣

∣∂sK j (2
j r, 2 j (sν + σ(s − sν)))

∣

∣

∣

∣

∣b j,ν(s)|ds dσ.

We now argue as before, but use Proposition 3.1 to estimate ∂sK j and we obtain for
j ≤ −Lν

∫

In\J∗
ν

∣

∣S j,n,ib j,ν(r)
∣

∣ dr

�
∫

∣

∣b j,ν(s)|ds 2 j+Lν 2n(d−1)
∑

(±,±)

sup
a

∫

2 jd W j (±2 j r ± 2 j a)

1 + 2( j+n)(d−1)
dr

�
∫

∣

∣b j,ν(s)|ds 2 j+Lν
∑

(±,±)

sup
a

∫

2 j W j (±2 j r ± 2 j a)dr

� B(0)2 j+Lν ‖b j,ν‖L1(ds). (7.7)
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We can sum the terms (7.6) and (7.7) in j and obtain

∑

j

∫

In\J∗
ν

∣

∣S j,n,ib j,ν(r)
∣

∣ dr

� B(ε)
∑

j

min
{

2 j+Lν , 2−( j+Lν )ε
}

∥

∥b j,ν
∥

∥

L1(ds) � B(ε)

∥

∥

∥

�bν

∥

∥

∥

L1(�2,ds)
.

Now, we sum in ν and get the required L1(µd) bound off �. The expression (7.5) is
thus dominated by

λ−1 B(ε)
∑

ν

2n(d−1)
∥

∥

∥

�bν

∥

∥

∥

L1(�2,ds)

�
∑

ν

|Jν |2n(d−1) � λ−1 B(ε)2n(d−1)

∫

In

|�h(s)|�2 ds

� λ−1 B(ε)

∫

In

|�h(s)|�2 sd−1ds.

This bounds the expression (7.4) by C B(ε)λ−1‖ �f ‖L1(�2,µd ). Combining this bound
with (7.2) and (7.3) yields the desired weak type (1, 1) bound (7.1). ��

8 L p → L2 estimates

In this section, we prove some sharp L p → L2 bounds for Hankel multipliers.

Theorem 8.1 Let d > 1.

(i) Suppose 1 < p < 2d
d+1 . Then m ∈ M

p,2
d if and only if

sup
t>0

t
d
(

1
p − 1

2

)

⎛

⎝

2t
∫

t

|m(ρ)|2 dρ

ρ

⎞

⎠

1/2

< ∞. (8.1)

(ii) Let pd = 2d
d+1 . Then the operator T : f �→ Bd [mBd f ] maps the Lorentz

space L pd ,1(µd) to L2(µd) if and only if (8.1) holds for p = pd .

Remark It is easy to see that the condition (8.1) is equivalent to

sup
t>0

t
d
(

1
p − 1

2

)

‖φm(t ·)‖2 < ∞ (8.2)

for some nontrivial, smooth φ with compact support in (0,∞).
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Proof of Theorem 8.1 We first prove (i). The necessity of the condition has already
been established in Sect. 4. For the proof of the sufficiency let T j be as in (5.4). We
then show the estimate

∥

∥

∥T j f
∥

∥

∥

L2(µd )
� A j (p, 2)‖ f ‖L p(µd ) (8.3)

where A j (p, 2) = 2 jd( 1
p − 1

2 )‖ϕm(2 j ·)‖2. Note that by Plancherel’s theorem and the
argument of Lemma 2.4 the condition sup j A j (p, 2) < ∞ is equivalent with (8.1)
(and also with (8.2)). Now,

∥

∥

∥T j f
∥

∥

∥

L2(µd )
=
(

∫ [∫

2 jdK j (2
j r, 2 j s) f (s)sd−1ds

]2

rd−1dr

)1/2

= 2− jd/2

(

∫ [∫

K j (r, s) f (2− j s)sd−1ds

]2

rd−1dr

)1/2

� 2− jd/2
∑

(±,±)

∞
∫

0

| f (2− j s)| sd−1

(1 + s)
d−1

2

⎛

⎝

∞
∫

0

∣

∣

∣

∣

∣

W j (±r ± s)

(1 + r)
d−1

2

∣

∣

∣

∣

∣

2

rd−1dr

⎞

⎠

1/2

ds

where for the last bound we used Minkowski’s inequality and the kernel estimate from
Proposition 3.1. The last expression is controlled by

2− jd/2‖κ j‖2

∫

| f (2− j s)| sd−1

(1 + s)
d−1

2

ds

≤ 2− jd/2‖κ j‖2

(∫

| f (2− j s)|psd−1ds

)1/p
(

∫

sd−1

(1 + s)
d−1

2 p′ ds

)1/p′

(8.4)

and the second integral in the last line is finite for p < 2d
d+1 . Changing variables we

obtain
∥

∥

∥T j f
∥

∥

∥

L2(µd )
� 2 jd(1/p−1/2)‖κ j‖2‖ f ‖L p(µd ).

We now use orthogonality and Littlewood–Paley theory, writing L j f = Bd [χ
(2− j ·)Bd f ] and T j = L j T j L j to get

‖T f ‖L2(µd ) �

⎛

⎝

∑

j

‖T j L j f ‖2
L2(µd )

⎞

⎠

1/2

� sup
j

2 jd(1/p−1/2)‖κ j‖2

(

∑

k

‖Lk f ‖2
L p(µd )

)1/2
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and the argument is concluded by observing that for 1 < p ≤ 2

(

∑

k

‖Lk f ‖2
L p(µd )

)1/2

≤
∥

∥

∥

∥

∥

∥

(

∑

k

|Lk f |2
)1/2

∥

∥

∥

∥

∥

∥

L p(µd )

≤ C p‖ f ‖L p(µd ). (8.5)

The proof of (ii) is largely analogous. We may assume that f is the characteristic
function of a measurable set E . The difference is the estimate (8.4). We now observe
that the function ωd(s) = (1 + s)− d−1

2 belongs to the space L p′
d ,∞(µd) and by the

duality between L pd ,1 and L p′
d ,∞ we use instead

∫

|χE (2− j s)| sd−1

(1 + s)
d−1

2

ds �
∥

∥

∥χE (2− j ·)
∥

∥

∥

L pd ,1(µd )
‖ωd‖

L p′
d ,∞

(µd )

which is � [2 jdµd(E)]1/p. The subsequent Littlewood–Paley argument is the same;
we use f = χE in (8.5). ��
Sharpness. The restricted strong type (pd , 2)-estimate is sharp, as the Lorentz space
L pd ,1 cannot be replaced by L pd ,σ for σ > 1. To see this let m N (ρ) = √

Nχ[1,1+cN−1]
so that the condition (8.1) is satisfied uniformly in N . Let fN (s) = s−(d+1)/2e−is

χ[1,N ](s). Then one computes that

‖ fN ‖L pd ,σ (µd ) � (log N )1/σ

and using the asymptotic expansion (2.1) one computes that

Bd fN (ρ) = c

N
∫

1

ei(ρ−1)s ds

s
+ O(1)

for ρ near 1 (observe that the corresponding integral with phase −(ρ +1)s is bounded
near ρ = 1, by an integration by parts). Thus |Bd fN (ρ)| � log N for |ρ − 1| ≤ cN−1

(if c is sufficiently small). Consequently,

‖Bd [m N Bd fN ]‖L2(µd ) ≈ ‖m N Bd fN ‖2 � log N

which implies the assertion.
Analogue for radial Fourier multipliers. We also note that an analogue of Theorem
(8.1) holds for radial Fourier multipliers acting on general L p(Rd) functions, namely
there is the “folk” result

Observation 8.2 Suppose that 1 < p ≤ 2(d+1)
d+3 . Then the operator f �→ F−1[m

(| · |)̂f ] extends to a bounded operator from L p(Rd) to L2(Rd) if and only if (8.1)
holds.
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Proof The necessity has been observed in Sect. 4. If mt is supported in {ξ : t ≤ |ξ | ≤
2t} then it follows by a well known argument of Fefferman [11] from the Stein–Tomas
restriction theorem ([32], Chap. IX-2) that

‖F−1[mt (| · |)̂f ]‖2 �

⎛

⎜

⎝

2t
∫

t

|mt (r)|2
∫

Sd−1

|̂f (rξ ′)|2dσ(ξ ′)rd−1dr

⎞

⎟

⎠

1/2

�

⎛

⎝

2t
∫

t

|mt (r)|2‖ 1
rd f ( ·

r )‖2
prd−1dr

⎞

⎠

1
2

= ‖ f ‖p

⎛

⎝

2t
∫

t

|mt (r)|2r2( d
p − d

2 ) dr

r

⎞

⎠

1
2

.

For global multipliers the result follows now by Littlewood–Paley theory exactly as
in the proof of Theorem 8.1. ��

We note that the restriction p ≤ 2(d+1)
d+3 for the result on general L p functions is

optimal as follows from the usual Knapp counterexamples for the restriction theorem.

9 Conclusion of the proof

In order to finish the proof of Theorem 1.2 it just remains to establish the L p(µd) →
Lq(µd) estimates in Propositions 5.2 and 5.3 for p < q < 2. The appropriate
L p,σ (µd) → Lq,σ (µd) follow then by the real interpolation method, if we take into
account Lemma 5.5.

The interpolations follow results on bilinear interpolation with the complex methods
(i.e. in disguise versions of Stein’s interpolation theorem for analytic families), see
Theorems 4.4.1 and 4.4.2 in [2]. Using the first (and more elementary) of these results
we interpolate the inequalities

∥

∥E j,m f ‖L p(µd ) � min
{

2−mε, 2m(d−1)
}

‖κ j‖L1((1+|x |)εdx)‖ f ‖L p(µd ),

∥

∥E j,m f ‖L2(µd ) � 2 jd(1/p−1/2)‖κ j‖L2‖ f ‖L p(µd ),

where the first bound has been already been established in Sect. 7 and the second is
immediate from (8.3). Similarly for the singular integrals we interpolate

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|S j,n,i f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p(µd )

� sup
j

‖κ j‖L1((1+|x |)εdx)

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p(µd )

,

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

|S j,n,i f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L2(µd )

� sup
j

2 jd( 1
p − 1

2 )‖κ j‖2

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j

| f j |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

L p(µd )

,
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where again the first inequality has been proved in Sect. 7 and the second follows
from (8.3) and Minkowski’s inequality. In order to obtain the interpolated L p(µd) →
Lq(µd) statements we use Lemma 2.5, and Theorem 4.4.2 in [2] (which involves the
[·, ·]ϑ functor on one of the entries). The proof is complete. ��

We remark that for the interpolation of the singular operators one could have also
based the proof on the more elementary Theorem 4.4.1 in [2] which only involves the
[·, ·]ϑ method; one then has to use the fact that the space of L p(µd) functions f for
which Bd f has compact support in (0,∞) is dense in L p(µd), see [36]. Thus one can
reduce matters to uniform estimates for compactly supported multipliers and apply
the interpolation result on the spaces L Fo(p, a, b) mentioned in the remark following
Lemma 2.5.

10 Miscellanea

Proof of Corollary 1.5 The Lq((1 + |r |)(d−1)(1−q/2)dr) norm of a function κ is
dominated using Hölder’s inequality by

⎛

⎝

∞
∑

j=0

‖κ‖q
Lq (I j )

2 j (d−1)( 1
q − 1

2 )q

⎞

⎠

1/q

�

⎛

⎝

∞
∑

j=0

‖κ‖q
L2(I j )

2 jd( 1
q − 1

2 )q

⎞

⎠

1/q

.

This is applied to κ = F−1[φm(t ·)] and the result follows from the definition of the
Besov space. ��

Proof of Corollary 1.4 This is an immediate consequence of Theorem 1.2 and the
interpolation formula of Lemma 2.5, with varying a, b (we set ai = (di −1)(1/qi −1/2)

and bi = di (1/pi − 1/qi ) for i = 0, 1). ��

Real interpolation. We can also prove some interpolation results using the real
method, in view of the nature of our conditions these are limited to the Kϑ,∞ method
with a number of restrictions (see [2] for general references about real interpolation).

Define M
p,q,σ
d as the space of all locally integrable functions m on R+ for which

Tm extends to a bounded operator from L p(µd) to Lq,σ (µd); the norm is given by the
operator norm of Tm . Thus M

p,q
d = M

p,q,q
d .

Theorem 1.1 is used to prove that for fixed d the weak type multiplier spaces
M

p,p,∞
d 1 < p < 2d/(d + 1), are stable under real interpolation, with respect to the

Kϑ,∞ method.

Corollary 10.1 Suppose 1 < d < ∞, 1 < pi < 2d
d+1 , pi ≤ qi ≤ 2, for i = 0, 1,

moreover p0 �= p1, p−1
0 − q−1

0 = p−1
1 − q−1

1 . Then

[Mp0,q0,σ0
d ,M

p1,q1,σ1
d ]ϑ,∞ = M

p,q,∞
d , (10.1)

for (1/p, 1/q) = (1 − ϑ)(1/p0, 1/q0) + ϑ(1/p1, 1/q1) with 0 < ϑ < 1.

123



Characterizations of Hankel multipliers

Proof of Corollary 10.1 We first observe that for a compatible pair of Banach spaces
A0, A1 we have the formula

[

�∞
b (A0), �

∞
b (A1)

]

ϑ,∞ = �∞
b ([A0, A1]ϑ,∞) (10.2)

This follows quickly from the definition of the Kϑ,∞ method (and interchanging two
suprema).

We now set w(r) = (1 + |r |)−(d−1)/2, dν(r) = (1 + |r |)d−1, and let Lq,σ (w, dν)

be the space of functions f for which f w belongs to Lorentz space Lq,σ (dν) (and the
norm is given by ‖ f w‖Lq,σ (dν) where we work with a suitable norm on the Lorentz
space). The standard interpolation formulas for Lorentz spaces apply and by (10.2)
we have for q0 �= q1 and 1/q = (1 − ϑ)/q0 + ϑ/q1,

[

�∞
b (Lq0,σ0(w, dν)), �∞

b (Lq1,σ1(w, dν))
]

ϑ,∞ = �∞
b (Lq,∞(w, dν)).

Now let LFq,σ
b (w, dν) be the space of all m which are integrable over every compact

subinterval of (0,∞) and satisfy the condition

sup
t>0

tb
∥

∥

∥F−1
R

[φm(t ·)]
∥

∥

∥

Lq,σ (w,dν)
< ∞.

Then the arguments in the proof of Lemma 2.5 show that the maps A, B defined in
(2.19), (2.20) can be used to show that LFq,σ

b (w, dν) is a retract of �∞
b (Lq,σ (w, dν)).

One deduces quickly that for q0 �= q1

[

LFq0,σ0
b (w, dν), LFq1,σ1

b (w, dν)
]

ϑ,∞ = LFq,∞
b (w, dν)

and the asserted result follows from Theorem 1.2 if we apply the last formula to the
spaces M

p,q,σ
d with fixed d and fixed b = d(1/p − 1/q). ��

Remarks on compactly supported multipliers. The proofs show that for multipliers
which are compactly supported away from the origin the result of Theorem 1.2 can
be sharpened.

Theorem 10.2 Let m be compactly supported and integrable in (0,∞). Suppose
1 < d < ∞, 1 < p < 2d

d+1 , p ≤ q < 2 and 1 ≤ σ ≤ ∞. Then the following
statements are equivalent.

(i) Tm maps L p,σ (µd) boundedly to Lq,σ (µd).
(ii) Tm maps L p,1(µd) boundedly to Lq,σ (µd).

(iii) ‖Bd [m]‖Lq,σ (µd ) < ∞.

(iv)
∥

∥

∥(1 + | · |)− d−1
2 F−1

R
[m]

∥

∥

∥

Lq,σ ((1+|x |)d−1dx)
< ∞.

A similar statement can be formulated for the analogue of Theorem 1.1 [again
for m supported in (1/2, 2)]. In particular, for the case σ = ∞ we see that then
the restricted weak type (p, p) inequality, the weak type (p, p) inequality and the
stronger L p,∞

rad → L p,∞
rad bound are all equivalent in the range 1 < p < 2d

d+1 . We note
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that for the case of Bochner–Riesz multipliers such endpoint L p,∞
rad bounds had been

obtained by Colzani et al. [9], extending earlier weak type endpoint bounds by Chanillo
and Muckenhoupt [6]. The result for Bochner–Riesz means follows from the above
theorem (after separately dealing with the irrelevant part of the multiplier near 0). This
phenomenon has no analogue for Fourier multipliers on R

d since L p,∞ → L p,∞
boundedness for translation invariant operators on R

d already implies L p → L p

boundedness ([8,30]).
The proof of Theorem 10.2 is essentially the same as the proof of Theorem 1.2, but

more elementary since only a finite number of dyadic scales on the multiplier side are
involved hence no Littlewood–Paley theory and singular integral estimates are needed.
The difference (and improvement) in condition (i), and the extended range of σ come
from Proposition 5.1 which involves only one dyadic scale and the space L p,∞(µd)

on the right hand side of (5.10).

11 Open problems

11.1 Radial Fourier multipliers

Let K be a radial convolution kernel on R
d , d ≥ 2.

Question Is there a p > 1 for which the condition (1.1) (with σ = p) implies that the
convolution operator f �→ K ∗ f is bounded on L p(Rd)?

The local version of this is open as well:

Question Suppose that K is radial and ̂K is compactly supported in R
d\{0}. Is there

a p > 1 for which the condition K ∈ L p(Rd) implies that the convolution operator
f �→ K ∗ f is bounded on L p(Rd)?

It is known (cf. [22]) that under a slightly weaker condition than (1.1), namely the
finiteness of supt>0 ‖� ∗ Kt‖L p((1+|x |)ε) for some ε > 0 implies L p boundedness for
certain p > 1. The condition on p is that for the dual exponent p′ the local smoothing
problem for the wave equation in R

d+1 can be solved up to endpoint estimates. Wolff
[37] proved such estimates for d = 2 and large p′; for corresponding results in higher
dimensions see [20], and for the currently known ranges of Wolff’s inequality see [13].

It is likely that in order to prove or come closer to a characterization one needs to
prove an endpoint version of Wolff’s inequality. The currently known method of proof
(by induction on scales) fails to give such sharp bounds.

11.2 Localized Besov conditions

Short of a characterization one can ask whether for some p > 1 the L p condition of
Corollary 1.5

sup
t>0

‖ϕm(t ·)‖B2
d( 1

p − 1
2 ),p

< ∞
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implies that m(| · |) is a multiplier of F L p(Rd). Again the analogous question for
m supported in (1/2, 2) is also open. A result which comes close is in [29]. There
a scale of spaces R p

α,s is introduced with B p
α,1 ⊂ R p

α,s ⊂ B p
α,p for 1 ≤ s ≤ p and

L p(Rd) boundedness is proved under the condition supt>0 ‖ϕm(t ·)‖R2
d(1/p−1/2),p

< ∞,

for 1 < p ≤ 2(d+1)
d+3 .

11.3 Localized multiplier conditions

Does the analogue of Corollary 1.3 hold for radial Fourier multipliers, acting on general
functions in L p(Rd), some p > 1?

11.4 Hankel multipliers in the complementary range

No nontrivial characterization just in terms of the convolution kernel seems to be
known (and perhaps may not be expected) for the range 2d

d+1 ≤ p < 2.
Addendum, January 2008. Very recently, after the submission of this paper,

F. Nazarov and the second author made some progress concerning the problems on
radial Fourier multipliers. The manuscript [23] contains characterizations for given p,
provided that the dimension d is large enough. Presently, there are no optimal results
concerning the range of p; moreover, in dimensions 2, 3, 4, the problems are still open
for any p ∈ (1, 2).

Appendix A On Zafran’s result

Recall that for a compatible couple of Banach spaces (A0, A1) a space X ⊂ A0 + A1
is called an interpolation space for (A0, A1) if there is a constant C so that for every
T : A0 + A1 → A0 + A1 which is bounded on A0 and bounded on A1 we have

‖T ‖X→X ≤ C max
{‖T ‖A0→A0 , ‖T ‖A1→A1

}

. (A.1)

Zafran [38] showed that the space M p(R) is not an interpolation space for the pair
M1(R) (the Fourier transforms of bounded Borel measures) and M2(R) = L∞(R).
His arguments in conjunction with Bourgain’s theorem on �(p) sets can be extended
to show

Proposition A.1 Let 1 ≤ p0 < p < p1 ≤ 2. Then M p(R) is not an interpolation
space between M p0(R) and M p1(R).

We start quoting a standard result on random Fourier series due to Salem and
Zygmund ([26], Chap. IV); it can be proved from the distribution inequality for
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Rademacher expansions and Bernstein’s inequality for trigonometric polynomials.
Let rk be the sequence of Rademacher functions and define

FR(t, θ) =
R
∑

k=1

akeikθrk(t).

Then there is a constant C so that for all integers R ≥ 2, and for 1 ≤ ρ < ∞
⎛

⎝

1
∫

0

sup
θ

|FR(t, θ)|ρdt

⎞

⎠

1/ρ

≤ C
√

ρ log R

(

∑

k

|ak |2
)1/2

. (A.2)

By the standard averaging argument the log R term may be dropped if the supremum
in θ is replaced by an Lρ norm.

The proof of Proposition A.1 relies on a deep result by Bourgain [3] (proved earlier
by Rudin [25] for p′ an even integer).
Bourgain’s theorem. Let 1 < p ≤ 2, p′ = p/(p − 1). There is a constant C p with
the following property. For each integer N ≥ 2 there exists a set SN of cardinality N
which consists of integers in [0, N p′/2] so that

⎛

⎜

⎝

2π
∫

0

∣

∣

∣

∣

∣

∣

∑

k∈SN

akeikx

∣

∣

∣

∣

∣

∣

p′

dx

⎞

⎟

⎠

1/p′

≤ C p

(

∑

k

|ak |2
)1/2

. (A.3)

In what follows we shall always fix p and the associated family of sets SN for which
(A.3) holds. A consequence of (A.3) is that

∥

∥

∥

∥

∥

∥

∑

k∈SN

bkη(· − k)

∥

∥

∥

∥

∥

∥

M p(R)

≤ C(p) sup
k

|bk | (A.4)

where η is the Fejér multiplier

η(ξ) =
{

1 − |ξ |, |ξ | ≤ 1,

0, |ξ | > 1.

To see (A.4) we first note that (A.3) implies that the sequence {mk = bkχSN (k)}k∈Z

defines a multiplier in M p′
2 (Z), and by duality a multiplier in M2

p(Z), with norms
bounded by C‖b‖�∞ (by this we mean that the corresponding convolution operator
maps L p(T) to L2(T) with norm � ‖b‖�∞ ). By Hölder’s inequality (using the com-
pactness of T) it also follows that this sequence belongs to Mp(Z), since p ≤ 2. Now
Jodeit’s extension result [19] (see also [12]) for multipliers in M p(Z) says
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∥

∥

∥

∥

∥

∑

k

mkη(· − k)

∥

∥

∥

∥

∥

M p(R)

� ‖{mk}‖M p(Z) , 1 ≤ p ≤ q ≤ ∞. (A.5)

Inequality (A.4) follows.
A third ingredient will be a sequence of multipliers hN which belong to all Mq(R)

classes and satisfy the lower and upper bounds

‖hN ‖Mq (R) ≈ N
1
q − 1

2 , for 1 ≤ q ≤ 2. (A.6)

There are many examples of such families, we choose

hN (ξ) = χ(ξ)ei N |ξ |2

where χ is a smooth function supported in (1/2, 2) which is equal to one on [3/4, 5/4].
To see that (A.6) holds true we examine the kernel KN = F−1[hN ]. By stationary
phase arguments we see that |KN (x)| � N−1/2 for N/4 ≤ x ≤ 4N and |KN (x)| ≥
cN−1/2 for 3N/2 ≤ x ≤ 5N/2; moreover by integration by parts |KN (x)| ≤ CL x−L

for x ≥ 4N and |KN (x)| ≤ CL N−L for x < N/4. This shows that ‖KN ‖Lq ≥
cN 1/q−1/2 and since hN has compact support this implies the lower bound in (A.6).
The kernel calculation also implies the upper bound for q = 1 and interpolation with
the trivial L2 bound yields (A.6).

Proof of Proposition A.1 Let N be a large integer, R � N and let SN be a set in [0, R]
so that (A.4) holds (by Bourgain’s theorem we may choose R ≈ N p′/2). Essentially
following Zafran we then consider the rank one operators L N : Mq → Mq defined by

L N (m) = vN (m)hN , where vN (m) = 1

N

∑

k∈SN

ρk

∫

m(ξ)η(ξ − k)dξ.

Here, we assume that ρk ∈ {1,−1} are chosen so that

sup
x

∣

∣

∣

∣

∣

∣

N−1
∑

k∈SN

ρkeikx

∣

∣

∣

∣

∣

∣

≤ C N−1/2
√

log R; (A.7)

this can be achieved by (A.2).
We shall show that

‖L N ‖Mq→Mq ≤ C min
{

N 1/q−1/2, N−1+1/q R1/q ′√
log R

}

, 1 ≤ q ≤ 2; (A.8)

moreover if p is as in (A.4) then

‖L N ‖M p→M p � N 1/p−1/2. (A.9)
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We first show that the validity of (A.8) and (A.9) implies the assertion of the
Proposition. Namely if M p(R) were an interpolation space of (M p0(R), M p1(R)),
with p0 < p < p1, then

‖L N ‖M p→M p ≤ C max {‖L N ‖M p0 →M p0 , ‖L N ‖M p1 →M p1 }. (A.10)

We use the first bound in (A.8) for q = p1 and the second one for q = p0. Thus by
(A.10) and (A.9)

N 1/p−1/2 � C max
{

R1/p′
0
√

log RN−1/p′
0 , N 1/p1−1/2

}

.

By Bourgain’s theorem we may choose N large and R ≈ N p′/2. Since p < p1, the
last displayed inequality implies 1/p − 1/2 ≤ (

p′
2 − 1)/p′

0 which solving for p is
equivalent to p ≤ p0, a contradiction.

Proof of (A.8) We set ωN := N−1∑
k∈SN

ρkF−1[η(· − k)]. Since the Fejér kernel
F−1[η] belongs to L1 ∩ L∞ we observe that ‖F−1[η]‖Lr < ∞ and hence by (A.7)

‖ωN ‖Lr (R) � N−1/2
√

log R, 1 ≤ r < ∞. (A.11)

In view of (A.6) the inequality (A.8) follows from

|vN (m)| � min
{

1, N−1/2 R1/q ′√
log R

}

‖m‖Mq , 1 ≤ q ≤ 2. (A.12)

The first bound in (A.12) is obvious since |vN (m)| ≤ ‖m‖∞. The second follows
from Plancherel’s theorem. To see this let ζR(ξ) = ζ0(ξ/R) where ζ0 is compactly
supported with the property that ζ0(ξ) = 1 for |ξ | ≤ 2. Then by (A.11)

|vN (m)| = c

∣

∣

∣

∣

∫

F−1[mζR](x)ωN (x)dx

∣

∣

∣

∣

≤ ‖ωN ‖q ′ ‖F−1[mζR]‖q ≤ ‖ωN ‖q ′ ‖m‖Mq ‖F−1[ζR]‖q

and the second bound in (A.12) follows if we observe that ‖F−1[ζR]‖q = O(R1/q ′
).

Thus (A.8) is proved.

Proof of (A.9) Here, we use (A.4) (which was a consequence of the crucial �(p′)
estimate for the set SN ). We apply L N to ω̂N and obtain

‖L N ‖M p→M p ≥ ‖L N (ω̂N )‖M p

‖ω̂N ‖M p
= ‖ω̂N ‖2

2‖hN ‖M p

‖ω̂N ‖M p
� ‖hN ‖M p

where we have used that ‖ω̂N ‖2
2 ≈ N−1 and N‖ω̂N ‖M p � 1, by (A.4). Thus (A.9)

follows from (A.6). ��
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