
Characterizing Achievable Rates in Multi-hop Wireless
Networks: The Joint Routing and Scheduling Problem

Murali Kodialam Thyaga Nandagopal

Bell Laboratories, Lucent Technologies
101 Crawfords Corner Road

Holmdel, NJ 07733, USA
{muralik, thyaga}@bell-labs.com

ABSTRACT
This paper considers the problem of determining the achiev-
able rates in multi-hop wireless networks. We consider the
problem of jointly routing the flows and scheduling trans-
missions to achieve a given rate vector. We develop tight
necessary and sufficient conditions for the achievability of
the rate vector. We develop efficient and easy to imple-
ment Fully Polynomial Time Approximation Schemes for
solving the routing problem. The scheduling problem is a
solved as a graph edge-coloring problem. We show that this
approach guarantees that the solution obtained is within
67% of the optimal solution in the worst case and, in prac-
tice, is typically within about 80 % of the optimal solution.
The approach that we use is quite flexible and is a promis-
ing method to handle more sophisticated interference con-
ditions, multiple channels, multiple antennas, and routing
with diversity requirements.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication; G.2.2 [Graph Theory]: Graph Algorithms

General Terms
Algorithms, Design, Theory

Keywords
Wireless Networks, Scheduling, Routing, Graph Coloring,
Optimization

1. INTRODUCTION
In this paper, we consider the problem of characterizing

the rates that are achievable in a class of multi-hop wireless
networks. The primary model that we consider was pro-
posed in Baker, Wieselthier and Ephremides [1]. The main
constraint that is imposed in this model is that each node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’03, September 14–19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-753-2/03/0009 ...$5.00.

can communicate with at most one other node at any given
time. Hajek and Sasaki [2] showed that the link scheduling
algorithm in this model can be solved in polynomial time
but the algorithm that they develop is not implementable
in practice. Further, the main problem that they consider in
that paper is a link scheduling problem. The joint routing
and scheduling problem is not the primary focus of that pa-
per. Many variants of this problem have been addressed in
literature. However, the problem of efficiently determining if
end-to-end flows are achievable does not seem to have been
addressed in the literature. This is the primary focus of this
paper. Our main objective is to develop efficient algorithms
for the joint routing/scheduling problem. A secondary ob-
jective is to develop a flexible approach that can be used in
the case where there is more complex interaction between
the transmission in the different links. For example, IEEE
802.11 networks use a RTS-CTS mechanism to schedule the
transmission and this imposes a more complex interaction
between link transmission. In the last section of this paper,
we indicate how the approach developed in this paper can
be extended to more complex routing/scheduling objectives.
The seminal paper of Gupta and Kumar [3] shows that the

throughput per node in a multi-hop wireless networks with n
nodes scales as O(1√

n
) bit-meters/second. This throughput

bound holds under fairly general conditions. This paper
however, discusses questions of the following nature: In a
given multi-hop network with specified node configurations
and wireless link speeds

• What is the maximum data rate that can be jointly
routed and scheduled between a given source node and
a destination node?

• Is a given rate vector between multiple source-destination
pairs jointly achievable ?

The first problem is analogous to the maximum flow prob-
lem [4] in regular data networks except that the constraints
imposed by link scheduling make this problem more difficult.
The second problem is analogous to the multi-commodity
flow problem [4]. This problem is non-trivial due to the
fact that this problem involves jointly solving a routing and
scheduling problem. In the case of communication in the
presence of interference, the scheduling problem itself is NP-
hard. The routing problem has to be solved over the achiev-
able scheduling space. Even if we assume that there is no
interference resulting from communications between differ-
ent nodes, there is still the constraint that each node can

42

transmit or receive from at most one node at any given in-
stant.
In this paper, we consider a system free of secondary inter-

ference, where the only constraint on the nodes is that it can
transmit to or receive from at most one node at a time. We
address the problem of determining if a given set of source-
destination rates are achievable or not and, if achievable, we
derive efficient, simple to implement algorithms for routing
of flows and scheduling at the nodes to achieve this rate. The
algorithms are guaranteed to be within 67% of the optimal
solution in the worst case and in practice perform a lot bet-
ter. The algorithmic approach can be extended to MIMO
(Multiple Input Multiple Output) systems, joint routing and
scheduling in systems with secondary interference, such as
IEEE 802.11, joint routing and scheduling in networks with
routing diversity requirements etc. We outline our approach
to such extensions later in the paper. We now summarize
some of the related work in Section 2.

2. RELATED WORK
The work that is most closely related to this paper is by

Hajek and Sasaki [2]. The problem that they consider is
the link flow achievability problem in the case of a spread
spectrum system. The authors showed that the problem can
be solved in polynomial time. They formulated the problem
as a linear optimization problem on the fractional match-
ing polyhedron and used the ellipsoid algorithm [5] to solve
the problem. The running time of the algorithm is roughly
O(mn4) (where n is the number of nodes in the network
and m the number of links) and uses a separation oracle
as a subroutine in the ellipsoid algorithm. The paper made
an important contribution in showing that the scheduling
problem can be solved in polynomial time. However, as the
authors point out in their paper, the algorithm developed is
not practical. Several authors including Post, Kershenbaum
and Sarachick [6], Wieselthier, Barnhart, and Ephremides
[7] have considered heuristic procedures for this problem.
The authors in [2] also consider the problem of achieving

a given set of source-destination rates. This problem, in the-
ory, can be formulated as a multi-commodity flow problem
on the fractional matching polyhedron. It can be solved in
polynomial time but it is not clear what the complexity of
the solution procedure would be. The approach would not
be practical to solve even small sized problems. Further,
their approach cannot be extended to interference limited
systems.
Jain et. al. [8] have recently proposed a model similar to

the one proposed in this paper and the one in [2], using a
linear programming approach to characterize networks with
interference. They use a conflict graph to model constraints
on simultaneous transmissions. They focus on the routing
component alone, and assume that the existence of an ideal
scheduling mechanism. Moreover, they do not propose any
polynomial time approximation algorithms to solve the rout-
ing problem. In this paper, we propose both: approximation
algorithms that solve both the end-to-end flow routing prob-
lem and the link scheduling problem near optimally.
We solve the link flow achievability problem by character-

izing the necessary and sufficient conditions for the achiev-
ability of a link flow vector. This approach naturally extends
to the problem where we have to determine the maximum
data rate that can be sent between two nodes in the network.
In the case of determining the maximum rate, the problem
has a routing component and a scheduling component. The

necessary conditions from the link scheduling problem, gives
raise to constraints on the routing problem that are needed
for schedulability. This is a natural generalization of the
maximum flow problem in capacitated networks. We also
consider the problem of determining if a given rate vector is
achievable. We formulate the problems as linear program-
ming problems with exponential number of variables. We
then develop simple to implement primal-dual algorithms
for solving the problem.
The approach that we take to solve the routing component

of the problem is to formulate it as a linear programming
problem with an exponential number of variables. We then
use a primal-dual approach to develop a Fully Polynomial
Time Approximation Scheme (FPTAS). The idea in FPTAS
is to obtain an ε optimal solution to the problem. An ε opti-
mal solution to the (maximizing) problems that we consider
in this paper is a solution to the problem that has a value
at least (1− ε) times the optimal solution. An FPTAS is a
family of algorithms that finds an ε-optimal solution in time
that is a polynomial function of the problem parameters and
1
ε
. The problem parameters in our case are the number of
nodes in the network n, the number of links in the graph
m, and the number of source-destination pairs. The idea
of solving linear programming problems approximately with
FPTAS originated with the work of Shahrokhi and Matula
[9]. There were a series of papers improving and extending
these results. This paper follows the algorithm and analy-
sis in Garg and Könemann [10] and Karakostas [11]. For
the ease of notation, throughout this paper we use O(f) to
represent f logO(1)m, i.e., we hide polylog terms in O.

3. MODEL AND ASSUMPTIONS
We consider a multi-hop wireless network with n nodes.

The nodes communicate with each other via wireless links.
Each node in the network can communicate directly with a
subset of the other nodes in a network. If node u can trans-
mit directly to node v, we represent this fact by a directed
edge (link), u → v, from node u to node v. We assume that
there are m links in the network. We represent the nodes
in the network and possible communication with a directed
graph G = (V,E) where V represents the set of nodes in
the network and E the set of directed edges (links) in the
network. We do not assume that links are bi-directional.

t(e)
r(e)

e

c(e)

Figure 1: Network Example

Given a link e ∈ E, we use t(e) to represent the trans-
mission end of the link and r(e) to be the receiving end of
the link e. We say that a link e is active when there is a
transmission from t(e) to r(e). We assume that link e can
transmit data at c(e) bits/second. Therefore we implicitly
assume stationary channel conditions and no power control
at the nodes. An example of a network along with the link
parameters are shown in Figure 1.

43

We assume that system operates in a synchronous time-
slotted mode. In any given time slot, a node can be in
communication with only one another node. The length of
each time slot is τ seconds. Therefore, if a link is active for
one time slot, then τ.c(e) bits will be transmitted from t(e)
to r(e) in one time slot. In the computation of the schedule
for nodes, we assume that the schedule is periodic and has T
time slots in each period. We label the time slots 1, 2, . . . , T .
If the system is asynchronous, then the results in this paper,
will provide upper bounds on the performance of the system.
Given a node v ∈ V , we use Nin(v) to denote the set of

links that terminate at node v. In other words,

Nin(v) = {e ∈ E : r(e) = v}.
Similarly, for a given node v ∈ V , we use Nout(v) to denote
the set of edges that emanate from v, i.e,

Nout(v) = {e ∈ E : t(e) = v}.
We use N(v) to denote Nin(v) ∪ Nout(v). Note that N(v)
is the set of links incident on v. Let ∆G denote the max-
imum degree in the network, i.e., the maximum number of
neighbors of a node.

∆G = max
v∈V

|N(v)|.

The network model that we consider here occurs with net-
works with multiple channels available for transmission. Ex-
amples are CDMA based multi-hop networks where node
pairs can choose the code sequence they want to transmit,
networks with beam-forming antennas that enable a highly
directed transmission to/reception from another node. We
assume that a coordination mechanism that helps hosts de-
cide the transmitting slots and channels exists. Clearly,
such systems are already under development, and hence our
model is practical, though limited in scope. Our goal, how-
ever, is to lay a framework for extensions to other kinds of
systems with interference.
In the rest of this paper, we assume that all link speeds,

flows and rates are rational numbers. Before we consider the
maximum data rate that can be transmitted from a given
source node to destination node, we consider the simpler
problem of the achievability of a given set of link flows.

4. ACHIEVING LINK FLOWS
We now consider the problem of determining if a set of

link flows are achievable. Instead of attempting to solve this
problem directly as in [2], we outline simple necessary and
sufficient conditions for the achievability of link flows. The
objective is to derive a set of simple conditions that can be
used to formuate and solve the end-to-end flow requirement
problems. Solving the link scheduling problem also serves
to illustrate the effect of scheduling on the routing problem.
Some of the results in this section are also implicit in [2].
Assume that we are given a m-vector f where f(e) is the

desired flow on link e ∈ E, where flow is defined as the
number of bits to be sent in one second. We refer to f
as the link flow vector. The objective now is to determine
necessary and sufficient conditions for this link flow vector
to be achievable. Note that the flow is specified as a link
flow and not as an end-to-end flow. This connection between
end-to-end flows and individual link flows will be made in
the next section. In order to achieve this link flow we first

define a 0− 1 scheduling variable

yte =

1 If link e is active in time slot t
0 Otherwise

Note that yte is set to one if there is a transmission on link
e in time period t. Since no node can be transmitting or
receiving from multiple nodes in a given time slot, we have
the inequalityX

e∈N(v)

yte ≤ 1 ∀v ∈ V ∀t ≤ T. (1)

Note that the fraction of time link e is active is given byP
t≤T y

t
e

T

Therefore, the mean flow on link e is given by

f(e) =
c(e)

P
t≤T y

t
e

T

Summing Equation (1) over all t ≤ T , we getX
t≤T

X
e∈N(v)

yte ≤ T ∀v ∈ V

Interchanging the order of summation, and dividing by T ,
we get

X
e∈N(v)

P
t≤T y

t
e

T
≤ 1 ∀v ∈ V

Therefore
X

e∈N(v)

f(e)

c(e)
≤ 1 ∀v ∈ V

We state this condition formally.

Lemma 1. If a given link flow vector f does not satisfy
any of the following inequalities

X
e∈N(v)

f(e)

c(e)
≤ 1 ∀v ∈ V

then this flow vector is not schedulable.

Since we averaged the scheduling variables over time, the
above condition is only a necessary condition. This is illus-
trated by the following example. The value of c(e) for each
link is 1 unit and the value of f(e) for each link is 0.5 units
as shown in the Figure 2. Note that this flow vector satisfies

0.5

0.50.5

Figure 2: Three Node Example

the utilization bound at all the nodes in the network. How-
ever, this flow vector is not achievable. This is so because
in any given time slot at most one of the three links can be

44

active. This gives a throughput of at most 1
3
on each link in

the network. This gap between the necessary condition for
achievability and actual achievability of the flow vector is
the fact that averaging the scheduling constraints over time
relaxes the 0−1 constraints on the yte variables. We now give
a sufficient condition for schedulability. In order to derive
the sufficiency conditions, we need a few more definitions.

Definition 1. A multi-graph is a graph where there may
be multiple edges between the same pair of nodes. An alter-
nate representation of a multi-graph is to have an integral
weight w(e) on link1 e in the network G, where w(e) rep-
resents the number of edges between t(e) and r(e) in the
multi-graph.

We now define a multi-graph on the network G to help
us obtain an achievable schedule for a given link flow vec-
tor f . With τ seconds/slot, we can send at most τ.c(e)
bits/slot on link e. Hence, in order to achieve a link flow of
f(e) bits/second, link e needs to be scheduled for f(e)/τ.c(e)
slots/second. Therefore, choose a slot time τ such that

w(e) =
f(e)

c(e)

1

τ
slots/second (2)

is integral. Such a τ exists since all values of f(e) and c(e)
were assumed to be rational. There exist many such τ that
satisfy the above equation. We choose the largest such τ .
The w(e) is the slot rate required to satisfy a flow of f(e)
bits/second on a link e with capacity c(e).

Definition 2. Given the network G = (V,E), the flow
vector f and link speed vector c, let the link weights w(e)

be defined as w(e) = f(e)
τ.c(e)

,∀e ∈ E(G). The scheduling

multi-graph GS(f , τ), corresponding to G, has the same node
set V , with a link e ∈ E(G) represented by w(e) edges in
GS(f , τ) between the same endpoints.

It is clear that w(e) represents the link weight in the net-
work graph G, and the edge multiplicity in the scheduling
multi-graph GS(f , τ). The maximum degree of a node in
the scheduling multi-graph is denoted by ∆. We have

∆ = max
v∈V

X
e∈N(v)

w(e)

The edges, degree and other parameters of the scheduling
multi-graph are dimensionless. Thus, a link between nodes
u and v with link weight of w(e) = 3 slots per second is rep-
resented by 3 edges between nodes u and v in the scheduling
multi-graph.

Definition 3. The chromatic index, L, of a multi-graph
is defined as the minimum number of colors needed to color
the edges of the multi-graph such that two edges having the
same color are not incident on the same node.

It is easy to see that L ≥ ∆. Note that any proper edge
coloring of the multi-graph GS(f , τ) can be mapped into an
achievable transmission schedule on the network graph G,
and vice-versa. To achieve this mapping, let us consider a
scheduling frame with slot of length τ seconds each. Each
edge e in the scheduling multi-graph GS(f , τ) corresponds
to one time slot that has to be allocated to the link that

1We use the term link exclusively to denote an edge of the
network graph G = (V,E).

represents e, in the network graph G. If a set of edges, W ,
in GS(f , τ) have color i, then correspondingly, in time slot
i, make all the links in G, represented by the edges in W ,
active. Repeat this process for colors i = 1, 2, . . . L. Note
that there will be no conflicts in the schedule in G, due to the
proper edge-coloring in GS(f , τ). Moreover, with L colors,
we have colored all edges of the multi-graph, which implies
that in a schedule of length L slots, each link e in the network
graph G is active for w(e) time slots, thereby sending f(e)
bits. Thus, we have mapped a proper edge-coloring of the
scheduling multi-graph onto a valid transmission schedule
in G. This is the reason we are interested in the chromatic
index of the graph.
The chromatic index, L, is dependent on the values of the

flow f and the slot length τ . Using the mapping described
above, the chromatic index tells us that to achieve a flow
of f bits/second, a slot rate of at least L slots/second are
needed, where each slot is of length τ seconds.
The following upper bound on the chromatic index of a

multi-graph is due to Shannon [12].

Theorem 2. The chromatic index of a multi-graph with
maximum degree ∆ is at most 3

2
∆.

Determining the chromatic index of a graph is NP-hard.
However, in the case of the scheduling multi-graph

• There are fast algorithms to determine a 1.1– approx-
imation to the chromatic index [13].

• The greedy algorithm gets 2-approximate solution to
the problem in time O(m

τ
).

• An algorithm to construct the 3
2
∆ solution can be com-

puted in time O(nm
τ
). A constructive proof was pro-

vided by Shannon [12].

It is easy to implement the greedy edge coloring algorithm
in a distributed manner. Though the algorithm guarantees
only a 2-approximation in the worst case, it usually does
much better in practice.
Let us consider an example to understand the conditions

needed for the achievability of flows. Let the desired link
flow be f(e) = 2 bits per second, and capacity c(e) =
4 bits per second for all links in a given network graph
G. Thus, we choose τ = 0.5 seconds per slot, so that
w(e) = 1 slot/second,∀e ∈ E. We form the schedul-
ing multi-graph, and let the chromatic index of GS(f , τ) be
L = 3. This implies that if we have at least L slots per sec-
ond, then we can achieve the desired flow of 2 bits/second.
However, we have only 2 time-slots per second (1/τ). The
flow f cannot, therefore, not achieved. This can be formally
stated in terms of the following theorem.

Lemma 3. Let L represent the chromatic index of the
scheduling multi-graph GS(f , τ), where τ is the length of a
time slot. Then, flow f is achievable iff the slot rate is at
least L slots per second, i.e., iff Lτ ≤ 1.

Proof:
Consider the scheduling multi-graph GS(f , τ). Since the
time slots are of length τ seconds, we have 1/τ slots per
second. If the chromatic index of GS is L, it implies that in
order to meet the link flow demand f , we need a slot rate of
at least L slots/second. Thus, L ≤ 1/τ for the flow f to be
achievable.

45

Since a proper edge coloring of the scheduling multi-graph
cannot exist using less than L colors, the corresponding
mapping ensures that a valid schedule that satisfies the de-
mand with a slot rate of less than L slots per second cannot
be found. Therefore, if L > 1/τ , then f is not achievable. ✷

Corollary 4. Let L represent the chromatic index of the
scheduling multi-graph GS(f , τ). Given that a slot rate of L
slots/second is needed to achieve the flow f , then, with the
available slot rate of 1/τ slots per second,

f(e)

Lτ
, ∀e ∈ E

is an achievable flow in G.

Proof:
If we have L slots/second, then we are guaranteed to achieve
a flow of f bits/second. However, if there are only 1/τ
slots/second, then, using these slots, we can only send f

L
1
τ

bits per second. ✷

We would like to point out that once the chromatic in-
dex L and the corresponding coloring is known for GS(f , τ),
we do not have to recompute the chromatic index to find
the schedule for a flow of f ′ = f/Lτ . By changing the
length of the time slot to τ ′ = 1/L, it is easy to see that
GS(f

′, τ ′) = GS(f , τ). Thus, L
′ = L and L′τ ′ = 1. There-

fore, the coloring and hence, the schedules are still the same
as before, except that the time slot length has changed.
We now state sufficient conditions for the achievability of

a link flow vector f .

Theorem 5. An m-link flow vector is achievable if

X
e∈N(v)

f(e)

c(e)
≤ 2

3
, ∀v ∈ V

Proof:
From the conditions in statement of the theorem, and the
definition of w(e), note that

X
e∈N(v)

w(e) ≤ 2

3

1

τ

Therefore, ∆ ≤ 2
3

1
τ
and, using Theorem 2,

L ≤ 3

2
∆ ≤ 1

τ

This implies that Lτ ≤ 1 and by Lemma 3, f(e) is achiev-
able. ✷

Therefore when a link flow vector satisfies the sufficiency
conditions, it is schedulable. Note that there is a gap be-
tween the necessary and sufficiency conditions. Clearly, if
there exits a v ∈ V such that

X
e∈N(v)

f(e)

c(e)
≥ 1

then it not schedulable. If a link flow vector satisfies

X
e∈N(v)

f(e)

c(e)
≤ 2

3
, ∀v ∈ V

then it is schedulable. If

2

3
<

X
e∈N(v)

f(e)

c(e)
≤ 1, ∀v ∈ V

then it is not clear whether it is schedulable or not. We
attempt to close this gap (in practice) using the following
strategy: As long as the link flow vector f satisfies the nec-
essary conditions, we construct the scheduling multi-graph
and determine its chromatic index. Let τ denote the length
of the time-slot and L the chromatic index of the resulting
scheduling multi-graph. If Lτ ≤ 1 then the given link flow
vector f is achievable. If f satisfies the sufficiency conditions,
then clearly it satisfies Lτ ≤ 1 and is therefore achievable.
Using this strategy will result in determining the achiev-
ability of link flow vectors that fall in the gap between the
necessary and sufficiency conditions. We state the algorithm
formally below:

• If the vector f does not satisfy the necessary condi-
tions then output f is not achievable.

• Determine τ and w(e) as shown in equation (2).

• Construct the scheduling graph and determine it
chromatic index L.

• If Lτ ≤ 1, then f is achievable.

Experimental testing indicates that the above algorithm per-
forms extremely well in practice. The effectiveness of this
approach will be illustrated in the case of determining the
maximum achievable rate between a given pair of nodes.
Also note that the link rates are not just achievable in the
long run but is achieved in time at most 1 second.

4.1 Predefined Time Slots
In this section we consider the case where the length of

the time slot τ is predefined. In this case,

w(e) =
f(e)

c(e)

1

τ

may not be integral. Therefore we set

w′(e) = f(e)
c(e)

1

τ
�

We again form the scheduling multi-graph, now with weights
of w′(e) on link e ∈ E.

Lemma 6. Let f be a link flow vector that satisfies the
necessary conditions. If L is the chromatic index of the
scheduling multi-graph where the link weight w′(e) is given
by

w′(e) = f(e)
c(e)

1

τ
�

and τ is the length of a time slot, then

Lτ ≤ 3

2
(1 + τ.∆G)

Proof:
Note that X

e∈N(v)

w′(e) =
X

e∈N(v)

f(e)
c(e)

1

τ
�

≤
X

e∈N(v)

„
f(e)

c(e)τ
+ 1

«

≤ 1

τ
+∆G

46

Recall that ∆G is the maximum degree in the original graph
(not the scheduling multi-graph), representing the maxi-
mum number of neighbors of a node in the graph. By The-
orem 2, L ≤ 3

2

`
1
τ
+∆G

´
. ✷

This implies that in the case where the length of the time
slots are fixed, if f(e) is the desired link flow vector then

2

3(1 + τ.∆G)
f(e)

is achievable. In practical instances, the product τ.∆G is
usually very small, since slot-lengths are of the order of milli-
seconds, if not smaller, and ∆G is typically less than 100.
Hence the effects of fixed slot lengths can be ignored.

5. SINGLE PAIR MAXIMUM ACHIEVABLE
RATE

A fundamental problem in network flows is the maximum
flow problem. The objective for the maximum flow problem
is to determine the maximum amount of flow that can be
sent from a given source to a given destination in a capaci-
tated network. We now consider the following problem.

• INPUT: A directed graph G = (V,E) with a link
speed c(e) for e ∈ E and two distinguished nodes s
and d.

• OUTPUT: The maximum data rate, Rsd that can
transmitted from s to d.

This quantity Rsd represents capacity of the node pair. The
strategy that we use to determine Rsd for a given pair of
nodes s and d is the following:

• We use the results developed in the last section to for-
mulate necessary and sufficient conditions for a rate to
be achievable.

• We get an upper bound on Rsd by solving a linear
optimization problem over the necessary conditions.

• We use the scheduling multi-graph to get an achievable
solution which is a lower bound on Rsd

• We show that this lower bound gets to within 67% of
the optimal solution in the worst case guarantee and
in practice typically gets to between 80-90% of the
optimal solution.

The linear optimization problem that is solved in the sec-
ond step is the key to determining bounds on Rsd. We first
give a straightforward formulation for this problem with
flow variables. We also give an alternate path-arc formu-
lation that is amenable to the development of primal-dual
algorithms for the solution of fully polynomial time approx-
imation schemes. The reason for preferring the FPTAS to
solving the linear program directly are the following:

• The FPTAS are very simple to implement and there-
fore can be potentially implemented at the nodes of
the wireless networks.

• It is possible to trade-off the accuracy needed with the
speed of solution. From our experiments, we observed

that solving the linear programming problem approxi-
mately is enough to solve the routing-scheduling prob-
lem almost optimally.

• There is no need for a linear programming solver to
solve the problem. (This is especially important if
we have to implement the algorithm at the individual
nodes).

With these objectives in view, we first give the necessary
conditions for a given rate vector to be achievable between
a given source destination pair.

Theorem 7. Given a graph G = (V,E), two distinguished
nodes s, d ∈ V and a rate r between nodes s and d, the rate
is achievable if there exist y(e) for e ∈ E that satisfiesX

e:t(e)=s

y(e) = r

X
e∈Nin(v)

y(e) =
X

e∈Nout(v)

y(e), ∀v �= s, d

X
e∈N(v)

y(e)

c(e)
≤ 2

3
, ∀v ∈ V

Proof:
The first constraint ensures that a data rate of r units is
sent out of the source node. The second set of equalities
ensure flow balance at the nodes in the network. The last
set of inequalities are the sufficient conditions for a link flow
vector to be achievable. ✷

The necessary condition for schedulability is given by re-
placing

X
e∈N(v)

y(e)

c(e)
≤ 2

3
, ∀v ∈ V

with the inequalities

X
e∈N(v)

y(e)

c(e)
≤ 1, ∀v ∈ V

The proof of the necessary and the sufficient conditions fol-
low directly from the necessary and sufficient conditions for
the achievability of a link flow vector. We now give an alter-
nate path-arc formulation that is used to develop the FPTAS
to solve this problem. Let P denote the set of simple paths
between nodes s and d. (A path is defined to be simple if no
nodes are repeated on the path). We let P denote a generic
path in this path set P . Let x(P) denote the flow on path
P .
Note that there can be an exponential number of paths be-

tween two given nodes in the network. Therefore, the path-
arc formulation has an exponential number of variables. A
given rate r is achievable, if there exists path flows x(P)
such that X

P∈P
x(P) = r

X
e∈N(v)

P
P∈P:P�e x(P)

c(e)
≤ 2

3
, ∀v ∈ V

If the factor 2
3
is replaced by 1, the conditions are necessary.

For a given pair of nodes s and d, if the objective is to de-
termine the maximum achievable flow, Rsd from s to d then
we do the following:

47

• Solve the following optimization problem:
r∗ = max

X
P∈P

x(P)

X
e∈N(v)

P
P∈P:P�e x(P)

c(e)
≤ 1, ∀v ∈ V

x(P) ≥ 0, ∀P ∈ P

• Let x∗(P) denote the optimal solution and let

f(e) =
X

P∈P:P�e
x∗(P)

• Determine τ and w(e) as shown in equation (2).
• Construct the scheduling multi-graph GS(f , τ)
and determine its chromatic index L.

• Output r∗
Lτ

Theorem 8. Let Rsd be the maximum data rate that can
be routed and scheduled between nodes s and d. Let r∗ de-
note the optimal solution to the linear programming problem.
Then

2

3
r∗ ≤ r∗

Lτ
≤ Rsd ≤ r∗

Proof:
Since the conditions in the linear programming problem is
only necessary, it implies that Rsd ≤ r∗. Note that r∗

Lτ
is an

achievable (schedulable) flow. Therefore it is a lower bound
on the maximum flow. Further, by the proof of Theorem 3,
Lτ ≤ 3

2
and the result follows. ✷

Therefore the maximum s−d data rate that we determine
is within 67% of the optimal solution in the worst case. We
can evaluate the performance of the algorithm since r∗ is an
upper bound on the optimal solution value. We note that
in practice, the algorithm consistently seems to get to about
85% of the upper bound, as shown in Section 8.
In case the time slots are of fixed length, then

2

3(1 + τ.∆G)
r∗ ≤ Rsd ≤ r∗

5.1 Solving the Linear Programming Problem
In this section, we outline a FPTAS for solving the fol-

lowing optimization problem.

r∗ = max
X
P∈P

x(P)

X
e∈N(v)

P
P∈P:P�e x(P)

c(e)
≤ 1, ∀v ∈ V

x(P) ≥ 0, ∀P ∈ P
We first write the dual to this optimization problem. In the
dual, we associate a weight w(v) ≥ 0 with node v ∈ V . The

dual then is

min
X
v∈V

w(v)

X
e∈P

w(t(e)) + w(r(e))

c(e)
≥ 1, ∀P ∈ P

w(v) ≥ 0, ∀v ∈ V

If we define the “length” of link as the ratio of the sum of
the dual weights of its end nodes to the data rate of the link,
then the dual constraint implies that the shortest s−d path
has to be greater than one. Given a s − d path P and a
node v ∈ V , let I(v,P) denote the set of links in P that are
incident on node v.

I(v,P) = {e ∈ P : v = t(e) or v = r(e)}

Let

θ(v, P) =
X

e∈I(v,P)

1

c(e)

Note that the maximum flow that can occur through node
v on path P denoted by f(v, P) = θ(v, P)−1. This is due to
the fact that the utilization of the node has to be less than
one. Therefore an alternate way to write the dual constraint
is X

v∈P
θ(v, P)w(v) ≥ 1, ∀P ∈ P

The primal-dual algorithm to solve this problem is the fol-
lowing: We initialize the weight of all the nodes to some
precomputed value δ. The length of the link e in the net-
work are computed as follows:

l(e) =
w(t(e)) + w(r(e))

c(e)

Now the shortest path is computed from s to d using these
link lengths. Let P ∗ denote the shortest path. We determine

m = min
v∈P∗ f(v, P

∗)

This gives the flow that can be sent on the path without
violating any of the node capacity bounds. (Note that we use
the original capacity of one and not the residual capacity).
A flow of m is sent on the path. The weight of the nodes in
the optimal path is updated:

w(v)← w(v)

„
1 +

εm

f(v, P ∗)

«
, ∀v ∈ P ∗

Note that this is the same as

w(v)← w(v) (1 + ε m θ(v, P ∗)) , ∀v ∈ P ∗

This process of finding the shortest path and updating the
node weights is repeated until the sum of the node weights
is greater than one. At this point, the flows in the network
are scaled and this represents the ε-optimal solution to the
linear programming problem. The algorithm is formally de-
scribed below:

48

MAX DATA RATE

w(v) = δ ∀v ∈ V and r∗ = 0.

While
P

v∈V w(v)

Set l(e) = w(t(e))+w(r(e))
c(e)

on each link e ∈ E and compute shortest
path P ∗ from s to d.
Let m = minv∈P∗ f(v, P ∗)
r∗ ← r∗ +m.
f(v)← f(v) +mθ(v, P ∗), ∀v ∈ P ∗

w(v)← w(v)
“
1 + εc(P∗)

f(v,P∗)

”
, ∀v ∈ P ∗

end While
Compute ρ = maxv∈V f(v)

Set r∗ ← r∗
ρ

Output r∗

The analysis of the algorithm proceeds as in [10]. Since the
constraints are on the nodes in the network, the analysis is
slightly different.
Let wi(v) represent the weight of node v at the end of

iteration i. Let D(i) =
P

v∈V wi(v). This is the dual objec-
tive function at the end of iteration i. Let α(i) represent the
length of the shortest path in iteration i and let P i represent
the shortest path in iteration i. Let L be an upper bound on
the number of hops in any shortest path found during the
course of the algorithm. In the worst case we can set L = n.

Note that D(i)
α(i)

is a feasible dual solution. Let fi represent

the flow that is sent from the source to the destination until
iteration i. Then

D(i) ≤
X
e

wi−1(e) + εm
X
e∈P i

wi−1(v)θ(v,P
i)

= D(i− 1) + ε (fi − fi−1)α(i− 1)
≤ D(i− 1) + ε (fi − fi−1)α(i− 1)

Therefore

D(i) ≤ D(0) + ε
iX

j=1

(fj − fj−1)α(j − 1)

Let β be the dual optimal solution. We now want to bound β
ft
.

β = min
w

D(w)

α(w)
≤ D(wi − w0)

α(li − l0)
≤ D(li)−D(l0)

α(wi)− δL

Substituting the bound on D(i)−D(0) we get,

α(i) ≤ δL+
ε

β

iX
j=1

(fj − fj−1)α(j − 1)

For any j note that α(j) is maximum when all these inequal-
ities hold as equalities. This implies that

α(i) ≤ δLe
εfi
β i = 1, 2, . . . , t.

Since

1 ≤ α(t) ≤ δLe
εfi
β

Therefore,

β

ft
≤ ε

log(δL)−1

Lemma 9. There is a feasible flow of value

ft

log1+ε
(1+ε)
δ

Proof:
Whenever the node utilization is increased by one unit, the
weight of the node increases by at least 1 + ε. Note that
w0(v) = δ, wt−1(v) < 1 and wt(v) < (1 + ε). The utilization

of node v is at most log1+ε
(1+ε)
δ
. Therefore, scaling the final

flow ft by log1+ε
(1+ε)
δ

creates a feasible flow. ✷

The ratio of the dual to the primal optimal solution γ is
β
ft
log(1+ε)

(1+ε)
δ
. Substituting the bound on β

ft
,

γ ≤ ε

ln(1 + ε)

ln (1+ε)
δ

ln(δL)−1

Setting the value of δ = L− 1
ε (1 + ε)1−

1
ε , we get

γ ≤ ε

(1− ε) log(1 + ε)
≤ 1 + ε

(1− ε)2
≤ (1 + 2ε)

Theorem 10. The running time of the algorithm is

O(n1
ε
log1+ε L�TSP).

where TSP is the running time of one shortest path problem.

Proof:
At iteration i, the weight of the at least one node is increased
by a factor of 1+ε. Since wt(e) < (1+ε) the number of iter-
ations in which e is the minimum capacity edge on the path
set chosen is at most 1

ε
log1+ε L�. Since there are n nodes,

the total number of iterations is bounded by n 1
ε
log1+ε L�.

Each iteration involves solving one shortest path problem
and the result follows. ✷

From experimenting, even setting ε as high as 0.3-0.4
seems to give good results for the maximum data rate prob-
lem. If we fix the value of ε, then the running time of the
algorithm is roughly the same complexity as solving n short-
est path problems.

6. ACHIEVABLE RATES FOR MULTIPLE
SOURCE DESTINATION PAIRS

Now consider the problem of characterizing the achievable
rates in the case of multiple source destination pairs. We as-
sume that the traffic demand for different source-destination
pairs is given in the form of a rate vector r. We assume that
the rate vector has K < n(n− 1) components. Each source-
destination pair between which there is a request will be
termed a commodity. We use k to index the commodities.
Let s(k) represent the source node for commodity k and d(k)
the destination node for commodity k. Let r(k) represent
the flow that has to be routed from s(k) to d(k). The prob-
lem that we have to solve is the following:

49

• INPUT: A directed graph G = (V,E) with a
link speed c(e) for e ∈ E and K node pairs
(s(k), d(k)) and associated with each node pair
k is a desired rate r(k).

• OUTPUT: A set of routes and associated sched-
ule that achieves the given rates or declare the
problem not achievable.

As in the case of the single source-destination flow prob-
lem, it is easy to show the following result.

Theorem 11. Given a graph G = (V,E), with link speed
c(e) associated with link e ∈ E, K source destination pairs
(s(k), d(k)) for k = 1, 2, . . . K with a desired flow rate r(k)
between s(k) and d(k). The rate vector r is achievable if
there exists yk(e) such thatX

e:t(e)=s(k)

yk(e) = r(k), ∀k
X

e∈Nin(v)

yk(e) =
X

e∈Nout(v)

yk(e), ∀v �= s, d, ∀k

X
e∈N(v)

P
k yk(e)

c(e)
≤ 2

3
, ∀v ∈ V

Proof:
The proof follows from the arguments made for the single
source-destination case. ✷

As in the previous case, if we replace

X
e∈N(v)

P
k yk(e)

c(e)
≤ 2

3
, ∀v ∈ V

by

X
e∈N(v)

P
k yk(e)

c(e)
≤ 1, ∀v ∈ V

the conditions are necessary. An alternate formulation of the
above conditions can be given in an arc-path formulation.
Let Pk represent the set of paths for the source-destination
pair k. Consider a path P ∈ Pk. Let x(P) be the amount of
flow sent on that path. This path leads from s(k) to d(k).
¿From the demand requirements, note thatX

P∈Pk

x(P) = r(k), ∀k.

The total amount of flow on link e, represented by f(e) is
given by

f(e) =
X
k

X
P∈Pk:e∈P

x(P)

Then the necessary conditions for a rate vector r to be
achievable is given by X

P∈Pk

x(P) = r(k), ∀k

X
e∈N(v)

P
k

P
P∈Pk:P�e x(P)

c(e)
≤ 1, ∀v ∈ V

Given a rate vector r, the strategy then is to solve for the
x variables that satisfies the necessary conditions. If such
a vector does not exist, then the given rate vector is not
achievable. If it satisfies the necessary condition, then we
determine the length of the time slot τ , form the scheduling
multi-graph and determine its chromatic index L. Using the
same techniques used above, it is not difficult to show that

r(k)

Lτ

is achievable. As in the previous cases, we show that in
practice the performance of the algorithm is extremely good
in practice.

6.1 Solving the Linear Programming Problem
In order to solve the linear programming problem, we first

write the achievability problem as a concurrent flow problem
and then use a primal-dual algorithm to solve this problem.

max λ

X
e∈N(v)

P
k

P
P∈Pk:P�e x(P)

c(e)
≤ 1, ∀v ∈ V

X
P∈Pk

x(P) = λ r(k), ∀k

x(P) ≥ 0, ∀P ∈ Pk, ∀k
In the concurrent flow problem, the objective is to determine
the maximum scaling factor λ∗ that if all the desired traffic
rates are scaled up by this factor, then it will still fit in
the network. Therefore, if the objective function λ∗ is less
than than one then the vector is not achievable. If λ∗ ≥ 1,
then we have to schedule the flow to determine if the flow is
schedulable.

L*τ

λ*

1

achievablenot achievable

Figure 3: Schedulability of Flows

The largest flow vector that still satisfies the necessary
constraints is λ∗r which is given by the optimal link flow
vector x∗, found from the solution to the LP above. Ap-
plying Lemma 3 to this flow, we get a schedule for a flow
vector λ∗r

L∗τ , where L
∗ is the chromatic index of the schedul-

ing multi-graph GS(x
∗, τ). For this schedulable flow to be

at least r, we need λ∗ ≥ L∗τ . This is shown in Figure 3.
We have the following theorem.

Theorem 12. If λ∗ < 1, then r is not schedulable. If
λ∗ ≥ L∗τ , then there exists a schedule for the flow λ∗r

L∗τ , and

hence for r. If 1 ≤ λ∗ ≤ λ∗r
L∗τ , then it is not known whether

there exists a valid schedule for r.

The dual to this problem assigns a weight w(v) to each
node v in the network.

50

The dual formulation is as follows.

min
X
v∈V

w(v)

X
e∈P

w(t(e)) + w(r(e))

c(e)
≥ z(k), ∀P ∈ Pk, ∀k

KX
k=1

r(k)z(k) ≥ 1

w(v) ≥ 0, ∀e ∈ E

DETERMINE FEASIBILITY

w(v) = δ ∀v ∈ V and c = 0

While
P

v∈V w(v) < 1
For k = 1, 2, . . . ,K

r = d(k)
While r > 0

Set l(e) = w(t(e))+w(r(e))
c(e)

Compute shortest path length from
s(k) to t(k)
z = minP∈Pk w(P)
Let P ∗ be the optimal path.
Let u = minv∈P∗ f(v, P ∗).
δ = min{r, u}; r ← r − δ
f(e)← f(e) + δ, ∀e ∈ P ∗

w(v)← w(v) (1 + θ(v, P ∗)δ) , ∀v ∈ P ∗

end While
end For
c ← c+ 1
end While

Compute ρ = maxv∈V
P

e∈N(v)
f(e)
c(e)

Output λ∗ = c
ρ

The primal dual algorithm to solve the concurrent flow
problem starts by assigning a precomputed weight of δ to all
nodes v. The algorithm proceeds in phases. In each phase,
for each commodity k, we route r(k) units of flow from s(k)
to d(k). A phase ends when commodity K is routed. The
r(k) units of flow from s(k) to d(k) for commodity k is sent
via multiple iterations. In each iteration, the shortest path
P ∗ from s(k) to d(k) is determined. Let f(P ∗) represent
the maximum flow that can be sent on this path. We can
send a flow of at most f(P ∗) units this iteration. Since r(k)
units of flow have to be sent for commodity k in each phase,
the actual amount of flow sent is the lesser of f(P ∗) and
the remaining amount of flow to make up r(k) in this phase.
Once the flow is sent, the weights of the nodes that carry
the flow is increased. The algorithm is shown in Table 6.1.
Therefore, the algorithm then alternates between sending
flow along shortest path pairs and adjusting the length of
the links along which flow has been sent until the optimal
solution is reached.
By organizing the computation by source, one can send

flows to multiple destinations at the same time as in [11] and

the running time of the algorithm has only a logarithmic
dependency on the number of source destination pair.

Theorem 13. The DETERMINE FEASIBILITY algo-
rithm computes a (1 − ε)−3 optimal solution to the rate
achievability problem in time O(ε−2m2).

7. EXTENSIONS AND VARIATIONS
The algorithmic scheme is fairly general and can be ex-

tended in many directions. We consider two of them here.

7.1 Link Transmissions with Interference
The first extension is to the case where in addition to

the fact that a node cannot transmit or receive in the same
time slot, there is interference between different link trans-
missions. The model is flexible enough to handle different
kinds of interference between link transmissions and we illus-
trate one such case here. Our primary focus is to determine
the upper bound on the data transmission rate. In the case
of interfering channels, the coloring problems that have to
be solved are different from the link coloring problems that
we considered in the last few sections. We will comment on
the coloring problems later in this section. The interference
model that we consider is similar to the RTS-CTS scheme
that is used in IEEE802.11 standard. We want the neigh-
borhood of the transmitter and the receiver to be silenced
during transmission. This is due to the fact that interfer-
ence occurs at the receiver and the transmitter (because of
the feedback from the receiver).
Consider a node u in the network. If this node is receiving

or transmitting in a given time slot, then we want to ensure
that the radio neighborhood of this node is silenced. In
other words, if u is a receiver/transmitter in a given time
slot then we would like nodes w in the neighborhood of u to
not be transmitting to/receiving from u or any other node
in this time slot. In order to make this notion more formal,
we first define two node sets corresponding to given node
u ∈ V . Let

Vin(u) = {v ∈ V : t(e) = v for some e ∈ Nin(u)}
and

Vout(u) = {v ∈ V : r(e) = v for some e ∈ Nout(u)}.
Therefore Vin(u) represents the set of nodes that can trans-
mit directly with u and Vout(u) represents the set of nodes
that u can directly transmit to. Therefore, V (u) = Vin(u)∪
Vout(u) denotes all neighbors of u with whom it can com-
municate. When node u is transmitting/receiving in a given
time slot, we want none of the nodes in V (u) to be transmit-
ting/receiving in that time slot. We cannot directly model
this as a constraint in a linear programming formulation. We
therefore use an alternate characterization to use in the lin-
ear programming formulation. We consider a pair of nodes
u and w. In order to model the interference, we can write
the following constraint.

X
e∈N(u):V (w)�{r(e),t(e)}

y(e)

c(e)
+

X
e∈Nout(w)

y(e)

c(e)
≤ 1

Figure 4 illustrates the constraint.
We can write one such constraint for each pair of nodes

in the network. These constraints will be enforced in addi-
tion to the constraints

P
e∈N(v)

y(e)
c(e)

≤ 1 for all v ∈ V . In

general, the kind of constraints that we have to enforce have

51

v

w

Figure 4: Constraint Set for Channels with Inter-
ference

the following structure then we can use the primal-dual al-
gorithm developed in the last section to solve this problem:
Let S1, S2, . . . , Sp represent p sets of links in the network.
The constraint for the linear programming problem for nec-
essary conditions has the following structure.

X
e∈Sj

y(e)

c(e)
≤ 1, 1 ≤ j ≤ p

Each of these p sets has a dual weight associated with it. In
each step of the primal-dual algorithm, the weight of link e
is computed as the sum of the weights of the sets that the
link belongs to divided by the capacity of the link. Once the
shortest path and the amount of flow that has to be routed
are determined, the weight of all the sets that contain a link
in the shortest path are updated. Note that in determining
the shortest path, the computation of the link weights is
proportional to the number of sets that a link belongs to.
Therefore the overall computation time will be longer than
the case where there is no interference.
A detailed analysis and characterization of this and other

interference models with respect to the joint routing and
scheduling problem is provided in [15]. We do not give the
details of the linear programming algorithm here since it
is quite similar to the linear programming problem for the
system with no interference. Once the linear programming
problem is solved, then the flows have to be scaled and the
coloring problem has to be solved. The coloring problem is
not a simple link coloring problem. The coloring has to re-
spect the interference constraint. See Ramanathan [14] for a
thorough analysis of the coloring problems. However, there
is no analog of Shannon’s result and therefore, at this point
we do not know the sufficient conditions even for schedul-
ing a link flow vector. As stated earlier, the primal-dual
scheme also carries over to the case where both the source
and destination neighborhoods have to be silenced during
transmissions as in IEEE 802.11. In this case the coloring
problem is a distance-2 coloring and there is some literature
for this problem [16].

7.2 Routing Resilient Flows
In the case where, in order to increase the reliability of

the system, flows have to be routed from the source to the
destination along two or more node disjoint paths. We can
easily modify both our algorithms to take this into account.
The main difference in the implementation, will be that in-
stead of computing shortest paths we have to compute the
shortest pair of disjoint paths between a given source node
and destination node. This can be done via the algorithm of
Suurballe and Tarjan [17] by doing two shortest path com-
putations. The asymptotic running time of the algorithm
is the same as in the case where there are no resiliency re-
quirements.

8. SIMULATION RESULTS
In this section, we give some preliminary results on the

performance of the routing-scheduling algorithms. The rout-
ing problem is solved using the primal-dual scheme with
ε = 0.2 − 0.3. The algorithm executes within a couple of
seconds for all the problems considered. We tried both the
3
2
-approximation algorithm as well as 2-approximate greedy
algorithm for the coloring problem. The performance of the
greedy algorithm in practice was comparable to the 3

2
ap-

proximation algorithm but greedy was much faster. The
results show the performance of greedy. In all cases we plot
the upper bound that is given by solving the linear program-
ming problem with the necessary conditions as well as the
achievable solution given by the coloring algorithm. In all
cases we assumed that each time slot is 0.01 time units.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

F
lo

w
 p

er
 n

od
e

pa
ir

Experiment Number

Feasible Solution
Upper Bound

Figure 5: 10-node example

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5

F
lo

w
 p

er
 n

od
e

pa
ir

Experiment Number

Feasible Solution
Upper Bound

Figure 6: 20-node example

• Points were randomly distributed in a 10× 10 square.
All nodes within a distance of 5 units from a given node
were assumed to have direct communication with the
node. The link speed was normalized to 100 units.
Each node has unit rate to send to every node in the
network. The number of nodes were varied from 10-30
and the achievable throughput was plotted. (Figures
5,6,7).

52

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

F
lo

w
 p

er
 n

od
e

pa
ir

Experiment Number

Feasible Solution
Upper Bound

Figure 7: 30-node example

• We considered a network with 15 nodes and 56 links
(Figure 8) and we assumed that link capacities are uni-
formly distributed in the range [100 : 200]. We plotted
the data rate that can be achieved between nodes 1
and 13 for 5 different experiments. (Figure 9).

1

2

4

8

10

6

5

13

14

12

15

11

9

7

3

Figure 8: 15 Node Example

In all the examples that we studied, the achievable so-
lution that we found was about 15 % from the LP upper
bound. The approach that we use seems very promising
and practical.

9. CONCLUSIONS
We studied algorithms for routing flows and scheduling

transmissions in multi-hop wireless networks. We consid-
ered networks with only primary interference, where the only
constraint on nodes is that each node can be communicating
to at most one node at any time. The approach that we use
is to develop tight necessary conditions and solve this as a
linear programming problem. We developed FPTAS which
are very simple to implement. The scheduling problem is
solved as a coloring problem. We provide efficient color-
ing algorithms that guarantee 67 % of the optimal solution.

80

100

120

140

160

180

200

220

240

1 1.5 2 2.5 3 3.5 4 4.5 5A
ch

ie
va

bl
e

D
at

a
ra

te
 B

et
w

ee
n

N
od

es
 1

 a
nd

 1
4

Experiment Number

Feasible Solution
Upper Bound

Figure 9: Nodes 1-14 Max Data Rate

In almost all of the cases that we tested, our approach is
within 15-20 % of the optimal solution. This framework is a
promising way to investigate other interference models and
networks where nodes have multiple radios.

10. REFERENCES
[1] Baker, D.J., Wieselthier, J.E., and Ephremides, A.,

“A Distributed Algorithm for Scheduling the
Activation of Links in a Self-Organizing Mobile Radio
Networks”, IEEE Int. Conference Communications,
1982, pp. 2F6.1-2F6.5.

[2] Hajek, B., and Sasaki, G., “Link Scheduling in
Polynomial Time”, IEEE Transactions on Information
Theory, 34(5), pp. 910-917, 1988.

[3] Gupta, P., and Kumar, P.R., “The Capacity of
Wireless Networks”, IEEE Transactions on
Information Theory, 46(2), pp. 388-404, 2000.

[4] Ahuja, R.K., Magnanti, T.L., Orlin, J.B., “Network
Flows: Theory, Algorithms, and Applications”,
Prentice Hall, 1993.

[5] Grotschel, M., Lovasz, L., and Schrijver, A., “The
Ellipsoid Method and its Consequences in
Combinatorial Optimization”, Combinatorica, 1(2),
pp. 169-197, 1981.

[6] Post, M.J, Kershenbaum, A.S. and Sarachik, P.E., “
Scheduling Multi-hop CDMA Networks in the
Presence of Secondary Conflicts”, Algorithmica, 1989,
pp. 365-393.

[7] Wieselthier, J.E., Barnhart, C.M., and Ephremides,
A., “A Neural Network Approach to Routing Without
Interference in Multi-hop Networks”, IEEE
Transactions on Communications, 1994.

[8] Jain, K., Padhye, J., Padmanabhan, V., and Qiu, L.,
“Impact on Interference on Multi-hop Wireless
Network Performance”, ACM Mobicom’03, September
2003.

[9] Shahrokhi, F., and Matula, D., “The Maximum
Concurrent Flow Problem”, Journal of the ACM, 37,
pp. 318-334, 1990.

[10] Garg, N., and Könemann, J., “Faster and Simpler
Algorithms for Multi-commodity Flow and other
Fractional Packing Problems”, Proceedings of the 39th
Annual Symposium on Foundations of Computer
Science, pp.300-309, 1998.

53

[11] Karakostas, G., “Faster Approximation Schemes for
Fractional Multi-commodity Flow Problems”, 13th
ACM/SIAM Symposium on Discrete Algorithms, pp.
166-173, 2002.

[12] Shannon, C.E., “A Theorem on Coloring the Lines of a
Network”, J. of Math. Physics, 28, pp. 148-151, 1949.

[13] Nishizeki, T., and Kashiwagi, K., “On the 1.1
Edge-Coloring of Multi-graphs”, SIAM Journal of
Discrete Math., 3(3), pp. 391-410, 1990.

[14] Ramanathan, S., “A Unified Framework and
Algorithm for (T/F/C)DMA Channel Assignment in
Wireless Networks”, IEEE Int. Conference on
Communications, 1991, pp. 7d.2.1-7d.2.8

[15] Kodialam, M., and Nandagopal, T., “The Effect of
Interference on the Capacity of Multi-hop Wireless
Networks”, Bell Labs Technical Report, Lucent
Technologies, July 2003.

[16] Barrett, C., Istrate, G., Anil Kumar, V.S., Marathe,
M., and Thite, S., “Approximation Algorithms for
Distance-2 Edge Coloring”, Unpublished Document,
2002.

[17] Suurballe, J.W., and Tarjan, R.E., “A Quick Method
for Finding Shortest Pairs of Disjoint Paths”,
Networks, 14, pp. 325-336, 1984.

54

