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CHARACTERIZATIONS OF REAL HYPERSURFACES

IN COMPLEX SPACE FORMS

IN TERMS OF WEINGARTEN MAP

YOUNG JIN SUH

ABSTRACT. This paper consists of two parts. One is to give the notion of the ruled
real hypersurfaces in a complex space form $M_{n}(c),$ $c\neq 0$ and to calculate the expres-
sion of the covariant derivative of its Weingarten map. Moreover, we know that real
hypersurfaces of type $A$ also satisfy this expression. The other is to show that ruled
real hypersurfaces or real hypersurfaces of type $A$ are the only real hypersurfaces in
$M_{n}(c)$ which satisfy this expression.

1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional

curvature $c$ is called a complex space form, which is denoted by $M_{n}(c)$ . A complete

and simply connected complex space form consists of a complex projective space

$P_{\mathfrak{n}}C$ , a complex Euclidean space $C^{\mathfrak{n}}$ or a complex hyperbolic space $H_{\mathfrak{n}}C$ , according

as $c>0,c=0$ or $c<0$ . The induced almost contact metric structure of a real

hypersurface $M$ of $M_{n}(c)$ is denoted by $(\phi, \xi, \eta, g)$ .
There exist many studies about real hypersurfaces of $M_{\mathfrak{n}}(c)$ . One of the first

researches is the classffication of homogeneous real hypersurfaces of a complex

projective space $P_{\mathfrak{n}}C$ by Takagi [14], who showed that these hypersurfaces of $P_{n}C$

could be divided into six types which are said to be of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ , and

$E$ , and in [3] Cecil-Ryan and [7] Kimura proved that they are realized as the tubes

of constant radius over Kaehlerian submanifolds if the structure vector field $\xi$ is

principal. Also Berndt [2] showed recently that al real hypersurfaces with constant

principal curvatures of a complex hyperbolic space $H_{\mathfrak{n}}C$ are realized as the tubes

of constant radius over certain submanifolds when the structure vector field $\xi$ is

principal. Nowadays in $H_{n}C$ they are said to be of type $A_{0},$ $A_{1},$ $A_{2}$ , and $B$ .
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Now, let us consider the following conditions that the second fundamental tensor
$A$ of $M$ in $M_{n}(c),c\neq 0$ satisfies

(1.1) $(\nabla_{X}A)Y=-\frac{c}{4}\{\eta(Y)\phi X+g(\phi X,Y)\xi\}\backslash $
’

for any tangent vector fields $X$ and $Y$ of $M$ .
Maeda [10] investigated the condition (1.1) and used it to find a lower bound of

$||\nabla A\Vert$ for real hypersurfaces in $P_{n}C$ . $ $ fact, it was shown that $\Vert\nabla A||^{2}\geq\frac{c^{2}}{4}(n-1)$

for such hypersurfaces and the equality holds if and only if the condition (1.1)

holds. Moreover, in this case it was known that $M$ is locally congruent to one
of homogeneous real hypersurfaces of type $A_{1}$ , and $A_{2}$ . Also Chen,Ludden and
Montiel [4] generalized this inequality to real hypersurfaces in $H_{\mathfrak{n}}C$ and showed
that the equality holds if and only if $M$ is congruent to one of type $A_{0},A_{1}$ , and $A_{2}$ .

Now let $T_{0}$ be a distribution defined by a subspace $T_{0}(x)=\{X\in T_{x}M:X\perp\xi_{(x)}\}$

in the tangent subspace $T_{x}M$ of a real hypersurface $M$ of $M_{n}(c),$ $c\neq 0$ , which is
orthogonal to the structure vector field $\xi$ and holomorphic with respect to the
structure tensor $\phi$ . If we restrict the formula (1.1) to the orthogonal distribution
$T_{0}$ , then for any vector fields $X$ and $Y$ in $T_{0}$ the shape operator $A$ of $M$ satisfies
the following conditions

(1.2) $(\nabla_{X}A)Y=-\frac{c}{4}g(\phi X,Y)\xi$ .

Thus the above condition (1.2) is weaker than the condition (1.1). Then it is natural
that real hypersurfaces of type $A$ in $M_{\mathfrak{n}}(c),$ $c\neq 0$ , should satisfy the condition (1.2).

On the other hand, as an example of special real hypersurfaces of $P_{\mathfrak{n}}C$ differ-
ent $hom$ the above ones, we can give a ruled real hypersurface. Kimura [8] and
the present author [1] obtained some properties about ruled real hypersurfaces of
$P_{n}C$ and $H_{n}C,$ $n\geq 3$ , respectively. In particular, examples of minimal ruled real
hypersurfaces of $P_{n}C$ and $H_{\mathfrak{n}}C$ , $n\geq 3$ , are constructed respectively.

Now let $M$ be a ruled real hypersurface in $M_{\mathfrak{n}}(c),$ $c\neq 0$ , which wif be constructed
in section 3. Then it is well known that its structure vector field $\xi$ is not principal.
Thus we can put $A\xi=\alpha\xi+\beta U$ , where $U$ is a unit vector field in $T_{0}$ and $\alpha$ and $\beta$

are smooth functions on $M$ . Then it will be shown explicitly in section 3 that the
shape operator $A$ of the ruled real hypersurface $M$ in $M_{\mathfrak{n}}(c)$ satisfies

(1.3) $(\nabla_{X}A)Y=f(X, Y)\xi$ ,
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where

(1.4) $f(X, Y)=\beta^{2}\{g(X, U)g(Y, \phi U)+g(X, \phi U)g(Y, U)\}-\frac{c}{4}g(\phi X, Y)$

for any vector field $X$ and $Y$ in the distribution $T_{0}$ . When the function $\beta$ is identi-
cally vanishing, the condition (1.3) reduces to the condition (1.2). IMrom this point

of view the purpose of this paper is to treat the converse problem with the condition
(1.3) and to generalize the main result in [6]. Namely we give a characterization
of real hypersurfaces of type $A$ or ruled real hypersurfaces in $M_{n}(c),$ $c\neq 0$ , as the

following

Theorem. Let $M$ be a $reaI$ hypersurface of $M_{\mathfrak{n}}(c),$ $c\neq 0,$ $n\geq 3$ . ff it satisfies
(1.3), then $M$ is locally congruent to a reai hypersurface of type $A$ or a ruled real

hypersulface.

In section 2 we recal some fundamental properties of real hypersurface of $M_{n}(c)$ ,
$c\neq 0$ . In section 3 let us calculate explicitly the component of $(\nabla_{X}A)Y$ for any

vector fields $X$ and $Y$ in $T_{0}$ in the direction of the structure vector field. Finally in

section 4 by using the new method of mod $\xi$ we prove Lemmas 4.1 and 4.2, which
will be useful to get the complete proof of the above Theorem.

The present author would like to express his sincere gratitude to the referee for

his valuable suggestions and comments.

\S 2. Preliminaries.

Let $M$ be a real hypersurface of $n(\geq 2)$-dimensional complex space form $M_{\mathfrak{n}}(c)$

of constant holomorphic sectional curvature $c(\neq 0)$ and let $C$ be a unit normal field

on a neighborhood of a point $x$ in $M$ . We denote by $J$ an almost complex structure
of $M_{n}(c)$ . For a local vector field $X$ on a neighborhood of $x$ in $M$ , the images of
$X$ and $C$ under the linear transformation $J$ can be represented as

$JX=\phi X+\eta(X)C$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$ of
$M$ , while $\eta$ and $\xi$ denotea l-form anda vector field onaneighborhood ofx in M,

respectively. Moreover, it is seen that $g(\xi,X)=\eta(X),whereg$ denotes the induced

Riemannian metric on $M$ . By properties of the almost complex structure $J$ , the

set $(\phi,\xi, \eta,g)$ of tensors satisfies

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,
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where $I$ denotes the identity transformation. Accordingly, the set is so called
an almost contact metric structure. Furthermore the covariant derivative of the
structure tensors are given by

(2.1) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX,Y)\xi$ , $\nabla x\xi=\phi AX$ ,

where $\nabla$ is the Riemannian connection of $g$ and $A$ denotes the shape operator with
respect to the unit normal $C$ on $M$ .

Since the ambient space is of constant holomorphic sectional curvature $c$ , the
equations of Gauss and Codazzi are respectively given as follows

(2.2)

$R(X,Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X,Y)\phi Z\}+g(AY, Z)AX-g(AX, Z)AY$,

(2.3) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{c}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X,Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$ .

Next we suppose that the structure vector field $\xi$ is principal with corresponding
principal curvature $\alpha$ . Then it is seen in [5] and [10] that $\alpha$ is constant on $M$ and

it satisfies

(2.4) $A\phi A=\frac{c}{4}\phi+\frac{1}{2}\alpha(A\phi+\phi A)$ ,

and hence, by (2.1) and (2.3), we get

(2.5) $\nabla_{\xi}A=-\frac{1}{2}\alpha(A\phi-\phi A)$ .

\S 3. Ruled real hypersurfaces.

This section is concerned with necessary properties about ruled real hypersur-
faces. First of all, we define a ruled real hypersurface $M$ of $M_{\mathfrak{n}}(c),$ $c\neq 0$ . Let
$\gamma$ : $I\rightarrow M_{n}(c)$ be any regular curve. For any $t(\in I)$ let $M_{\mathfrak{n}-1}^{(\ell)}(c)$ be a totally geo-
desic complex hypersurface through the point $\gamma(t)$ of $M_{\mathfrak{n}}(c)$ which is orthogonal to
a holomorphic plane spanned by $\gamma^{l}(t)$ and $J\gamma^{\prime}(t)$ . Set $M=\{x\in M_{n-1}^{(\ell)}(c) : t\in I\}$ .
Then, by the construction, $M$ becomes a real hypersurface of $M_{n}(c)$ , which is called
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a ruled real hypersurface. Under this construction the ruled real hypersurface $M$

of $M_{n}(c),$ $c\neq 0$ , has some fundamental properties.

Let us put $A\xi=\alpha\xi+\beta U$ , where $U$ is a unit vector orthogonal to $\xi$ and $\alpha$ and

$\beta(\beta\neq 0)$ are smooth functions on $M$ . As is seen in [9], the shape operator $A$ satisfies

(3.1) $ AU=\beta\xi$ , $AX=0$

for any vector field $X$ orthogonal to $\xi$ and $U$ . Then it turns out to be

(3.2) $ A\phi X=-\beta g(X, \phi U)\xi$ , $\phi AX=0,X\in T_{0}$ .

Next the covariant derivative $(\nabla_{X}A)Y$ with respect to $X$ and $Y$ in $T_{0}$ is explicitly

expressed. The equation (2.3) of Codazzi gives us

$(\nabla_{X}A)\xi-(\nabla_{\xi}A)X=-\frac{c}{4}\phi X$ .

By the direct calculation of the left hand side of the above relation and using the

second equation of (3.2) we get

$d\alpha(X)\xi+d\beta(X)U+\frac{c}{4}\phi X+\beta\nabla_{X}U-\nabla_{\xi}(AX)+A\nabla_{\xi}X=0.X\in T_{0}$ .

Let $T_{1}$ be a distribution defined by a subspace $T_{1}(x)=\{u\in T_{0}(x)$ : $g(u, U(x))=$

$g(u, \phi U(x))=0\}$ . Since $AX$ is expressed as the linear combination of $\xi$ and $U$ by

(3.1), we can derive from (3.1),(3.2) and the above equation the following relations:

$\beta\nabla_{X}U=\left\{\begin{array}{ll}(\beta^{2}-\frac{c}{4})\phi X, & X=U\\0, & X=\phi U\\-\frac{c}{4}\phi X, & X\in T_{1},\end{array}\right.$

$d\beta(X)=\left\{\begin{array}{ll}0, & X=U\\\beta^{2}+\frac{c}{4}, & X=\phi U\\0, & X\in T_{1}.\end{array}\right.$

Using these relations we can obtain the component of $(\nabla xA)Y,$ $X,$ $Y\in T_{0}$ in the

direction of $\xi$ . In fact, we have

$g((\nabla_{X}A)Y,\xi)=g((\nabla_{X}A)\xi, Y)=g(\nabla_{X}(A\xi)-A\nabla_{X}\xi, Y)$

$=d\beta(X)g(Y, U)+\beta g(\nabla xU,Y)$ ,

from which together with the above equations it follows

(3.5) $(\nabla_{X}A)Y=f(X,Y)\xi$ , $X,$ $Y\in T_{0}$ ,
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where we put

$f(X, Y)$

(3.6)
$=\beta^{2}\{g(X, U)g(Y, \phi U)+g(X, \phi U)g(Y, U)\}-\frac{c}{4}g(\phi X, Y)$ .

Accordingly it is seen that for any $X$ and $Y$ in $T_{0}$

$g((\nabla_{\xi}A)X,Y)=\beta^{2}\{g(X, U)g(Y,\phi U)+g(X, \phi U)g(Y, U)\}$ ,

from which it follows that

(3.7) $(\nabla_{\xi}A)X=\beta^{2}\{g(X, \phi U)U+g(X, U)\phi U\}+g((\nabla_{X}A)\xi,\xi)\xi$ ,

where $g((\nabla xA)\xi,\xi)=d\alpha(X)+2\beta g(AX, \phi U)$ . When the function $\beta$ in (3.6) van-
ishes, by virtue of (1.1) and (1.2) we know that real hypersurfaces of type $A$ also
satisfy the formula (3.5).

\S 4. Proof of the Theorem.

In this section we are only concerned with the proof of Theorem. Let $M$ be the
real hypersurface of $M_{\mathfrak{n}}(c),$ $c\neq 0,$ $n\geq 3$ . Throughout this section, unless otherwise
stated, we assume that the structure vector field $\xi$ is not principal. Then we can
put $A\xi=\alpha\xi+\beta U$ , where $U$ is a unit vector field in the holomorphic distribution $T_{0}$

and $\alpha$ and $\beta$ are smooth functions on $M$ . First assume that the following condition
on $M$ :

(4.1) $(\nabla_{X}A)Y=f(X,Y)\xi$ , $X,$ $Y\in T_{0}$ ,

where

(4.2) $f(X, Y)=\beta^{2}\{g(X, U)g(Y, \phi U)+g(Y, U)g(X, \phi U)\}-\frac{c}{4}g(\phi X, Y)$ .

The equation (4.1) is also equivalent to

(4.3) $(\nabla_{X}A)\xi\equiv\beta^{2}\{g(X, \phi U)U+g(X, U)\phi U\}-\frac{c}{4}\phi X$ (mod $\xi$)

for any vector field $X$ in $T_{0}$ . Moreover, from (3.7) it follows that

(4.4) $(\nabla_{\xi}A)X\equiv\beta^{2}\{g(X, \phi U)U+g(X, U)\phi U\}$ (mod $\xi$), $X\in T_{0}$ .
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The $\xi$-component of the vector field $(\nabla_{\xi}A)X$ is given by

(4.5) $g((\nabla_{\xi}A)X, \xi)=d\alpha(X)+2\beta g(AX, \phi U)$

for any vector field $X$ in $T_{0}$ .
For any vector field $Z$ the orthogonal decomposition in the direction of $\xi$ is

expressed as

$ Z=(Z)_{0}+g(Z, \xi)\xi$ ,

where $(Z)_{0}$ denotes the $T_{0}$-component of $Z$ . Since the component of the vector

field $\nabla_{X}Y$ in the direction of $\xi$ is given $by-g(\phi AX, Y)$ by the second equation of

(2.1), we have the following orthogonal decomposition

$\nabla_{X}Y=(\nabla_{X}Y)_{0}-g(\phi AX,Y)\xi$ .

Using the above orthogonal decomposition and taking account of (4.1),(4.3) and

calculating directly $(\nabla_{X}\nabla_{Y}A)Z$ which is defined by

$(\nabla_{X}\nabla_{Y}A)Z=\nabla_{X}((\nabla_{Y}A)Z)-(\nabla_{\nabla_{X}Y}A)Z-(\nabla_{Y}A)(\nabla_{X}Z)$ ,

we see that it satisfies

(4.6)
$(\nabla x\nabla YA)Z\equiv\beta^{2}g(\phi AX, Y)\{g(Z, \phi U)U+g(Z, U)\phi U\}$

$+g(\phi AX, Z)[\beta^{2}\{g(Y, \phi U)U+g(Y, U)\phi U\}-\frac{c}{4}\phi Y]$

$+[\beta^{2}\{g(Y, \phi U)g(Z, U)+g(Y, U)g(Z, \phi U)\}$

$-\frac{c}{4}g(\phi Y, Z)]\phi AX$

(mod $\xi$ )

for any vector fields $X,Y$ and $Z$ in $T_{0}$ .
On the other hand, it is well known that the Ricci formula for the shape operator

$A$ is given by

$(\nabla x\nabla YA)Z-(\nabla Y\nabla xA)Z=R(X, Y)(AZ)-A(R(X,Y)Z)$

for any vector fields $X,Y$ and $Z$ . Accordingly, taking $X,Y$ and $Z$ in the distribution
$T_{0}$ in the above Ricci formula and taking account of the Gauss equation (2.2) and
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(4.6) we obtain

(4.7)
$\beta^{2}g((A\phi+\phi A)X,Y)\{g(Z,\phi U)U+g(Z, U)\phi U\}$

$+g(\phi M, Z)[\beta^{2}\{g(Y, \phi U)U+g(Y, U)\phi U\}-\frac{c}{4}\phi Y]$

$-g(\phi AY, Z)[\beta^{2}\{g(X, \phi U)U+g(X, U)\phi U\}-\frac{c}{4}\phi X]$

$+[\beta^{2}\{g(Y, \phi U)g(Z, U)+g(Y, U)g(Z, \phi U)\}-\frac{c}{4}g(\phi Y, Z)]\phi AX$

$-[\beta^{2}\{g(X, \phi U)g(Z, U)+g(X, U)g(Z, \phi U)\}-\frac{c}{4}g(\phi X,Z)]\phi AY$

$\equiv\frac{c}{4}\{g(Y,AZ)X-g(X,AZ)Y+g(\phi Y,AZ)\phi X-g(\phi X,AZ)\phi Y$

$-2g(\phi X,Y)\phi AZ\}$

$-\frac{c}{4}\{g(Y, Z)AX-g(X, Z)AY+g(\phi Y, Z)A\phi X-g(\phi X, Z)A\phi Y$

$-2g(\phi X,Y)A\phi Z\}$

$-g(Y,AZ)A^{2}X+g(X,AZ)A^{2}Y+g(Y,A^{2}Z)AX-g(X,A^{2}Z)AY$

(mod $\xi$)

for any vector fields $X,Y$ and $Z$ in $T_{0}$ . Putting $Z=U$ in (4.7), we have

(4.8)
$\beta^{2}g((A\phi+\phi A)X, Y)\phi U$

$+g(\phi AX, U)[\beta^{2}\{g(Y, \phi U)U+g(Y, U)\phi U\}-\frac{c}{4}\phi Y]$

$-g(\phi AY, U)[\beta^{2}\{g(X, \phi U)U+g(X, U)\phi U\}-\frac{c}{4}\phi X]$

$+(\beta^{2}+\frac{c}{4})\{g(Y, \phi U)\phi AX-g(X, \phi U)\phi AY\}$

$\equiv\frac{c}{4}\{g(Y,AU)X-g(X,AU)Y+g(\phi Y,AU)\phi X-g(\phi X,AU)\phi Y$

$-2g(\phi X,Y)\phi AU\}$

$-\frac{c}{4}\{g(Y, U)AX-g(X, U)AY+g(\phi Y, U)A\phi X-g(\phi X, U)A\phi Y$

$-2g(\phi X,Y)A\phi U\}$

$-g(Y,AU)A^{2}X+g(X, AU)A^{2}Y+g(Y,A^{2}U)AX-g(X,A^{2}U)AY$

(mod $\xi$)

for any vector fields $X$ and $Y$ in $T_{0}$ . In particular, putting $Y=U$ and supposing
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that $X$ is orthogonal to $U$ in (4.8), we have

(4.9)
$\beta^{2}g((A\phi+\phi A)X, U)\phi U$

$+g(\phi AX, U)(\beta^{2}-\frac{c}{4})\phi U-g(\phi AU, U)\{\beta^{2}g(X, \phi U)U-\frac{c}{4}\phi X\}$

$-(\beta^{2}+\frac{c}{4})g(X, \phi U)\phi AU$

$\equiv\frac{c}{4}\{g(U, AU)X-g(X, AU)U+g(\phi U, AU)\phi X-g(\phi X, AU)\phi U$

$-2g(\phi X, U)\phi AU\}$

$-\frac{c}{4}\{AX+3g(X, \phi U)A\phi U\}$

$-g(U, AU)A^{2}X+g(X, AU)A^{2}U+g(U, A^{2}U)AX-g(X, A^{2}U)AU$

(mod $\xi$ )

for any vector field $X$ in $T_{0}$ orthogonal to $U$ . Taking the inner product of (4.9)

with $U$ , we have

$(\beta^{2}+c)g(AU, \phi U)g(X, \phi U)+\frac{c}{4}g$ ($X,$ AU)

$-g(AU, AU)g(X, AU)+g(AU, U)g(X, A^{2}U)=0$ ,

which yields that

$g(AU, U)A^{2}U+\{\frac{c}{4}-g(AU, AU)\}AU$
(4.10)

$+(\beta^{2}+c)g(AU, \phi U)\phi U\equiv 0$ (mod $\xi,$ $U$).

Now we can consider that there is a vector field $V$ in the distribution $T_{0}$ in such

a way that $AU$ is expressed as a linear combination of the vector fields $\xi,$ $U$ and
$V$ , where $\xi,$ $U$ and $V$ are orthonormal. Namely, since the shape operator $A$ is

symmetric, we may put $AU=\beta\xi+\gamma U+\delta V$ , where $\gamma$ and $\delta$ are smooth functions

on $M$ .
Let us denote by $M_{0}$ an open subset consisting of points $x$ in $M$ at which $\beta(x)\neq 0$ .

Then we shall first prove the following property.

Lemma 4.1. If $n\geq 3$ , then $\delta=0$ on $M_{0}$ , that is, it satisfies

(4.11) $AU=\beta\xi+\gamma U$.

Proof. Let $M_{1}$ be an open subset consisting of points $x$ in $M_{0}$ at which $\delta(x)\neq 0$ .
Suppose that $M_{1}$ is not empty and there is a vector field $W$ in the distribution $T_{0}$
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in such a way that $AV$ is expressed as a linear combination of the vector fields $U,V$

and $W$ , where $U,V$ and $W$ are orthonormal. Namely, since the shape operator $A$

is symmetric, we may put

$AV=\delta U+\epsilon V+\sigma W$,

where $\epsilon$ and $\sigma$ are smooth functions on $M_{1}$ . Consequently we have

$A^{2}U=\beta(\alpha+\gamma)\xi+(\beta^{2}+\gamma^{2}+\delta^{2})U+\delta(\gamma+\epsilon)V+\delta\sigma W$

Substituting this into (4.10), we get

(4.12) $(\gamma\epsilon-\beta^{2}-\delta^{2}+\frac{c}{4})V+(\beta^{2}+c)g(\phi U, V)\phi U+\gamma\sigma W=0$ .

Let $L(\xi, U, \phi U)$ be a distribution defined by a subspace $L_{x}(\xi, U, \phi U)$ in the tangent
space $T_{x}M$ spanned by vectors $\xi_{x},$ $U_{x}$ and $\phi U_{x}$ at any point $x$ in $M_{0}$ . Let $T_{1}$ be $an$

orthogonal complement in the tangent bundle $TM$ of the distribution $L(\xi, U, \phi U)$ .
Then the equation (4.8) is reduced to

$\beta^{2}g((A\phi+\phi A)X,Y)\phi U$

$+g(\phi AX, U)[\beta^{2}\{g(Y, \phi U)U+g(Y, U)\phi U\}-\frac{c}{4}\phi Y]$

$+\frac{c}{4}g(\phi AY, U)\phi X+(\beta^{2}+\frac{c}{4})g(Y, \phi U)\phi AX$

$\equiv\frac{c}{4}\{g(Y,AU)X-g(X,AU)Y+g(\phi Y,AU)\phi X$

$-g(\phi X,AU)\phi Y-2g(\phi X, Y)\phi AU\}$

$-\frac{c}{4}\{g(Y, U)AX+g(\phi Y, U)A\phi X-2g(\phi X,Y)A\phi U\}$

$-g(Y,AU)A^{2}X+g(X,AU)A^{2}Y+g(Y,A^{2}U)AX-g(X,A^{2}U)AY$

(mod $\xi$)

for any vector fields $X$ in $T_{1}$ and $Y$ in $T_{0}$ . Taking the inner product of this equation
with $U$ , we have

$(\beta^{2}+\frac{c}{4})g(AX, \phi U)g(Y, \phi U)+\frac{c}{4}\{-g(X,AU)g(Y, U)$

$+g(\phi X,AU)g(Y, \phi U)+2g(AU, \phi U)g(Y, \phi X)\}$

$-g(AX,AU)g(Y,AU)+g(X, AU)g(A^{2}Y, U)=0$ ,

$X\in T_{1},Y\in T_{0}$ ,
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from which it follows that

$\delta g(X, V)A^{2}U-\delta\{(\gamma+\epsilon)g(X, V)+\sigma g(X, W)\}AU$

$+\{(\beta^{2}+\frac{c}{4})g(AX, \phi U)-\frac{c}{4}\delta g(X, \phi V)\}\phi U$

(4.13)
$-\frac{c}{4}\delta g(X, V)U+\frac{c}{2}\delta g(\phi U, V)\phi X$

$\equiv 0$ (mod $\xi$), $X\in T_{1}$ .

Now let us show $\sigma=0$ . Firstly for a case where $\beta^{2}+c=0$ in (4.12) we have

(4.14) $\left\{\begin{array}{ll}\gamma\epsilon & -\beta^{2}-\delta^{2}+\frac{c}{4}=0,\\\gamma\sigma & =0.\end{array}\right.$

If $\gamma=0$ , then $\beta^{2}+\delta^{2}=\frac{c}{4}>0$ . From this together with the assumption $\beta^{2}+c=0$

it makes a contradiction. Thus $\gamma\neq 0$ . Hence from (4.14) we have $\sigma=0$ .
Secondly let us consider for a case where $\beta^{2}+c\neq 0$ in (4.12). If there is a point $x$

at which $g(\phi U, V)\neq 0$ , then (4.12) gives the fact that $\phi U$ belongs to $L_{x}(V, W)$ . Since
$AU$ belongs to the subspace $L_{x}(\xi, U, V)$ at $x$ in $M_{1}$ and $A^{2}U$ also belon$gs$ to the

subspace $L_{x}(\xi, U, V, W)$ , we see by (4.13) that the vector $\phi X$ at $x$ can be expressed

as the linear combination of $\xi,$ $U,$ $V$ and $W$ . This means that the dimension of

the tangent space $T_{x}M$ is not greater than 4. A contradiction, because we have

assumed $n\geq 3$ . So, it implies that $g(\phi U, V)=0$ on $M_{1}$ . Accordingly, by (4.12) we

also get the above equation (4.14). If $\gamma\neq 0$ , then $\sigma=0$ . Thus we suppose that

$\gamma=0$ . Putting $X=V$ in (4.13) and making use of (4.14), we have

$\delta^{2}\sigma W+(\beta^{2}+\frac{c}{4})\sigma g(W, \phi U)\phi U=0$ .

Thus we have

$\sigma(\beta^{2}+\delta^{2}+\frac{c}{4})g(W, \phi U)=0$

on $M_{1}$ . On the ther hand, by (4.14) we have $\beta^{2}+\delta^{2}+\frac{c}{4}\neq 0$ on $M_{1}$ . Consequently,

$\sigma g(W, \phi U)=0$ holds on $M_{1}$ , which implies that $\sigma=0$ on $M_{1}$ .
Finaly we want to show that $\delta=0$ . For this, putting $X=Z=V$ and $Y=U$

in (4.7), and using the expressions of $AU$ and $AV$ on $M_{1}$ , we obtain

(4.15) $\gamma\epsilon-\delta^{2}+\frac{c}{4}=0$ .

By the first equation of (4.14) and (4.15) we have $\beta^{2}=0$ , a contradiction. Thus

the open set $M_{1}$ should be empty, which means $\delta=0$ on $M_{0}$ . It completes the

proof of Lemma 4.1. $\square $

Next we shall prove the folowing
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Lemma 4.2. ff $n\geq 3$ , then we $h$ave

(4.16) $ AU=\beta\xi$ and $AX=0$ , $X\in T_{0}$ , $X\perp U$ on $M_{0}$ .

Proof. For this proof let us continue our discussion on the open subset $M_{0}$ , unless
otherwise stated. Putting $X,Y\in T_{1}$ in (4.8), we have

$\frac{c}{2}g(\phi X,Y)A\phi U=\frac{c}{2}rg(\phi X,Y)\phi U+\beta^{2}g((A\phi+\phi A)X,Y)\phi U$

$+\frac{c}{4}g(\phi AY, U)\phi X-\frac{c}{4}g(\phi AX, U)\phi Y$

From this, let us take a unit $Y=\phi X$ in $T_{1}$ , then it follows that

$\frac{c}{2}A\phi U=\frac{c}{2}\gamma\phi U+\beta^{2}\{g(AX,X)+g(A\phi X, \phi X)\}\phi U$

(4.17)
$+\frac{c}{4}g(\phi AX, U)X+\frac{c}{4}g(\phi A\phi X, U)\phi X$ .

From the above formula (4.17) we can express the vector field $A\phi U$ as the following

(4.18) $A\phi U=\rho\phi U+\epsilon X+\theta\phi X$,

for some orthogonal vector fields $X,$ $\phi X$ in $T_{1}$ . Moreover, from (4.17) and (4.18) it
follows

$\epsilon=g(A\phi U,X)$

$=\frac{1}{2}g(\phi AX, U)$

$=-\frac{1}{2}g(X,A\phi U)$

$=-\frac{1}{2}\epsilon$ ,

where we have used (4.17) to the second equality. This means $\epsilon=0$ . Similarly we
can also assert $\theta=0$ . So it follows

(4.19) $A\phi U=\rho\phi U$.

If we put $Z=\phi U$ and a unit vector field $Y=\phi X\in T_{1}$ in (4.7), and take the
inner product to the obtained equation with the vector field $U$ , we have

(4.20) $\beta^{2}\{g(AX,X)+g(A\phi X, \phi X)\}=\frac{c}{2}(\rho-\gamma)$ ,
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where we have used (4.18) and Lemma 4.1.

Now, putting $Y=\phi U,X\in T_{1}$ in (4.8), and using the fact that the distribution
$T_{1}$ is A-invariant and $\phi$-invariant, we have

(4.21) $\frac{c}{4}A\phi X=\frac{c}{4}(\gamma-\rho)\phi X+(\beta^{2}+\frac{c}{4})\phi AX$.

Since (4.20) and Lemma 4.1 gives the distribution $T_{1}$ is A-invariant, we can take

a principal vector field $X$ in $T_{1}$ such that $AX=\lambda X$ . Thus (4.21) implies that
$A\phi X=\mu\phi X$ , where $\mu=\frac{4}{c}\{\frac{c}{4}(\gamma-\delta)+(\beta^{2}+\frac{c}{4})\lambda\}$ .

Now, firstly let us prove $\lambda=\mu$ . If we put $Y=Z=\phi U$ in (4.7), then by the

A-invariance and $\phi$-invariance of the distribution $T_{1}$ we have

(4.22) $pA^{2}X+(\frac{c}{4}-\rho^{2})AX-\frac{c}{4}\rho X=0$

for any $X\in T_{1}$ . The principal curvatures $\lambda$ and $\mu$ corresponding to the vector fields
$X$ and $\phi X$ are the roots of this equation. Moreover, from (4.22) we know $\rho=0$ if

and only if $AX=0$ for any $X\in T_{1}$ .
On the other hand, putting $Y=Z=\phi X$ in (4.7) for any principal vector field

$X\in T_{1}$ such that $AX=\lambda X,$ $A\phi X=\mu\phi X$ , we get

(4.23) $(\lambda-\mu)(\lambda\mu+\frac{5}{4}c)=0$ .

From this we have $\lambda=\mu$ . In fact if $\lambda\neq\mu$ , then $\lambda\mu=-\frac{5}{4}c$ . Moreover from (4.22)

$\lambda\mu=-\frac{c}{4}$ . This is a contradiction. Thus we have a first assertion. That is, the

shape operator $A$ can be expressed by

$ A=[^{\alpha}\beta$

$ 0\gamma\beta$ $\rho$

$\lambda$

$0$

.

$\lambda]$

Now the first assertion and (4.20) give

(4.24) $\beta^{2}\lambda=\frac{c}{4}(\rho-\gamma)$ .

Putting $X=\phi U$ in (4.9) and using Lemma 4.1 and (4.20), we get

(4.25) $(2\gamma+3\rho)\beta^{2}+(\gamma-\rho)(\gamma\rho+\frac{5}{4}c)=0$ .
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Also putting $X\in T_{1}$ in (4.9), we have

(4.26) $(\gamma-\lambda)(\gamma\lambda+\frac{c}{4})+\beta^{2}\lambda=0$ .

On the other hand, if we consider a principal vector $X\in T_{1}$ such that $AX=\lambda X$

in (4.22), then we get

(4.27) $(\lambda-\rho)(\lambda p+\frac{c}{4})=0$ .

Thus secondly, it remains only to show that $\gamma=p$ . Then (4.24) gives $\lambda=0$ , from
which together with (4.22) we get our assertion, that is, $\gamma=\rho=\lambda=0$ . For this
we suppose $\gamma\neq\rho$ . Then $hom(4.24)$ we know $\lambda\neq 0$ . Now, substituting (4.24) into
(4.25) and (4.26), we have the followings

(4.28) $\frac{c}{4}(2\gamma+3\rho)-(\gamma p+\frac{5}{4}c)\lambda=0$ ,

(4.29) $(\gamma-\lambda)(\gamma\lambda+\frac{c}{4})+\frac{c}{4}(\rho-\gamma)=0$ ,

respectively.

On the other hand, we know $\lambda\neq\rho$ . In fact, if we suppose $\lambda=\rho$ , then (4.29) gives
$(\gamma-p)\gamma\rho=0$ . This implies $\gamma\rho=0$ . Thus substituting this into (4.28), we get
$\gamma=p$ . This is a contradiction. So, from (4.27) it folows

(4.30) $\lambda\rho+\frac{c}{4}=0$ .

Accordingly, in order to get the complete proof of Lemma 4.2 it is sufficient to show
that the above formulas (4.28),(4.29) and (4.30) do not hold on $M_{0}$ simultaneously.
For this, let us suppose the above formulas hold on $M_{0}$ . Then, substituting (4.30)
into (4.29), we have

$\lambda(\gamma-p)(\gamma-\lambda+\rho)=0$ .

From this together with $\lambda(\gamma-\rho)\neq 0$ , we know $\lambda=\gamma+\rho$ . Thus, substituting this
into (4.28) and using (4.30) to the obtained equation, we can easily verify that

$-3\lambda+\gamma+\rho=0$ .

From this we have $\lambda=0$ , which is a contradiction. Thus the above formulas do
not hold on $M_{0}$ simultaneously. So we have verified the second assertion holds on
$M_{0}$ . Now we complete the proof of Lemma 4.2.
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By Lemmas 4.1 and 4.2 we can obtain the following on $M_{0}$

(4.31) $\left\{\begin{array}{ll}A\xi & =\alpha\xi+\beta U, AU=\beta\xi, A\phi U=0,\\AX & =0, X\in T_{1}.\end{array}\right.$

Now, after the above preparation we are in a position to prove the Theorem. Let

$M_{2}$ be a complement of the subset $M_{0}$ in $M$ . Suppose that the interior of $M_{2}$ is

not empty. On this subset the function $\beta$ vanishes identically and the structure

vector field $\xi$ is principal. It is seen in [5] and [10] that the corresponding principal

curvature $\alpha$ is constant on the interior of $M_{2}$ , because this is a local property. So,

by (4.4) and (4.5), we have

$(\nabla_{\xi}A)X=0$ , $X\in T_{0}$ .

Suppose that $\alpha\neq 0$ . Then by (2.5) and the fact that $\xi$ is principal we have

$(A\phi-\phi A)=0$ on Int $M_{2}$ .

For any principal vector $X$ in $T_{0}$ with corresponding principal curvature $\lambda$ , we have

$(2\lambda-\alpha)A\phi X=(\frac{c}{2}+\alpha\lambda)\phi X$

by (2.4). Using the above two equations we get

(4.32) $2\lambda^{2}-2\alpha\lambda-\frac{c}{2}=0$ ,

from which it follows that al principal curvatures are non-zero constant on the

interior of $M_{2}$ . Next, suppose that $\alpha=0$ . Then $A\xi=0$ . By (2.4) we have

$ 4A\phi A=c\phi$ , which implies that $A\phi X=\frac{c}{4\lambda}\phi X$ , if $AX=\lambda X$ . Let $X,$ $Y$ and $Z$ in $T_{0}$

are principal vectors corresponding principal curvatures $\lambda,\mu$ and $\sigma$ , respectively.

Then, calculating the components of the vector $\phi Z$ in (4.7), we see

$(\sigma-\frac{c}{4\sigma})g(\phi X,Y)=0$ .

Accordingly we have
$4\sigma^{2}=c$ .

This means that all principal curvatures except for $\alpha$ are non-zero constant on $M_{2}$ .
By continuity of principal curvatures, $M_{2}$ is $M$ itself and the subset $M_{0}$ is empty.

Thus in this case $M$ is congruent to a real hypersurface of type $A$ .
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When we suppose that the set Int $M_{2}$ is empty, then the open set $M_{0}$ becomes
dense subset of $M$ . By the continuity of principal curvatures again we see that

the shape operator satisfies the condition (4.31) on the whole $M$ . Accordingly
we get $g(\nabla_{X}Y,\xi)=-g(\nabla_{X}\xi, Y)=-g(\phi AX,\xi)=0$ by (2.1), which means that
$\nabla xY-\nabla YX$ is also contained in $T_{0}$ . Hence the distribution $T_{0}$ is integrable on
$M$ . Moreover the integral manifold of $T_{0}$ can be regarded as the submanifold
of codimension 2 in $M_{n}(c)$ whose normal vectors are $\xi$ and $C$ . Since we have
$\overline{g}(\overline{\nabla}_{X}Y,\xi)=g(\nabla_{X}Y,\xi)=0$ and $\overline{g}(\overline{\nabla}_{X}Y, C)=-\overline{g}(\overline{\nabla}_{X}C,Y)=g(AX,Y)=0$

for any vector fields $X$ and $Y$ in $T_{0}$ by (1.1) and (4.22), where V denotes the

Riemannian connection of $M_{n}(c)$ . it is seen that the submanifold is totaly geodesic

in $M_{n}(c)$ . Since $T_{0}$ is J-invariant, its integral manifold is a complex submanifold
and therefore it is a complex space form $M_{n-1}(c)$ . Thus $M$ is locally congruent to
a ruled real hypersurface. It completes the proof of our Theorem.
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