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Characterizations of metric spaces
by the use of their midsets: intervals*

by
Anthony D. Berard, Jr. (Ohio)

1. Introduction. In this article we study metric- spaces with certain

midset properties and find sufficient conditions to make them homeo-
morphic to intervals of real numbers. If (X, p) is a nontrivial metric
space and # and y are distinet points of X, then {ge¢X| o(z,q)
=0(y, q)} will be called the midset of  and y in X and will be denoted by
A(z, ). If X is a nontrivial metric space for which each midset consists
of a unique point, then we will say that X has the unique midpoint
property (UMP).
} The metric space (X, o) is said to be strongly convexr provided for
each pair of distinet points in X there is a unique middle point. A middle
point of x and y is a point m such that o(z, m)= ¢(m,y) = }e(z,y).
Notice that any middle point for z and y is an element of 4 (z, y). Men-
ger [3] proved that a complete strongly convex metric space is isometrie
to a closed interval provided there exist points e, and e, in X such that
for all weX, o(e, @)+ o(@, &) = oley, &); that is, there exist points ¢
and ¢, in X such that every point of X is between e; and e,. Lelek and
Nitka [2] showed that a compact strongly convex metric space which
is one dimensional and which has the property that no middle point
of # and y is a middle point of 2" and y unless ¥ = &’ is homeomorphic
to the unit interval I. Tt is well known ([1], p. 54) that if X is a metric
continuum with just two non-eut points then X is homeomorphic to the
unit interval I.

We see from these results that convexity, the existence and number
of cut points, compactness, and completeness are important in charac-
terizing intervals. In this paper we weaken or remove someé of these
properties and prove that a connected metric space with the unique
midpoint property is homeomorphic to an interval of the reals.

*Much of the work in this paper was accomplished in the authors’ dissertation
which was written at Case Western Reserve University under the direction /‘of Dr. George
M. Rosenstein, Jr.
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The following lemma will be fundamental to many of the arguments
of this paper.

Tmmma 1. Let X be a connected metric space and © and y be distinct
points of X; then X—Az,y) is disconnected.

Proof. Indeed, X—A(w,y) =A v B where 4= {geX] oz, q)
<oy, )}, B=1{geX| e(z,9 > oy, 9} and 4 and B are mutually
separated. I :

To simplify the statements of some our proofs, when X is a con-
nected metrie space and @ and y ave distinet points of X, we will call the
separation defined in Lemma 1 the usual separation for » and y. Notice
that for any « and y in a connected metric space, A(w, y) is a separating seb.

Throughout the paper we will use the following conventions. For
the sets {ge X| o(@,9) = ¢}, {g e X| (@, 0) < &}, {g< X| el®, g) <&}, and
{geX| o(z,q) > ¢} we will write, respectively, D(z,¢), B(®,¢), Bz, e),
and cB(z,e). We will use R to denote the reals and R™ to denote the
non-negative reals.

e

2. Non-cut points. Much of the development which follows depends
on the existence of non-cut points. »

LemMA 2. If X is a connected meiric space with UMP, then a necessary
and sufficient condition that a point z of X be a mon-cut point of X is that
there do mot exist distinct points @ and y of X such that ¢(@,2) = o(¥,?).

Proof. Let z be a cut point of X and let X—2z= A v B be a sepa-
ration. Since 4 and B are nonvoid, there exist ae A and beB. Let
&= }min{e(a,2), ¢(b, 2)}. Assume that z satisfies the condition. There
is at most one point # in X such that ¢(z, ) = ¢ and we may assume
that zeAd. Then B—B(z,8)= B—B(z,¢) and X =[4 v B(z,¢)]v
U [B—B(z, )] is a separation of X contradicting its connectedness.

Suppose that 2 does not satisfy the condition. Then there exist points =
and y of X such that (2, 2) = e(y, 2). By Lemma 1 zis a cut point of X. @

TEEOREM 3. If X is a connected metric space with UMP, then there
exist af most two distinct non-cut points.

Proof. Suppose that there exist three distinet non-cut points 2y, 2.,
and 2, in X. No one of these may be the midpoint of the other two. Assume
without loss of generality that (2, 2s) < 0(%y, 25) < 0(24, %5). Lieb o (24, 25)
= & and o(2,, 23) = &. Consider the set M = B(z,, &,) n ¢cB(2;, 6,). M # O
since 2z, ¢ M and M # X since 2, ¢ M. Furthermore, M is both open and
closed in X, since the boundary of M is empty. We have contradicted
the conmnectedness of X.

Lemma 4. If X is a connected metric space with UMP and if X has
two distinet non-cut points 2 and z,, then X C [B(zy, &) ~ B(#,, 8)] v {21, %2}
where & = p(2,, 2,).
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Proof. Choose any arbitrary « from X. Suppose that x ¢ B(z, &) v
w B(?,, ¢). Then if M = B(z,s) v B(%,¢), we have M C X, M =0,
M # X, and since the boundary of I is empty, M is both open and
closed, contradicting the connectedness of X.

Now suppose that » € Bz, &), » # 2, and # ¢ B(2,, ¢). Let 6 = o(x, 2,).
Then N = B(z,, &) » ¢B(2, ) is a subset of X such that N 2 0, ¥ # X,
and since the boundary of N is empty, & is both open and closed. We
have once again contradicted the connectedness of X. B

Theorem 3 is quite important, as it says that if X is a connected
metric space with unique midpoint property, then X contains at most
two non-cut points. Lemma 4 gives us a way of bounding the space.
These theorems give us the feeling that the non-cut points are at the
“edge” of the space, or are the “ends” of the segment.

3. I(a, b). We discuss certain well behaved subsets of our metric
space X under the assumption that X has a non-cut point z.

DrriNiTION. If X is a connected metric space with a non-cut point 2,
then for =,y e X we will say z <y provided o(z,2) < o(y, 2)-

Lemma 5. If X is a connected metric space with UMP and a non-cut
point 2, then (X, <) is a simply ordered set.

Levma 6. If X is a connected metric space with UMP and a non-cut
point z, then the order topology induced by < is weaker than the melric
topology.

Proof. Forany a ¢ X, {r e X| 2<<a}= Bz, o(#, a)) and {z e X| >a}
= GB(zy o(z,0)). @

Notice that under the hypotheses of Lemma 6, <y if and only
if x separates #z and y. Indeed; one can show by the techniques we employ
that the ordering we have defined is the separation order (see [1]). The

remainder of this section is devoted to showing that the metric topology
is weaker than the order topology.

DeriNITION, Let X be a connected metric space with UMP and
a non-cut point 2. For a,be X, let I(a,d)= {zeX| a <o <b}.

Notice that for all a,be X, I(a,b) is closed.

LemMA 7. Let X be a connected metric space with UMP and a non-cut
point z. Then for a,beX with a <b, I(a,Db) is a connected metric space
with UMP and exactly two non-cut points, a and b.

Proof. I(a,b)is connected. If not, then I(a,b) = A v B where 4
and B are disjoint, nonempty. closed sets. Let & = o(2, a) and s, = o(2, b)-
Then ¢ < &. If ac 4 and beB, X =[4 vB(z, &) v [BuvcB(z &) is
a separation of the connected set X, while if @ and b belong to 4, then
X =[4d v B(z, &) v eB(z, )] v B is a separation of X.
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I(a,b) has UMP. For any pair of points in I(a,b), their midpoint
n X must be in I(a, b); otherwise, I(a,b) is not connected.

_ The only non-cut points of I(a,?) are a and b. If o were
a cub point of I(a,Dd), then there would be s,teI(a,b) with s <3¢ such
‘that @ separates s and ?. But ¢ separates a and t, contradicting ([4],
Theorem 71). Similarly b is a non-cut point of I(a,b). Since in connected
métric spaces with UMP there are at most two such points, the assertion
has been proven. H

Remark. Notice that if X is a connected metric space with UMP
and two non-cut points, # and ¢, then X = I(z, g), for, by Lemma 4,
if ze X, then 0 < o{2, %) < 0(?, Q- . )

Tiwma 8. If X is a connected metric space with UMP and a non-cut
point 2, then if m e X and m is a cut point of X there ewist ©,y e B(m, ¢)
such that © < m <y for any &> 0.

Proof. Since by the previous lemma, if for all w ¢ X, w < m, then m
would be a non-cut point of X, there is a we X such that m < w. Let
8= p(z, m) and 8= p(w,m). Let k be such that ¢k is less than the
minimum of* &;, 8,, and &. Then D(m, &fk) is not empty, for if it were,
B(m, ¢/k) would be an open, closed, non-empty proper subset of X. Let
2 eD{m, e/k). Bither < m or z>m. Suppose that # < m. Then there
is & point y in D(m, &/k) ~ ¢B(z, &) for otherwise B(z, é;) v B(m, elk) is
an open, closed, non-empty proper subset of X. Since o(y,2) > dy,
# < m<y. The argument is similar if @ > m.

TeEOREM 9. If X s a connected metric space with UMP, and a non-cut
point z, then the order topology is the metric topology.

Proof. Since we have already seen that the order topology is weaker
than the metric topology, we need only show that for any m ¢ X and
any & > 0, there exist # and y such that m ¢ (z, y) C B(m, ¢) where # ¢ X
or z is the symbol —oco and y ¢ X or y is the symbol 4co. If m is not
a non-cut point, then by the previous theorem, there exist z, y e B(m, ¢/4)
with # < m < y. By Lemma 4, I(z,y) CB(m,e). If m =2, the result
is obvious with y being fhe unique point which is a distance ¢ from ¢,
and @ = —oco. If m is a non-cut point other than #z, let z be the unique
point a distance p(z, m)—e/4 from 2z and y= +oco. W

4. Closed and half open intervals.
THROREM 10. If X is a connected metric space with UMP and a non-cut

point 2, then the function f(z) = o(z, x); f: X—f(X) is a homeomorphism
and f(X) is an interval of R.

Proof. The function is clearly a continuous bijection, the injective
property following from the fact that 2 is a non-cuf point. Since X is

-
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connected, f(X) is also and is therefore an interval. We need only show
that f is an open map.

Consider open sets of the form {geX| ¢< 2} and {ge X| g > #} for
an arbitrary fixed point # of X. Now, f({ge X| ¢ < a}) = (— oo,f(m)) A f(X)
and f({g ¢ X| ¢> 2}) = (f(2), o) ~ f(X) and these are appropriate sub-
base elements for the topology induced on f(X) by R.

TuEOREM 11. If X is a connected metric space with UMP and X has
at least one non-cut point, then either:

(i) X has ewactly one non-cut point and X is homeomorphic to R¥;
or

(if) X has two distinct non-cut points and X is homeomorphic to [0, 1].

Proof. Let f: X —f(X)C RT Dbe the homeomorphism of Theorem 10.

Suppose that f(X) is unbounded. Then X has exactly one non-cuf
point. If X had two non-cut points, then from the remark following
Lemma 7, we could conclude that for all  « X f(«) is no greater than the
distance between the non-cut points, contradicting the unboundness of f.
Since f(X) is an interval in R and since the only unbounded interval
in R* which contains 0 is B, f(X)= R*.

Now suppose that f(X) is bounded. Let M = supf(X). Then X has
a second non-cut point if and only if there is a ¢ ¢ X such that f(q) = M,
in which case ¢ is the non-cut point. To see this suppose ¢ ¢ X and is such
that f(g) = M. Then X = I(z, q) and ¢ is a non-cut point by Lemma 7.
On the other hand, if w is a second non-cut point and f(w) < M, then
there is a ¥ € X such that f(w) < f(y). But as (2, w) < o(z, ¥), w separates
z and ¥y, a contradiction. Thus if X hag only one non-cut point, f(X}
=[0, M) and X is homeomorphic to R¥, while if X has two non-cut
points, f(X)=[0, M] and X is homeomorphic to [0, 1].

5. Open intervals.

Taeorem 12. If X is & connected meiric space with UMP and no
non-cut points, then X is homeomorphic to R.

Proof. Choose arbitrary distinet points z, y ¢ X. Let 2 be the unique
midpoint for # and y, and let X—z= 4 v B be the usual separation.
We want to show that A4 o {} and B u {2} satisfy the hypotheses of
Theorem 11 (i). By [4], Theorem 60, A w {2} is connected.

ASSERTION 12.1. 4 v {2} has UMP.

Choose arbitrary distinct points r, s € 4 w {z}. Then r and s are in X
and there exists a unique point ¢ in X such that ¢(r, g) = e(s, )- Suppose
that ¢geB. Let X—¢g=C v D be the usual separation. We have that

Advi=[Adui)nCulldui)nD] and Aoz

is disconnected.
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ASSERTION 12.2. # is a non-cut point of 4 v {z}.
Assume z is & cut point of 4 v {z}. Tet A=A {}—2=GuH
Dbe a separation. There is an & > 0 such that if 0 < 8 < &, there exist g « @,
% ¢ H, and b < B such that g, b, and b are in D(z, 8). For, choosing arbitrary
points g, e & hye H, and b, € B, let &= min{o(2, o1}, o2y 1), (2, b1}
Suppose that 6 < & and there exists no ge @ such that g e D(z, 6). Then
Gu ) =[G Bz 0] [(Gv{2) Bl 0)]

is a separation of ¢ v {z}, contradicting the connectedness of G v {z}.
Similarly, there exist appropriate b and b.

Choose p = ef4. Leb gy, by, hy € D(z, y) Where gy € @G, b, ¢B, and hy ¢ H.
Let 0 = max{o(gs, bs), 0(hs, ba)} < &/2. We may assume that o = o(¢a, ba)
< &/2. Clearly go ¢ D (b,, o). Now there exists an kg e H such that h, € D (b,, 0);
otherwise,

H o {2} = [B(bs, 0) n (H v {£))] v [B(be, 0) ~ (H v {2})]

is a separation contradicting the connectedness of Hvu {z}. As hg, e
e A v {z}, they have a midpoint ¢ in 4 v {2} which is clearly a midpoint
for h; and g, in X. But b, is distinct from @ and also a midpoint for h,
and g, in X, which contradicts the unique midpoint property in X.

ASSERTION 13.3. There is no non-cut point of 4 u {2} except 2.

Suppose that there exists a non-cut point ged v {2} such that
g # 2. Since g is not a non-cut point of X there exist points » and s in X
such that o(r, q) = o(s, q). Let X—¢=F v F be the usual separation.
Bither 4 v {#}—¢C E or 4 U {z}— ¢ C F. We may assume that 4 v {z}—
—¢g C E. Then we have that

Bufgt=[Bn(Bw{zh]v[Fn (B )]

is a separation contradicting the connectedness of B v {z}.

‘We have shown that A v {2} satisfies the hypotheses of Theorem 11(i)
and is thus homeomorphic to R*. Call the appropriate homeomorphism a.
By similar reasoning B w {2} is homeomorphic to R* and we will call
the appropriate homeomorphism S. Now we may define the homeo-
morphism y: X—R by

a(z) for aedu{z
o ={ o “.
—f(xz) for weBu{z}.H

CoroLrARY 13. If X is a connected metric space with UMP, then X is
an interval and:

(1) if X has two distinct mon-cut points X is a closed interval.

(1) if X has exactly one non-cut point X is a half open interval.

(iii) if X has no mon-cut points, X is an open interval. .
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6. Examples. We would like to know more about the relationships
between completeness, connectedness, convexity, and the unique mid-
point property. We give an example of a complete connected metric
space with the unique midpoint property for which the metric is not
convex and an example of a complete metric space with the unique mid-
point property which is not connected (indeed it is totally disconnected):

ExamPLE 1. A complete connected metric space with UMP for
which the metric is not convex. For z,ye[—1,1]=2X let o(z,y)
= |p—yl/(14|#—yl). Since o is equivalent to the usual metric on X,
(X, o) i3 a compact, and thus complete, metric space. Notice that if
a,b e X, then (a+ b)/2 is the unique midpoint. On the other hand, consider
the points 1 and —1 in X. As ¢(—1,1) = 2/3, we would like to find some
@ eX, s # 1,0 # —1, such that ¢(—1, 2)4 o(1, ) = 2/3. Some elementary
algebra shows that this is impossible. Thus X is not convex.

ExAMPLE 2. A metric space X which is complete and possesses UMP
but which is totally disconnected. Let ¥ be the set consisting of all points
of [0,1], which when expressed to the base 4 possess no ones or twos
in their expansion. Notice that. ¥ is homeomorphie to the Cantor ternary
set. Let b and %k Dbe linear homeomorphisms of ¥ into [0, 1/4]% {0} and
[1,5/4]1x {0}, h: ¥ [0, 1/4]% {0} and k: ¥ —[1,5/4]x {0}. Let g be the
point (5/8,1) and set X = {g} v h(¥Y) v k(Y). Let o: Xx X—~RT be
defined by o(g,q) =0, o(z, q) = (g, ®) =1 whenever zeh(Y) v k(T),
and o(z,y) = o(#,y) where p is the usual metric on R, whenever # and y
belong to A(¥) v k(X). (X, o) is a complete metric space with the unique
midpoint property, but X is totally disconnected.
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