
TSUKUBA J. $\backslash 1A1\prime I$ $\{$ .
Vol. 19 No. 1 (1995), 163–172

CHARACTERIZATIONS OF REAL HYPERSURFACES
IN COMPLEX SPACE FORMS IN TERMS

OF CURVATURE TENSORS
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\S 1. Introduction.

A complex n-dimensional K\"ahler manifold of constant holomorphic sectional
curvature $c$ is called a complex space form, which is denoted by $M_{n}(c)$ . A
complete and simply connected complex space form consists of a complex pro-
jective space $P_{n}C$ , a complex Euclidean space $C^{n}$ or a complex hyperbolic space
$H_{n}C$ , according as $c>0,$ $c=0$ or $c<0$ .

In this study of real hypersurfaces of $P_{n}C$ , Takagi [8] classified all homo-
geneous real hypersurfaces and Cecil and Ryan [2] showed also that they are
realized as the tubes of constant radius over K\"ahler submanifolds if the struc-
ture vector field $\xi$ is principal. And Berndt [1] classified all homogeneous real
hypersurfaces of $H_{n}C$ and showed that they are realized as the tubes of con-
stant radius over certain submanifolds. According to Takagi’s classification
theorem and Berndt’s one, the principal curvatures and their multiplicities of
homogeneous real hypersurfaces of $M_{n}(c)$ are given.

Now, let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . Then $M$ has an almost
contact metric structure $(\phi, \xi, \eta, g)$ induced from the K\"ahler metric and the
almost complex structure of $M_{n}(c)$ . We denote by $A$ the shape operator in the
direction of the unit normal on $M$. Then Okumura [7] and Montiel and Romero
[6] proved the following

THEOREM A. Let $M$ be a real hypersurface of $P_{n}C,$ $n\geqq 2$ . If it satisfies
(1.1) $A\phi-\phi A=0$ ,

then $M$ is locally a tube of radius $r$ over one of the following Kahler submani-

folds:
$(A_{1})$ a hyperplane $P_{n-1}C$ , where $0<r<\pi/2$ ,
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$(A_{2})$ a totally geodesic $P_{k}C(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ .

THEOREM B. Let $M$ be a real hypersurface of $H_{n}C,$ $n\geqq 2$ . If it satisfies
(1.1), then $M$ is locally one of the following hypersurfaces:

$(A_{0})$ a horosphere in $H_{n}C$ , i.e., a Montiel tube,

$(A_{1})$ a tube of a totally geodesic hyperplane $H_{n-1}C$ ,
$(A_{2})$ a tube of a totally geodesic $H_{k}C(1\leqq k\leqq n-2)$ .

Such real hypersurfaces in Theorems A and $B$ are said to be of type $A$ .
On the other hand, Kimura and Maeda [4] gave the following

THEOREM C. Let $M$ be a real hypersurface of $P_{n}C,$ $n\geqq 2$ . If the structure
vector field $\xi$ is principal and if it satisfies
(1.2) $\nabla_{\xi}R=0$ , $g(A\xi, \xi)\neq 0$ ,

then $M$ is of type $A$ , where $\nabla$ denotes the Riemannian connection and $R$ denotes
the Riemannian curvature tensor on $M$.

The purpose of this paper is to give some characterizations of real hyper-
surfaces in $M_{n}(c),$ $c\neq 0$ , in terms of the Riemannian curvature tensor $R$ . Firstly,

as generalizations of Theorem $C$ , we obtain the following

THEOREM 1. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . If it
satt,sfies (1.2), then $M$ is of type $A$ .

THEOREM 2. Let $M$ be a real hypersurface of $P_{n}C,$ $n\geqq 3$ . If $\nabla_{\xi}R=0$ , then
$M$ is locally congruent to one of the following:

(a) a non-homogeneous real hypersurface luhich lies on a tube of radius $\pi/4$

over a certain Kahler submanifold in $P_{n}C$ ,

(b) a real hypersurface of tvpe $A$ .

Next, we also have a complete classification of real hypersurfaces in $M_{n}(c)$

satisfying $\mathcal{L}_{\xi}R=0$ , where $\mathcal{L}_{\xi}$ denotes the Lie derivative in the direction of the
structure vector field $\xi$ . Namely, we prove the following

THEOREM 3. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 2$ . If $\mathcal{L}_{\xi}R$

$=0$ , then $M$ is of type $A$ .

The authors would like to thank Professors Sadahiro Maeda and Hisao Naka-
gawa for their valuable suggestions and encouragement during the preparation
of this paper.
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\S 2. Preliminaries.

First of all, we recall fundamental properties about real hypersurfaces of a
complex space form. Let $M$ be a real hypersurface of a complex n-dimensional
complex space form $M_{n}(c)$ of constant holomorphic sectional curvature $c$ , and
let $C$ be a unit normal vector field on a neighborhood in $M$ . We denote by $J$

the almost complex structure of $M_{n}(c)$ . For a local vector field $X$ on the
neighborhood in $M$, the images of $X$ and $C$ under the linear transformation $J$

can be represented as

$JX=\phi X+\eta(X)C$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$

of $M$, while $\eta$ and $\xi$ denote a l-form and a vector field on the neighborhood in
$M$, respectively. Then it is seen that $g(\xi, X)=\eta(X)$ , where $g$ denotes the Rie-
mannian metric tensor on $M$ induced from the metric tensor on $M_{n}(c)$ . The

set of tensors $(\phi, \xi, \eta, g)$ is called an almost contact metric structure on $M$.
They satisfy the following properties:

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. Furthermore, the covariant deri-
vatives of the structure tensors are given by

(2.1) $\nabla_{X}\xi=\phi AX$ , $\nabla_{X}\phi(Y)=\eta(Y)AX-g(AX, Y)\xi$

for any vector fields $X$ and $Y$ on $M$, where $\nabla$ is the Riemannian connection on
$M$ and $A$ is the shape operator of $M$ in the direction of $C$ .

Since the ambient space is of constant holomorphic sectional curvature $c$ ,

the equations of Gauss and Codazzi are respectively obtained:

(2.2) $R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z\}$

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(2.3) $\nabla_{X}A(Y)-\nabla_{Y}A(X)=\frac{c}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$ .

Next, we suppose that the structure vector field $\xi$ is principal with corre-
sponding principal curvature $\alpha$ . Then it is seen in [3] and [5] that $\alpha$ is con-



166 Yong-Soo PYO and Young Jin SUH

stant on $M$ and it satisfies

(2.4) $A\phi A=\frac{c}{4}\phi+\frac{1}{2}\alpha(A\phi+\phi A)$

and hence, by (2.1) and (2.3), we get

(2.5) $\nabla_{\xi}A=-\frac{1}{2}\alpha(A\phi-\phi A)$ .

\S 3. Proof of Theorems 1 and 2.

We consider about the covariant derivative of the Riemannian curvature
tensor $R$ . The covariant derivative $\nabla_{\xi}R$ of $R$ with respect to the structure
vector field $\xi$ is defined by

$\nabla_{\xi}R(X, Y, Z)=\nabla_{\xi}(R(X, Y)Z)-R(\nabla_{\xi}X, Y)Z-R(X, \nabla_{\xi}Y)Z-R(X, Y)\nabla_{\xi}Z$

for any vector fields $X,$ $Y$ and $Z$ .
Now, we shall prove the following proposition.

PROPOSITION. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . If $\nabla_{\xi}R$

$=0$, then $\nabla_{\xi}A=0$ .

PROOF. By the definition of the covariant derivative $\nabla_{\xi}R$ and (2.2), our
assumption is equivalent to

(3.1) $\frac{c}{4}[\{\eta(Y)g(A\xi, Z)-\eta(Z)g(A\xi, Y)\}\phi X$

$-\{\eta(X)g(A\xi, Z)-\eta(Z)g(A\xi, X)\}\phi Y$

$-2\{\eta(X)g(A\xi, Y)-\eta(Y)g(A\xi, X)\}\phi Z$

$+g(\phi Y, Z)\{\eta(X)A\xi-g(A\xi, X)\xi\}$

$-g(\phi X, Z)\{\eta(Y)A\xi-g(A\xi, Y)\xi\}$

$-2g(\phi X, Y)\{\eta(Z)A\xi-g(A\xi, Z)\xi\}]$

$+g(\nabla_{\xi}A(Y), Z)AX-g(\nabla_{\xi}A(X), Z)AY$

$+g(AY, Z)\nabla_{\xi}A(X)-g(AX, Z)\nabla_{\xi}A(Y)$

$=0$

for any vector fields $X,$ $Y$ and $Z$ .

Let $T_{0}$ be a distribution defined by the subspace $T_{0}(x)=\{u\in T_{x}M:g(u, \xi(x))$

$=0\}$ of the tangent space $T_{x}M$ of $M$ at any point $x$ , which is called the holo-
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morphic distribution. Suppose that the structure vector field $\xi$ is not necessarily
principal. Then we can put $A\xi=\alpha\xi+\beta U$ , where $U$ is a unit vector field in
the holomorphic distribution $T_{0}$ , and $\alpha$ and $\beta$ are smooth functions on $M$. Let
$M_{0}$ be the non-empty open subset of $M$ consisting of points $x$ at which $\beta(x)\neq 0$ .
Hereafter unless otherwise stated, we shall discuss on the subset $M_{0}$ of $M$. By

the form $A\xi=\alpha\xi+\beta U,$ $(3.1)$ is reformed as

(3.2) $\frac{c}{4}\beta[\{\eta(Y)g(Z, U)-\eta(Z)g(Y, U)\}\phi X-\{\eta(X)g(Z, U)-\eta(Z)g(X, U)\}\phi Y$

$-2\{\eta(X)g(Y, U)-\eta(Y)g(X, U)\}\phi Z$

$+g(\phi Y, Z)\{\eta(X)U-g(X, U)\xi\}-g(\phi X, Z)\{\eta(Y)U-g(Y, U)\xi\}$

$-2g(\phi X, Y)\{\eta(Z)U-g(Z, U)\xi\}]$

$+g(\nabla_{\xi}A(Y), Z)AX-g(\nabla_{\xi}A(X), Z)AY$

$+g(AY, Z)\nabla_{\xi}A(X)-g(AX, Z)\nabla_{\xi}A(Y)$

$=0$

for any vector fields $X,$ $Y$ and $Z$ . Putting $ Z=\xi$ and taking $X$ and $Y$ in $T_{0}$ in
the above equation, we get

(3.3) $\frac{c}{4}\beta(-g(Y, U)\phi X+g(X, U)\phi Y-2g(\phi X, Y)U$ }

$+g(\nabla_{\xi}A(\xi), Y)AX-g(\nabla_{\xi}A(\xi), X)AY$

$+\beta\{g(Y, U)\nabla_{\xi}A(X)-g(X, U)\nabla_{\xi}A(Y)\}$

$=0$ .
Next, putting $ Y=Z=\xi$ and taking $X$ in $T_{0}$ in (3.2) again, and calculating
directly, we have

(3.4) $\alpha\nabla_{\xi}A(X)=g(\nabla_{\xi}A(\xi), X)A\xi+\beta g(X, U)\nabla_{\xi}A(\xi)-d\alpha(\xi)AX$ .
Combining the above two equations, we get

(3.5) $\frac{c}{4}\alpha\beta\{-g(Y, U)\phi X+g(X, U)\phi Y-2g(\phi X, Y)U\}$

$+\beta\{g(Y, U)g(\nabla_{\xi}A(\xi), X)-g(X, U)g(\nabla_{\xi}A(\xi), Y)\}A\xi$

$+\{\alpha g(\nabla_{\xi}A(\xi), Y)-\beta d\alpha(\xi)g(Y, U)\}AX$

$-\{\alpha g(\nabla_{\xi}A(\xi), X)-\beta d\alpha(\xi)g(X, U)\}AY$

$=0$

for any vector fields $X$ and $Y$ in $T_{0}$ .
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Let $L(\xi, U, \phi U)$ be a distribution defined by the subspace $L_{x}(\xi, U, \phi U)$ in
the tangent space $T_{x}M$ spanned by the vectors $\xi(x),$ $U(x)$ and $\phi U(x)$ at any
point $x$ , and let $T_{1}$ be the orthogonal complement in the tangent bundle $TM$

of the distribution $L(\xi, U, \phi U)$ . Then $T_{1}$ is not empty, because $n\geqq 3$ . For
any unit vector field $X$ in $T_{1}$ , putting $Y=\phi X$ in (3.5), we have

(3.6) $\frac{c}{2}\beta U=g(\nabla_{\xi}A(\xi), \phi X)AX-g(\nabla_{\xi}A(\xi), X)A\phi X$

if we assume that $\alpha\neq 0$ . Suppose that there is a unit vector field $X_{0}$ in $T_{1}$ at
which $g(\nabla_{\xi}A(\xi), X_{0})=0$ . Then we get by (3.6)

$\frac{c}{2}\beta U=g(\nabla_{\xi}A(\xi), \phi X_{0})AX_{0}\neq 0$ .

Accordingly we can put $AX_{0}=\omega(X_{0})U$ , where $\omega$ is a l-form on $M_{0}$ . Putting
$X=X_{0}$ and $Y=U$ in (3.5), we have

$\frac{c}{4}\alpha\beta\phi X_{0}-\omega(X_{0})\{\alpha g(\nabla_{\xi}A(\xi), U)-\beta d\alpha(\xi)\}U=0$ .

Since $\phi X_{0}$ and $U$ are orthonormal vector fields, this equation implies $\beta=0$ , a
contradiction. Accordingly we get

$g(\nabla_{\xi}A(\xi), X)\neq 0$

for any non-zero vector field $X$ in $T_{1}$ .

On the other hand, putting $Y=\phi U$ in (3.5) again, we have

(3.7) $g(\nabla_{\xi}A(\xi), \phi U)AX-g(\nabla_{\xi}A(\xi), X)A\phi U=0$

for any vector field $X$ in $T_{1}$ under the assumption $\alpha\neq 0$ . If $g(\nabla_{\xi}A(\xi), \phi U)=0$ ,

then, by the above equation, $A\phi U=0$ . Now, we suppose that $g(\nabla_{\xi}A(\xi), \phi U)\neq 0$ .
From (3.7), we get

(3.8) $AX=\theta(X)A\phi U$ , $\theta(X)\neq 0$

for any non-zero vector field $X$ in $T_{1}$ , where $\theta$ is a l-form on $M_{0}$ . Putting
$X=Y$ in (3.8) and substituting the second one from the first one, we obtain

(3.9) $A(\theta(Y)X-\theta(X)Y)=0$ , $\theta(X)\neq 0$ , $\theta(Y)\neq 0$

for any non-zero vector fields $X$ and $Y$ in $T_{1}$ . If we put $Z_{1}=\theta(Y_{1})X_{1}-\theta(X_{1})Y_{1}$

for given linearly independent vector fields $X_{1}$ and $Y_{1}$ in $T_{1}$ , then $AZ_{1}=0$ by
(3.9) and hence $A\phi U=0$ by (3.8).

Next, putting $X=U$ and $Y=\phi U$ in (3.5), we have
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$\frac{3c}{4}\alpha\beta U-g(\nabla_{\xi}A(\xi), \phi U)(\alpha AU-\beta A\xi)=0$ ,

where we have used that $A\phi U=0$ . Consequently, we get $g(\nabla_{\xi}A(\xi), \phi U)\neq 0$ and
hence $AX=0$ for any vector field $X$ in $T_{1}$ by (3.7). Lastly, putting $ X=\xi$ and
taking $Y$ and $Z$ in $T_{1}$ in (3.2), we obtain

$\alpha g(\nabla_{\xi}A(Y), Z)\xi+\beta\{\frac{c}{4}g(\phi Y, Z)+g(\nabla_{\xi}A(Y), Z)\}U=0$ .

Accordingly it turns out to be $\beta=0$ on $M_{0}$ under the assumption $\alpha\neq 0$ , a con-
tradiction. This means that $\xi$ is principal on $M^{\prime}$ , where $M^{\prime}$ denotes the open
subset of $M$ consisting of points $x$ at which $\alpha(x)\neq 0$ . Thus, putting $ Y=Z=\xi$

in (3.2), we get $\nabla_{\xi}A=0$ on $M^{\prime}$ , where we have used that $\nabla_{\xi}A(\xi)=0$ .

Now, let us denote by Int $(M-M^{\prime})$ the interior of the subset $M-M^{\prime}$ . Then
$\alpha=0$ on Int $(M-M^{\prime})$ . Suppose that $\xi$ is not principal on Int $(M-M^{\prime})$ . Then
the subset $M_{1}$ of Int $(M-M^{\prime})$ consisting of points $x$ at which $\beta(x)\neq 0$ is non-
empty open set. Hence we have by (3.4)

(3.10) $g(\nabla_{\xi}A(\xi), X)U+g(X, U)\nabla_{\xi}A(\xi)=0$

on $M_{1}$ for any vector field $X$ in $T_{0}$ . Accordingly $g(\nabla_{\xi}A(\xi), Y)=0$ for any vector
field $Y$ in $T_{0}$ othogonal to $U$ . Since $g(\nabla_{\xi}A(\xi), X)g(X, U)=0$ by (3.10), we get
$g(\nabla_{\xi}A(\xi), U)=0$ and hence $\nabla_{\xi}A(\xi)=0$ on $M_{1}$ . Taking $X$ and $Y$ in $T_{0}$ orthogonal

to $U$ in (3.3), we obtain $g(\phi X, Y)=0$ on $M_{1}$ , a contradiction. This means that
$\xi$ is principal with corresponding principal curvature $\alpha=0$ . Accordingly we
have $\nabla_{\xi}A=0$ on Int $(M-M^{\prime})$ by (2.5). This completes the proof by the con-
tinuity of $\nabla_{\xi}A$ . $\square $

REMARK. If $\nabla_{\xi}A=0$ , then $\xi$ is principal and hence it satisfies the condition
$\nabla_{\xi}R=0$ by (3.2).

PROOF OF THEOREMS 1 AND 2. Suppose that $\alpha\neq 0$ . Since $\xi$ is principal by

Proposition, we have $A\phi-\phi A=0$ by (2.5). It completes the proof of Theorem
1 by Theorems A and B.

Theorem 2 is also verified by a theorem due to Kimura and Maeda [4]. $\square $

\S 4. Proof of Theorem 3.

In this section, we are concerned with the proof of Theorem 3. Let $M$ be
a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 2$ . We consider $A\xi=\alpha\xi+\beta U$ , where $U$

is a unit vector field in the holomorphic distribution $T_{0}$ , and $\alpha$ and $\beta$ are
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smooth functions on $M$ . And the Lie derivative $\mathcal{L}_{\xi}R$ of $R$ with respect to $\xi$

is defined by

$\mathcal{L}_{\xi}R(X, Y, Z)=\mathcal{L}_{\xi}(R(X, Y)Z)-R(\mathcal{L}_{\xi}X, Y)Z-R(X, \mathcal{L}_{\xi}Y)Z-R(X, Y)\mathcal{L}_{\xi}Z$

for any vector fields $X,$ $Y$ and $Z$ . Hence, by the assumption, we have

(4.1) $\frac{c}{4}\beta[\{\eta(Y)g(Z, U)-\eta(Z)g(Y, U)\}\phi X-\{\eta(X)g(Z, U)-\eta(Z)g(X, U)\}\phi Y$

$-2\{\eta(X)g(Y, U)-\eta(Y)g(X, U)\}\phi Z$

$+g(\phi Y, Z)\{\eta(X)U-g(X, U)\xi\}-g(\phi X, Z)\{\eta(Y)U-g(Y, U)\xi\}$

$-2g(\phi X, Y)\{\eta(Z)U-g(Z, U)\xi\}]$

$-\frac{c}{4}\{g(\phi Y, Z)\phi(A\phi-\phi A)X-g(\phi X, Z)\phi(A\phi-\phi A)Y$

$-2g(\phi X, Y)\phi(A\phi-\phi A)Z$

$+g((A\phi-\phi A)Y, Z)X-g((A\phi-\phi A)X, Z)Y$

$+g((A\phi^{2}-\phi^{2}A)Y, Z)\phi X-g((A\phi^{2}-\phi^{2}A)X, Z)\phi Y$

$-2g((A\phi^{2}-\phi^{2}A)X, Y)\phi Z\}$

$+g(\nabla_{\xi}A(Y), Z)AX-g(\nabla_{\xi}A(X), Z)AY$

$+g(AY, Z)\{\nabla_{\xi}A(X)+(A\phi-\phi A)AX\}$

$-g(AX, Z)\{\nabla_{\xi}A(Y)+(A\phi-\phi A)AY\}$

$=0$

for any vector fields $X,$ $Y$ and $Z$ . Putting $ Z=\xi$ and taking $X$ and $Y$ in the
holomorphic distribution $T_{0}$ in this equation, we have

(4.2) $\frac{c}{4}\beta\{g(Y, \phi U)X-g(X, \phi U)Y\}$

$+g(\nabla_{\xi}A(\xi), Y)AX-g(\nabla_{\xi}A(\xi), X)AY$

$+\beta[g(Y, U)\{\nabla_{\xi}A(X)+(A\phi-\phi A)AX\}$

$-g(X, U)\{\nabla_{\xi}A(Y)+(A\phi-\phi A)AY\}]$

$=0$ .
Again, putting $ Y=Z=\xi$ and taking $X$ in $T_{0}$ in (4.1), we get

(4.3) $\alpha\nabla_{\xi}A(X)=\beta g(X, U)\nabla_{\xi}A(\xi)-d\alpha(\xi)AX+g(\nabla_{\xi}A(\xi), X)A\xi$

$+\frac{c}{4}\beta g(X, \phi U)\xi+\beta^{2}g(X, U)(A\phi-\phi A)U$

$-\alpha\beta^{2}g(X, U)\phi U-\alpha(A\phi-\phi A)AX$ .
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Eliminating $\nabla_{\xi}A(X)$ and $\nabla_{\xi}A(Y)$ in (4.2) and (4.3), we obtain

(4.4) $\frac{c}{4}\beta[\alpha\{g(Y, \phi U)X-g(X, \phi U)Y\}$

$+\beta\{g(X, \phi U)g(Y, U)-g(X, U)g(Y, \phi U)\}\xi]$

$+\alpha\{g(\nabla_{\xi}A(\xi), Y)AX-g(\nabla_{\xi}A(\xi), X)AY\}$

$+\beta[g(Y, U)\{g(\nabla_{\xi}A(\xi), X)A\xi-d\alpha(\xi)AX\}$

$-g(X, U)\{g(\nabla_{\xi}A(\xi), Y)A\xi-d\alpha(\xi)AY\}]$

$=0$

for any vector fields $X$ and $Y$ in $T_{0}$ .

Now, putting $X=U$ and $Y=\phi U$ in (4.4), we get

$\frac{c}{4}\beta(\alpha U-\beta\xi)+\alpha\{g(\nabla_{\xi}A(\xi), \phi U)AU-g(\nabla_{\xi}A(\xi), U)A\phi U\}$

$-\beta\{g(\nabla_{\xi}A(\xi), \phi U)A\xi-d\alpha(\xi)A\phi U\}$

$=0$ .

Taking the inner product of this equation with $\xi$ , we obtain $\beta=0$ . Thus the
structure vector field $\xi$ is principal. If $\alpha=0$ , then, putting $ X=\xi$ in (4.1), we
get $A\phi-\phi A=0$ . Next, suppose that $\alpha\neq 0$ . Then we have

(4.5) $\nabla_{\xi}A(X)+A\phi AX-\phi A^{2}X=0$

for any vector field $X$ in $T_{0}$ by (4.3), where we have used that $\nabla_{\xi}A(\xi)=0$ .
Furthermore, (4.5) holds for any vector field $X$ . This implies that

$\phi(A^{2}-\alpha A-\frac{c}{4}I)X=0$

for any vector field $X$ , where $I$ denotes the identity transformation and we
have used (2.4) and (3.3). This is equivalent to

$A^{2}-\alpha A-\frac{c}{4}(I-\eta\otimes\xi)=0$ ,

from which it follows that the shape operator $A$ satisfies

$(A\phi-\phi A)^{2}=0$ ,

where we have used that (2.4) and $ A\phi^{2}=\phi^{2}A=-A+\alpha\eta\otimes\xi$ . Accordingly
$A\phi-\phi A=0$ , because $A\phi-\phi A$ is symmetric. It completes the proof by Theorems
A and B. $\square $
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REMARK. If $M$ is of type $A$ , then $A\phi-\phi A=0$ and hence $\nabla_{\xi}A=0$ by (2.5).

Accordingly, by (4.1), it satisfies the condition $\mathcal{L}_{\xi}R=0$ .
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