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CHARACTERIZATIONS OF NORMAL QUINTIC ZC-3 SURFACES

JIN-GEN YANG

Abstract. If a normal quintic surface is birational to a K-3 surface then it
must contain from one to three triple points as its only essential singularities.
A K-3 surface is the minimal model of a normal quintic surface with only one
triple point if and only if it contains a nonsingular curve of genus two and
a nonsingular rational curve crossing each other transversally. The minimal
models of normal quintic K-3 surfaces with several triple points can also be
characterized by the existence of some special divisors.

0. Introduction

Let C be the complex number field. A complete surface S over C is a
K-3 surface if the canonical divisor of S is zero and H (S) = 0. One of the
simplest examples is a smooth quartic surface in P . It was shown in [YJG]
that some singular quintic surfaces are birational to K-3 surfaces. The aim of
this paper is to find necessary and sufficient conditions for a K-3 surface to be
birational to a normal quintic surface. The main results are

Theorem 1. A normal quintic surface in P is birational to a K-3 surface only
if all its essential singularities are triple points.

Theorem 2. A K-3 surface S is the minimal model of a normal quintic surface
with one triple point as its only essential singularity if and only if there are two
nonsingular curves D and B on S with genus 2 and 0 respectively such that
DB=l.
Theorem 3. A K-3 surface S is the minimal model of a normal quintic surface
with two triple points as its only essential singularities if and only if S has one
of the divisors listed in Figure 1.

(The solid dots are nonsingular elliptic curves. The hollow dots are nonsin-
gular rational curves.)

Theorem 4. A K-3 surface S is the minimal model of a normal quintic surface
with more than two triple points if and only if there are three nonsingular elliptic
curves Cx, C2 and C3 on S with C^Cj = 2 for 1 < i < j < 3.

A generic line passing through a triple point of a quintic surface meets the
quintic surface at two other points besides the triple point. So it is natural to
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Figure 1

study the double cover of a normal quintic K-3 surface over a plane. In the
last section some descriptions of the branch loci of such double coverings are
given.

1. Preliminaries

In this section we briefly mention some standard notions concerning isolated
singularities of surfaces. For details see [Artl, Art2, Lauf and Yau].

Let p be an isolated singularity on a surface V and let n: M —» V be
the minimal resolution of p . The number h = dimc H°(V,Rxnit(0M)) is the
geometric genus of p . It is well known that

X(V) = x(M) + h
where x(V) denotes the holomorphic Euler characteristic of V.

The set A = n~ (p) is called the exceptional set of p. Let A = \JA¡,1 <
i < n ,be the decomposition of A into irreducible components.

(Remark. If p is a smooth point on a surface V and let /: X —> V be a
birational morphism, then f~ (p) is also called the exceptional set of p on
X.)

A cycle D on A is an integral combination of the Ai 's. There is a natural
partial ordering, denoted by < , among cycles. For any closed subvariety B of
pure dimension 1 of A , there is a unique cycle ZB satisfying

(i)   Supp(ZB) = B;
(ii)   A7ZB < 0 for all A¡<B;

(iii)   ZB is minimal with respect to these two properties.
Such a cycle is called a fundamental cycle. In particular, ZA is the funda-

mental cycle of the singularity p, denoted by Z .
If x(Z) = 0 then p is called a weakly elliptic point. For any weakly elliptic

point p, there is a unique cycle E < Z such that x(E) = 0 and x(D) > 0
for all 0 < D < E. This E is called the minimally elliptic cycle of p . If the
fundamental cycle Z itself is the minimally elliptic cycle then p is called a
minimally elliptic point. A singularity is called essential if it is not a rational
double point.
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2. Normal quintic Zi-3 surfaces with one triple point

Throughout this paper a quintic K-3 surface will mean either a singular
quintic surface in P which is birational to a Zi-3 surface or its birational
model.

Let S0 be a normal quintic surface and let S be its minimal resolution. Since
the divisor S0 + Kp, in P3 is linearly equivalent to a hyperplane, an effective
canonical divisor of S, if exists, is cut out by a hyperplane HQ passing through
all essential singularities of S0 . Let C0 be the intersection of S0 and H. If S
is birational to a Zi-3 surface, then the canonical divisor of S is a collection of
exceptional divisors of first kind. Hence all components of the proper transform
of C0 in S must be exceptional curves of first kind. This indicates that there
are not many quintic Zi-3 surfaces. In particular, if S is already a minimal
surface then S cannot be a Zi-3 surface.

Lemma 2.1. A normal quintic surface with essential singularities, among which
one is a double point, cannot be K-3.

Proof. Let S0 be a normal quintic surface and let p be an essential double point
■a -i

on SQ . Let p: T-»P be the blowing-up of P at the point p and let E be
the exceptional plane. Let S be the proper transform of SQ. The canonical
divisor KT of T is <p*(Kp3) + 2E and the divisor S is linearly equivalent
to tp*(S0) - 2E. Thus KT + S is linearly equivalent to tp*(H) where H is a
hyperplane in P .

Suppose that S is birational to a Zi-3 surface. Then the canonical divisor
of the minimal resolution of S0 is cut out by a hyperplane HQ passing through
the point p. On T the divisor tp*(H0) is the union of E and the proper
transform of HQ. Let S' be the minimal resolution of S. Since S has at most
double points or double curves on E, the canonical divisor of S' contains
the exceptional set A of the double point p . Since S' is birational to a K-3
surface, the divisor A is part of the exceptional set of a smooth point, which
contradicts the assumption that p is an essential singularity. Therefore S0
cannot be Zi-3.    Q.E.D.
Proof of Theorem 1. Let S0 be a normal quintic surface. If S0 has a 5-tuple
point, then .S0 is a cone which is birational to a ruled surface. If S0 has a
4-tuple point, then the projection from the 4-tuple point gives a birational map
from S0 to a rational surface. Lemma 2.1 says that S0 is not Zi-3 if S0 has
essential double point. The conclusion follows immediately.   Q.E.D.

Let S0 be a quintic surface with a triple point p . We may assume that the
equation of S0 is

(1) f3(x ,y, z) + f3(x ,y, z) + f5(x ,y, z) = 0

where f(x ,y, z) is a homogeneous polynomial of degree i.
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Let C be the plane cubic curve defined by the equation f3(x,y,z) = 0.
Then the triple point p has the following types in terms of the cubic curve C :

(i)   C is reduced with at most ordinary double points (i.e., the rational
double points of type Ax );

(ii)   C is the union of a line and a conic tangent to each other;
(iii)   C is the union of three concurrent lines;
(iv)   C is the union of a line and a double line;
(v)   C is a triple line.

For details, see [YJG, §4].

Lemma 2.2. An isolated triple point of type (i) on a quintic surface is a minimally
elliptic singularity.
Proof. See [YJG, pp. 445-446].

Lemma 2.3. Let p be an isolated triple point of type (ii) on a quintic surface,
then either p is minimally elliptic or p has an infinitely near essential double
point.

Proof. [YJG, p. 446(v)].

Lemma 2.4. Let S0 be a normal quintic surface with a triple point p of type (ii)
which is not minimally elliptic. Then S0 is not K-3.

Proof. Let 7t : T —► P be the blowing-up of P at the point p and let E be
the exceptional plane. Let 5" be the proper transform of S0 . The canonical
divisor KT of T is n*(Kp}) + 2E and the divisor »S is linearly equivalent
to 7t*(SQ) - 3E. Thus KT + S is linearly equivalent to n*(H0) - E where
H0 is a hyperplane in P . So KT + S is linearly equivalent to the proper
transform H of H0 in T. Let S' be the minimal resolution on S. Then
the canonical divisor of S' is cut out by the plane HQ in P whose proper
transform H passes through the essential double point of S. Then following
the same argument as in the proof of Lemma 2.1 one sees that S cannot be
birational to a Zi-3 surface.   Q.E.D.

Lemma 2.5. Let S0 be a quintic surface with a triple point as its only essen-
tial singularity. If S0 is K-3 then the triple point must have type (iv) or (v).
Furthermore the blowing-up of S0 at the triple point is not a normal surface.
Proof. If the triple point is a minimally elliptic point, then S is birational to
a surface of general type by computing the invariants. Hence Lemmas 2.2-2.4
imply that the triple point cannot have type (i) or (ii). If p is of type (iii) then
it was shown in [YJG, p. 446] that SQ is either of general type or an elliptic
surface with Kodaira dimension 1.

Hence the triple point must have type (iv) or (v). Let S be the blowing-up
of S0 at the triple point. If S is normal, then the Kodaira dimension of S is
either 1 or 2 [YJG, pp. 446-447].   Q.E.D.
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Lemma 2.6. Let S be the minimal resolution of a quintic K-3 surface SQ. If
there are five disjoint exceptional curves on first kind of S then S0 is normal.

Proof. The canonical divisor of S is cut out by a hyperplane H in P . Suppose
S0 were not normal. Then ZZnS0 would not be reduced, whence it would have
less than five irreducible components. This implies that S would have less than
five disjoint exceptional divisors of first kind.   Q.E.D.
Proof of Theorem 2. Assume that S0 is birational to a Zi-3 surface. Let T be
the blowing-up of P3 and let E be the exceptional plane. Let 5 be the proper
transform of S0 in T. Because of Lemma 2.5 we may assume that S0 has the
equation

(2) y2z+yf(x,y,z) + g(x,y,z) = 0

or

(3) y3 + yf(x,y,z) + g(x,y,z) = 0,
where f(x,y,z) and g(x,y,z) are homogeneous polynomials in x,y,z with
degrees 3 and 5 respectively. Let HQ be a generic plane in P passing through
the triple point p. Bertini's Theorem implies that the intersection C0 of HQ
and S0 is an irreducible quintic curve with p as its only singularity. The
equations (2) and (3) imply that C0 has a triple point with an infinitely near
double point at p . Therefore C0 has geometric genus 2.

Assume that the equation for S0 is (2). Then En S is the union of a line Lx
and a double line L2. Let H be the proper transform of H0 in T. Since H0
is in general position, H meets Lx and L2 at two distinct points sx and s2
respectively. Let C be the proper transform of C0 in 5. Then C is smooth
at 5, and C has a double point at s2. Note that S1 is singular along L2. The
blowing-up of T along L2 will normalize S and C at the same time. Let
S' be the minimal resolution of S. Then the proper transform C' of C in
5 is a nonsingular curve of genus 2 and the proper transform Lx of Lx in
S' intersects C' transversally, because S is smooth at the point sx thanks to
the general position of H. On the other hand the canonical divisor, which is
a collection of exceptional divisors of first kind, is cut out by the plane y = 0
in P . So the exceptional divisors of first kind on S' do not meet C'. Let D
and B be the image of C' and L\ in the minimal model of S'. Then DB = 1
and D  = 2, B  =-2 by the adjunction formula.

Next we assume that the equation of S0 in (3). Then Er\S is a triple line L.
Let H be the proper transform of H0 . Let C be the proper transform of C0
in S. Then C has a double point at C n L. Let T* be blowing-up of T along
L and let F be the exceptional divisor. Let S* be the proper transform of S.
The equation (3) reveals that the intersection of F and the proper transform of
E in T* is a rational curve L*, which lies in S*. The proper transform C*
of C is a nonsingular curve meeting L* transversally. Since HQ is in general
position, S* is smooth at C* n L* and there is no exceptional divisor of first
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kind passing through C* n L*. Let D and B be the image of C* and L* in
the minimal model of S* respectively. Then DB = 1, D2 = 2 and Z?2 = -2.

Conversely let S be a ZC-3 surface such that there are two nonsingular curves
D and B with genera 2 and 0 respectively on S such that DB = 1. We want
to show that S is the minimal model of a quintic Zi-3 surface.

The adjunction formula implies that D2 = 2 and B2 = -2. Let k be the
canonical divisor of the curve D. Then deg(zc) = 2. Let p be the intersection
point of D and B. Then h°(D,0(2k + p)) = h°(D,0(2k)) + 1 = 4 by the
Riemann-Roch theorem. Hence a general member of the linear system \2k +p\
consists of five distinct points px ,p2,p3,p4,p5 of which none is the point p .

Lemma 2.7. Every pair of points among px ,p2,Pi,P4,P5 is not linearly equiva-
lent to the canonical divisor k.
Proof. If px + p2 were linearly equivalent to k, then p3+ p4 + p5 would be
linearly equivalent to k+p. Since h°(D,0(k)) = h°(D,0(k+p)) = 2, one
of p3 ,P4,P5 would be p. This would contradict our choice of px, ... ,p5.
Q.E.D.

Let S' be the blowing-up of S at these five points and let Ex, ... ,E5 be
the exceptional divisors. Let D' and B' be the proper transforms of D and B
respectively. Since Ks = 0,hx(D,0D(D)) = h (D,0D) = 1 by the adjunction
formula. The short exact sequence

0-*Os->Os(D)-*OD(D)-+0
implies that

h°(S,0(D)) = 3    and    hX(S,0(D)) = 0.
Hence h°(S',0(D'+ Ex + ■ ■ - + E5)) = 3 and hx(S',0(D'+ Ex + ■■ - + ES)) = 0.
The short exact sequence

0 — Os,(D' + £, + ■•• + E5) - Os,(D' + B' + £, + ••• + E5) -> Ob,(-1) -» 0
implies that

A0(Y, 0(Z)' + Zi' + £, + ••• + E5)) = 3,    hX(S', 0(D' + B' + Ex + --- + E5)) = 0.

Let H = 2D' + B' + EX+-+E5. Since Px+P2 + P3 + P4 + P5 is linearly
equivalent to 2k +p on D, the restriction of the divisor H on Z>' is linearly
equivalent to 0 on D'. Hence the short exact sequence

0-+Os,(D' + b' +EX+--+ E5) -» Os,(H) ^OD,^0

implies that h°(S', 0(H)) = A. Next we want to show that this linear system
has neither fixed components nor base points. Since h {S, 0(H - D1)) = 3, D'
is not a fixed component of \H\. Since HD1 = 0, there are no base points on
£>'. Let Hx be a member of \H\ which does not contain D'. Since HD = 0,
Hx must not contain B' or any of Er Therefore \H\ has no fixed components.
A result of Saint-Donat says that on a Zi-3 surface any linear system without
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fixed components has no base points [Sai]. Thus the linear system \D\ on S has
no base points. Hence there is an effective divisor D, on S' which is linearly
equivalent to D'+Ex-\-\-E5 and does not meet Zs, . The divisor D'+Dx+B'
is linearly equivalent to H which meets Ex at Zs, n D1. Since Hx does not
meet D', Hx and D' + Z), + B' have no common points on Ex . Hence the
linear system |ZZ| has no base points on £", . For the same reason it has no base
points on all E¡. Therefore the linear system \H\ is base point free. The linear
system ¡ZZ| defines a morphism tp from S' to P . Since HEt = 1, the images
of Ex, ... ,E5 are lines. Lemma 2.7 implies that for every pair 1 < i < j < 5
there is a member H* in |ZZ| which contains Et but not E.. Hence the images
of Ex, ... ,E5 are distinct. Since H = 5 , the image of S' under tp is a quintic
surface. Hence tp is a birational morphism. Since the images of Ex, ... ,E5
are lines, the minimal resolution of the image of S' has five disjoint exceptional
curves of first kind. By Lemma 2.6, the image of S' is normal. Suppose that
F is a curve on S' disjoint from H whose image in P is a point. Then the
algebraic index theorem implies that F < 0. Since FKS, = 0, the adjunction
formula implies that x(F) > 0. Hence the image of F is a rational double
point. Therefore the birational image of S' in P is a normal quintic surface
with a triple point as its only essential singularity.   Q.E.D.

3. Normal quintic surfaces with several triple points

In this section we discuss the normal quintic surfaces with more than one
triple points.

Lemma 3.1. Let S0 be a normal quintic surface with more than one triple points.
Assume that one triple point p has type (iv) or (v) and the blowing-up of S0 at
p is not a normal surface. Then S0 is not K-3.
Proof. We may assume that p has the equation (2) or (3). The canonical
divisor of the minimal resolution of S0 is cut out by the plane y = 0. Let q
be another triple point on S0. It suffices to show that q is not on the plane
y = 0, because then the canonical divisor of the minimal model will be -D
where D is the union of anticanonical divisors of all triple points other than
P-

Suppose that q were on the plane y = 0. With a suitable linear transforma-
tion, we may assume that q = (oo, 0,0). That would imply that the exponent
of x in each term of (2) or (3) is less than or equal to 2, whence the surface 50
is singular along the line y = 0, z = 0. This would contradict the assumption
that S0 is normal.   Q.E.D.

Lemma 3.2. Let p be a minimally elliptic triple point on a normal surface S0 in
P and let HQ be a plane passing through p. Let C, ,C2 and C3 be three curves
on the plane H0 such that (i) all C( pass through p ; (ii) all C( are smooth at p
and (iii) C( and C- intersect at p transversally at p for i / j. Let S' be the
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minimal resolution of SQ. Let Z be the fundamental cycle of p. Let C'x, C2
and C3 be the proper transforms of Cx, C2 and C3 in S' respectively. Then
C\Z = 1 for i= 1,2,3.

Proof. Let T be the blowing up of P3 at p and let E be the exceptional
plane. Let -S be the proper transform of SQ . Then the curve C = E n S is a
plane cubic curve. Thus the intersection of the proper transform of H0 and C
consist of three points a,b ,c. Since the tangent directions of C, , C2 and C3
at p are distinct, the three points a,b,c on E must be distinct and C must
be smooth at these three points. Hence the proper transforms of Cx, C2 and
C3 meet C at a, b and c transversally. Since p is a minimally elliptic point,
there are at most rational double points for Son C and none of a,b,c is a
rational double point. The result follows immediately.   Q.E.D.

Lemma 3.3. Let S0 be a normal quintic K-3 surface with more than 2 triple
points. Then S0 has exactly 3 minimally elliptic triple points which are not
collinear. The minimal model of SQ contains three nonsingular elliptic curves
Dx ,D2 and D3 with Dfij = 2 for all i ¿ j.

Proof. Since each triple point has a positive geometric genus. The sum of the
geometric genera of the triple points of S0 must be 3. This implies that >S0 has
exactly three triple points p,q,r and all of them are minimally elliptic. Let
L be the line passing through p and q . Then L must be on S0, otherwise
the intersection number of L and S0 would be greater than 5, which is
impossible. Let H be a generic plane passing through L . The intersection
of H and S0 is the union of L and a quartic curve Q. Since p and q are
triple points of the plane curve Lpq U Q, L meets Q at p and q only. This
implies that the triple point r is not on L . Let Lpr and Lqr be the lines
passing through p, r and q, r respectively and let H be the plane passing
through p, q and r. Then H n S0 is the union of L , L , L and a conic
C which passes through p, q and r.

Let S' be the minimal resolution of 50. Let Z , Zq and Zr be the fun-
damental cycles of p, q and r and S' respectively. Let L1 , L' , L'qr and
C' be the proper transforms of L , L , L and C on S' respectively. By
Lemma 3.2 L' Z = L' Z = C'Zp = 1 and etc. Let S' —» S be the blowing-
down of L1 , L1 , L1 and C'. Then S is a Zi-3 surface. Let Bx , B2 and
B3 be the direct images of Zp, Zq and Zr in S respectively. They are all
minimally elliptic cycles. The Riemann-Roch theorem implies that the linear
system |Z?(| has dimension 1 for each i. Since Bi is minimally elliptic, \B¡\
has no fixed components. Take a general member Di from each \Bf\. Then
Z),, D2 and D3 are nonsingular elliptic curves on 51 with Dp. = 2 for all
ijij.    Q.E.D.
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Lemma 3.4. Let S0 be a normal quintic K-3 surface with two triple points p
and q as its only essential singularities. Then the minimal model of S0 contains
one of the divisors in Figure 1.
Proof. We may assume that the geometric genera of p and q are 2 and 1
respectively. By Lemmas 2.4 and 3.1 p is a triple point of type (iii), (iv) or (v)
with an infinitely near triple point.

We may assume that the equation of S0 has the form

(4) f3(x ,y, z) + f4(x ,y, z) + f5(x ,y, z) = 0
with p = (0,0,0) and q = (0,0,oo). Here f(x,y,z) are homogeneous
polynomials of degree i for / = 3,4,5. Since q is a triple point, the exponent
of z in each term of (4) is less than three.  So f3(x,y,z) does not contain

■i 9 2
the monomial z . Either xz or yz must appear in f3(x,y,z), otherwise
S0 would be singular along the line x = 0, y = 0. Immediately we see that p
cannot have type (v). Without loss of generality we may assume that f3(x, y, z)
is yz or yz(y - z). Let L be the line y = 0, z = 0. This is the line whose
proper transform passes through the infinitely near triple point of p . Since S0
is assumed to have an infinitely near triple point, neither x nor x appears
in the equation (4). Hence the line L is on S0.

Let H be a generic plane passing through the line L. Then H n S0 is the
union of L and an irreducible quartic curve Q with a double point plus an
infinitely near double point at p . Thus Q has geometric genus 1. The proper
transform D of Q in the minimal model S* of S0 is a nonsingular elliptic
curve.

Let T be the blowing-up of P3 at the point p and let E be the exceptional
plane. Let 5 be the proper transform of S0. The intersection E D S is the
union of three lines Lx, L2 and L3. One of them, say L, , is on the proper
transform of the plane HQ in P passing through L and q . The intersection
point 5 of Lx , L2 and ¿3 is a minimally elliptic triple point of S and the
proper transform of Q meets E at the point s twice. Let 7t : S' —► S be the
minimal resolution of S. The fundamental cycle of the triple point s in S' is
a minimally elliptic cycle Z', which meets the proper transform of Q twice.

If the triple point p is of type (iii), then L2 ^ L3. Evidently the proper
transforms of Q, Z' (which can be replaced by a generic member in its linear
system), L2 and L3 in the minimal model of S' have the configuration (a) in
Figure 1.

If the triple point p has type (iv), then L2 = L3. There are following cases:
(A) S has two ordinary double points on L2 away from í . Then the minimal

model of S' contains a divisor (b) in Figure 1.
(B) 5 has one double point t on L2 away from 5 and S has an infinitely

near double point over the point t. That double point t can be represented by
one of the following three equations:

2,2, 2       „ 2 3, 2n 2,4 2       „z + x + xy  = 0,       z + x + xy  =0,       z + x +xy =0.
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Hence the minimal model of S' contains a divisor (c), (d) or (e) in Figure 1.
(C) S has only one ordinary double point t on L2 away from s. Then S

has an infinitely near rational double point over the point s. Thus the divisor
Z contains a rational component A¡ intersecting the proper transform of L2
transversally. Let D be a general member of the linear system \Z'\. Let L' be
the rational exceptional curve of the double point t and let M be the proper
transform of L2 in S'. Then D, M, il and Ai have the configuration in
Figure 2, because Z'A¡ = 0. Therefore the minimal model of S' contains a
divisor (b) in Figure 1.

D
9

L' M A¡

Figure 2

(D) s is the only singularity of S along the curve L2. Then the cycle Z'
contains a subcycle of type A3, D4 or D5. following the same argument as in
Case (C), one can see that the minimal model of S' contains a cycle (c), (d) or
(e) in Figure 1.    Q.E.D.

Proof of Theorem A. The only part is a consequence of Lemma 3.3.
Suppose S is a K-3 surface with three nonsingular elliptic curves Z), , D2

and D3 with D¡Dj = 2 for i ^ j. We will show that £ is birational to a
quintic surface with three triple points.

Obviously these three elliptic curves are in distinct linear systems. By proper
choosing the representatives in these linear systems, we may assume that Z), ,
D2 and D3 have the configuration in Figure 3.

We obtain a divisor H = LX+L2 + L3 + Q + EX+E2 + E3 on a surface S'
as shown in Figure 4 by blowing-up the four intersection points in Figure 3.

Here EX,E2, E3 are the proper transforms of Dx, D2 and D3 respectively
and L, ,  L2,  L3  and Q are the exceptional curves.   The self-intersections

2 2 2are L(. = Q = -1 and E( = -2 for i = 1,2,3. One can show that
h°(S' ,0(H)) = A and that \H\ has neither fixed components nor base points.
Since H2 = 5, the complete linear system defines a birational morphism from
S' to a quintic surface in P . Let D'x be a divisor on S which is linearly
equivalent to but not equal to Dx . Let E'x be the pull-back of D'x in S'. Then
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Figure 3

Figure 4

the divisor E'x + E2 + E3 + Lx is linearly equivalent to H. Hence the image
of L, in S' is different from those of L2,L3 and Q. Hence the image of the
divisor H is a reduced quintic curve, which consists of three lines and a conic.
Therefore the quintic surface must be normal. Since Zs;ZZ = 0 for / = 1,2,3.
The images of Ex , E2 and E3 are three isolated essential singularities. By
Lemma 2.1, these must be triple points.

Proof of Theorem 3. The only part is a consequence of Lemma 3.4.
Assume that S is a Zi-3 surface containing a divisor in Figure 1. One can use

the same method to blow up some points to get a surface S' with a connected
divisor H satisfying ZZ2 = 5, h°(S',0(H)) = A and |ZZ| has neither fixed
components nor base points. For instance in the case (a) of Figure 1, we may
assume that the divisor is Dx+ D2 + L + M as in Figure 5.

Choose a general point s on D2. Blow up 5 at s and at the two intersection
points of Z). and D2 to get a divisor in Figure 6.
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A

Figure 5

Figure 6

Then blow up the surface at the point t to get a surface S' with a divisor
H = Cx+ 2C2 + Ex+ 2E2 + 2E3 + E4 + Lx + L2 as in Figure 7. Then one can
check that the divisor H satisfies all the conditions. It can be verified that |ZZ|
defines a birational morphism from S' onto a normal quintic surface in P .
We leave the verifications of the other cases of Figure 1 to the readers.   Q.E.D.

L\   O 0£,

Figure 7
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4. Characterizations by double planes

Let B be a reduced sextic curve on the plane P without quadruple points
and infinitely near triple points or worse singularities. Let S be the double
cover of P2 with B as the branch locus. Then S is a Zi-3 surface (with
possibly some rational double points). The following theorem identifies those
sextic curves that will give rise to normal quintic Zi-3 surfaces with one triple
point.

Theorem 4.1. A K-3 surface S is the minimal model of a normal quintic K-3
surface with one triple point as its only essential singularity if and only if it is a
double plane branched over a sextic curve B without quadruple or infinitely near
triple points and B either has a tritangent line or contains a line.

Remark. Here a tritangent line is a line L on P such that all the intersection
numbers (L,B)   are even for every point p .

Proof. According to Theorem 2, if S is the minimal model of a normal quintic
K-3 surface with one triple point, then there are nonsingular curves D and C
with genera 2 and 0 respectively such that DC = 1. The linear system \D\ is
base point-free. It defines a double cover over P2 branched over a sextic curve
B. Since DC = 1, the image of C is a line L and the line L either splits or
is the branch locus. If L splits, then L is a tritangent line of B.

Conversely, if 5 is a double cover branched over a sextic curve B and if
L is a tritangent line to B, let H be a line in general position. The inverse
image of H under the double cover is a nonsingular curve D of genus 2. Let L
split into C and C'. Then C is a rational curve and DC = 1. Since H is in
general position, the surface S is smooth at the point DnC. Hence Theorem 2
implies that the minimal model of 5 is the minimal model of a normal quintic
K-3 surface with one triple point as its only essential singularity. If the sextic
curve B contains a line L, then the inverse image of L is a rational curve C
with DC = 1. Once again the surface S is the minimal model of a normal
quintic Zi-3 surface with one triple point by Theorem 2.   Q.E.D.

Some normal quintic Zi-3 surfaces with several triple points are also bira-
tional to sextic double planes, as can be seen by the following examples:

Examples. ( 1 ) Let B be a plane sextic curve with three ordinary double points
px, p2 and p3 as its only singularities. Let S be the canonical resolution of
the double cover of P branched over B. Let Lx, L2 and L3 be three generic
lines on P passing through px, p2 and p3 respectively. Then L. meets B
at four other points besides p¡ and the intersections at these four points are
transversal for each i. Hence the proper transforms of L,, L2 and L3 in S
are three nonsingular elliptic curves with mutual intersection number 2. Thus
S is birational to a normal quintic K-3 surface with three triple points by
Theorem 4.
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(2) Let B be a plane sextic curve with an ordinary double point px and
a double point p2 which has an infinitely near double point. Let S be the
canonical resolution of the double cover of P branched over B . Let Lx and
L2 be two generic lines on P passing through px and p2 respectively. Then
the proper transforms C,, C2 of Lx, L2 on S are nonsingular elliptic curves
with C[ C2 = 2. Since B has an infinitely near double point over p2, there
are two disjoint nonsingular rational curves Ex and E2 on S meeting C2
transversally. Thus S has a divisor of (a) in Figure 1. Hence 5 is birational
to a normal quintic Zi-3 surface with two triple points.

Proposition 4.2. Any normal quintic K-3 surface with more than one triple points
is birational to a double cover of P branched over an octic curve with two
ordinary quadruple points such that the line passing through these two quadruple
points is not a component of the branch locus.
Proof. Let 5 be the minimal model of a normal quintic K-3 surface with
more than one triple points. Then there are two nonsingular elliptic curves Cx
and C2 with CXC2 = 2. We may assume that C, and C2 intersect at two
distinct points p and q without loss of generality. Let S' be the blowing up
of S at p and q. Let Dx and D2 be the proper transforms of C, and C2
respectively and let E and F be the two exceptional curves of first kind on
S'. Let H = Dx + D2 + E + F . It's easy to see that h°(S', 0(H)) = 3 and the
linear system \H\ has neither fixed components nor base points. Since H =2
the linear system defines a double cover over P . Since HE = H F = 1 and
HDX = HD2 = 0, the images of E and F are the same line L on P . Since
L splits in the double cover, L must not be a component of the branch locus.
The image of Dx and D2 are two points on L. Since both Dx and D2 are
nonsingular elliptic curves, their images are ordinary quadruple points on the
branch locus.   Q.E.D.

Finally we give some examples of double octic planes which are birational to
normal quintic Zi-3 surfaces.

Examples. (3) Let C be a septic curve on P with an ordinary triple point p
and an ordinary quadruple point q so that the line passing through p and q
is not a component of C. Let L be a generic line on P passing through the
point p . Let S be the canonical resolution of the double cover of P branched
over the octic curve B = C + L. Then the line passing through p and q splits
into two exceptional curves of first kind Ex and E2 on 5. Let Dx and D2 be
the inverse image of p and q in S. They are nonsingular elliptic curves. After
blowing down Ex and E2, we get two nonsingular elliptic curves intersecting
at two points. Since the proper transform of L in S is a nonsingular rational
curve which connects to D{ and four other nonsingular rational curves. In
particular, S contains a divisor (b) in Figure 1. Hence 5 is birational to a
normal quintic Zi-3 surface with two triple points.
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(4) Let B be a plane octic curve with two ordinary quadruple points p, q
and two ordinary double points r,s as its only singularities. Assume that p,r
and s are collinear and the line passing through p and q is not a component of
B. Let L be the line passing through p and q and let M be the line passing
through p, r and 5. The line M is not a component of B, for otherwise B
would have more singularities. Then the line M splits in the double cover. The
minimal model of the double cover of P branched over B contains a divisor
(a) in Figure 1. Hence this surface is birational to a normal quintic Zi-3 surface
with two triple points.
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