CHARACTERIZATIONS OF NORMAL QUINTIC K - 3 SURFACES

JIN-GEN YANG

Abstract

If a normal quintic surface is birational to a $K-3$ surface then it must contain from one to three triple points as its only essential singularities. A K-3 surface is the minimal model of a normal quintic surface with only one triple point if and only if it contains a nonsingular curve of genus two and a nonsingular rational curve crossing each other transversally. The minimal models of normal quintic $K-3$ surfaces with several triple points can also be characterized by the existence of some special divisors.

0 . Introduction

Let \mathbf{C} be the complex number field. A complete surface S over \mathbf{C} is a $K-3$ surface if the canonical divisor of S is zero and $H^{1}(S)=0$. One of the simplest examples is a smooth quartic surface in \mathbf{P}^{3}. It was shown in [YJG] that some singular quintic surfaces are birational to $K-3$ surfaces. The aim of this paper is to find necessary and sufficient conditions for a $K-3$ surface to be birational to a normal quintic surface. The main results are
Theorem 1. A normal quintic surface in \mathbf{P}^{3} is birational to a $K-3$ surface only if all its essential singularities are triple points.
Theorem 2. A K-3 surface S is the minimal model of a normal quintic surface with one triple point as its only essential singularity if and only if there are two nonsingular curves D and B on S with genus 2 and 0 respectively such that $D B=1$.
Theorem 3. $A \quad K-3$ surface S is the minimal model of a normal quintic surface with two triple points as its only essential singularities if and only if S has one of the divisors listed in Figure 1.
(The solid dots are nonsingular elliptic curves. The hollow dots are nonsingular rational curves.)
Theorem 4. $A \quad K-3$ surface S is the minimal model of a normal quintic surface with more than two triple points if and only if there are three nonsingular elliptic curves C_{1}, C_{2} and C_{3} on S with $C_{i} C_{j}=2$ for $1 \leq i<j \leq 3$.

A generic line passing through a triple point of a quintic surface meets the quintic surface at two other points besides the triple point. So it is natural to

Figure 1
study the double cover of a normal quintic $K-3$ surface over a plane. In the last section some descriptions of the branch loci of such double coverings are given.

1. Preliminaries

In this section we briefly mention some standard notions concerning isolated singularities of surfaces. For details see [Art1, Art2, Lauf and Yau].

Let p be an isolated singularity on a surface V and let $\pi: M \rightarrow V$ be the minimal resolution of p. The number $h=\operatorname{dim}_{C} H^{0}\left(V, R^{1} \pi_{*}\left(O_{M}\right)\right)$ is the geometric genus of p. It is well known that

$$
\chi(V)=\chi(M)+h
$$

where $\chi(V)$ denotes the holomorphic Euler characteristic of V.
The set $A=\pi^{-1}(p)$ is called the exceptional set of p. Let $A=\bigcup A_{i}, 1 \leq$ $i \leq n$, be the decomposition of A into irreducible components.
(Remark. If p is a smooth point on a surface V and let $f: X \rightarrow V$ be a birational morphism, then $f^{-1}(p)$ is also called the exceptional set of p on X.)

A cycle D on A is an integral combination of the A_{i} 's. There is a natural partial ordering, denoted by $<$, among cycles. For any closed subvariety B of pure dimension 1 of A, there is a unique cycle Z_{B} satisfying
(i) $\operatorname{Supp}\left(Z_{B}\right)=B$;
(ii) $A_{i} Z_{B} \leq 0$ for all $A_{i} \leq B$;
(iii) Z_{B} is minimal with respect to these two properties.

Such a cycle is called a fundamental cycle. In particular, Z_{A} is the fundamental cycle of the singularity p, denoted by Z.

If $\chi(Z)=0$ then p is called a weakly elliptic point. For any weakly elliptic point p, there is a unique cycle $E \leq Z$ such that $\chi(E)=0$ and $\chi(D)>0$ for all $0<D<E$. This E is called the minimally elliptic cycle of p. If the fundamental cycle Z itself is the minimally elliptic cycle then p is called a minimally elliptic point. A singularity is called essential if it is not a rational double point.

2. Normal Quintic $K-3$ surfaces with one triple point

Throughout this paper a quintic $K-3$ surface will mean either a singular quintic surface in \mathbf{P}^{3} which is birational to a $K-3$ surface or its birational model.

Let S_{0} be a normal quintic surface and let S be its minimal resolution. Since the divisor $S_{0}+K_{\mathbf{P}^{3}}$ in \mathbf{P}^{3} is linearly equivalent to a hyperplane, an effective canonical divisor of S, if exists, is cut out by a hyperplane H_{0} passing through all essential singularities of S_{0}. Let C_{0} be the intersection of S_{0} and H. If S is birational to a $K-3$ surface, then the canonical divisor of S is a collection of exceptional divisors of first kind. Hence all components of the proper transform of C_{0} in S must be exceptional curves of first kind. This indicates that there are not many quintic $K-3$ surfaces. In particular, if S is already a minimal surface then S cannot be a $K-3$ surface.

Lemma 2.1. A normal quintic surface with essential singularities, among which one is a double point, cannot be K-3.
Proof. Let S_{0} be a normal quintic surface and let p be an essential double point on S_{0}. Let $\varphi: T \rightarrow \mathbf{P}^{3}$ be the blowing-up of \mathbf{P}^{3} at the point p and let E be the exceptional plane. Let S be the proper transform of S_{0}. The canonical divisor K_{T} of T is $\varphi^{*}\left(K_{\mathbf{p}^{3}}\right)+2 E$ and the divisor S is linearly equivalent to $\varphi^{*}\left(S_{0}\right)-2 E$. Thus $K_{T}+S$ is linearly equivalent to $\varphi^{*}(H)$ where H is a hyperplane in \mathbf{P}^{3}.

Suppose that S is birational to a $K-3$ surface. Then the canonical divisor of the minimal resolution of S_{0} is cut out by a hyperplane H_{0} passing through the point p. On T the divisor $\varphi^{*}\left(H_{0}\right)$ is the union of E and the proper transform of H_{0}. Let S^{\prime} be the minimal resolution of S. Since S has at most double points or double curves on E, the canonical divisor of S^{\prime} contains the exceptional set A of the double point p. Since S^{\prime} is birational to a $K-3$ surface, the divisor A is part of the exceptional set of a smooth point, which contradicts the assumption that p is an essential singularity. Therefore S_{0} cannot be $K-3$. Q.E.D.
Proof of Theorem 1. Let S_{0} be a normal quintic surface. If S_{0} has a 5-tuple point, then S_{0} is a cone which is birational to a ruled surface. If S_{0} has a 4-tuple point, then the projection from the 4-tuple point gives a birational map from S_{0} to a rational surface. Lemma 2.1 says that S_{0} is not $K-3$ if S_{0} has essential double point. The conclusion follows immediately. Q.E.D.

Let S_{0} be a quintic surface with a triple point p. We may assume that the equation of S_{0} is

$$
\begin{equation*}
f_{3}(x, y, z)+f_{3}(x, y, z)+f_{5}(x, y, z)=0 \tag{1}
\end{equation*}
$$

where $f_{i}(x, y, z)$ is a homogeneous polynomial of degree i.

Let C be the plane cubic curve defined by the equation $f_{3}(x, y, z)=0$. Then the triple point p has the following types in terms of the cubic curve C :
(i) C is reduced with at most ordinary double points (i.e., the rational double points of type A_{1});
(ii) C is the union of a line and a conic tangent to each other;
(iii) C is the union of three concurrent lines;
(iv) C is the union of a line and a double line;
(v) C is a triple line.

For details, see [YJG, §4].
Lemma 2.2. An isolated triple point of type (i) on a quintic surface is a minimally elliptic singularity.
Proof. See [YJG, pp. 445-446].
Lemma 2.3. Let p be an isolated triple point of type (ii) on a quintic surface, then either p is minimally elliptic or p has an infinitely near essential double point.

Proof. [YJG, p. 446(v)].
Lemma 2.4. Let S_{0} be a normal quintic surface with a triple point p of type (ii) which is not minimally elliptic. Then S_{0} is not $K-3$.
Proof. Let $\pi: T \rightarrow \mathbf{P}^{3}$ be the blowing-up of \mathbf{P}^{3} at the point p and let E be the exceptional plane. Let S be the proper transform of S_{0}. The canonical divisor K_{T} of T is $\pi^{*}\left(K_{\mathrm{P}^{3}}\right)+2 E$ and the divisor S is linearly equivalent to $\pi^{*}\left(S_{0}\right)-3 E$. Thus $K_{T}+S$ is linearly equivalent to $\pi^{*}\left(H_{0}\right)-E$ where H_{0} is a hyperplane in \mathbf{P}^{3}. So $K_{T}+S$ is linearly equivalent to the proper transform H of H_{0} in T. Let S^{\prime} be the minimal resolution on S. Then the canonical divisor of S^{\prime} is cut out by the plane H_{0} in \mathbf{P}^{3} whose proper transform H passes through the essential double point of S. Then following the same argument as in the proof of Lemma 2.1 one sees that S cannot be birational to a $K-3$ surface. Q.E.D.

Lemma 2.5. Let S_{0} be a quintic surface with a triple point as its only essential singularity. If S_{0} is $K-3$ then the triple point must have type (iv) or (v). Furthermore the blowing-up of S_{0} at the triple point is not a normal surface.
Proof. If the triple point is a minimally elliptic point, then S is birational to a surface of general type by computing the invariants. Hence Lemmas 2.2-2.4 imply that the triple point cannot have type (i) or (ii). If p is of type (iii) then it was shown in [YJG, p. 446] that S_{0} is either of general type or an elliptic surface with Kodaira dimension 1.

Hence the triple point must have type (iv) or (v). Let S be the blowing-up of S_{0} at the triple point. If S is normal, then the Kodaira dimension of S is either 1 or 2 [YJG, pp. 446-447]. Q.E.D.

Lemma 2.6. Let S be the minimal resolution of a quintic $K-3$ surface S_{0}. If there are five disjoint exceptional curves on first kind of S then S_{0} is normal.
Proof. The canonical divisor of S is cut out by a hyperplane H in \mathbf{P}^{3}. Suppose S_{0} were not normal. Then $H \cap S_{0}$ would not be reduced, whence it would have less than five irreducible components. This implies that S would have less than five disjoint exceptional divisors of first kind. Q.E.D.
Proof of Theorem 2. Assume that S_{0} is birational to a $K-3$ surface. Let T be the blowing-up of \mathbf{P}^{3} and let E be the exceptional plane. Let S be the proper transform of S_{0} in T. Because of Lemma 2.5 we may assume that S_{0} has the equation

$$
\begin{equation*}
y^{2} z+y f(x, y, z)+g(x, y, z)=0 \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{3}+y f(x, y, z)+g(x, y, z)=0 \tag{3}
\end{equation*}
$$

where $f(x, y, z)$ and $g(x, y, z)$ are homogeneous polynomials in x, y, z with degrees 3 and 5 respectively. Let H_{0} be a generic plane in \mathbf{P}^{3} passing through the triple point p. Bertini's Theorem implies that the intersection C_{0} of H_{0} and S_{0} is an irreducible quintic curve with p as its only singularity. The equations (2) and (3) imply that C_{0} has a triple point with an infinitely near double point at p. Therefore C_{0} has geometric genus 2 .

Assume that the equation for S_{0} is (2). Then $E \cap S$ is the union of a line L_{1} and a double line L_{2}. Let H be the proper transform of H_{0} in T. Since H_{0} is in general position, H meets L_{1} and L_{2} at two distinct points s_{1} and s_{2} respectively. Let C be the proper transform of C_{0} in S. Then C is smooth at s_{1} and C has a double point at s_{2}. Note that S is singular along L_{2}. The blowing-up of T along L_{2} will normalize S and C at the same time. Let S^{\prime} be the minimal resolution of S. Then the proper transform C^{\prime} of C in S^{\prime} is a nonsingular curve of genus 2 and the proper transform L_{1}^{\prime} of L_{1} in S^{\prime} intersects C^{\prime} transversally, because S is smooth at the point S_{1} thanks to the general position of H. On the other hand the canonical divisor, which is a collection of exceptional divisors of first kind, is cut out by the plane $y=0$ in \mathbf{P}^{3}. So the exceptional divisors of first kind on S^{\prime} do not meet C^{\prime}. Let D and B be the image of C^{\prime} and L_{1}^{\prime} in the minimal model of S^{\prime}. Then $D B=1$ and $D^{2}=2, B^{2}=-2$ by the adjunction formula.

Next we assume that the equation of S_{0} in (3). Then $E \cap S$ is a triple line L. Let H be the proper transform of H_{0}. Let C be the proper transform of C_{0} in S. Then C has a double point at $C \cap L$. Let T^{*} be blowing-up of T along L and let F be the exceptional divisor. Let S^{*} be the proper transform of S. The equation (3) reveals that the intersection of F and the proper transform of E in T^{*} is a rational curve L^{*}, which lies in S^{*}. The proper transform C^{*} of C is a nonsingular curve meeting L^{*} transversally. Since H_{0} is in general position, S^{*} is smooth at $C^{*} \cap L^{*}$ and there is no exceptional divisor of first
kind passing through $C^{*} \cap L^{*}$. Let D and B be the image of C^{*} and L^{*} in the minimal model of S^{*} respectively. Then $D B=1, D^{2}=2$ and $B^{2}=-2$.

Conversely let S be a $K-3$ surface such that there are two nonsingular curves D and B with genera 2 and 0 respectively on S such that $D B=1$. We want to show that S is the minimal model of a quintic $K-3$ surface.

The adjunction formula implies that $D^{2}=2$ and $B^{2}=-2$. Let k be the canonical divisor of the curve D. Then $\operatorname{deg}(k)=2$. Let p be the intersection point of D and B. Then $h^{0}(D, O(2 k+p))=h^{0}(D, O(2 k))+1=4$ by the Riemann-Roch theorem. Hence a general member of the linear system $|2 k+p|$ consists of five distinct points $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ of which none is the point p.
Lemma 2.7. Every pair of points among $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ is not linearly equivalent to the canonical divisor k.
Proof. If $p_{1}+p_{2}$ were linearly equivalent to k, then $p_{3}+p_{4}+p_{5}$ would be linearly equivalent to $k+p$. Since $h^{0}(D, O(k))=h^{0}(D, O(k+p))=2$, one of p_{3}, p_{4}, p_{5} would be p. This would contradict our choice of p_{1}, \ldots, p_{5}. Q.E.D.

Let S^{\prime} be the blowing-up of S at these five points and let E_{1}, \ldots, E_{5} be the exceptional divisors. Let D^{\prime} and B^{\prime} be the proper transforms of D and B respectively. Since $K_{S}=0, h^{1}\left(D, O_{D}(D)\right)=h^{0}\left(D, O_{D}\right)=1$ by the adjunction formula. The short exact sequence

$$
0 \rightarrow O_{S} \rightarrow O_{S}(D) \rightarrow O_{D}(D) \rightarrow 0
$$

implies that

$$
h^{0}(S, O(D))=3 \quad \text { and } \quad h^{1}(S, O(D))=0
$$

Hence $h^{0}\left(S^{\prime}, O\left(D^{\prime}+E_{1}+\cdots+E_{5}\right)\right)=3$ and $h^{1}\left(S^{\prime}, O\left(D^{\prime}+E_{1}+\cdots+E_{5}\right)\right)=0$. The short exact sequence

$$
0 \rightarrow O_{S^{\prime}}\left(D^{\prime}+E_{1}+\cdots+E_{5}\right) \rightarrow O_{S^{\prime}}\left(D^{\prime}+B^{\prime}+E_{1}+\cdots+E_{5}\right) \rightarrow O_{B^{\prime}}(-1) \rightarrow 0
$$

implies that
$h^{0}\left(S^{\prime}, O\left(D^{\prime}+B^{\prime}+E_{1}+\cdots+E_{5}\right)\right)=3, \quad h^{1}\left(S^{\prime}, O\left(D^{\prime}+B^{\prime}+E_{1}+\cdots+E_{5}\right)\right)=0$.
Let $H=2 D^{\prime}+B^{\prime}+E_{1}+\cdots+E_{5}$. Since $P_{1}+P_{2}+P_{3}+P_{4}+P_{5}$ is linearly equivalent to $2 k+p$ on D, the restriction of the divisor H on D^{\prime} is linearly equivalent to 0 on D^{\prime}. Hence the short exact sequence

$$
0 \rightarrow O_{S^{\prime}}\left(D^{\prime}+B^{\prime}+E_{1}+\cdots+E_{5}\right) \rightarrow O_{S^{\prime}}(H) \rightarrow O_{D^{\prime}} \rightarrow 0
$$

implies that $h^{0}\left(S^{\prime}, O(H)\right)=4$. Next we want to show that this linear system has neither fixed components nor base points. Since $h^{0}\left(S, O\left(H-D^{\prime}\right)\right)=3, D^{\prime}$ is not a fixed component of $|H|$. Since $H D^{\prime}=0$, there are no base points on D^{\prime}. Let H_{1} be a member of $|H|$ which does not contain D^{\prime}. Since $H D^{\prime}=0$, H_{1} must not contain B^{\prime} or any of E_{i}. Therefore $|H|$ has no fixed components. A result of Saint-Donat says that on a $K-3$ surface any linear system without
fixed components has no base points [Sai]. Thus the linear system $|D|$ on S has no base points. Hence there is an effective divisor D_{1} on S^{\prime} which is linearly equivalent to $D^{\prime}+E_{1}+\cdots+E_{5}$ and does not meet E_{1}. The divisor $D^{\prime}+D_{1}+B^{\prime}$ is linearly equivalent to H which meets E_{1} at $E_{1} \cap D^{\prime}$. Since H_{1} does not meet D^{\prime}, H_{1} and $D^{\prime}+D_{1}+B^{\prime}$ have no common points on E_{1}. Hence the linear system $|H|$ has no base points on E_{1}. For the same reason it has no base points on all E_{i}. Therefore the linear system $|H|$ is base point free. The linear system $|H|$ defines a morphism φ from S^{\prime} to \mathbf{P}^{3}. Since $H E_{i}=1$, the images of E_{1}, \ldots, E_{5} are lines. Lemma 2.7 implies that for every pair $1 \leq i<j \leq 5$ there is a member H^{*} in $|H|$ which contains E_{i} but not E_{j}. Hence the images of E_{1}, \ldots, E_{5} are distinct. Since $H^{2}=5$, the image of S^{\prime} under φ is a quintic surface. Hence φ is a birational morphism. Since the images of E_{1}, \ldots, E_{5} are lines, the minimal resolution of the image of S^{\prime} has five disjoint exceptional curves of first kind. By Lemma 2.6, the image of S^{\prime} is normal. Suppose that F is a curve on S^{\prime} disjoint from H whose image in \mathbf{P}^{3} is a point. Then the algebraic index theorem implies that $F^{2}<0$. Since $F K_{S^{\prime}}=0$, the adjunction formula implies that $\chi(F)>0$. Hence the image of F is a rational double point. Therefore the birational image of S^{\prime} in \mathbf{P}^{3} is a normal quintic surface with a triple point as its only essential singularity. Q.E.D.

3. Normal Quintic surfaces with several triple points

In this section we discuss the normal quintic surfaces with more than one triple points.

Lemma 3.1. Let S_{0} be a normal quintic surface with more than one triple points. Assume that one triple point p has type (iv) or (v) and the blowing-up of S_{0} at p is not a normal surface. Then S_{0} is not K-3.
Proof. We may assume that p has the equation (2) or (3). The canonical divisor of the minimal resolution of S_{0} is cut out by the plane $y=0$. Let q be another triple point on S_{0}. It suffices to show that q is not on the plane $y=0$, because then the canonical divisor of the minimal model will be $-D$ where D is the union of anticanonical divisors of all triple points other than p.

Suppose that q were on the plane $y=0$. With a suitable linear transformation, we may assume that $q=(\infty, 0,0)$. That would imply that the exponent of x in each term of (2) or (3) is less than or equal to 2 , whence the surface S_{0} is singular along the line $y=0, z=0$. This would contradict the assumption that S_{0} is normal. Q.E.D.
Lemma 3.2. Let p be a minimally elliptic triple point on a normal surface S_{0} in \mathbf{P}^{3} and let H_{0} be a plane passing through p. Let C_{1}, C_{2} and C_{3} be three curves on the plane H_{0} such that (i) all C_{i} pass through p; (ii) all C_{i} are smooth at p and (iii) C_{i} and C_{j} intersect at p transversally at p for $i \neq j$. Let S^{\prime} be the
minimal resolution of S_{0}. Let Z be the fundamental cycle of p. Let $C_{1}^{\prime}, C_{2}^{\prime}$ and C_{3}^{\prime} be the proper transforms of C_{1}, C_{2} and C_{3} in S^{\prime} respectively. Then $C_{i}^{\prime} Z=1$ for $i=1,2,3$.

Proof. Let T be the blowing up of \mathbf{P}^{3} at p and let E be the exceptional plane. Let S be the proper transform of S_{0}. Then the curve $C=E \cap S$ is a plane cubic curve. Thus the intersection of the proper transform of H_{0} and C consist of three points a, b, c. Since the tangent directions of C_{1}, C_{2} and C_{3} at p are distinct, the three points a, b, c on E must be distinct and C must be smooth at these three points. Hence the proper transforms of C_{1}, C_{2} and C_{3} meet C at a, b and c transversally. Since p is a minimally elliptic point, there are at most rational double points for S on C and none of a, b, c is a rational double point. The result follows immediately. Q.E.D.

Lemma 3.3. Let S_{0} be a normal quintic $K-3$ surface with more than 2 triple points. Then S_{0} has exactly 3 minimally elliptic triple points which are not collinear. The minimal model of S_{0} contains three nonsingular elliptic curves D_{1}, D_{2} and D_{3} with $D_{i} D_{j}=2$ for all $i \neq j$.

Proof. Since each triple point has a positive geometric genus. The sum of the geometric genera of the triple points of S_{0} must be 3 . This implies that S_{0} has exactly three triple points p, q, r and all of them are minimally elliptic. Let $L_{p q}$ be the line passing through p and q. Then $L_{p q}$ must be on S_{0}, otherwise the intersection number of $L_{p q}$ and S_{0} would be greater than 5 , which is impossible. Let H be a generic plane passing through $L_{p q}$. The intersection of H and S_{0} is the union of $L_{p q}$ and a quartic curve Q. Since p and q are triple points of the plane curve $L_{p q} \cup Q, L_{p q}$ meets Q at p and q only. This implies that the triple point r is not on $L_{p q}$. Let $L_{p r}$ and $L_{q r}$ be the lines passing through p, r and q, r respectively and let $H_{p q r}$ be the plane passing through p, q and r. Then $H_{p q r} \cap S_{0}$ is the union of $L_{p q}, L_{p r}, L_{q r}$ and a conic C which passes through p, q and r.

Let S^{\prime} be the minimal resolution of S_{0}. Let Z_{p}, Z_{q} and Z_{r} be the fundamental cycles of p, q and r and S^{\prime} respectively. Let $L_{p q}^{\prime}, L_{p r}^{\prime}, L_{q r}^{\prime}$ and C^{\prime} be the proper transforms of $L_{p q}, L_{p r}, L_{q r}$ and C on S^{\prime} respectively. By Lemma $3.2 L_{p q}^{\prime} Z_{p}=L_{p r}^{\prime} Z_{p}=C^{\prime} Z_{p}=1$ and etc. Let $S^{\prime} \rightarrow S$ be the blowingdown of $L_{p q}^{\prime}, L_{p r}^{\prime}, L_{q r}^{\prime}$ and C^{\prime}. Then S is a $K-3$ surface. Let B_{1}, B_{2} and B_{3} be the direct images of Z_{p}, Z_{q} and Z_{r} in S respectively. They are all minimally elliptic cycles. The Riemann-Roch theorem implies that the linear system $\left|B_{i}\right|$ has dimension 1 for each i. Since B_{i} is minimally elliptic, $\left|B_{i}\right|$ has no fixed components. Take a general member D_{i} from each $\left|B_{i}\right|$. Then D_{1}, D_{2} and D_{3} are nonsingular elliptic curves on S with $D_{i} D_{j}=2$ for all $i \neq j$. Q.E.D.

Lemma 3.4. Let S_{0} be a normal quintic $K-3$ surface with two triple points p and q as its only essential singularities. Then the minimal model of S_{0} contains one of the divisors in Figure 1.
Proof. We may assume that the geometric genera of p and q are 2 and 1 respectively. By Lemmas 2.4 and $3.1 p$ is a triple point of type (iii), (iv) or (v) with an infinitely near triple point.

We may assume that the equation of S_{0} has the form

$$
\begin{equation*}
f_{3}(x, y, z)+f_{4}(x, y, z)+f_{5}(x, y, z)=0 \tag{4}
\end{equation*}
$$

with $p=(0,0,0)$ and $q=(0,0, \infty)$. Here $f_{i}(x, y, z)$ are homogeneous polynomials of degree i for $i=3,4,5$. Since q is a triple point, the exponent of z in each term of (4) is less than three. So $f_{3}(x, y, z)$ does not contain the monomial z^{3}. Either $x z^{2}$ or $y z^{2}$ must appear in $f_{3}(x, y, z)$, otherwise S_{0} would be singular along the line $x=0, y=0$. Immediately we see that p cannot have type (v). Without loss of generality we may assume that $f_{3}(x, y, z)$ is $y z^{2}$ or $y z(y-z)$. Let L be the line $y=0, z=0$. This is the line whose proper transform passes through the infinitely near triple point of p. Since S_{0} is assumed to have an infinitely near triple point, neither x^{4} nor x^{5} appears in the equation (4). Hence the line L is on S_{0}.

Let H be a generic plane passing through the line L. Then $H \cap S_{0}$ is the union of L and an irreducible quartic curve Q with a double point plus an infinitely near double point at p. Thus Q has geometric genus 1 . The proper transform D of Q in the minimal model S^{*} of S_{0} is a nonsingular elliptic curve.

Let T be the blowing-up of \mathbf{P}^{3} at the point p and let E be the exceptional plane. Let S be the proper transform of S_{0}. The intersection $E \cap S$ is the union of three lines L_{1}, L_{2} and L_{3}. One of them, say L_{1}, is on the proper transform of the plane H_{0} in \mathbf{P}^{3} passing through L and q. The intersection point s of L_{1}, L_{2} and L_{3} is a minimally elliptic triple point of S and the proper transform of Q meets E at the point s twice. Let $\pi: S^{\prime} \rightarrow S$ be the minimal resolution of S. The fundamental cycle of the triple point s in S^{\prime} is a minimally elliptic cycle Z^{\prime}, which meets the proper transform of Q twice.

If the triple point p is of type (iii), then $L_{2} \neq L_{3}$. Evidently the proper transforms of Q, Z^{\prime} (which can be replaced by a generic member in its linear system), L_{2} and L_{3} in the minimal model of S^{\prime} have the configuration (a) in Figure 1.

If the triple point p has type (iv), then $L_{2}=L_{3}$. There are following cases:
(A) S has two ordinary double points on L_{2} away from s. Then the minimal model of S^{\prime} contains a divisor (b) in Figure 1.
(B) S has one double point t on L_{2} away from s and S has an infinitely near double point over the point t. That double point t can be represented by one of the following three equations:

$$
z^{2}+x^{2}+x y^{2}=0, \quad z^{2}+x^{3}+x y^{2}=0, \quad z^{2}+x^{4}+x y^{2}=0 .
$$

Hence the minimal model of S^{\prime} contains a divisor (c), (d) or (e) in Figure 1.
(C) S has only one ordinary double point t on L_{2} away from s. Then S has an infinitely near rational double point over the point s. Thus the divisor Z^{\prime} contains a rational component A_{i} intersecting the proper transform of L_{2} transversally. Let D be a general member of the linear system $\left|Z^{\prime}\right|$. Let L^{\prime} be the rational exceptional curve of the double point t and let M be the proper transform of L_{2} in S^{\prime}. Then D, M, L^{\prime} and A_{i} have the configuration in Figure 2, because $Z^{\prime} A_{i}=0$. Therefore the minimal model of S^{\prime} contains a divisor (b) in Figure 1.

Figure 2
(D) s is the only singularity of S along the curve L_{2}. Then the cycle Z^{\prime} contains a subcycle of type A_{3}, D_{4} or D_{5}. following the same argument as in Case (C), one can see that the minimal model of S^{\prime} contains a cycle (c), (d) or (e) in Figure 1. Q.E.D.

Proof of Theorem 4. The only part is a consequence of Lemma 3.3.
Suppose S is a $K-3$ surface with three nonsingular elliptic curves D_{1}, D_{2} and D_{3} with $D_{i} D_{j}=2$ for $i \neq j$. We will show that S is birational to a quintic surface with three triple points.

Obviously these three elliptic curves are in distinct linear systems. By proper choosing the representatives in these linear systems, we may assume that D_{1}, D_{2} and D_{3} have the configuration in Figure 3.

We obtain a divisor $H=L_{1}+L_{2}+L_{3}+Q+E_{1}+E_{2}+E_{3}$ on a surface S^{\prime} as shown in Figure 4 by blowing-up the four intersection points in Figure 3.

Here E_{1}, E_{2}, E_{3} are the proper transforms of D_{1}, D_{2} and D_{3} respectively and L_{1}, L_{2}, L_{3} and Q are the exceptional curves. The self-intersections are $L_{i}^{2}=Q^{2}=-1$ and $E_{i}^{2}=-2$ for $i=1,2,3$. One can show that $h^{0}\left(S^{\prime}, 0(H)\right)=4$ and that $|H|$ has neither fixed components nor base points. Since $H^{2}=5$, the complete linear system defines a birational morphism from S^{\prime} to a quintic surface in \mathbf{P}^{3}. Let D_{1}^{\prime} be a divisor on S which is linearly equivalent to but not equal to D_{1}. Let E_{1}^{\prime} be the pull-back of D_{1}^{\prime} in S^{\prime}. Then

Figure 3

Figure 4
the divisor $E_{1}^{\prime}+E_{2}+E_{3}+L_{1}$ is linearly equivalent to H. Hence the image of L_{1} in S^{\prime} is different from those of L_{2}, L_{3} and Q. Hence the image of the divisor H is a reduced quintic curve, which consists of three lines and a conic. Therefore the quintic surface must be normal. Since $E_{i} H=0$ for $i=1,2,3$. The images of E_{1}, E_{2} and E_{3} are three isolated essential singularities. By Lemma 2.1, these must be triple points.

Proof of Theorem 3. The only part is a consequence of Lemma 3.4.
Assume that S is a $K-3$ surface containing a divisor in Figure 1. One can use the same method to blow up some points to get a surface S^{\prime} with a connected divisor H satisfying $H^{2}=5, h^{0}\left(S^{\prime}, 0(H)\right)=4$ and $|H|$ has neither fixed components nor base points. For instance in the case (a) of Figure 1, we may assume that the divisor is $D_{1}+D_{2}+L+M$ as in Figure 5.

Choose a general point s on D_{2}. Blow up S at s and at the two intersection points of D_{1} and D_{2} to get a divisor in Figure 6.

Figure 5

Figure 6

Then blow up the surface at the point t to get a surface S^{\prime} with a divisor $H=C_{1}+2 C_{2}+E_{1}+2 E_{2}+2 E_{3}+E_{4}+L_{1}+L_{2}$ as in Figure 7. Then one can check that the divisor H satisfies all the conditions. It can be verified that $|H|$ defines a birational morphism from S^{\prime} onto a normal quintic surface in \mathbf{P}^{3}. We leave the verifications of the other cases of Figure 1 to the readers. Q.E.D.

Figure 7

4. Characterizations by double planes

Let B be a reduced sextic curve on the plane P^{2} without quadruple points and infinitely near triple points or worse singularities. Let S be the double cover of P^{2} with B as the branch locus. Then S is a $K-3$ surface (with possibly some rational double points). The following theorem identifies those sextic curves that will give rise to normal quintic $K-3$ surfaces with one triple point.

Theorem 4.1. $A \quad K-3$ surface S is the minimal model of a normal quintic $K-3$ surface with one triple point as its only essential singularity if and only if it is a double plane branched over a sextic curve B without quadruple or infinitely near triple points and B either has a tritangent line or contains a line.
Remark. Here a tritangent line is a line L on P^{2} such that all the intersection numbers $(L, B)_{p}$ are even for every point p.

Proof. According to Theorem 2, if S is the minimal model of a normal quintic $K-3$ surface with one triple point, then there are nonsingular curves D and C with genera 2 and 0 respectively such that $D C=1$. The linear system $|D|$ is base point-free. It defines a double cover over \mathbf{P}^{2} branched over a sextic curve B. Since $D C=1$, the image of C is a line L and the line L either splits or is the branch locus. If L splits, then L is a tritangent line of B.

Conversely, if S is a double cover branched over a sextic curve B and if L is a tritangent line to B, let H be a line in general position. The inverse image of H under the double cover is a nonsingular curve D of genus 2. Let L split into C and C^{\prime}. Then C is a rational curve and $D C=1$. Since H is in general position, the surface S is smooth at the point $D \cap C$. Hence Theorem 2 implies that the minimal model of S is the minimal model of a normal quintic $K-3$ surface with one triple point as its only essential singularity. If the sextic curve B contains a line L, then the inverse image of L is a rational curve C with $D C=1$. Once again the surface S is the minimal model of a normal quintic $K-3$ surface with one triple point by Theorem 2. Q.E.D.

Some normal quintic $K-3$ surfaces with several triple points are also birational to sextic double planes, as can be seen by the following examples:

Examples. (1) Let B be a plane sextic curve with three ordinary double points p_{1}, p_{2} and p_{3} as its only singularities. Let S be the canonical resolution of the double cover of \mathbf{P}^{2} branched over B. Let L_{1}, L_{2} and L_{3} be three generic lines on \mathbf{P}^{2} passing through p_{1}, p_{2} and p_{3} respectively. Then L_{i} meets B at four other points besides p_{i} and the intersections at these four points are transversal for each i. Hence the proper transforms of L_{1}, L_{2} and L_{3} in S are three nonsingular elliptic curves with mutual intersection number 2. Thus S is birational to a normal quintic $K-3$ surface with three triple points by Theorem 4.
(2) Let B be a plane sextic curve with an ordinary double point p_{1} and a double point p_{2} which has an infinitely near double point. Let S be the canonical resolution of the double cover of \mathbf{P}^{2} branched over B. Let L_{1} and L_{2} be two generic lines on \mathbf{P}^{2} passing through p_{1} and p_{2} respectively. Then the proper transforms C_{1}, C_{2} of L_{1}, L_{2} on S are nonsingular elliptic curves with $C_{1} C_{2}=2$. Since B has an infinitely near double point over p_{2}, there are two disjoint nonsingular rational curves E_{1} and E_{2} on S meeting C_{2} transversally. Thus S has a divisor of (a) in Figure 1. Hence S is birational to a normal quintic $K-3$ surface with two triple points.

Proposition 4.2. Any normal quintic $K-3$ surface with more than one triple points is birational to a double cover of \mathbf{P}^{2} branched over an octic curve with two ordinary quadruple points such that the line passing through these two quadruple points is not a component of the branch locus.

Proof. Let S be the minimal model of a normal quintic $K-3$ surface with more than one triple points. Then there are two nonsingular elliptic curves C_{1} and C_{2} with $C_{1} C_{2}=2$. We may assume that C_{1} and C_{2} intersect at two distinct points p and q without loss of generality. Let S^{\prime} be the blowing up of S at p and q. Let D_{1} and D_{2} be the proper transforms of C_{1} and C_{2} respectively and let E and F be the two exceptional curves of first kind on S^{\prime}. Let $H=D_{1}+D_{2}+E+F$. It's easy to see that $h^{0}\left(S^{\prime}, 0(H)\right)=3$ and the linear system $|H|$ has neither fixed components nor base points. Since $H^{2}=2$ the linear system defines a double cover over \mathbf{P}^{2}. Since $H E=H F=1$ and $H D_{1}=H D_{2}=0$, the images of E and F are the same line L on \mathbf{P}^{2}. Since L splits in the double cover, L must not be a component of the branch locus. The image of D_{1} and D_{2} are two points on L. Since both D_{1} and D_{2} are nonsingular elliptic curves, their images are ordinary quadruple points on the branch locus. Q.E.D.

Finally we give some examples of double octic planes which are birational to normal quintic $K-3$ surfaces.

Examples. (3) Let C be a septic curve on \mathbf{P}^{2} with an ordinary triple point p and an ordinary quadruple point q so that the line passing through p and q is not a component of C. Let L be a generic line on \mathbf{P}^{2} passing through the point p. Let S be the canonical resolution of the double cover of \mathbf{P}^{2} branched over the octic curve $B=C+L$. Then the line passing through p and q splits into two exceptional curves of first kind E_{1} and E_{2} on S. Let D_{1} and D_{2} be the inverse image of p and q in S. They are nonsingular elliptic curves. After blowing down E_{1} and E_{2}, we get two nonsingular elliptic curves intersecting at two points. Since the proper transform of L in S is a nonsingular rational curve which connects to D_{1} and four other nonsingular rational curves. In particular, S contains a divisor (b) in Figure 1. Hence S is birational to a normal quintic $K-3$ surface with two triple points.
(4) Let B be a plane octic curve with two ordinary quadruple points p, q and two ordinary double points r, s as its only singularities. Assume that p, r and s are collinear and the line passing through p and q is not a component of B. Let L be the line passing through p and q and let M be the line passing through p, r and s. The line M is not a component of B, for otherwise B would have more singularities. Then the line M splits in the double cover. The minimal model of the double cover of \mathbf{P}^{2} branched over B contains a divisor (a) in Figure 1. Hence this surface is birational to a normal quintic $K-3$ surface with two triple points.

References

[Art 1] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136. [Art2] __, Some numerical criteria for contractibility of curves on an algebraic surface, Amer. J. Math. 84 (1962), 485-496.
[Bvl] A. Beauville, Surfaces algébriques complexes, Asterisque 54, Soc. Math. France, Paris (1978)
[Hart] R. Hartshorne, Algebraic geometry, Springer-Verlag, Berlin and New York, 1977.
[Lauf] H. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
[Sai] B. Saint-Donat, Projective models on K 3-surfaces, Amer. J. Math. 96 (1974), 602-639.
[Yau] S. S-T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), 269329.
[YJG] Jin-Gen Yang, On quintic surfaces of general type, Trans. Amer. Math. Soc. 295 (1986), 431-473.

Institute of Mathematics, Fudan University, Shanghai, China

