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ABSTRACT

Deep Neural Networks (DNNs) have recently been shown to be vulnerable against
adversarial examples, which are carefully crafted instances that can mislead DNNs
to make errors during prediction. To better understand such attacks, a characteri-
zation is needed of the properties of regions (the so-called ‘adversarial subspaces’)
in which adversarial examples lie. We tackle this challenge by characterizing the
dimensional properties of adversarial regions, via the use of Local Intrinsic Di-
mensionality (LID). LID assesses the space-filling capability of the region sur-
rounding a reference example, based on the distance distribution of the example
to its neighbors. We first provide explanations about how adversarial perturbation
can affect the LID characteristic of adversarial regions, and then show empirically
that LID characteristics can facilitate the distinction of adversarial examples gen-
erated using state-of-the-art attacks. As a proof-of-concept, we show that a poten-
tial application of LID is to distinguish adversarial examples, and the preliminary
results show that it can outperform several state-of-the-art detection measures by
large margins for five attack strategies considered in this paper across three bench-
mark datasets . Our analysis of the LID characteristic for adversarial regions not
only motivates new directions of effective adversarial defense, but also opens up
more challenges for developing new attacks to better understand the vulnerabili-
ties of DNNs.

1 INTRODUCTION

Deep Neural Networks (DNNs) are highly expressive models that have achieved state-of-the-art per-
formance on a wide range of complex problems, such as speech recognition (Hinton et al., 2012) and
image classification (Krizhevsky et al., 2012). However, recent studies have found that DNNs can be
compromised by adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014; Nguyen et al.,
2015). These intentionally-perturbed inputs can induce the network to make incorrect predictions
at test time with high confidence, even when the examples are generated using different networks
(Liu et al., 2016; Carlini & Wagner, 2017b; Papernot et al., 2016b). The amount of perturbation
required is often small, and (in the case of images) imperceptible to human observers. This undesir-
able property of deep networks has become a major security concern in real-world applications of
DNNs, such as self-driving cars and identity recognition (Evtimov et al., 2017; Sharif et al., 2016).
In this paper, we aim to further understand adversarial attacks by characterizing the regions within
which adversarial examples reside.

Each adversarial example can be regarded as being surrounded by a connected region of the domain
(the ‘adversarial region’ or ‘adversarial subspace’) within which all points subvert the classifier in a
similar way. Adversarial regions can be defined not only in the input space, but also with respect to
the activation space of different DNN layers (Szegedy et al., 2013). Developing an understanding of
the properties of adversarial regions is a key requirement for adversarial defense. Under the assump-
tion that data can be modeled in terms of collections of manifolds, several works have attempted to
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Figure 1: This example shows how density measures can fail to characterize the spatial properties
of adversarial regions. The Gaussian kernel with bandwidth 0.2 is used for KD.

characterize the properties of adversarial subspaces, but no definitive method yet exists which can
reliably discriminate adversarial regions from those in which normal data can be found. Szegedy
et al. (2013) argued that adversarial subspaces are low probability regions (not naturally occurring)
that are densely scattered in the high dimensional representation space of DNNs. However, a lin-
ear formulation argues that adversarial subspaces span a contiguous multidimensional space, rather
than being scattered randomly in small pockets (Goodfellow et al., 2014; Warde-Farley et al., 2016).
Tanay & Griffin (2016) further emphasize that adversarial subspaces lie close to (but not on) the
data submanifold. Similarly, it has also been found that the boundaries of adversarial subspaces are
close to legitimate data points in adversarial directions, and that the higher the number of orthogonal
adversarial directions of these subspaces, the more transferable they are to other models (Tramèr
et al., 2017). To summarize, with respect to the manifold model of data, the known properties of ad-
versarial subspaces are: (1) they are of low probability, (2) they span a contiguous multidimensional
space, (3) they lie off (but are close to) the data submanifold, and (4) they have class distributions
that differ from that of their closest data submanifold.

Among adversarial defense/detection techniques, Kernel Density (KD) estimation has been proposed
as a measure to identify adversarial subspaces (Feinman et al., 2017). Carlini & Wagner (2017a)
demonstrated the usefulness of KD-based detection, taking advantage of the low probability density
generally associated with adversarial subspaces. However, in this paper we will show that kernel
density is not effective for the detection of some forms of attack. In addition to kernel density, there
are other density-based measures, such as the number of nearest neighbors within a fixed distance,
and the mean distance to the k nearest neighbors (k-mean distance). Again, these measures have
limitations for the characterization of local adversarial regions. For example, in Figure 1 the three
density measures fail to differentiate an adversarial example (red star) from a normal example (black
cross), as the two examples are locally surrounded by the same number of neighbors (50), and have
the same k-mean distance (KM=0.19) and kernel density (KD=0.92).

As an alternative to density measures, Figure 1 leads us to consider expansion-based measures of
intrinsic dimensionality as a potentially effective method of characterizing adversarial examples.
Expansion models of dimensionality assess the local dimensional structure of the data — such mod-
els have been successfully employed in a wide range of applications, such as manifold learning,
dimension reduction, similarity search and anomaly detection (Amsaleg et al., 2015; Houle, 2017a).
Although earlier expansion models characterize intrinsic dimensionality as a property of data sets,
the Local Intrinsic Dimensionality (LID) fully generalizes this concept to the local distance distri-
bution from a reference point to its neighbors (Houle, 2017a;b) — the dimensionality of the local
data submanifold in the vicinity of the reference point is revealed by the growth characteristics of
the cumulative distribution function. In this paper, we use LID to characterize the intrinsic dimen-
sionality of adversarial regions, and attempt to test how well the estimates of LID can be used to
distinguish adversarial examples. Note that the main goal of LID is to characterize properties of
adversarial examples, instead of being applied as a pure defense method, which requires stronger
assumptions on the current threat model. In Figure 1, the estimated LID of the adversarial example
(LID ≈ 4.36) is much higher than that of the referenced normal data sample (LID ≈ 1.53), illustrat-
ing that the estimated LID can efficiently capture the intrinsic dimensional properties of adversarial
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regions. In this paper, we aim to study the LID properties of adversarial examples generated using
state-of-the-art attack methods. In particular, our contributions are:

• We propose LID for the characterization of adversarial regions of deep networks. We
discuss how adversarial perturbation can affect the LID characteristics of an adversarial
region, and empirically show that the characteristics of test examples can be estimated
effectively using a minibatch of training data.

• Our study reveals that the estimated LID of adversarial examples considered in this paper1

is significantly higher than that of normal data examples, and that this difference becomes
more pronounced in deeper layers of DNNs.

• We empirically demonstrate that the LID characteristics of adversarial examples generated
using five state-of-the-art attack methods can be easily discriminated from those of normal
examples, and provide a baseline classifier with features based on LID estimates that gen-
erally outperforms several existing detection measures on five attacks across three bench-
mark datasets. Though the adversarial examples considered here are not guaranteed to be
the strongest with careful parameter tuning, these preliminary results firmly demonstrate
the usefulness of LID measurement.

• We show that the adversarial regions generated by different attacks share similar dimen-
sional properties, in that LID characteristics of a simple attack can potentially be used to
detect other more complex attacks. We also show that a naive LID-based detector is robust
to the normal low confidence Optimization-based attack of (Carlini & Wagner, 2017a).

2 RELATED WORK

In this section, we briefly review the state of the art in both adversarial attack and adversarial defense.

Adversarial Attack: A wide range of approaches have been proposed for the crafting of adversarial
examples to compromise the performance of DNNs; here, we mention a selection of such works.
The Fast Gradient Method (FGM) (Goodfellow et al., 2014) directly perturbs normal input by a
small amount along the gradient direction. The Basic Iterative Method (BIM) is an iterative version
of FGM (Kurakin et al., 2016). One variant of BIM stops immediately once misclassification has
been achieved with respect to the training set (BIM-a), and another iterates a fixed number of steps
(BIM-b). For image sets, the Jacobian-based Saliency Map Attack (JSMA) iteratively selects the
two most effective pixels to perturb based on the adversarial saliency map, repeating the process
until misclassification is achieved (Papernot et al., 2016c). The Optimization-based attack (Opt),
arguably the most effective to date, addresses the problem via an optimization framework (Liu et al.,
2016; Carlini & Wagner, 2017b).

Adversarial Defense: A number of defense techniques have been introduced, including adversarial
training (Goodfellow et al., 2014), distillation (Papernot et al., 2016d), gradient masking (Gu &
Rigazio, 2014), and feature squeezing (Xu et al., 2017). However, these defenses can generally be
evaded by Opt attacks, either wholly or partially (Carlini & Wagner, 2017a; He et al., 2017; Li &
Vorobeychik, 2014; 2015). Given the inherent challenges for adversarial defense, recent works have
instead focused on detecting adversarial examples. These works attempt to discriminate adversarial
examples (positive class) from both normal and noisy examples (negative class), based on features
extracted from different layers of a DNN. Detection subnetworks based on activations (Metzen et al.,
2017), a cascade detector based on the PCA projection of activations (Li & Li, 2016), an augmented
neural network detector based on statistical measures, a learning framework that covers unexplored
space in vulnerable models (Rouhani et al., 2017; 2018), a logistic regression detector based on KD,
and Bayesian Uncertainty (BU) features (Grosse et al., 2017) are a few such works. However, a
recent study by Carlini & Wagner (2017a) has shown that these detection methods can be vulnerable
to attack as well.

1Since our goal is to provide a proof-of-concept for the potential application of LID, we consider only the
state-of-the-art methods to generate adversarial examples using default parameters without tuning the parame-
ters to explore the strongest attacks under different conditions.
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3 LOCAL INTRINSIC DIMENSIONALITY

In the theory of intrinsic dimensionality, classical expansion models (such as the expansion dimen-
sion and generalized expansion dimension (Karger & Ruhl, 2002; Houle et al., 2012)) measure the
rate of growth in the number of data objects encountered as the distance from the reference sample
increases. As an intuitive example, in Euclidean space, the volume of an m-dimensional ball grows
proportionally to rm, when its size is scaled by a factor of r. From this rate of volume growth with
distance, the expansion dimension m can be deduced as:

V2

V1
=

(
r2
r1

)m

⇒ m =
ln(V2/V1)

ln(r2/r1)
. (1)

By treating probability mass as a proxy for volume, classical expansion models provide a local view
of the dimensional structure of the data, as their estimation is restricted to a neighborhood around
the sample of interest. Transferring the concept of expansion dimension to the statistical setting of
continuous distance distributions leads to the formal definition of LID (Houle, 2017a).

Definition 1 (Local Intrinsic Dimensionality).
Given a data sample x ∈ X , let R > 0 be a random variable denoting the distance from x to
other data samples. If the cumulative distribution function F (r) of R is positive and continuously
differentiable at distance r > 0, the LID of x at distance r is given by:

LIDF (r) , lim
ǫ→0

ln
(
F ((1 + ǫ) · r)

/
F (r)

)

ln(1 + ǫ)
=

r · F ′(r)

F (r)
, (2)

whenever the limit exists.

F (r) is analogous to the volume V in Equation (1); however, we note that the underlying distance
measure need not be Euclidean. The last equality of Equation (2) follows by applying L’Hôpital’s
rule to the limits (Houle, 2017a). The local intrinsic dimension at x is in turn defined as the limit,
when the radius r tends to zero:

LIDF = lim
r→0

LIDF (r). (3)

LIDF describes the relative rate at which its cumulative distance function F (r) increases as the
distance r increases from 0, and can be estimated using the distances of x to its k nearest neighbors
within the sample (Amsaleg et al., 2015).

In the ideal case where the data in the vicinity of x is distributed uniformly within a submanifold,
LIDF equals the dimension of the submanifold; however, in general these distributions are not ideal,
the manifold model of data does not perfectly apply, and LIDF is not an integer. Nevertheless,
the local intrinsic dimensionality does give a rough indication of the dimension of the submanifold
containing x that would best fit the data distribution in the vicinity of x. We refer readers to Houle
(2017a;b) for more details concerning the LID model.

Estimation of LID: According to the branch of statistics known as extreme value theory, the small-
est k nearest neighbor distances could be regarded as extreme events associated with the lower tail
of the underlying distance distribution. Under very reasonable assumptions, the tails of continuous
probability distributions converge to the Generalized Pareto Distribution (GPD), a form of power-
law distribution (Coles et al., 2001). From this, Amsaleg et al. (2015) developed several estimators
of LID to heuristically approximate the true underlying distance distribution by a transformed GPD;
among these, the Maximum Likelihood Estimator (MLE) exhibited a useful trade-off between sta-
tistical efficiency and complexity. Given a reference sample x ∼ P , where P represents the data
distribution, the MLE estimator of the LID at x is defined as follows:

L̂ID(x) = −

(
1

k

k∑

i=1

log
ri(x)

rk(x)

)
−1

. (4)
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Here, ri(x) denotes the distance between x and its i-th nearest neighbor within a sample of points
drawn from P , where rk(x) is the maximum of the neighbor distances. In practice, the sample set is
drawn uniformly from the available training data (omitting x itself), which itself is presumed to have
been randomly drawn from P . We emphasize that the LID defined in Equation (3) is a theoretical

quantity, and that L̂ID as defined in Equation (4) is its estimate. In the remainder of this paper, we
will refer to Equation (4) to calculate LID estimates.

4 CHARACTERIZING ADVERSARIAL REGIONS

Our aim is to gain a better understanding of adversarial regions, and thereby derive potential defenses
and provide new directions for more efficient attacks. We begin by providing some motivation
with respect to the manifold model of data as to how adversarial perturbation might affect the LID
characteristic of adversarial regions. We then show how a detector can potentially be designed using
LID estimates to discriminate between adversarial and normal examples.

LID of Adversarial Subspaces: Consider a sample x ∈ X lying within a data submanifold S,
where X is a randomly sampled dataset from P consisting only of normal (unperturbed) examples.
Adversarial perturbation of x typically results in a new sample x′ whose coordinates differ from
those of x by very small amounts. Assuming that x′ is indeed a successful adversarial perturbation of
x, the theoretical LID value associated with x is simply the dimension of S, whereas the theoretical
LID value associated with x′ is the dimension of the adversarial subspace within which it resides.
Recent work in Amsaleg et al. (2017) shows that the magnitude of the perturbation required to make
changes in the expected nearest neighbor ranking tends to zero as the LID and the data sample size
tend to infinity.

Since perturbation schemes generally allow the modification of all data coordinates, they exploit
the full degrees of freedom afforded by the representational dimension of the data domain. As
pointed out by (Goodfellow et al., 2014; Warde-Farley et al., 2016; Tanay & Griffin, 2016), x′ is
very likely to lie outside S (but very close to S — in a high-dimensional contiguous space). In
applications involving high-dimensional data, the representational dimension is typically far larger
than the intrinsic dimension of any given data submanifold, which implies that the theoretical LID
of x′ is far greater than that of x.

In practice, however, the values of LID must be estimated from local data samples. This is typically
done by applying an appropriate estimator (such as the MLE estimator shown in Equation (4)) to a
k-nearest neighborhood of the test samples, for some appropriate fixed choice of k. Typically, k is
chosen large enough for the estimation to stabilize, but not so large that the sample is no longer local
to the test sample. If the dimension of S is reasonably low, one can expect the estimation of the LID
of x to be reasonably accurate.

For the adversarial subspace, the samples appearing in the neighborhood of x′ can be expected to
be drawn from more than one manifold. The proximity of x′ to S means that the neighborhood
is likely to contain neighbors lying in S; however, if the neighborhood were composed mostly of
samples drawn from S, x′ would not likely be an adversarial example. Thus, the neighbors of x′

taken together are likely to span a subspace of intrinsic dimensionality much higher than any of
these submanifolds considered individually, and the LID estimate computed for x′ can be expected
to reveal this.

Efficiency through Minibatch Sampling: Computing neighborhoods with respect to the entirety of
the dataset X can be prohibitively expensive, particularly when the (global) intrinsic dimensionality
of X is too high to support efficient indexing. For this reason, when X is large, the computational
cost can be reduced by estimating the LID of an adversarial example x′ from its k-nearest neighbor
set within a randomly-selected sample (minibatch) of the dataset X . Since the LID estimation model
regards the distances from x′ to the members of X as determined by independently-drawn samples
from a distribution P , the estimator can also be applied to the distances induced by any random
minibatch, as it too would be drawn independently from the same distribution P .

Provided that the minibatch is chosen sufficiently large so as to ensure that the k-nearest neighbor
sets remain in the vicinity of x′, estimates of LID computed for x′ within the minibatch would re-
semble those computed within the full dataset X . Conversely, as the size of the minibatch is reduced,
the variance of the estimates would increase. However, if the gap between the true LID values of x
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and x′ is sufficiently large, even an extremely small minibatch size and / or small neighborhood size
could conceivably produce estimates whose difference is sufficient to reveal the adversarial nature
of x′. As we shall show in Section 5.2, discrimination between adversarial and non-adversarial ex-
amples turns out to be possible even for minibatch sizes as small as 100, and for neighborhood sizes
as small as 20.

Using LID to Characterize Adversarial Examples: We next describe how LID estimates can
serve as features to train a detector to distinguish adversarial examples. Note that here we only aim
to train a baseline classifier to demonstrate how well LID can characterize adversarial examples.
Robust detection taking different attack variations into account, such as attack confidence, will be
left as future work. Our methodology requires that training sets be comprised of three types of
examples: adversarial, normal and noisy. This replicates the methodology used in (Feinman et al.,
2017; Carlini & Wagner, 2017a), where the rationale for including noisy examples is that DNNs
are required to be robust to random input noise (Fawzi et al., 2016) and noisy inputs should not be
identified as adversarial attacks. A classifier can be trained by using the training data to construct
features for each sample, based on its LID within a minibatch of samples across different layers,
where the class label is assigned positive for adversarial examples and assigned negative for normal
and noisy examples.

Algorithm 1 describes how the LID features can be extracted for training an LID-based classifier.
Given an initial training dataset and a DNN pre-trained on the initial training dataset, the algorithm
outputs a classifier trained using LID features. As in previous studies (Carlini & Wagner, 2017a;
Feinman et al., 2017), we assume that the initial training dataset is free of adversarial examples —
that is, all examples in the dataset are considered ‘normal’ to begin with. The extraction of LID
features first begins with the generation of adversarial and noisy counterparts to normal examples
(step 3 and 4) in each minibatch. One minibatch of normal examples (Bnorm) is used for gener-
ating 2 counterpart minibatches of examples: one adversarial (Badv) and one noisy (Bnoisy). The
adversarial examples are generated using an adversarial attack on normal examples (step 3), while
noisy examples are generated by adding random noise to normal examples, subject to the constraint
that the magnitude of perturbation undergone by a noisy example is the same as the magnitude of
perturbation undergone by its counterpart adversarial example (step 4). One minibatch of normal
examples is converted to an equal number of adversarial examples after step 3, and an equal number
of noisy examples after step 4.

The LID associated with each example (either normal, adversarial or noisy) is estimated from its k
nearest neighbors in the normal minibatch (steps 12-14), using Equation (4). For any new unknown
test example, a minibatch consisting only of normal training examples is used to estimate LID.
For each example and each transformation layer in the DNN, an LID estimate is calculated. The
distance function needed for this estimate uses the activation values of the neurons in the given layer
as inputs (step 7). As will be discussed in Section 5.2, we use all transformation layers, including
conv2d, max-pooling, dropout, ReLU and softmax, since we expect adversarial regions to exist in
each layer of the DNN representation space. The LID estimates associated with the example are
then used as feature values (one feature for each transformation layer). Finally, a classifier (such as
logistic regression) is trained using the LID features. Test examples can then be classified by the
LID-based classifier to either the positive (adversarial) or negative (non-adversarial) class by means
of its LID-based feature values.

5 EVALUATING LID-BASED CHARACTERIZATION OF ADVERSARIAL

EXAMPLES

In this section, we evaluate the discrimination power of LID-based characterization against five
adversarial attack strategies — FGM, BIM-a, BIM-b, JSMA, and Opt, as introduced in Section 2.
These attack strategies were selected for our experiments due to their reported effectiveness and their
diversity. For each of the 5 forms of attack, the LID detector is compared with the state-of-the-art
detection measures KD and BU as discussed in Section 2, with respect to three benchmark image
datasets: MNIST (LeCun et al., 1990), CIFAR-10 (Krizhevsky & Hinton, 2009) and SVHN (Netzer
et al., 2011). Each of these three datasets is associated with a designated training set and test set.
Before reporting and discussing the results, we first describe the experimental setup.
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Algorithm 1 Training phase for LID-based adversarial classifier

Input:
X: a dataset of normal examples
H(x): a pre-trained DNN with L transformation layers
k: the number of nearest neighbors for LID estimation

Output:
Detector(LID) ⊲ a detector

1: LIDneg=[], LIDpos=[]
2: for Bnorm in X do ⊲ Bnorm: a minibatch of normal examples
3: Badv := adversarial attack Bnorm ⊲ Badv: a minibatch of adversarial examples
4: Bnoisy := add random noise to Bnorm ⊲ Bnoisy: a minibatch of noisy examples
5: N = |Bnorm| ⊲ number of examples in Bnorm

6: LIDnorm, LIDnoisy , LIDnoisy = zeros[N,L]
7: for i in [1, L] do
8: Anorm = Hi(Bnorm) ⊲ i-th layer activations of Bnorm

9: Aadv = Hi(Badv) ⊲ i-th layer activations of Badv

10: Anoisy = Hi(Bnoisy) ⊲ i-th layer activations of Bnoisy

11: for j in [1, N ] do

12: LIDnorm[j, i] = −
(
1
k

∑k

i=1 log
ri(Anorm[j],Anorm)
rk(Anorm[j],Anorm)

)
−1

13: LIDadv[j, i] = −
(
1
k

∑k

i=1 log
ri(Aadv [j],Anorm)
rk(Aadv [j],Anorm)

)
−1

14: LIDnoisy[j, i] = −
(
1
k

∑k

i=1 log
ri(Anoisy [j],Anorm)
rk(Anoisy [j],Anorm)

)
−1

15: ⊲ ri(A[j], Anorm): the L2 distance of A−[j] to its i-th nearest neighbor in Anorm

16: end for
17: end for
18: LIDneg .append(LIDnorm), LIDneg .append(LIDnoisy)
19: LIDpos.append(LIDadv)
20: end for
21: Detector(LID) = train a classifier on (LIDneg , LIDpos)

5.1 EXPERIMENTAL SETUP

Training and Testing: For each of the three image datasets, a DNN classifier was independently
pretrained on its designated training set (the pre-train set), and its designated test set was used for
testing (the pre-test set). Any pre-test images not correctly classified were discarded, and the remain-
ing images were subdivided into train (80%) and test (20%) sets for subsequent processing. Both of
these sets were randomly partitioned into minibatches of size 100, for later use in the computation
of LID characteristics.

The LID-, KD- and BU-based detectors were trained separately on the train set using the scheme
in Algorithm 1, with the calculation of LID estimates replaced by KD and BU calculation for their
respective detectors. All three detectors were then evaluated against equal numbers of normal, noisy
and adversarial images crafted from members of the test set, as described in Steps 2-4 of Algorithm
1. The LID, KD and BU characteristics of those test images were then generated as shown in Steps 1-
19 of Algorithm 1. It should be noted that no images of the test set were examined during any of the
training processes, so as to avoid cross contamination. The adversarial examples for both training
and testing were generated by applying one of the five selected attacks. Following the procedure
outlined in Feinman et al. (2017), the noisy examples for the JSMA attack were crafted by changing
the values of a randomly-selected set of pixels to either their minimum or maximum (determined
randomly), where the number of pixels to be adjusted was chosen to be equal to the number of pixels
perturbed in the generation of adversarial examples. For the other attack strategies, L2 Gaussian
noise was added to the pixel values instead of setting them to their minimum or maximum. As
suggested by Feinman et al. (2017); Carlini & Wagner (2017a), we used the logistic regression
classifier as detector, and report its AUC score as the metric for performance.

Deep Neural Networks for Pretraining: The pretrained DNN used for MNIST was a 5-layer
ConvNet with max-pooling and dropout. It achieved 99.29% classification accuracy on (normal)
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pre-test images. For CIFAR-10, a 12-layer ConvNet with max-pooling and dropout was used. This
model reported an accuracy of 84.56% on (normal) pre-test images. For SVHN, we trained a 6-layer
ConvNet with max-pooling and dropout. It achieved 92.18% accuracy on (normal) pre-test images.
We deliberately did not tune the DNNs, as their performance was close to the state-of-the-art and
could thus be considered sufficient for use in an adversarial study (Feinman et al., 2017).

Parameter Tuning: We tuned the bandwidth (σ) parameter for KD, and the number of nearest
neighbors (k) for LID, using nested cross validation within the training set (train). Using the AUC
values of detection performance, the bandwidth was tuned using a grid search over the range [0, 10)
in log-space, and neighborhood size was tuned using a grid search over the range [10, 100) with
respect to a minibatch of size 100. For a given dataset, the parameter setting selected was the one
with highest AUC averaged across all attacks. The optimal bandwidths chosen for MNIST, CIFAR-
10 and SVHN were 3.79, 0.26, and 1.0, respectively, while the value of k for LID estimation was
set to 20 for MNIST and CIFAR-10, and 30 for SVHN. For BU, we chose the number of prediction
runs to be T = 50 in all experiments. We did not tune this parameter, as it is not considered to be
sensitive for choices of T greater than 20 (Carlini & Wagner, 2017a).

Our implementation is based on the detection framework of Feinman et al. (2017). For FGM, JSMA,
BIM-a, and BIM-b attack strategies, we used the cleverhans library (Papernot et al., 2016a), and
for the Opt attack strategy, we used the author’s implementation (Carlini & Wagner, 2017b). We
scaled all image feature values to the interval [0, 1]. Our code is available for download at https:
//github.com/xingjunm/lid_adversarial_subspace_detection.

5.2 LID CHARACTERISTICS OF ADVERSARIAL EXAMPLES

We provide empirical results showing the LID characteristics of adversarial examples generated by
Opt, the most effective of the known attack strategies. The left subfigure in Figure 2 shows the LID
scores (at the softmax layer) of 100 randomly selected normal, noisy and adversarial (Opt) examples
from the CIFAR-10 dataset. We observe that at this layer, the LID scores of adversarial examples
are significantly higher than those of normal or noisy examples. This supports our expectation that
adversarial regions have higher intrinsic dimensionality than normal data regions (as discussed in
Section 4). It also suggests that the transition from normal example to adversarial example may
follow directions in which the complexity of the local data submanifold significantly increases,
leading to an increase in estimated LID values.

In the right subfigure of Figure 2, we further show that the LID scores of adversarial examples
are more easily discriminated from those of other examples at deeper layers of the network. The
12-layer ConvNet used for CIFAR-10 consists of 26 transformation layers: the input layer (L0),
conv2d/max-pooling (L1−17), dense/dropout (L18−24) and the final softmax layer (L25). The esti-
mated LID characteristics of adversarial examples become distinguishable (detection AUC> 0.5) at
the dense layers (L18−24), and significantly different at the softmax layer (L25). This suggests that
the fully-connected and softmax transformations may be more sensitive to adversarial perturbations
than convolutional transformations. Plots of LID scores for the MNIST and SVHN datasets can be
found in Appendix A.2.

With regard to the stability of performance based on parameter variation (k for LID, or bandwidth
for KD), we can see from Figure 3 that LID is more stable than KD, exhibiting less variation in
AUC as the parameter varies. From this figure, we also see that KD requires significantly different
optimal settings for different types of data. For simpler datasets such as MNIST and SVHN, KD
requires quite high bandwidth choices for best performance.

5.3 ANALYSIS OF LID PROPERTIES

LID Outperforms KD and BU: We compare the performance of LID-based detection with that
of detectors trained with features of KD and BU individually, as well as a detector trained with a
combination of KD and BU features (denoted as ‘KD+BU’). As shown in Table 1, LID outperforms
the KD and BU measures (both individually and combined) by large margins on all attack strategies
tested, across all datasets tested. For the most effective attack strategy known to date, the Opt
attack, the LID-based detector achieved AUC scores of 99.24%, 98.94% and 97.60% on MNIST,
CIFAR-10 and SVHN respectively, compared to AUC scores of 95.35%, 93.77% and 90.66% for
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Figure 2: The left-hand figure shows the LID scores (at the softmax layer) of 100 normal (blue),
noisy (green), and Opt attack (red x-cross) examples from the CIFAR-10 dataset. The scores have
been scaled to the interval [0,1] using min-max normalization. The blue and green lines appear
superimposed due to similarities in the LID scores for normal and noisy examples. The right-hand
figure shows the detection performance (AUC) based on LID scores computed at different layers.
Li denotes the i-th transformation layer.

Figure 3: Top row: tuning bandwidth σ for KD using a grid search over the range [0, 10) in log-
space, separately for each dataset. Bottom row: tuning k for LID using a grid search over the range
[10, 100) for minibatch size 100, separately for each dataset. The vertical dashed lines denote the
selected parameter choice.

the detector based on KD and BU. This strong performance suggests that LID is a highly promising
characteristic for the discrimination of adversarial examples and regions. We also note that KD was
not effective for the FGM, JSMA and BIM-a attack strategies, whereas the BU measure failed to
detect most FGM and BIM-b attacks on the MNIST dataset.

Generalizability Analysis: It is natural to consider the question of whether samples of one attack
strategy may be detected by a model that has been trained on samples of a different attack strategy.
We conduct a preliminary investigation of this issue by studying the generalizability of KD, BU
and LID for detecting previously unseen attack strategies on the CIFAR-10 dataset. The KD, BU
and LID detectors are trained on samples of the simplest attack strategy, FGM, and then tested on
samples of the more complex attacks BIM-a, BIM-b, JSMA and Opt. The training and test datasets
are generated in the same way as in our previous experiments with only the FGM attack applied
on the train set while the other attacks applied separately on the test set. The test attack data is
standardized by scaling so as to fit the training data. The results are shown in Table 2, from which
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Table 1: A comparison of the discrimination power (AUC score (%) of a logistic regression clas-
sifier) among LID, KD, BU, and KD+BU. The AUC score is computed for each attack strategy on
each dataset, and the best results are highlighted in bold.

Dataset Feature FGM BIM-a BIM-b JSMA Opt

MNIST

KD 78.12 98.14 98.61 68.77 95.15

BU 32.37 91.55 25.46 88.74 71.30

KD+BU 82.43 99.20 98.81 90.12 95.35

LID 96.89 99.60 99.83 92.24 99.24

CIFAR-10

KD 64.92 68.38 98.70 85.77 91.35

BU 70.53 81.60 97.32 87.36 91.39

KD+BU 70.40 81.33 98.90 88.91 93.77

LID 82.38 82.51 99.78 95.87 98.94

SVHN

KD 70.39 77.18 99.57 86.46 87.41

BU 86.78 84.07 86.93 91.33 87.13

KD+BU 86.86 83.63 99.52 93.19 90.66

LID 97.61 87.55 99.72 95.07 97.60

we see that the LID detector trained on FGM can accurately detect the much more complex attacks
of the other strategies. The KD and BU characteristics can also achieve good performance on this
transfer learning task, but are less consistent than our proposed LID characteristic. The results
appear to indicate that the adversarial regions generated by different attack strategies possess similar
dimensional properties.

It is worth mentioning that the BU detector trained on the FGM attack generalizes poorly to detect
BIM-b adversarial examples (AUC=2.65%). This may due to the fact that BIM-b performs a fixed
number of perturbations (50 in our setting) that likely extend well beyond the classification bound-
ary. Such perturbed adversarial examples tend to possess Bayesian model uncertainties even lower
than normal examples under dropout randomization, as dropping out a certain proportion of their
representations (50% in our setting) would not lead to high prediction variance. This is consistent
with the results reported in Feinman et al. (2017): only 4% of BIM-b adversarial examples, in con-
trast to at least 74.7% of adversarial examples of other attack strategies, exhibit higher Bayesian
uncertainties than normal examples. It is particularly interesting to see that detectors trained on the
FGM attack strategy can sometimes achieve better performance when used to identify the other at-
tacks. An extensive study of detection generalizability across all attack strategies is an interesting
topic for future work.

Table 2: This table of AUC scores (%) shows the generalizability of detectors trained on the FGM
attack strategy (row) to other forms of attack (column), with respect to the CIFAR-10 dataset. The
best results are indicated in bold font.

Train
∖

Test FGM BIM-a BIM-b JSMA Opt

FGM

KD 64.92 69.15 89.71 85.72 91.22

BU 70.53 81.67 2.65 86.79 91.27

LID 82.38 82.30 91.61 89.93 93.32

Effect of Larger Minibatch Sizes in LID Estimation: In the estimation of LID values, a default
minibatch size of 100 was used, with a view to ensuring efficiency. Even though experimental anal-
ysis has shown that the MLE estimator of LID is not stable on such small samples (Amsaleg et al.,
2015), this is more than adequately compensated for by the learning process in LID-based detection,
as evidenced by the superior performance shown in Table 1. However, it is an interesting question as
to whether the use of larger minibatch sizes could further improve the performance (as measured by
AUC) without incurring unreasonably high computational cost. Figure 5 in Appendix A.3 illustrates
the effect of using a minibatch size of 1000 for different choices of k. It does indicate that increasing
the batch size can improve the detection performance even further. A comprehensive investigation
of the tradeoffs among minibatch size, LID estimation accuracy, and detection performance is an
interesting direction for future work.
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Table 3: The failure rate (%) of an adaptive attack targeting the LID-based detector.

MNIST CIFAR-10 SVHN

Scenario 1 (LID at all layers): Attack Failure Rate 100 100 100

Scenario 2 (LID at one layer): Attack Failure Rate 100 95.7 97.2

Adaptive Attack Against LID Measurement: To further evaluate the robustness of our LID-
based detector, we applied an adaptive Opt attack in a white-box setting. Similar to the strategy
used in Carlini & Wagner (2017a) to attack the KD-based detector, we used an Opt L2 attack with a
modified adversarial objective:

minimize ‖x− xadv‖
2
2 + α ·

(
ℓ(xadv) + ℓ(LID(xadv))

)
(5)

where α is a constant balancing between the amount of perturbation and the adversarial strength,
and the LID scores are computed at the pre-softmax layer.

We test two different scenarios for detection. In the first scenario, we use LID features as described
in Algorithm 1. In the second scenario, we use LID scores only at the pre-softmax layer. Since the
Opt attack uses only the pre-softmax activation output to guide the perturbation, the latter scenario
allows a fair comparison to be made (Carlini & Wagner, 2017b;a). The optimal constant α is deter-
mined via an internal binary search for α ∈ [10−3, 106]. The rationale for the minimization of the
LID characteristic in Equation (5) is that adversarial examples have higher LID characteristics than
normal examples, as we have demonstrated in Section 5.2.

We applied the adaptive attack on 1000 normal images randomly chosen from the detection test set
(test). The deep networks used were the same ConvNet configurations as used in our previous ex-
periments. To evaluate attack performance, instead of AUC as measured in the previous sections, we
report accuracy as suggested by Carlini & Wagner (2017a). We see from Table 3 that the adaptive
attack in Scenario 2 fails to find any valid adversarial example 100%, 95.7% and 97.2% of the time
on MNIST, CIFAR-10 and SVHN respectively. In addition, when trained on all transformation lay-
ers (Scenario 1), the LID-based detector still correctly detected the attacks 100% of the time. Based
on these results, we can conclude that integrating LID into the adversarial objective (increasing the
complexity of the attack) does not make detection more difficult for our method. This is in contrast
to the work of Carlini & Wagner (2017a), who showed that incorporating kernel density into the
objective function makes detection substantially more difficult for the KD method.

6 DISCUSSION AND CONCLUSION

In this paper, we have addressed the challenge of understanding the properties of adversarial regions,
particularly with a view to detecting adversarial examples. We characterized the dimensional prop-
erties of adversarial regions via the use of Local Intrinsic Dimensionality (LID), and showed how
these could be used as features in an adversarial example detection process. Our empirical results
suggest that LID is a highly promising measure for the characterization of adversarial examples, one
that can be used to deliver state-of-the-art discrimination performance. From a theoretical perspec-
tive, we have provided an initial intuition as to how LID is an effective method for characterizing
adversarial attack, one which complements the recent theoretical analysis showing how increases
in LID effectively diminish the amount of perturbation required to move a normal example into an
adversarial region (with respect to 1-NN classification) (Amsaleg et al., 2017). Further investigation
in this direction may lead to new techniques for both adversarial attack and defense.

In the learning process, the activation values at each layer of the LID-based detector can be regarded
as a transformation of the input to a space in which the LID values have themselves been trans-
formed. A full understanding of LID characteristics should take into account the effect of DNN
transformations on these characteristics. This is a challenging question, since it requires a better
understanding of the DNN learning processes themselves. One possible avenue for future research
may be to model the dimensional characteristics of the DNN itself, and to empirically verify how
they influence the robustness of DNNs to adversarial attacks.

Another open issue for future research is the empirical investigation of the effect of LID estimation
quality on the performance of adversarial detection. As evidenced by the improvement in perfor-
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mance observed when increasing the minibatch size from 100 to 1000 (Figure 5 in Appendix A.3),
it stands to reason that improvements in estimator quality or sampling strategies could both be ben-
eficial in practice.
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A APPENDIX

A.1 STATISTICS OF ADVERSARIAL ATTACK STRATEGIES

Table 4: The L2 mean perturbation and model accuracy (%) on adversarial examples.

MNIST CIFAR SVHN

L2 Acc. L2 Acc. L2 Acc.

FGM 6.26 11.09 2.74 3.15 7.09 6.17

BIM-a 2.30 10.43 0.48 0.00 0.83 0.13

BIM-b 5.42 10.42 3.39 0.00 5.53 0.13

JSMA 5.40 10.00 3.64 0.04 3.09 0.16

Opt 4.21 3.92 0.37 0.01 0.59 0.26

A.2 LID CHARACTERISTICS OF ADVERSARIAL EXAMPLES

Figure 4 illustrates LID characteristics of the most effective attack strategy known to date, Opt,
on the MNIST and SVHN datasets. On both datasets, the LID scores of adversarial examples are
significantly higher than those of normal or noisy examples. In the right-hand plot, the LID scores
of normal examples and its noisy counterparts appear superimposed due to their similarities.

Figure 4: The plots show the normalized LID scores of 100 randomly selected normal (blue), noisy
(green) and Opt attack (red x-cross) examples. The noisy and adversarial examples were generated
from the normal examples. The left-hand plot shows the scores (at the pre-softmax layer) of MNIST
examples, while the right-hand plot shows LID scores (at the softmax layer) of SVHN examples.
Normal and noisy example curves appear superimposed in the right-hand figure due to the similarity
of their values.
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A.3 EFFECT OF LARGER MINIBATCH SIZES IN LID ESTIMATION

Figure 5 shows the discrimination power (detection AUC) of LID characteristics estimated using
two different minibatch sizes: the default setting of 100, and a larger size of 1000. The horizontal
axis represents different choices of the neighborhood size k, from 10% to 90% percent to the batch
size. We note that the peak AUC is higher for the larger minibatch size.

Figure 5: The detection AUC score of LID estimated using different neighborhood sizes k with a
larger minibatch size of 1000. The results are shown for the detection of Opt attacks on the MNIST,
CIFAR-10 and SVHN datasets.
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