University of Rhode Island DigitalCommons@URI

Open Access Master's Theses

2016

Characterizing Alternative Polyadenylation in Male Germ Cells Using Poly(A)-seq

Holly Tran University of Rhode Island, hollylhtran@gmail.com

Follow this and additional works at: http://digitalcommons.uri.edu/theses

Terms of Use All rights reserved under copyright.

Recommended Citation

Tran, Holly, "Characterizing Alternative Polyadenylation in Male Germ Cells Using Poly(A)-seq" (2016). *Open Access Master's Theses.* Paper 862. http://digitalcommons.uri.edu/theses/862

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

CHARACTERIZING ALTERNATIVE

POLYADENYLATION IN MALE GERM CELLS USING

POLY(A)-SEQ

BY

HOLLY TRAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

CELL AND MOLECULAR BIOLOGY

UNIVERSITY OF RHODE ISLAND

2016

MASTER OF SCIENCE THESIS

OF

HOLLY TRAN

APPROVED:

Thesis Committee:

Major Professor: Becky L. Sartini

Marta Gomez-Chiarri

Ying Zhang

Navindra Seeram

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND 2016

ABSTRACT

Post-transcriptional processing of mRNA subsequently determines its longevity, transport, and gene expression. Alternative polyadenylation (APA), one form of post-transcriptional processing, is the use of a variant polyadenylation signal and polyA-site for transcript cleavage and addition of adenine residues. The occurrence of this phenomenon in the 3'-untranslated region (3'UTR) can lead to transcript isoforms differing in 3'UTR length and as a result, alter the downstream cis-regulatory elements in use. Transcript modification at the 3'-end in alternative polyadenylation has been shown to foster a number of diseases in altering what would otherwise be normal protein expression and is furthermore emerging as a driver of spermatogenesis.

To date, the global mechanisms that control the post-transcriptional processing in male germ cells remain unknown. PolyA-seq is a strand-specific, quantitative method for the high-throughput sequencing of 3'-ends of transcripts post-transcriptionally modified in polyadenylation. It has the ability to accurately and globally map polyA-sites. To study the molecular regulation of sperm production, an in-depth bioinformatics analysis was performed on available PolyA-seq data to identify male germ cell transcripts that uniquely use alternative polyadenylation, a novel method was developed to isolate and purify male germ cells from testicular tissue, and libraries were prepared for PolyA-seq from isolated male germ cells.

Findings show no significant global difference in polyadenylation signal use between testicular and liver tissues when the same polyadenylation site is compared for human PolyA-seq data. Further annotation suggests a conservation in polyadenylation signal and polyA-site use across tissue types in the same species. Transcripts in the liver were more likely to use the canonical polyadenylation signal in comparison to those in the testis, lending further evidence of increased variant polyadenylation signal use in male germ cells attributed to alternative polyadenylation. Moreover, manual identification of known alternatively polyadenylated transcripts in testis from mice suggests that PolyA-seq is a reliable method for transcriptome characterization. Isolation and purification of male germ cells was successful using DRAQ5 nuclear stain. Using the verified isolated male germ cells, PolyA-seq libraries were generated. Comparison of different polyadenylation sites for the same transcripts between testis and liver PolyA-Seq still needs to be conducted. Also, increasing yields of polyA+ RNA for PolyA-Seq library prep will facilitate successful sequencing of 3'-ends. Further investigation of male germ cell-specific transcripts associated with alternative polyadenylation will lead to an improved understanding of molecular regulation involved in spermatogenesis and factors that cause male infertility.

ACKNOWLEDGMENTS

This work would not be possible without funding from the National Institutes of Health (NIH) grant #HD072553. Many thanks to Kevin Carlson of Brown University's Flow Facility for processing our flow samples, Christopher Thibeault for his assistance in writing the Perl script, and Dr. Tomas Babak of Queen's University for fielding my numerous questions.

Additionally I would like to express gratitude to my colleagues and dear friends especially Elizabeth Anderson, Chris Card, Carly Barone, Charles Telekes, Mak Thakur, and Andrea Lesinski—for their scientific guidance, moral support, and willingness to sit through and read through reiterations of this work.

Special thanks to my committee members Dr. Becky Sartini, Dr. Marta Gomez-Chiarri, Dr. Ying Zhang, and Dr. Navindra Seeram for their incredible wealth of knowledge and insights throughout the research and thesis process.

Finally, I would like to especially thank my advisor, Dr. Becky Sartini for not only this opportunity, but also for her constant support, mentorship, and scientific brilliance through the years.

TABLE OF CONTENTS

ABSTRACTii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES vi
LIST OF FIGURES
CHAPTER 1: REVIEW OF LITERATURE 1
CHAPTER 2: BIOINFORMATICS ANALYSIS OF DIFFERENTIAL
ALTERNATIVE POLYADENYLATION SITE USE IN TESTIS AND LIVER 13
CHAPTER 3: METHOD REFINEMENT OF GERM CELL ISOLATION BY FLOW
CYTOMETRY
CHAPTER 4: PRODUCTION OF THE POLYA-SEQ LIBRARIES FROM
ISOLATED MALE GERM CELL POPULATIONS
APPENDICES: I-X
FIGURES
TABLES
BIBLIOGRAPHY 105

LIST OF TABLES

TABLE PAGE
Table 1. Testis-specific genes with alternative poly(A) signals in the 3'UTR67
Table 2. Human transcript numerical data 68
Table 3. Human PAS statistics
Table 4. Human 1 Honed PAS spread
Table 5. Human 2 Honed PAS spread
Table 6. Mouse comprehensive numerical data
Table 7. Mouse PAS spread for all chromosomes 70
Table 8. Honed mouse PAS spread
Table 9. Literature-mined transcripts in PolyA-seq data 71
Table 10. Mouse comprehensive transcript annotation
Table 11. Mouse honed transcript subset 80
Table 12. Individual testis and liver tissue transcript annotation numerical data from
mouse
Table 13. Testis tissue annotation from mouse identifying transcript isoforms
Table 14. Liver tissue annotation from mouse identifying transcript isoforms
Table 15. Gene ontology for biological processes in mouse annotated transcripts 102
Table 16. Isolated male germ cell purity validated with germ cell-specific primers 103
Table 17. Germ cell-specific primers used in PCR validation
Table 18. Production of polyA+ mRNA 104

LIST OF FIGURES

FIGURE	PAGE
Figure 1. Spermatogenesis.	61
Figure 2. Eukaryotic messenger RNA.	61
Figure 3. Polyadenylation	51
Figure 4. Alternative polyadenylation in the 3'UTR creates transcript isoforms.	62
Figure 5. Bioinformatics analysis workflow	63
Figure 6. Graphical representation of PAS use in mouse	64
Figure 7. Size distribution of male germ cells and gating for live cells	65
Figure 8. Two distinct cell populations were identified with DRAQ5 nuclear sta	ain 66
Figure 9. PolyA-seq libraries from mouse	67

CHAPTER 1: LITERATURE REVIEW

Male Infertility

Infertility, clinically defined as the inability to bear a child after a year of unprotected intercourse, affects 15% of all couples looking to conceive (Agarwal et al., 2008; Rockett et al., 2004). Over 40% of cases are afflicted by male factor infertility (Jamsai, 2011; Patel, 2011). Male factor infertility can be acquired and/or congenital. Acquired male infertility may result from hormonal imbalances, lifestyle, and environmental factors that affect male sperm count and quality (Saner-Amigh & Halvorson, 2011). Underlying genetic aberrations, such as chromosomal abnormalities and microdeletions in the Y chromosome, account for 10-15% of cases (Ferlin et al., 2007). Genetic mutations impacting the development and function of the endocrine and urogenital system can lead to defective erection, ejaculation, gametogenesis, fertilization, or embryonic development, and results in idiopathic male infertility, which impacts 25% of all infertile men (Roy et al., 2007; Matzuk & Lamb, 2008).

Male infertility is routinely evaluated by semen analysis, where an ejaculate is used to assess abnormal sperm morphology, concentration, and motility. Alone these methods do not serve as an accurate indicator for fertility potential as many other sperm functional components are not assayed. For a significant number of men with normal semen analysis results, full-term pregnancy is still out of reach and the underlying cause of infertility cannot be diagnosed (Garrido et al., 2009; Matzuk & Lamb, 2008; Lee & Foo, 2014). The complex multifactorial etiologies involved in male factor infertility and the limitations of current routine analyses emphasize the need for a more accurate and universal test. A distinctive aspect of gene expression in male germ cells during spermatogenesis holds promise as a marker for male infertility.

Spermatogenesis

Spermatogenesis is the highly-ordered and precisely timed process of male germ cell development and maturation. The process, which takes place in the testes, occurs uniformly throughout the lifespan of a male. During spermatogenesis, primordial germ cells develop into diploid stem cell spermatogonia in the testicular seminiferous epithelium. After numerous cycles of mitosis and cell renewal, spermatogonia develop into spermatocytes. Spermatocytes complete two meiotic divisions, undergoing genetic recombination and reduction of chromosomes, to produce haploid round spermatids. During the post meiotic phase, round spermatids experience transcriptional arrest as histones are replaced by transition proteins, followed by protamines. The process of unique chromatin remodeling enables for the compaction of chromatins in the sperm head. Spherical round spermatids then enter spermiogenesis, a four-step process where the sperm head and tail terminally differentiate to form haploid spermatozoa with highly condensed DNA (Figure 1). Spermatozoa empty into the lumen of the seminiferous tubules where they go through final maturation and are stored in the cauda epididymis until ejaculation (Eddy, 1998; Gilbert, 2000; Braun, 2001; Senger, 2003; White-Cooper & Davidson, 2011). Development of the male germ cell from spermatogonia to fully differentiated spermatozoa occurs in close association with testicular somatic cells including the supporting Sertoli cells, testosterone-producing Leydig cells, and structural peritubular myoid cells.

Unlike somatic cells, male germ cell function and development is regulated by unique gene expression and endocrine signaling (Eddy, 1998). A number of genes encoding for proteins specific to the structural and functional development of spermatogenic cells, including those involved in meiosis and the specialized differentiation process of spermiogenesis (e.g. transition proteins 1 and 2, protamines 1 and 2, and synaptonemal complex protein 1 genes), are upregulated in testicular tissue and downregulated in somatic tissue—earning the name, "Chauvinist genes" (Eddy, 1998). Unique to male germ cell development is also the increased frequency of alternatively polyadenylated transcripts through the use of variant polyadenylation sites, which is the focus of this research.

Polyadenylation and alternative polyadenylation

In eukaryotes, the nascent RNA is transcribed from DNA containing coding exons and intervening introns. Introns are excised via RNA splicing and the transcript is post-transcriptionally modified with the addition of a 5' cap, transcript cleavage, and addition of a string of adenine residues (poly-A tail) to generate the mature messenger RNA (mRNA). Structurally, mRNA contains a coding region, an area composed of exons that is translated into protein, and untranslated regions (UTRs), non-coding regions that flank both the 5'- and 3'-ends (Figure 2). The post-transcriptional addition of a poly-A tail to a transcript is known as polyadenylation and is required for the synthesis, processing, nuclear export, and stability of eukaryotic mRNA.

Use of variant cleavage sites within a 3'UTR generates transcript isoforms in a process called alternative polyadenylation. To generate an alternatively polyadenylated transcript, selection of different poly(A) signal (PAS) within the 3'UTR by recognition

proteins directs the site of mRNA cleavage and addition of the poly-A tail. The process begins with recognition and binding of the PAS, typically the canonical hexamer sequence AAUAAA, by the protein complex Cleavage and Polyadenylation Specificity Factor (CPSF). After CPSF recognition and binding in the 3'UTR, cleavage stimulation factor (CstF) binds downstream in a GU rich region and CPSF-73, a subunit nuclease of CPSF, cleaves at the polyA-site about 20 nucleotides downstream of the PAS. The polyadenylate polymerase (PAP) enzyme adds about 250-300 adenine nucleotides to the 3'end of the transcript to form the poly-A tail (Di Giammartino et al., 2011; Mandel et al., 2006; Figure 3). Use of a PAS and polyA-site located proximal to the transcript coding region can generate transcript isoforms with short 3'UTRs, compared to use of a PAS and polyA-site distal to the coding region (Figure 4).

The 3'UTR is a non-coding region that contains many sequence elements, such as RNA-binding protein and microRNA (miRNA) binding sites, which are targeted by post-transcriptional regulatory elements. As such, cleavage in the 3'UTR from alternative polyadenylation can result in transcripts with the same coding region and thus production of the same protein, but result in varied 3'UTR lengths. The resulting variation of regulatory element composition on the 3'UTR can alter downstream transcript regulation, stability, and localization (Di Giammartino et al., 2011; Gupta et al., 2014). Alternative polyadenylation can occur in a tissue or cell-specific manner and produce transcripts expressing different 3'UTR lengths in different tissues (Di Giammartino et al., 2011). This research focuses on male germ cell transcripts with a short 3'UTR generated by alternative polyadenylation compared to somatic cell transcripts.

The impact of alternative polyadenylation on transcript use

It is estimated that over 50% of genes in humans and 32% of target genes in mice undergo alternative polyadenylation (Shi, 2012; Tian et al., 2005). The differential regulation of mRNA transcripts can alter gene expression necessary for specific biological processes. For example, short 3'UTR mRNA isoforms have been observed to produce as much as 40-fold more protein by excluding the regulatory impact of miRNAs and other RNA-binding elements (Lianoglou et al., 2013). miRNAs are non-coding RNA that complementarily antisense bind to target mRNA, usually in the 3'UTR, for translational repression in blocking mRNA target site or induction of mRNA degradation through cleavage. Their binding often changes the subsequent timing of translation and transcript expression levels (Bartel, 2004; Mayr & Bartel, 2009; Liaw et al., 2013). Loss of miRNA regulation is estimated to account for 25-67% of increased protein expression related to truncated 3'UTRs, leaving the remainder of difference in protein expression between long and short mRNAs attributed to repression from other regulatory elements lost in alternative polyadenylation (Mayr & Bartel, 2009).

Alterations in 3'UTR length facilitate the exclusion or inclusion of sequence motifs that can affect the lifespan of an mRNA transcript. Short mRNA isoforms were on average 2.6 times more stable than their long mRNA isoforms in the different tissues and genes (Mayr & Bartel, 2009) while isoforms differing in a single nucleotide in the 3'-end dramatically affected the decay rate (Gupta et al., 2014). Different polyA-site selection in alternative polyadenylation can furthermore affect transcript localization patterns. Sequence motifs present in the 3'UTR attract RNA-binding proteins that signal molecular motor transport of transcripts. In neurons, learning-related plasticity and memory storage require specific subcellular transport of transcripts to axons or dendrites (Mitra et al., 2015; Martin et al., 1997). Brain-derived neurotrophic factor (BDNF) transcripts are expressed as long isoforms in the cell soma and dendrite. Mice expressing only short isoforms of BDNF experienced long-lasting impairment in dendritic potentiation not seen in the cell soma (Martin et al., 1997).

Alternative polyadenylation is emerging as a characteristic trait of highly proliferative cells. In cancer cells and neuronal stem cells, this observation primarily manifests as short 3'UTR leading to loss of miRNA binding sites and an increase in protein production. In this case, truncated 3'UTRs result in a degree of miRNA exclusion that would otherwise keep cell growth in check, resulting in enhanced stability and protein production (Di Giammartino et al., 2011; Mayr & Bartel, 2009). Direct sequencing has revealed that cancer tissues preferentially express isoforms with the shortest 3'UTR (Lin et al., 2012). In a subset of mantle cell lymphoma, short 3'UTR isoforms in *CCNDI* lead to a 1.6-fold increase in Cyclin D1 expression, correlating with increased proliferation of lymphoma cell (Mayr & Bartel, 2009). Furthermore, short 3'UTR isoforms of proto-oncogene insulin-like growth factor 2 mRNA binding protein 1 (*IGF2BP1/IMP-1*) have been shown to exhibit increased oncogenic transformation in comparison to its full-length counterpart (Mayr & Bartel, 2009).

Short 3'UTRs were also more commonly found in highly expressed genes in a study analyzing murine C2C12 myoblasts in their differentiated and proliferative states. The same phenomenon of high prevalence of short 3'UTRs associated with upregulation is present in the analyses of breast cancer cell lines compared with normal breast tissue,

and tumor necrosis factor alpha (TNF α)-treated lymphoblasts compared with untreated cells (Ji et al., 2011).

IMP-1 is an RNA-binding protein heavily expressed in numerous types of human cancers, including lung, colon, and breast cancer. It is believed to play a role in stabilizing target mRNAs such as β -catenin, c-myc, and β -TrCP1 (Mayr & Bartel, 2009). Expression vectors with full-length *IMP-1* isoforms, designed with mutations to prevent cleavage from alternative polyadenylation, produced results relative to an empty vector. In contrast, expression of the short isoforms significantly promoted cellular transformation due to loss of miRNAs. The short isoform was able to transform human breast epithelia and fibroblast cell lines, demonstrating that loss of repressive regulatory 3'UTR elements through different polyA-site use can enhance protein expression and translationally promote tumorigenesis and the pathogenesis of cancer (Mayr & Bartel, 2009).

Alternative polyadenylation in male germ cells

As with highly proliferative cells, alternative polyadenylation is emerging as a driver for male germ cell gene expression. Previous studies have reported variation in the use of specific polyadenylation signals between pre-meiotic spermatogonia and post-meiotic round spermatids, with round spermatids using the canonical polyadenylation signal AA(U/T)AAA less frequently (Lui et al., 2007). Moreover, round spermatids had a shorter median length for the 3'UTR (Lui et al., 2007). High usage of non-canonical polyadenylation signal and poly-A site in spermatogenic cells result in an overexpression of the short 3'UTR isoform compared to somatic cells. This suggests that alternative polyadenylation functions to regulate male germ cell transcripts

(Liu et al., 2007; McMahon et al., 2006; Sartini et al., 2008). Using ESTs, differences in 3'-processing site usage and median 3'UTR lengths were found for male germ cells: spermatogonia (220 nt), spermatocytes (260 nt), and round spermatids (150 nt), while somatic Sertoli cells had a higher median length (400 nt) (Liu et al., 2006).

Studies of individual transcripts show that several testicular transcripts exist in a short 3'UTR isoform when compared to somatic transcript expression (Table 1). Several transcripts are expressed as testis-specific isoforms with a short 3'UTR in addition to longer 3'UTR isoforms that are also expressed in testis and somatic tissues (i.e. Bzw1, Cpsf6, Nudt21, RNF4, and RanGAP1). Two 3'UTR isoforms can also been expressed exclusively in male germ cells. For example, the transcript Deleted in AZoospermia Associated Protein 1 (DAZAP1) exists as two different 3'UTR isoforms in male germ cells. DAZAP1 is a heterogeneous ribonucleoprotein particle highly expressed in late stage spermatocytes and post-meiotic spermatids that regulates translation during spermatogenesis. In the absence of *Dazap1*, mice experience arrest in spermatogenesis and growth retardation. Dazap1 3'UTR transcript isoforms are generated through APA--2.4-kb (*Dazap1-L*) and 1.8-kb (*Dazap1-S*). Translation of the two Dazap1 transcripts are differentially regulated, with Dazap1-S exhibiting translational repression associated with inactive messenger ribonucleoprotein particles and a longer poly(A)-tail in comparison to *Dazap-L* (Yang & Yen, 2013).

The 3' UTR contributes to gene regulation in male germ cells. In transgenic mice, the 3'UTR of normal transition protein 2 (Tnp2) was replaced with the 3'UTR from the human growth hormone gene (hGH). Disruption of the normal 3'UTR resulted in premature translation of Tnp2 and infertile males with defective spermatid

morphology and failure of spermatozoa formation (Tseden et al., 2007). Similarly, generated transgenic mice with *Tnp2* 3'UTR replaced with the 3'UTR of hGH resulted in abnormal sperm head morphology, reduced sperm motility, and male infertility (Tseden et al., 2007).

Evidence of further germ cell-specific characteristics can be observed in the polyadenylation process. Mammalian germ cells have been found to express a cell-specific variant of *Cstf2*, a subunit of the CstF complex, known as Cstf2t (Dass et al., 2007). The variant is primarily expressed in meiotic pachytene spermatocytes and post-meiotic spermatids. A germ cell-specific variant of cytoplasmic poly(A) polymerase has been similarly been identified (Liu et al., 2007). These germ cell-specific factors suggest that polyadenylation and 3'-processing may differ in male germ cells, and contribute to specialized germ cell function.

While it is evident that the 3'UTR impacts post-transcriptional modification, gene expression, and its truncation in alternative polyadenylation appears to be characteristic of male germ cells, the importance in the use of a different polyA-site and PAS within the 3'UTR during spermatogenesis is not known. To elucidate the functional purpose of alternative polyadenylation in male germ cell development, a global assessment of all transcripts is necessary.

Global mapping of alternative polyadenylation (APA) transcripts

Several hundred APA transcripts from a variety of tissue types have been identified and studied by Northern blotting. These RNA gels typically require lengthy incubations, and radioactive RNA probes for hybridization but can identify different mRNA isoforms for only one gene at a time. Analysis of EST databases was a first attempt to identify more APA genes in humans and mice. With EST libraries, polyadenylation sites were computationally derived, but high cost and limited data did not make this a viable approach for global analysis (Shi, 2012; Tian et al., 2005; Elkon et al., 2013). Microarrays have been instrumental in APA gene profiling with the ability to measure quantitative gene expression. The ratio of RNA probe fluorescent intensities are used to detect widespread APA changes. However, microarrays, can only capture verified transcripts and limit data output only to what is already known about the transcriptome. Thus, they cannot directly map, accurately quantify, or detect novel polyadenylation signals (Shi, 2012).

High-throughput sequencing plays a critical role in determining the overall usage and function of APA in specific tissues. RNA 3'UTR and PAS-use profiles on various tissues have been characterized in mammals, yeast, fruit fly (*Drosophila*), nematode (*Caenorhabdits elegans*), and thale cress (*Arabidopsis*) using high-throughput sequencing. This approach has allowed for more insight into tissue-specific use of APA, discoveries of new APA regulators, and changes in APA linked to human diseases (Shi, 2012). While several different sequencing approaches have been developed—poly (A) capture, sequencing alternative polyA-sites (SAPAS), direct RNA sequencing (DRS), 3'READS (Hogue et al., 2014), MAPS (Zhou et al., 2014), RNA-Seq direct sequencing (Ozsolak et al., 2010), PA-Seq (Ni et al., 2013), PAS-Seq (Shepard et al., 2011), and multiplex RNA-seq (Fox-Walsh et al., 2011)—the focus of this research is using the Poly(A)-Sequencing (Sun et al., 2012, Derti et al., 2012).

PolyA-seq is a strand-specific, quantitative method for sequencing 3' polyadenylated ends (Derti et al., 2012). PolyA-seq is a modification of the deep

sequencing-based method, Poly(A) Site Sequencing (PAS-Seq) that can quantitate polyadenylation in RNA. PolyA-seq uses a modified RNA-Seq cDNA library protocol to immediately capture transcript sequence upstream of the polyA-site, preserve strand specificity, represent transcriptional abundance, and quantitate the amount of use in any given polyA-site. The method uses random priming in second-strand synthesis to rapidly generate a library. Internal priming events, which may occur at internal transcript A-rich sequences and account for false discovery rates, are eliminated through calibrated and rigorous filtering. Aligned 5' ends with unaligned adenine stretches on the 3'-end are considered as authentic polyA-sites. Annotated 3'UTRs are clustered and known and novel polyA-sites mapped (Derti et al., 2012). The process involves the conversion of RNA into a cDNA library (typically fragments of 30-400 base pairs), followed by the attachment of sequence adaptors to each fragment (either to one or both ends), the binding of fragments to flow cells, solid-phase bridge amplification via PCR, and the repeated base-by-base sequencing of fragments using fluorescence emission. The resulting reads are then aligned to a reference genome or assembled *de novo*, to produce a genome-scale map. Identical reads are clustered and quantified to give an accurate output on expression levels, relative abundance, and transcriptional structure (Wang et al., 2009).

Presently, PolyA-seq has been used to globally map polyA-sites in twenty-four tissues types in dog, human, mouse, and rat, and has discovered almost 300,000 novel sites (Derti et al., 2012). While this study sequenced the polyA-sites in testis, the presence of somatic cells obscures the APA events for the developing male germ cells. A genome-wide profile on male germ cell polyadenylation signal (PAS) and polyA-site

use has yet to be established and presents a knowledge gap that can potentially lead to greater understanding of APA in spermatogenesis. Characterization of male germ cell functional PAS and polyA-sites involved in APA using PolyA-seq has the potential to increase understanding in the molecular regulation of sperm production and identify precise causes of male infertility.

The aims of this project: 1) identify transcripts in testicular tissue with short isoforms from existing literature, 2) identify transcripts that use a different PAS in testis compared to the liver at the same polyA-site location as determined by its genomic coordinate, 3) develop a novel germ cell isolation method, and 4) generate PolyA-seq libraries from isolated male germ cells. Identified candidate transcripts will then be used for further functional studies of the role of the 3'UTR. This study hypothesizes that transcripts will be identified in male germs cells that have shorter 3'UTR transcripts in comparison to somatic tissues.

CHAPTER 2: BIOINFORMATICS ANALYSIS OF DIFFERENTIAL ALTERNATIVE POLYADENYLATION SITE USE IN TESTIS AND LIVER

INTRODUCTION

Alternative polyadenylation (APA) occurring in the 3'UTR generates transcripts with a different length 3' untranslated region (3'UTR). APA is characteristic of highly proliferative cells such as cancer cells, neurons, and is emerging as a defining trait of spermatogenic cells (Liu et al., 2007; McMahon et al., 2006; Sartini et al., 2008). Male germ cells have a prevalence for transcripts with a short 3'UTR compared to somatic testicular cells and among different male germ cell types as found by analyzing EST libraries (Liu et al., 2007). The truncated 3'UTR in male germ cell transcript suggest that specific regulation of mRNA translation or metabolism is unique in developing germ cells. Characterization of male germ cell functional PAS, the signal for cleavage of a 3'UTR therefore determining its length, has the potential to increase understanding in the molecular regulation of sperm production and identify precise causes of male infertility. However, the role of APA in male germ cells is not completely understood.

PolyA-seq is a novel high-throughput, strand-specific quantitative method for sequencing 3' polyadenylated ends (Derti et al., 2012). PolyA-seq is a modification of the high-throughput RNA Sequencing (RNA-Seq) method, which can sequence total or fractionated RNA; and the PAS-seq method, which can quantitate polyadenylation in RNA transcripts. It is not limited to characterized transcripts and is powerful for the detection of mRNA isoform expression and quantification. PolyA-seq has been used to analyze polyA-site use in several tissues and has found that over 69% of known human genes have multiple polyA-sites in the 3'UTR (Derti et al., 2012). In addition, polyA-

site usage appears to be similar across same types of tissues in different species rather than within the same species, indicating that there may be conserved tissue-specific regulation (Derti et al., 2012).

PolyA-seq data for mouse testis and liver was analyzed to compare reported PAS use with previously published transcripts to determine if PolyA-seq is a reliable predictor of tissue-specific PAS selection. Bioinformatics analysis of available human testis and liver PolyA-seq data was conducted to determine if there is a difference in PAS use in testis in comparison to liver somatic tissue at the same polyA-site (Figure 5). To test this hypothesis, PAS and number of reads for testis and liver from human and mouse from previously published PolyA-seq data (Derti et al., 2012) were compared to discern differential expression. Transcripts with use of the same polyA-site between testis and liver were annotated and characterized using gene ontology. Identification of unique transcripts involved in spermatogenesis has the potential to elucidate targets that may provide further insights in the diagnosis and treatment of male infertility.

METHODS

Obtaining PolyA-seq raw data

Since experimental design uses tissue samples from mouse model organisms with the ultimate end goal of scientific discovery with beneficial implications in human male reproductive biology, sequencing data was collected from species *Homo sapiens*, sequenced with biological replicates, and *Mus musculus*. PolyA-seq text files were downloaded from ArrayExpress Archive of Functional Genomics Data (<u>http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30198/samples/</u>) for testis and liver tissue for both respective organisms (Derti et al., 2012). PolyA-Seq text files

contained information for polyA-site location, PAS, number of reads, and polyA score, a log-likelihood score reflecting the probability that the observed site is genuine and not an internal priming event.

Manual searching for known testis APA transcripts

Known testis-specific transcripts involved in alternative polyadenylation were manually identified in the data set by searching for genomic coordinates for the transcript of interest (mouse NCBI37/mm9 July 2007) with the predicted PAS in the PolyA-Seq for testis and liver. Transcripts were further validated by comparing polyadenylation signal(s) in the data set with reported polyadenylation signal(s) in published literature.

Data parsing and gene annotation of testis and liver PolyA-seq

A program was written in Perl to open the sequencing text files for testis and liver, match transcripts according to their polyA-site location with a margin of 100bp, and create an output file containing associated information for tissue-specific comparison of PAS usage. For the subsequent processing steps, codes were written in visual basic for applications (VBA) to develop macros within Excel to compare testis and liver PolyA-seq for PAS usage at the genomic coordinate, which in this case represents the location of the polyA-site used. Current sequencing and annotation data from the National Center of Biotechnology Information (NCBI) was used as reference files. Chromosome assembly data from Genome Reference Consortium Human Build 38 patch release 2 (ftp://ftp.ncbi.nih.gov/genomes/Homo_sapiens) and Genome Reference Consortium Mouse Build 38 patch release 3 (ftp://ftp.ncbi.nih.gov/genomes/M musculus/), were extracted for genomic coordinate

ranges, gene short names, full gene names, and accession numbers for all contained mRNA and miscellaneous RNA identifiers. This collection is an amalgamation of computational sequencing and annotation, manual curation, and predictive annotation. The Genome Reference Consortium Mouse Build 38 patch release 3, part of the mouse RefSeq project assembly on the C57BL/6J strain, at the time of its release date in February 2015, represents 71% of total protein-encoded transcripts annotated and 38% of which with known RefSeq accessions (McGarvey et al., 2015). The data then became the processed reference files used to match the output file for each respective organism.

Comparison of testis and liver polyA-signal use at the same polyA-site

For each chromosome, transcript polyA-site genomic coordinates were matched with coding region genomic coordinates as reported by NCBI with a margin of 100bp. For each successfully referenced match, output data printed information on reported gene name, gene short name, and accession number if available to yield a list of annotated transcripts. From the full list of transcripts, a subset, termed "honed", was created with transcripts where reads in testis were greater than those in liver and both tissues utilized a different PAS at the same polyA-site. This function was performed by first determining if the PAS in testis matched with the PAS in liver. Transcripts with the same PAS were then deleted, leaving only transcripts with varying polyadenylation signals for the same chromosome and polyA-site within 100bp. Transcripts were then sorted in ascending order by difference between testis and liver number of reads and anything equal to or less than 0 were deleted, leaving only transcripts where testis reads are greater than liver reads by at least one. Complete polyadenylation signals and respective transcript frequencies were recorded for both groups—comprehensive and honed transcripts—and both tissue types. Student's unpaired T-test was performed on human data, where replicates were available, to determine statistical significance in PAS usage. Due to limitations of the reference annotation and sequencing data, annotations failed to exceed a certain genomic coordinate threshold. For specific known transcripts of interest, manual annotations were completed. Gene ontology analysis was conducted using the Protein ANalysis THrough Evolutionary Relationships (PANTHER) Classification System (pantherdb.org) to classify biological processes.

Individual tissue annotation and analysis using comprehensive PolyA-seq data

Raw PolyA-seq mouse data for testicular and liver tissue were individually annotated to identify potential transcript isoforms resulting from APA. PolyA-site genomic coordinates from were matched with reference files with a 100bp margin to produce an output annotation file containing chromosome number, polyA-site, polyAscore, PAS, number of reads, strand sense, accession number, short gene name, and long gene name. From this, transcript isoforms were identified from annotations using a different polyA-site and an identifiable PAS.

RESULTS

PolyA-seq data for mouse testis and liver was manually searched to compare reported PAS use with previously published transcripts to determine if PolyA-seq is a reliable predictor of tissue-specific PAS selection. Manual mining of the testis and liver PolyA-seq for known APA testis transcripts identified 10 of 14 known transcripts. PAS for five known APA transcripts (*NUDT21, ARF, eIF-2a, ERCC6 and Klf4*) were not identified in either the testis or liver PolyA-seq data. The PAS identifying the 3'UTR end for 6 of these transcripts, identified by Northern blots and, in some cases, 3'RACE, were confirmed in the PolyA-seq data. For three other transcripts: *CPSF6*, *DAZAP1*, *DlnB/POLK and SP1*, additional PAS were identified.

In human samples, from the 19,906 and 10,179 individual transcripts identified in the testis and liver PolyA-seq, 0.718-0.844% of the comprehensive transcripts were annotated (Table 2). In order to identify ubiquitous transcripts upregulated in testicular tissue as a potential byproduct of APA, a data subset—so called "honed"--was created. From the comprehensive transcripts, transcripts were parsed where the number of reads in testis were greater than those in liver by at least one and PAS usage differed at the same polyA-site--irrespective of available annotation. The analysis aimed to identify novel transcripts where isoforms may exist due to 3'UTR post-transcriptional modification. From the comprehensive transcripts in human, 5.435% and 5.363% were extracted to form the honed subset (Table 2). Where canonical PAS was used in liver, testis transcripts had an overwhelming preference for PAS: ATTAAA. This preference was similarly observed vice versa where canonical PAS expression in testis showed a dramatic expression of PAS: ATTAAA in liver transcripts. In general, PAS usage at the same polyA-site was not different for both tissue types from human PolyA-seq analysis (Table 3). For the honed subset in humans, both data files showed a predominant variant use of ATTAAA in testis when the canonical PAS in liver is used—and vice versa (Table 4; Table 5).

Of the mouse sample, 34 transcripts out of the comprehensive 6341 transcripts were annotated (Table 6). Comparison of polyA-site use between tissues for the same transcripts revealed 251 transcripts that use a different PAS in testis versus liver. Overall, transcripts in liver were more likely to use the canonical PAS (AATAAA) than testicular transcripts. In comparing alternative polyadenylation in both tissue types, transcripts in liver using the canonical PAS were most likely to use the alternative PAS: ATTAAA, with signals AGTAAA and TATAAA following up second (Table 7; Table 8).

Literature-mined transcripts were manually identified in the PolyA-seq data based on NCBI sequencing data (2007) and confirmed some transcript isoforms (Table 9). Comprehensive transcripts from mouse testis and liver at the same polyA-site were annotated (Table 10). Table 11 depicts the honed subset generated and sorted to reflect descending gene expression. From the individually annotated tissue transcripts in mouse, 61 transcripts were identified from testis containing at least 2 isoforms—17 of which contained 3 or more transcript isoforms. From mouse liver tissue sample PolyAseq data, 83 transcripts were identified contained at least 2 transcript isoforms—19 of which contained 3 or more transcript isoforms as signified by variant polyA-site usage (Table 12). These transcripts isoforms were determined through a separate annotation (Table 13; Table 14).

Gene ontology (GO) analysis was performed on the collective PolyA-seq data in mouse where transcripts were matched at the same genomic coordinate between the two tissue types (Table 15). Of the 6,341 transcripts matched in total, 34 were successfully annotated using the NCBI references files. GO terms associated with cell communication, cell cycle, and primary metabolic processes were overrepresented. Functional annotation included biological processes in ranked order: cellular process (16.6%), of which include functions relating to cell communication and cell cycle; metabolic process (16.6%), including primary metabolic processes; localization (14.2%), dealing with RNA localization and transport; biological regulation (10.7%), developmental process (8.3%), relating to cell differentiation; response to stimulus (8.3%), cellular component organization or biogenesis (7.1%), immune system process (7.1%), multicellular organismal process (7.1%), apoptotic process (1.1%), biological adhesion (1.1%), and reproduction (1.1%), which encompasses gamete production.

DISCUSSION

In this study, available PolyA-seq data in testis and liver was mined and analyzed to determine if testis-specific APA transcripts or patterns of APA use could be identified. PolyA-seq data for mouse testis and liver was manually searched to compare reported PAS use with previously published transcripts to determine if PolyA-seq is a reliable predictor of tissue-specific PAS selection. For 50% of transcripts, PolyA-seq PAS, polyA-sites, and expression levels matched published 3'UTR isoforms identified from Northern blots (Table 9). For two transcripts (CPSF6 & DAZAP1), the PolyA-seq identified more PAS than had previously been found while for two other transcripts (DinB & TP1), where multiple isoforms have been validated, only one PAS was found (Table 9). 35% of the transcripts were not found in the PolyA-seq data, potentially identifying limitations to the poly(A)+ amplification method used to generate the cDNA libraries.

Analysis of PAS selection at the same polyA-site between testis and liver did not reveal any differences in use; however, some transcripts use a different PAS at the same site. This would be expected due to genetic variation but the function of this different PAS selection needs to be investigated. Findings from this analysis are complementary to previous reports of differential PAS use within the 3'UTR in individual male germ cells compared to somatic testicular Sertoli cells (Liu et al., 1995).

For human data, frequency of PAS use was not different between testis and liver at the same polyA-site. Transcripts in human data were identified that are expressed in both tissues but utilized a different PAS. Some of these transcripts were known to have a short 3'UTR in testis (e.g. CPSF6) while other transcripts are novel. GO analysis revealed that the majority of transcripts are involved in cell cycle regulation and cell communication, although it is difficult to draw direct implications from these results as the population annotated and processed through GO are less than 1% of the total transcripts.

In total, 32 of the same transcripts were identified with isoforms in both testis and liver from mouse. These transcripts—which exist in both tissues—are involved in cell cytokinesis, cell signaling, and translation, suggesting that a fundamental core biological processes require ubiquitous gene expression.

One limitation to this study is the incomplete reference files that were used to create the annotations. To date approximately 70% of the protein-encoding transcripts have been annotated—38% of which contain known RefSeq accession numbers. Furthermore, the methods of this analysis structured the available PolyA-seq data to the same polyA-site used within a margin for PAS comparisons. Future steps may include analyzing more completely annotated transcripts between and across tissue types for PAS usage. Further analysis can be conducted to: compare testis and liver for different

APA transcripts, more than one 3'UTR isoform in testis, and different 3'UTR isoforms in testis versus liver. Analyses may also consider exploring other tissue types to potentially identify tissue-specific APA characteristics.

Potential steps to improve annotation endeavors include modifying the annotation VBA code to match PolyA-seq data to reference transcripts with only an upstream margin since any hits would only reflect the coding region product. Additionally, 3'UTRs have an average length of 800 nt in humans so extending the current 100bp margin may help increase the percent of annotated transcripts.

CHAPTER 3: METHOD REFINEMENT OF GERM CELL ISOLATION BY FLOW CYTOMETRY

INTRODUCTION

Successful development of male germ cells requires progression through different maturation stages (from spermatogonia, spermatocyte, spermatid and spermatozoa) and the support of testicular somatic cells including Sertoli and Leydig cells. Isolation of male germ cells from all developmental stages is essential for further investigation of cell-specific gene expression and regulation requires separation of the germ cell populations with minimal contamination from other germ cells or testicular somatic cells. Procedures to obtain relatively pure populations of spermatogonia, spermatocytes and spermatids have been developed but most are labor intensive and contamination from somatic cells remains. The use of developmental stages of the testis during the time of the emergence of the specific germ cell maturation stage is problematic, although widely used, due to the presence of other germ cell and somatic cell types (Bellve et al., 1977). Methods for obtaining only one cell type at the exclusion of others have focused primarily on spermatogonia stem cells by flow cytometry FACS separation detecting a stem cells specific antibody (Sun et al., 2011). STAPUT density gradients can be utilized to obtain isolated cells of different types from the same animal but this method yield relatively enriched populations but with cross-contamination from other cells and are highly sensitive to mechanical disruption (Liu et al., 2015; Bryant et al., 2013). A recent report of a centrifugation gradient that isolating relatively pure mouse germ cells requires access to a specialized rotor and can be prohibitive (Chang et al., 2011).

More recent flow cytometry protocols have facilitated the separation of relatively pure multiple germ cell populations from the same animal by utilizing the differences in DNA amount in different germ cell types. Spermatogonia are the only diploid germ cell population while meiotic spermatocytes contain double the DNA content (4N) and spermatids are haploid (1N). Staining a suspension of germ cells with a DNA stain has been relatively successful in obtaining populations of spermatocytes and mixed stages of spermatids in the mouse (Bastos et al., 2005). The current protocol requires fixation of the cells to allow for permeability of the Hoechst 33342 DNA stain to enter the cell membrane and bind to the DNA and is therefore prohibitive for downstream DNA and RNA isolation for further gene expression studies. Separation of live germ cell populations has been achieved with Hoechst 33342 but access to a FACS facility with a UV laser (needed to excite the dye) is not available in most flow cytometers. The goal of this research was to develop a method for separation of live germ cell populations using the DNA stain DRAQ5 that does not require a UV laser for excitation but more common air-cooled 488 nm laser.

In this study, a mechanical and enzymatic digestion of testis was coupled with dual nuclear cell staining to isolate two populations of male germ cells, round spermatids and spermatocytes, using FACS. An advantage to this method is high yield of live cells that can be used in downstream RNA extraction and for further gene expression studies. Identity of the isolated germ cell populations was validated by germ cell expression by RT-PCR. Additionally, the ability to isolate multiple cell types from one mouse is both cost-effective and allows for decreased genetic variability for further gene expression studies.

METHODS

Male Germ Cell Isolation

Male germ cell isolations from 6-8 week-old CD-1 strain mice were performed according to adapted published protocols (Getun, 2011). All male mice used in this study were purchased from Harlan Laboratories (Indianapolis, IN, USA) and protocols were approved by the URI Institutional Animal Care and Use Committee (protocol # AN07-05-029). Testes were collected and the tunica albuginea was removed. Decapsulated testes were placed into 15mL conical tubes and digested in Collagenase from 1 mg/mL Clostridium histolyticum (Sigma-Aldrich, St. Louis, MO, USA, cat# C5081), Gey's Balanced Salt Solution (GBSS; Sigma-Aldrich, St. Louis, MO, cat# G9779) and 1 mg/mL DNase I Solution (Stem Cell Technologies, Vancouver, Canada, cat# 07900). At this point seminiferous tubules were visible in a cloudy solution. Conical tubes were manually agitated until testicular tubules started to dissociate. The tubes were then agitated horizontally at 120rpm for 15 minutes at room temperature on a Platform Vari-mix test tube rocker (Thermolyne; Thermo Scientific, Ashville, NC, USA). Tubes were left at room temperature for 15 minutes for phase separation. The supernatant was decanted into a new 15-mL conical tube. Here, spermatozoa along with populations of male germ cells, supporting cells, and debris were visible under light microscope. Digestion and agitation steps were repeated for both the pellet and supernatant with reagents only added to the pellet. Digestion steps were repeated again with the addition of 1mg/mL trypsin (Fisher Scientific, Pittsburg, PA, USA, cat# 27250018) in 1mM HCl. The tubes were inverted to mix and then agitated horizontally at 120rpm for 15 minutes at room temperature. Any visible clumps were dissociated

using a plastic Pasteur pipette to mix for 3 minutes. Immediately following manual dissociation, fetal calf bovine serum (Sigma-Aldrich) was added to neutralize the trypsin. DNase I was added, tubes inverted to mix, and another round of digestion and agitation was performed using standard conditions. Samples were filtered through GBSS pre-wetted 20µM nylon net vacuum-driven filtration systems (Millipore Corporation, Billerica, MA, USA, cat# SCNY00020) and stored on ice. Following filtration, the final pellet solution shows little to no debris and cells with round morphology.

Cell Purification by Flow Cytometry

Cells from pellet fractions were counted on the hemocytometer to determine the number of cells obtained, and stained with 5mM DRAQ5 (abcam, Cambridge, MA, USA, cat# ab108410) and counter-stained with propidium iodide solution (PI; Sigma-Aldrich, cat# P4864) according to manufacturer's recommendations based on cell density. Target cells were then separated and quantified based on emission of DRAQ5 (excitation wavelength: 647nm) and dead cell exclusion applied using propidium iodide solution (excitation wavelength: 535nm-617nm) on a BD Influx Cell Sorter (BD Sciences, Brown University, Providence, RI, USA). Live cell populations were gated into hypothesized meiotic spermatocytes and round spermatids and collected in 10% bovine serum albumin (BSA; Sigma-Aldrich)-covered 15mL conical tubes filled with TRIzol LS reagent (Life Technologies, Grand Island, NY, USA, cat# 10296028) to separate samples into RNA, DNA, and protein fractions. Collected samples suspended in TRIzol LS were incubated on ice in preparation for RNA extraction.

RNA Extraction and Isolation

RNA was extracted from the germ cell populations according to Life Technologies manufacturing protocol for TRIzol LS reagent (Chomczynski, 1993). RNA concentrations were determined and purity was verified for ideal 260/280 absorbance ratio >1.8 by NanoDrop 8000 spectrophotometer (GSC Sequencing Center, University of Rhode Island, Kingston, RI, USA). Unused RNA were stored at -80°C.

RT-PCR

RNA was reversed transcribed (RT) into cDNA using reagents and protocol from QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany, cat# 205310) for use in polymerase chain reaction (PCR) amplification. Genomic DNA was eliminated in the RT reaction with gDNA Wipeout Buffer, template RNA, and RNasefree water to volume. Samples were incubated for 2 minutes at 42°C and then reverse transcribed with Quantiscript Reverse Transcriptase, Quantiscript Buffer, and RT Primer Mix with incubation for 15 minutes at 42°C and 3 minutes at 95°C to inactivate Quantiscript Reverse Transcriptase. PCRs were performed under standard temperature condition: 94°C for 30 seconds, 35 cycles of 94°C for 30 seconds, primer-dependent annealing temperature for 30 seconds, 72°C for 2 minutes, and final extension for 10 minutes at 72°C with 1X reaction buffer, 1.5mM MgCl₂, 10mM dNTPs, 2.5µM genespecific forward and reverse primers, and 2.5U Taq polymerase (NEB, Ipswich, MA, M0273S). All PCRs were performed with a positive control with mouse testis cDNA, a negative control without template cDNA, and a negative control without enzyme. Amplified PCR products were run on a 2% agarose electrophoresis gel, purified and extracted (Qiagen QIAquick Gel Extraction Kit, cat# 28704), and submitted for
sequencing (URI Genome Sequencing Center). Sequenced amplicons were identified and verified using NCBI BLAST. cDNA was stored at -20°C.

PCR Reactions

PCR reagents and manufacturer protocol from New England BioLabs (Ipswitch, MA) were used for gene amplification. Isolated populations of spermatocytes, round spermatids, and Sertoli cells and were verified for identity and purity using designed transcript-specific primers, including proto-oncogene (c-Kit, spermatogonia), synaptonemal complex protein 3 (SCYP3, spermatocytes), protamine 2 (PRM2, round spermatids), follicle-stimulating hormone (FSHR, Sertoli cells), and cholesterol side-chain cleavage enzyme (P450scc, Leydig cells). Sample populations were tested to ensure absence of contamination. PCR products were separated by a 2% agarose gel electrophoresis, gene amplified band were captured using UV light to fluoresce ethidium bromide, bands were extracted for sequencing (URI Genomics and Sequencing Center), and verified with National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST).

RESULTS

After mechanical and enzymatic disruption of the mouse testes and double staining with PI and DRAQ5, a representative FACS distribution of cells by size is shown in Figure 7 and Figure 8.

Characterization of germ cell populations separated by flow cytometry

The identity of the two germ cell populations, P1 & P2, were investigated by validated using germ cell-specific primers in RT-PCR (Table 18). The absence of testicular somatic Sertoli and Leydig cells were confirmed by the lack of amplification

of *FSHR* and *p450scc* respectively. Diploid spermatogonia were also not detected in these two populations. Positive amplification of *SYCP3* in the P2 population, but lack of amplification in the P1 population, indicated that this population with the highest fluorescence intensity included 4N spermatocytes. Population P1 contained haploid round spermatids as indicated by the amplification of PRM2 and Dbil5.

DISCUSSION

A protocol for FACS isolation of live round spermatid and spermatocytes from adult male mice was developed using the nuclear stain DRAQ5. Purified live cells may be used in further downstream molecular biology applications, including RNA extraction and PCR. In total, this method takes roughly two and a half hours to prepare the cells, an additional three hours to sort cells by FACS, and additional time for postsort manipulations.

Further modifications of the protocol are necessary to isolate the diploid spermatogonia germ cells in addition to the somatic Sertoli and Leydig cells. The FSC/SSC cell distribution with DRAQ5 did not demonstrate as many distinct cell populations as previously published in fixed cells populations stained with Hoescht 33342. Diploid cells may have been lost in the digestion and filtration steps prior to cell staining but further examination of this stage of the protocol is necessary.

29

CHAPTER 4: PRODUCTION OF THE POLYA-SEQ LIBRARIES FROM ISOLATED MALE GERM CELL POPULATIONS

INTRODUCTION

PolyA-seq is a robust method of sequencing polyA-site use and determining 3'UTR length in different tissues (Derti et al., 2012). Previous PolyA-seq studies have sequenced polyA+ RNA from whole testicular tissue, including germ cells and somatic cells. The bioinformatics analysis described in Chapter 2 is from testis PolyA-seq and is a mix of germ cells and somatic testicular cells (Sertoli cells, Leydig cells and peritubular cells). The inclusion of somatic tissue may mask the germ cell specific gene expression patterns, making a male germ cell specific pattern of PAS use and identification of transcripts with a short 3'UTR difficult to examine. Based on the method of PolyA-seq library preparation (Derti et al., 2012), sequencing libraries for the isolated germ cell populations separated by DRAQ5 were developed as described in Chapter 3. Briefly, generation of these libraries involved isolating poly(A)⁺ mRNA from male germ cell total RNA, attaching a d(T) primer to specifically target the PAS and polyA-site, PCR amplification and purification, and gel electrophoresis to visualize the product size.

METHODS

cDNA libraries were generated from two populations of male germ cells (P1 & P2) that were separated by DRAQ5 (Chapter 3). After RNA isolation from Trizol as described in Chapter 3, poly(A)⁺ RNA was isolated from the total RNA using the Oligotex mRNA Mini Kit (Qiagen, cat# 70022). 150 ng poly(A)⁺ RNA from each cell

type was reverse transcribed using a $T_{10}VN$ (ten thymidine and non-thymine nucleotide attached to a random base) primer and second strand synthesis completed with random hexamer-PCR anchor primers. U1 and U2 have sequence complementary to Illuminaspecific adapters which were added through a nested PCR to maintain strand-specificity and cDNA were fragmented for sequencing. Single-end sequencing in parallel was attempted for the prepared spermatocyte (n=2), round spermatid (n=2) PolyA-seq cDNA libraries at LC Sciences (Houston, TX), but was unsuccessful.

RESULTS

Poly(A)⁺ mRNA was isolated from spermatocyte (P1) and round spermatid (P2) total RNA for PolyA-seq library preparation, which required 100ng input RNA. Yields from the poly(A)⁺ enrichment are shown in Table 18. Based on the low poly(A)⁺ RNA yields, the individual germ cell populations were pooled to make the PolyA-seq libraries that contained only spermatid and spermatocyte male germ cells with biological replicates isolated by FACS on two separate days. Whole testis and liver, used as a somatic tissue control, PolyA Seq libraries were also generated (Figure 8).

DISCUSSION

PolyA-seq libraries were generated from round spermatids, spermatocytes, pooled spermatids and spermatocytes, liver, and whole testis tissues. Only one library each from the spermatids and spermatocytes could be generated due to the low yield of $poly(A)^+$ mRNA. Several more runs of FACS isolation of cells are needed to generate enough $poly(A)^+$ mRNA to potentially be more successful.

Due to the low yield of poly(A)⁺ mRNA, sorted round spermatid and spermatocyte populations were combined to make a library that contained only male germ cells. These were more successful due to the larger amount of starting $poly(A)^+$ mRNA. Unfortunately, these libraries would not be sequenced.

It is worth-while to note that about 80% of total RNA from mammalian cells is ribosomal RNA (rRNA). This leaves the remainder comprised of transfer RNA (tRNA) and about 2-3% polyA+ mRNA (Lodish et al., 2000). Furthermore, RNA is susceptible to degradation by RNases. Based on these results and background information, it is recommended to sort for 100,000 events by FACS to yield 2,500µg total RNA, which should yield approximately 1µg poly(A)⁺ mRNA for library generation. Prior to enrichment of polyA⁺ mRNA, total RNA should be evaluated for quality and the absence of degradation. Running extracted total RNA on a 1% agarose gel should yield crisp bands for 28S rRNA that is twice the intensity of lower 18S rRNA. Equal rRNA band intensities or mRNA smearing below the rRNA bands indicate poor quality of RNA that should not be used for polyA⁺ mRNA isolation. Bioanalyzers may also be used to measure rRNA band sizes and will produce an RNA Integrity Number used to quantify RNA quality from RIN 10, representing intact RNA; to RIN 2, indicating degraded RNA.

APPENDIX I

Germ Cell Isolation for Flow Cytometry Protocol with DRAQ5

Supplies Needed—

15mL tube (x6) Gey's Balance Salt Solution (GBSS) Collagenase type I DNase I (x3 50μL aliquots) Trypsin Fetal Calf Serum Aluminum foil Propidium Iodide 5mL plastic syringe Plastic Pasteur pipette (x8) Millipore Conical Tube Filter (x2) 50mL conical tube/Isoflurane DRAQ5

Solution to prepare—

GBSS + Collagenase Mixture (GBSS/Col): 25mg Collagenase 25mL GBSS

Part I: Testis Preparation

- 1. Place one decapsulated testis in a 15mL tubes, 2 tubes: 1 for each testis
- 2. Add to each tube: 3mL GBSS/Col

10µL DNase I

- 3. Shake vigorously by hand until testicular tubules start to dissociate.
- 4. Agitate horizontally at 120rpm for 15 mins at room temperature.
- 5. Let sit for 1 minute, then decant supernatant off into separate tube, keep using all tubes (4).
- 6. Repeat steps 2-4, adding more reagents to the pellet tubes only.
- 7. Let sit for 15 minutes at room temperature, if pellet forms, decant off the supernatant!
- Add to each tube: 2.5mL GBSS/Col 50µl Trypsin 10µl DNase I
- 9. Invert tube several times to mix. Agitate horizontally at 120rpm for 15 mins at 33°C.
- 10. Pipette up and down gently using plastic Pasteur pipette for 3 min. No clumps should be visible.
- 11. Add to each tube: **30μl Trypsin 10μl DNase I**

- 12. Invert tube several times to mix. Agitate horizontally at 120rpm for 15 mins at 33°C.
- 13. Add to all tubes: 400µL fetal calf bovine serum (FCS), invert tubes to mix. 10µL DNase I
- 14. Pass samples through GBSS pre-wetted filters. Wrap all tubes in aluminum foil.
- 15. Hemocytometer count. See Part II.
- 16. Add to selected tubes: **5µl propidium iodide (PI) solution**

DRAQ5 (amount based on hemocytometer count)

Part II: Hemocytometer Count

- 1. Transfer **10µl of sample** into hemocytometer on both sides. (If too much overlap, dilute sample.)
- 2. Count all 5 squares within triple lines.
- 3. Take total count in square * $50,000 \rightarrow$ number of cells/mL. Dilute solution with GBSS if needed.
- 4. Add appropriate amount of DRAQ5 according to chart and allow to sit at room temperature for 5-30 minutes before processing through flow cytometer.

Part III: Samples and Reagents to Sort on Flow

- 1. DRAQ5 + PI Stained
- 2. DRAQ5 Only
- 3. PI Only
- 4. Unstained & extra dye (DRAQ5 & PI)
- 5. Trizol LS Tubes (1.5mL)

Note: 750µl Trizol LS has been doubled. Aliquot solutions during RNA isolation.

APPENDIX II

RNA Isolation Protocol for Male Germ Cells

Part I: Phase Separation

- 1. Add **200µL chloroform** per 750µL of TRIzol LS in microcentrifuge tubes and shake vigorously for 15 seconds.
- 2. Let tubes sit at room temperature for 15 minutes.
- 3. Centrifuge at 12,000 x g for 15 minutes at 4° C.
- 4. Remove and keep clear aqueous phase (top layer) in new tubes.

Part II: RNA Precipitation

- 1. Add 2µL glycogen to each sample.
- 2. Add **500µL isopropanol** and let samples sit for 15 minutes in -20°C.
- 3. Centrifuge at 12,000 x g for 15 minutes at 4° C.

Part III: RNA Wash and Resuspension

- 1. Keep samples on ice!
- 2. Remove supernatant from tube, leaving only RNA pellet. (If there is no visible pellet, keep supernatant in conical tubes and leave a layer of liquid where pellet is estimated to be.)
- 3. Wash the pellet with 1mL 75% ethanol and leave in -20°C overnight.
- 4. Centrifuge sample at 7500 x g for 10 minutes at 4°C and discard the supernatant.
- 5. Air dry samples on ice for 10 minutes.
- 6. Add 25µL RNase-free water and pipette to mix and dissolve pellet.
- 7. Keep samples on ice and nanodrop. Store RNA samples in -80°C.

APPENDIX III

Reverse Transcription (RT) – Qiagen QuantiTect Version Protocol

- Mix together: *Reagent Volumes per Reaction* gDNA Wipeout Buffer, 7x → 2µL Template RNA → variable (up to 1µL) RNase-free water → to total volume of 14µL
 Incubate for 2 minutes at 42°C then immediately place on ice.
 Add: Reverse Transcriptase → 1µL RT Buffer, 5x → 4µL RT Primer Mix → 1µL
 Incubate for 15 minutes at 42°C
- 4. Incubate for 15 minutes at 42°C.
- 5. Incubate for 3 minutes at 95°C to inactivate Reverse Transcriptase.
- 6. Hold at 4°C.
- 7. Store cDNA at -20°C.

APPENDIX IV

Polymerase Chain Reaction (PCR) Protocol

Samples

- a. cDNA from RT reaction
- b. RT negative control: no enzyme
- c. PCR negative control: no template RT added

Reagents

Standard Taq Buffer $\rightarrow 5\mu L$ Forward Primer $\rightarrow 4\mu L$ Reverse Primer $\rightarrow 4\mu L$ MgCl2 $\rightarrow 3\mu L$ dNTPs $\rightarrow 1\mu L$ Taq polymerase $\rightarrow 0.5\mu L$ diH2O $\rightarrow 31.5\mu L$ cDNA template $\rightarrow 1\mu L$

Thermocycler conditions

1 cycle: 94°C for 3 minutes 35 cycles: 94°C for 30 seconds, ____°C for 30 seconds, 72°C for 30 seconds 1 cycle: 72°C for 10 minutes Hold at 4°C

APPENDIX V

NEBNext Oligo d(T)25 Magnetic Beads mRNA Isolation Protocol

Supplies Needed—0.2mL PCR tubes

RNA sample NEBNext Magnetic Oligo d(T)25 Beads & Kit Tris Buffer RNA Binding Buffer Wash Buffer

Equipment Needed— Thermocycler Magnetic rack/plate

Starting Material: 1–5 µg of total RNA.

- 1. Dilute total RNA with nuclease-free water to a final volume of 50µl in a PCR tube.
- 2. Add to a new PCR tube: 15µl NEBNext Magnetic Oligo d(T)25 Beads
- 3. Wash beads two times with **100µl RNA Binding Buffer**. Pellet with magnet and discard supernatant.
- 4. Resuspend beads in **50µl RNA Binding Buffer** and add to tube: **50µl total RNA sample** from step 1.
- 5. Place the tubes in thermocycler for conditions: 65°C for 5 minutes, hold at 4°C to denature the RNA and facilitate binding of the poly-A-RNA to the beads and remove sample.
- 6. Place the tubes on the bench and incubate at room temperature for 5 minutes to allow the RNA to bind to the beads.
- 7. Place the tubes on the magnetic rack at room temperature for 2 minutes to separate the poly-A RNA bound to the beads from solution.
- 8. Remove and discard all supernatant. Do not disturb beads!
- 9. Remove the plate from the magnetic rack.
- 10. Wash the beads twice with **200µl Wash Buffer** to remove unbound RNA. Pipette the up and down 6 times to mix.
- 11. Place the tubes on the magnetic rack at room temperature for 2 minutes.
- 12. Remove and discard all supernatant from each well of the plate using a multichannel pipette. Do not disturb beads!
- 13. Remove tubes from the magnetic rack.
- 14. Add **50µl Tris Buffer** to each well of plate. Gently pipette up and down 6 times to mix.
- 15. Place the tubes in thermocycler for conditions: 80°C for 2 minutes, hold at 25°C for sample removal.
- 16. Add **50µl RNA binding buffer** to each sample to allow RNA to bind to beads. Gently pipette up and down 6 times.
- 17. Incubate the tubes at room temperature for 5 minutes.
- 18. Place the tubes on the magnetic stand at room temperature for 2 minutes.

- 19. Remove and discard all of the supernatant from each tube. Do not disturb beads!
- 20. Remove the tubes from magnetic stand.
- 21. Wash the beads twice with **200µl Wash Buffer**. Gently pipette up and down 6 times.
- 22. Place the tubes on magnetic stand at room temperature for 2 minutes.
- 23. Remove and discard all supernatant from each tube. Do not disturb beads!
- 24. Remove tubes from magnetic stand.
- 25. Elute the mRNA from the beads by adding **17µl Tris Buffer** and incubating sample at 80°C for 2 minutes. Immediately place tubes on magnetic rack.
- 26. Collect purified mRNA by transferring the supernatant to a clean PCR tube.
- 27. Place tube on ice and nanodrop.

Thermocycler Conditions

65°C: 5 minutes Hold: 4°C 80°C: 2 minutes Hold: 25°C 80°C: 2 minutes Hold: 4°C

APPENDIX VI

PolyA-seq Protocol

Supplies Needed—Primers (TB1003, TB-rev (GA), TB1007, TB1002, TB1005) Elution water 5X buffer dNTP (25mM) DTT RNase OUT Superscript III Reverse Transcriptase RNase H 10X NE Buffer 2 Klenow Enzyme MgCl₂ Roche HF Enzyme Mix AMPure XP Beads

Preparation

DMSO

- 1. Heat microcentrifuge tube with nuclease-free elution water to 55°C for part II.
- 2. Reconstitute primers to 50μM and 10μM. TB1003 primer will be reconstituted from 50μM to 0.1μM.

Part I: First Strand Synthesis Reaction (Invitrogen)

- 1. Add and mix following in a PCR strip tube:
 - x µl polyA + RNA (100ng)
 - 2µl TB1003 primer (0.1µM) **

**[Add 656µl of primer water to blue top to reach 50µM. Then 1µl of

50µM + 499µl primer water.]

- 2. Bring volume to 11.4µl with water.
- 3. Heat to 65° C for 10 minutes and hold at 4° C.
- 4. Add and mix following in PCR strip tube:

4μl 5X buffer (Invitrogen) 1.6μl dNTPs (25mM) 1μl DTT 1μl RNase OUT (Invitrogen)

- 1µl Superscript III Reverse Transcriptase (Invitrogen)
- 5. Incubate at 40°C for 90 minutes, 70°C for 15 minutes, and cool to 4° C.
- 6. Add to tube and mix: 1µl RNase H (Invitrogen)
- 7. Incubate at 37°C for 20 minutes, 75°C for 15 minutes, and cool to 4°C.

Part II: First Qiagen Purification

Add and mix **79µl water**.

Add **500µl buffer PB** and pass over qiaquick at 13,000g for 1 minute.

Wash with **750µl wash buffer** and spin at 13,000*g* for 2 minutes. In new microcentrifuge tube, elute twice with **30µl elution water** (**55°C from preparation step**).

Let sit for 1 minute before spinning at 13,000g for 2 minutes.

Part III: Second Strand Synthesis Reaction

1. Add **40µl of Second Strand mix (below)** to 1st strand product (60µl from above) in a PCR tube:

11.7μl water 10μl 10XNE Buffer 2 10μl TB-rev (GA) - 10μM 5μl 10mM dNTPs 3.3μl Klenow enzyme (5U/μl of NEB exo' Klenow #M0212L)

2. Incubate at 37°C for 30 minutes in thermocycler.

Part IV: Ampure XP-Purification

- 1. Add **180µl Agencourt AMPure XP Beads** and let sit for 5 minutes at room temperature.
- 2. Separate supernatant using magnetic rack and discard supernatant.
- 3. Wash twice with **70% EtOH**. Remove as much as possible on magnetic stand and dry off residual EtOH on ice.
- 4. Elute with **50µl elution buffer**.
- 5. Nanodrop to check for DNA concentration.

Part VI: PCR

1. In new PCR tube, add **31µl of purified Second Strand Synthesis product** to **18µl of PCR mix:**

10µl 10X Buffer (Roche Reagent #2)

- 2.5µl 99.9% DMSO
- 1µl 10mM dNTP
- 2µl 10µM TB1007 primer
- 2μl 10μM TB 1002 primer
- 1µL 25mM MgCl₂ (Roche Reagent #4)
- 2. Add to each tube 0.5µl Roche HF Enzyme Mix at 4°C and mix by pipette.
- 2. Amplify using conditions:

2 Cycles— 94°C for 10 seconds 40°C for 2 minutes 72°C for 1 minute

8 *Cycles*— 94°C for 10 seconds 60°C for 30 seconds 72°C for 1 minute 20 Cycles— 94°C for 15 seconds 60°C for 30 seconds 72°C for 1 minute + 10 seconds

72°C for 5 minutes 4°C hold

Part VII: Second Ampure Purifucation

- 1. Add **90µl Agencourt AMPure XP Beads** and let sit for 5 minutes at room temperature.
- 2. Wash twice with **70% EtOH**.
- 3. Elute with **50µl elution buffer.**

Part VIII: Post PCR Analysis

- 1. Nanodrop.
- 2. Run PCR reaction out on gel. Should see band ranging from ~80-250nt.

Part VIV: Sequencing

1. Standard Illumina set-up using TB1005 as sequencing primer.

APPENDIX VII

Step 1 VBA: Delete Rows with Same PAS

*Note: This code is written in Visual Basic for Applications (VBA) for Excel macro development. Any line that starts with an apostrophe indicates a comment.

Sub remove()

Dim sr1 As Long

'This code works with the assumption that you have the first row as a header. 'If there is no header, just add in a blank row.

'Active sheet for this was written as "Sheet4".

'This sheet name can be changed or you can re-name your sheet to match the code.

'MISC. NOTES & DIRECTIONS

'For easier visualization check purposes, I choose to perform is TRUE/FALSE function before running this.

'In Excel, go to the "Formula" tab --> "Text" --> "EXACT".

'Select your two cells of polyadenylation signals (PAS) to compare.

'Carry out this function to the reminder of the column(s).

'If your PAS match, in a new column "TRUE" will print. If they differ, "FALSE" will print.

'Run code. This will delete all rows where PAS are the same, leaving you with a bunch of "FALSE"s.

'Check the last two rows once the code has finished.

'This isn't perfect so you might have to manually delete the last two if they're matching.

For sr1 = 2 To Sheets("Sheet4").Range("D3").CurrentRegion.Rows.Count - 1

If Sheets("Sheet4").Cells(sr1, 4).Value = Sheets("Sheet4").Cells(sr1, 5).Value Then

Sheets("Sheet4").Rows(sr1).EntireRow.Delete Exit For

End If Next sr1

End Sub

APPENDIX VIII

Step 2 VBA: Extract Data from Reference Files

Sub Step2ExtractDataFromRawFiles()

Dim CurrentRow, EndsAt, Progress, NumOfRows As Long Dim DataSheet, CurrentChrNum, CurrentGeneLong, CurrentID, CurrentGeneShort As String

CurrentRow = 1EndsAt = 0

'COUNTS ROWS Range("A1").CurrentRegion.Select NumOfRows = Selection.Rows.Count Cells(1, 1).Select DataSheet = ActiveSheet.Name

'PROGRESSBAR INITIALIZATION MakingProgress.Show vbModeless Progress = 0 OnePercent = 100 * Round(NumOfRows / 10000) HowManyKs = Left(NumOfRows, Len(Str(NumOfRows)) - 4)

'FIND THE CHROMOSOME #
For i = 1 To 100
If InStr(Cells(i, 1).Value2, "DEFINITION") > 0 Then
If InStr(Cells(i, 1).Value2, "unplaced") > 0 Then
CurrentChrNum = "ChrUn"
Exit For
End If
' 37 for humans VV 52 for mice
CurrentChrNum = "chr" & Replace(Mid(Cells(i, 1).Value2, 52, 2), " ", "")
Exit For
End If
Next i

MsgBox ("Processing data for " & CurrentChrNum & ". It has " & NumOfRows & " rows. If either of those are wrong, do a manual fix in the code.") 'NumOfRows = if it's not correct, then write the actual number here 'CurrentChrNum = if it's not correct, then write the actual chr# here. Format, for example: chr1, chr2, chr10, chr18, chrX, chrUn

'CREATE NEW WORKSHEET CALLED CHR#

Sheets.Add.Name = CurrentChrNum

'CHANGE THE ACTIVE SHEET BACK TO THE ONE WITH DATA Sheets(DataSheet).Activate

'START EXTRACTING DATA

For i = 1 To NumOfRows

'This looks for mRNA, or misc_RNA, and also for numbers because those keywords appear randomly as well.

If (InStr(Cells(i, 1).Value2, "misc_RNA") + InStr(Cells(i, 1).Value2, "mRNA") > 0) Then

If (HaveNumbers(Cells(i, 1)) = True And InStr(Cells(i, 1).Value2, "..") > 0) Then

Cells(i, 2).Value2 = "X" 'for debugging only, can be deleted

'ID

```
For iplus = 1 To 150
  Where = InStr(Cells(i + iplus, 1), "/transcript_id=")
  If Where > 0 Then
   CurrentID = Mid(Cells(i + iplus, 1), Where + 16, Len(Cells(i + iplus, 1)) - Where -
16)
   Cells(i, 3).Value = CurrentID 'for debugging only, can be deleted
   Exit For
  End If
  Next iplus
  iplus = 0
  i = 0
  'SHORTNAME
  For iplus = 1 To 150
  Where = InStr(Cells(i + iplus, 1), "/gene=")
  If Where > 0 Then
   CurrentGeneShort = Mid(Cells(i + iplus, 1), Where + 7, Len(Cells(i + iplus, 1)) -
Where - 7)
   Cells(i, 4).Value = CurrentGeneShort 'for debugging only, can be deleted
   Exit For
  End If
  Next iplus
  iplus = 0
  i = 0
```

'LONGNAME For iplus = 1 To 150 Where = InStr(Cells(i + iplus, 1), "/product=") If Where > 0 Then CurrentGeneLong = Mid(Cells(i + iplus, 1), Where + 10, Len(Cells(i + iplus, 1)) - Where)

```
For j = 1 To 20
    If InStr(Cells(i + iplus + j, 1), "
                                     /") > 0 Then
       Do Until InStr(CurrentGeneLong, "") = 0
        CurrentGeneLong = Replace(CurrentGeneLong, "", "")
        If Right(CurrentGeneLong, 1) = Chr(34) Then CurrentGeneLong =
Replace(CurrentGeneLong, Chr(34), "")
      Loop
      Exit For
    End If
    CurrentGeneLong = CurrentGeneLong & Cells(i + iplus + j, 1)
   Next j
   If Right(CurrentGeneLong, 1) = Chr(34) Then CurrentGeneLong =
Replace(CurrentGeneLong, Chr(34), "")
   Cells(i, 5).Value = CurrentGeneLong 'for debugging only, can be deleted
   Exit For
  End If
  Next iplus
  iplus = 0
  i = 0
```

```
'INTERVALS
```

'If it finds them, looks for the intervals.

Do

```
'Some of them are in multiple cells, so this'll keep checking until it finds a )
For j = 1 To Len(Cells(i + iplus, 1))
Select Case Mid(Cells(i + iplus, 1), j, 1)
```

Case 0 To 9

```
Sheets(CurrentChrNum).Cells(CurrentRow, 2 + EndsAt).Value =
Sheets(CurrentChrNum).Cells(CurrentRow, 2 + EndsAt).Value & Mid(Cells(i + iplus, 1), j, 1)
```

```
Case "."
EndsAt = 1
Case ","
EndsAt = 0
```

```
Sheets(CurrentChrNum).Cells(CurrentRow, 1).Value = CurrentChrNum
Sheets(CurrentChrNum).Cells(CurrentRow, 4).Value = CurrentID
Sheets(CurrentChrNum).Cells(CurrentRow, 5).Value = CurrentGeneShort
Sheets(CurrentChrNum).Cells(CurrentRow, 6).Value = CurrentGeneLong
CurrentRow = CurrentRow + 1
```

End Select

```
Next j
```

```
iplus = iplus + 1
   Loop Until InStr(Cells(i + iplus, 1).Value2, "/") > 0
   Sheets(CurrentChrNum).Cells(CurrentRow, 1).Value = CurrentChrNum
   Sheets(CurrentChrNum).Cells(CurrentRow, 4).Value = CurrentID
   Sheets(CurrentChrNum).Cells(CurrentRow, 5).Value = CurrentGeneShort
   Sheets(CurrentChrNum).Cells(CurrentRow, 6).Value = CurrentGeneLong
   CurrentRow = CurrentRow + 1
   EndsAt = 0
  iplus = 0
  i = 0
  End If
  End If
TO CHECK LATER IF THE CODE FAILED TO FIND ANYTHING
CurrentID = "MISSINGDATA"
CurrentGeneShort = "MISSINGDATA"
CurrentGeneLong = "MISSINGDATA"
'PROGRESSBAR UPDATE
Progress = Progress + 1
If Right(Progress, 2) = "00" Then
  Progresshundreds = Progresshundreds + 1
  If Progress = OnePercent Then
    MakingProgress.ProgressBar.Width = Round(200 * i / NumOfRows)
    MakingProgress.ProgressText.Caption = Round(100 * i / NumOfRows) & "%"
    Progress = 0
  End If
  MakingProgress.Caption = Format(Progresshundreds / 10, "#.0") & "k/" &
HowManyKs & "k lines processed."
  DoEvents
  MakingProgress.Repaint
End If
Next i
Sheets(CurrentChrNum).Columns("A:F").AutoFit
TAKES THE DATA. AND COPIES IT INTO A NEW FILE FOR LATER
```

PROCESSING Application.DisplayAlerts = False ThisWorkbook.Sheets(DataSheet).Delete Set ExportTo = Workbooks.Add ThisWorkbook.Sheets(CurrentChrNum).Move Before:=ExportTo.Sheets(1) If Dir(ThisWorkbook.Path & "\processed", vbDirectory) = "" Then MkDir ThisWorkbook.Path & "\processed" ExportTo.Sheets(2).Delete Application.DisplayAlerts = True Application.ScreenUpdating = False ExportTo.Sheets(1).Columns("A:F").Sort key1:=Range("B1"), _ order1:=xlAscending Application.ScreenUpdating = True ExportTo.SaveAs Filename:=ThisWorkbook.Path & "\processed\" & CurrentChrNum, FileFormat:=50 ExportTo.Close MsgBox (CurrentChrNum & " processed, and saved!") Unload MakingProgress

End Sub

```
Function HaveNumbers(oRng As Range) As Boolean
'Source: http://stackoverflow.com/questions/18906581/how-can-i-check-if-a-cell-in-
excel-spreadsheet-contains-number
Dim bHaveNumbers As Boolean, k As Long
bHaveNumbers = False
For k = 1 To Len(oRng.Text)
If IsNumeric(Mid(oRng.Text, k, 1)) Then
bHaveNumbers = True
Exit For
End If
Next
HaveNumbers = bHaveNumbers
End Function
```

APPENDIX IX

Step 3 VBA: Annotate Data

Sub Step3AnnotateData() Dim chrNumOfRows, NumOfRows, StartAt, NumOfMatches As Long Dim Progress As Double Dim CurrentlyOpen, DataSheet, DataWkbk As String Dim WhichColor, Previous As Integer

'COLOR SETUP

'Set up some arrays for the colors. These are used later visually separate blocks of annotated transcripts.

R = Array(255, 181, 154, 193, 134, 251) G = Array(250, 225, 206, 179, 207, 182) B = Array(129, 174, 223, 215, 190, 209) WhichColor = 0

'COUNTS ROWS 'NumOfRows: Length of DataToMatch. Counting the rows will tell the program how to loop. NumOfRows = ActiveSheet.Range("A1", ActiveSheet.Range("A1").End(xlDown)).Rows.Count

'PROGRESSBAR INITIALIZATION

'Shows the ProgressBar2 UserForm. MakingProgress2.Show vbModeless Progress = 0

'OTHER PREPARATIONS

'Sorts the chromosome in ascending order to streamline annotating. Application.ScreenUpdating = False ThisWorkbook.ActiveSheet.Columns("A:H").Sort key1:=Range("a1"), _ order1:=xlAscending, key2:=Range("b1"), order2:=xlAscending Application.ScreenUpdating = True

'SAVE THE NAMES

'We'll be switching back and forth between the data to match, and the chr# files, so again, just to be safe, everything is stored in strings. DataSheet = ActiveSheet.Name DataWkbk = ThisWorkbook.Name

NumOfMatches = 0i = 1

'CREATE NEW SHEET

'Creates a new sheet to save the annotations. Default named: "Matches". To avoid errors, make sure there isn't already an existing sheet named "Matches." Workbooks(DataWkbk).Sheets.Add.Name = "Matches"

'DEFINING VARIABLES

'To define some variables: Workbooks(DataWkbk).Sheets(DataSheet) = this refers to the mouse/human data file that we're looping through.

'In this file: Cells(i, 1) = chr1, chr2, chr3, and so on where "i" refers to the row index and the number refers to the column index.

'Important: the variable CurrentlyOpen will always get this value, because that's the file it needs to open.

Cells(i, 2) = Testis number | Cells(i, 3) = Liver number | Cells(i, 4-5-6) = other data Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen) = is the chr# file we currently have open to go through looking for matches.

'The structure of the other file is basically the same: 1st column: chr#, 2nd: testis data, 3rd: liver data, 4-5-6th: misc data.

'MAIN LOOP STARTS

'It runs until we get to the end of the file (meaning i = the number of rows it needs to go through).

'You'll see this condition at the very end of the code in a row starting with "Loop Until". Watch the #####s! Do

CurrentlyOpen = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 1).Value2 'MsgBox (i & " Opening " & Workbooks(DataWkbk).Path & "\processed\" & CurrentlyOpen & ".xlsb") Application.ScreenUpdating = False

'OPEN FILE

'This (because of the nested loop) is only called again, if the chr# changes.

'The Dir() command checks if the specified file path exists. If it equals "", then it does NOT.

If Dir(Workbooks(DataWkbk).Path & "\processed\" & CurrentlyOpen & ".xlsb") = "" Then

Workbooks.Open (Workbooks(DataWkbk).Path & "\processed\" & "chrM.xlsb") CurrentlyOpen = "chrM"

Else: Workbooks.Open (Workbooks(DataWkbk).Path & "\processed\" &

CurrentlyOpen & ".xlsb")

End If

Application.ScreenUpdating = True

'Another file length count, but this time it's the chr# file.

chrNumOfRows = Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Range("A1", Sheets(CurrentlyOpen).Range("A1").End(xlDown)).Rows.Count

'***** 1ST NESTED LOOP ***** starts

'A new file will only need to be opened if the next row's chr# is different from the current one.

'Again, you can see this later when this loop ends in a row starting with "Loop Until". Watch the *****s!

Do

'This code will check the values at every 2% of the file, and start the loop when we're close enough.

'FIND WHERE TO START LOOKING For j = 1 To 50

'IF[current liver data value] >= [chr# file, 2-4-6%th row liver data value] If Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 >= Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(1 + Round((j - 1) * chrNumOfRows / 50), 2) Then

'This might produce a false negative if the matches are in the last 2%, so just in case:

If j = 50 Then StartAt = Round(chrNumOfRows * 0.98) - 100

'-100 in case the 2%-th cell is in the middle of identical matches (variants, for example)

'IF [current liver data value] >= [chr# file, 4-6-8%th row liver data value]

If Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 <= Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(1 + Round((j) * chrNumOfRows / 50), 2) Then

'We only get here if we found the interval of our matches. StartAt = Round(chrNumOfRows / 50 * (j - 1)) - 100

```
Exit For
End If
End If
Next j
```

If StartAt < 1 Then StartAt = 1 'FOUND WHERE TO START LOOKING

Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 9).Value2 = "No Matches"

Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 10).Value2 = StartAt 'Now we know where we should start looking.

j = 0

'MATCH FINDING starts

'This starts looking for matches where it seemed optimal to do so, and will keep looking for them until the supposedly matching liver data have a difference larger than 100bp between them. (Note: if you want to change the bp margin, just change this number.) You'll see this condition, again, lower down when the row says "Loop Until". Look for the &&&& &:

Do

If Abs(Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 -Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 2).Value2) <= 100 Then

If Abs(Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 3).Value2 -Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 3).Value2) <= 100 Then

'Abs() gives you the absolute value of something. Basically what we're calculating here:

'If Abs(liver data - chr file liver data) is ≤ 100 then If Abs(testis data - chr file testis data) is ≤ 100 then we have a match!

'We start the search at the StartAt row, we use j to loop until the difference is greater than 100. If either of the Ifs fail, we jump straight to the next j.

'We have a match!

NumOfMatches = NumOfMatches + 1 Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 9).Value2 = "Match!"

'The coloring just serves as a way to separate different genes from the next.

If (NumOfMatches > 1 And Previous <> i) Then

If Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 1).Value2 <> Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches - 1, 1).Value2 Then

WhichColor = WhichColor + 1

Workbooks(DataWkbk).Activate

If WhichColor = 5 Then WhichColor = 0

End If End If

'We found a match. This takes all the data attached to it and put it in a new row in

our Matches sheet.

Workbooks(DataWkbk).Sheets("Matches").Rows(NumOfMatches).Interior.Color = RGB(R(WhichColor), G(WhichColor), B(WhichColor))

```
Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 1) =
CurrentlyOpen
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 2) =
Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 3) =
Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 3)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 4) =
Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 4)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 5) =
Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 5)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 6) =
Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 6)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 7) =
Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 7)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 8) =
Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 8)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 9) =
Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 4)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 10) =
Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 5)
  Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 11) =
Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 6)
```

Previous = i

End If

- End If
- j = j + 1

Loop Until (Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 + 100 < Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 2).Value2) Or (StartAt + j = chrNumOfRows) '&&&& MATCH FINDING &&&& ends

'We found all the possible matches for the current, i-th row. The difference between liver data we're supposed to match is larger than 100. There's also another check here.

'Next row! i = i + 1

If Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 - 100 > Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(chrNumOfRows, 2) Then Do Until CurrentlyOpen <> Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 1).Value2 Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 9).Value2 = "No Matches" Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 10).Value2 = "-" i = i + 1 Loop End If

'PROGRESSBAR2

Progress = i / NumOfRows MakingProgress2.ProgressBar.Width = Round(Progress * 200) MakingProgress2.ProgressText.Caption = Format(Progress * 100, "0.00") & "%" MakingProgress2.Caption = i & "/" & NumOfRows MakingProgress2.InfoBox.Caption = NumOfMatches & " matches so far." & " Currently looking in " & CurrentlyOpen & ". " DoEvents MakingProgress2.Repaint

Loop Until CurrentlyOpen <> Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 1).Value2 '***** 1ST NESTED LOOP ***** ends 'The next row's chr# is different than the current one. We have to open a new file. 'Close the old one first. Workbooks(CurrentlyOpen & ".xlsb").Close

If i >= NumOfRows Then Exit Do Loop Until i = NumOfRows '##### MAIN LOOP ##### ends

'Unload the Progressbar window, and give the columns automatic width. Unload MakingProgress2 Workbooks(DataWkbk).Sheets("Matches").Columns("A:K").AutoFit

'The End MsgBox ("Annotation successfully complete.")

End Sub

APPENDIX X

Step 3.5 VBA: Annotate Individual Transcripts

Sub step3andahalf() Dim chrNumOfRows, NumOfRows, StartAt, NumOfMatches As Long Dim Progress As Double Dim CurrentlyOpen, DataSheet, DataWkbk As String Dim WhichColor, Previous As Integer

'COLOR SETUP 'Set up some arrays for the colors. These are used later to "block" the matches that from the same data row. R = Array(255, 181, 154, 193, 134, 251) G = Array(250, 225, 206, 179, 207, 182) B = Array(129, 174, 223, 215, 190, 209) WhichColor = 0

'COUNTS ROWS 'NumOfRows: length of DataToMatch NumOfRows = ActiveSheet.Range("A1", ActiveSheet.Range("A1").End(xIDown)).Rows.Count

'PROGRESSBAR INITIALIZATION 'Show the ProgressBar2 UserForm. MakingProgress2.Show vbModeless Progress = 0

'OTHER PREPARATIONS
'Sort data.
Application.ScreenUpdating = False
ThisWorkbook.ActiveSheet.Columns("A:H").Sort key1:=Range("a1"), _
order1:=xlAscending, key2:=Range("b1"), order2:=xlAscending
Application.ScreenUpdating = True

'SAVE THE NAMES DataSheet = ActiveSheet.Name DataWkbk = ThisWorkbook.Name

NumOfMatches = 0i = 1

'CREATE NEW SHEET Workbooks(DataWkbk).Sheets.Add.Name = "Matches"

'##### MAIN LOOP ##### starts

'It runs until we get to the end of the file (meaning i = the number of rows it needs to go through).

'You'll see this condition at the very end of the code in a row starting with "Loop Until". Watch the #####s! Do

CurrentlyOpen = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 1).Value2 'MsgBox (i & " Opening " & Workbooks(DataWkbk).Path & "\processed\" & CurrentlyOpen & ".xlsb") Application.ScreenUpdating = False

'OPEN FILE

If Dir(Workbooks(DataWkbk).Path & "\processed\" & CurrentlyOpen & ".xlsb") = "" Then

Workbooks.Open (Workbooks(DataWkbk).Path & "\processed\" & "chrM.xlsb") CurrentlyOpen = "chrM"

Else: Workbooks.Open (Workbooks(DataWkbk).Path & "\processed\" & CurrentlyOpen & ".xlsb") End If

Application.ScreenUpdating = True

```
'Another file length count, but this time it's the chr# file.
chrNumOfRows = Workbooks(CurrentlyOpen &
".xlsb").Sheets(CurrentlyOpen).Range("A1",
Sheets(CurrentlyOpen).Range("A1").End(xlDown)).Rows.Count
```

'***** 1ST NESTED LOOP ***** starts

'A new file will only need to be opened if the next row's chr# is different from the current one.

'Again, you can see this later when this loop ends in a row starting with "Loop Until". Watch the *****s!

Do

'@@@@@ FIND WHERE TO START LOOKING @@@@@ For j = 1 To 50

'IF[current liver data value] >= [chr# file, 2-4-6%th row liver data value] If Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 >= Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(1 + Round((j - 1) * chrNumOfRows / 50), 2) Then

If j = 50 Then StartAt = Round(chrNumOfRows * 0.98) - 200

'-100 in case the 2%-th cell is in the middle of identical matches (variants, for example)

'IF [current liver data value] >= [chr# file, 4-6-8%th row liver data value] If Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 <= Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(1 + Round((j) * chrNumOfRows / 50), 2) Then

'We only get here if we found the interval our matches are in. StartAt = Round(chrNumOfRows / 50 * (j - 1)) - 200

Exit For End If End If Next j

If StartAt < 1 Then StartAt = 1 '@@@@@ FOUND WHERE TO START LOOKING @@@@@

'debugging only

Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 9).Value2 = "No Matches" Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 10).Value2 = StartAt 'Now we know where we should start looking.

j = 0

'&&&&& MATCH FINDING &&&&& starts

Do

If ((Abs(Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 -Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 2).Value2) <= 100) Or (Abs(Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 3).Value2 - Workbooks(CurrentlyOpen &

".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 3).Value2) <= 100)) Then

'Abs() gives you the absolute value of something. Basically what we're calculating here:

'If Abs(liver data - chr file liver data) is ≤ 100 then If Abs(testis data - chr file testis data) is ≤ 100 then we have a match!

'We start the search at the StartAt row, we use j to loop until the difference is greater than 100. If either of the Ifs fail, we jump straight to the next j.

'We have a match!

NumOfMatches = NumOfMatches + 1

Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 9).Value2 = "Match!" 'debug only, this is in the original data file

If (NumOfMatches > 1 And Previous <> i) Then

If Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 1).Value2 <> Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches - 1, 1).Value2 Then

```
WhichColor = WhichColor + 1
Workbooks(DataWkbk).Activate
If WhichColor = 5 Then WhichColor = 0
End If
End If
```

'Now we take the match and its associated data and put it in a new row in our Matches sheet.

Workbooks(DataWkbk).Sheets("Matches").Rows(NumOfMatches).Interior.Color = RGB(R(WhichColor), G(WhichColor), B(WhichColor))

Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 1) = CurrentlyOpen Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 2) = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 3) = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 3) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 4) = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 4) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 5) = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 5) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 6) = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 6) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 7) = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 7) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 8) = Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 8) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 9) = Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 4) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 10) = Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 5) Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 11) = Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 6)

Previous = i

If (Abs(Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 -Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 2).Value2) <= 100) Then Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 2).Font.Bold = True If (Abs(Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 3).Value2 -Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 3).Value2) <= 100) Then Workbooks(DataWkbk).Sheets("Matches").Cells(NumOfMatches, 3).Font.Bold = True

End If

j = j + 1

Loop Until ((Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 + 100 < Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 2).Value2) And (Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 3).Value2 + 100 < Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(StartAt + j, 3).Value2)) Or (StartAt + j = chrNumOfRows) '&&&& MATCH FINDING &&&& ends

'Next row! i = i + 1

'This is here to speed things up. It tends to happen that the to-be-matched liver data goes all the way up to 2 million, while the related chr# file's liver data ends at 1 million.

'In that case it'll loop through the data until it finds the next chr# (from chr11 to chr12, for example).

If Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 2).Value2 - 100 >

Workbooks(CurrentlyOpen & ".xlsb").Sheets(CurrentlyOpen).Cells(chrNumOfRows, 2) Then

Do Until CurrentlyOpen <> Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 1).Value2

Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 9).Value2 = "No Matches" Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 10).Value2 = "-" i = i + 1

Loop

End If

'PROGRESSBAR2

Progress = i / NumOfRows MakingProgress2.ProgressBar.Width = Round(Progress * 200) MakingProgress2.ProgressText.Caption = Format(Progress * 100, "0.00") & "%" MakingProgress2.Caption = i & "/" & NumOfRows MakingProgress2.InfoBox.Caption = NumOfMatches & " matches so far." & " Currently looking in " & CurrentlyOpen & ". " DoEvents MakingProgress2.Repaint

Loop Until CurrentlyOpen <> Workbooks(DataWkbk).Sheets(DataSheet).Cells(i, 1).Value2 '***** 1ST NESTED LOOP ***** ends 'The next row's chr# is different than the current one. We have to open a new file.

'Close the old file first. Workbooks(CurrentlyOpen & ".xlsb").Close

'This is when we basically go all the way back to the beginning of the MAIN LOOP, open a new file, and start looking for the matches there. Unless, of course, 'we're already out of data to match. In that case:

If i >= NumOfRows Then Exit Do Loop Until i = NumOfRows '##### MAIN LOOP ##### ends

Unload MakingProgress2 Workbooks(DataWkbk).Sheets("Matches").Columns("A:K").AutoFit

'The End MsgBox ("Annotation successfully complete.")

End Sub

Figure 1. Spermatogenesis

Spermatogonial stem cells undergo a series of mitotic and meiotic divisions to form differentiated and mature spermatozoa during spermatogenesis.

"N" = chromatid quantity

Figure 2. Eukaryotic messenger RNA

Mature messenger RNA (mRNA) structurally consists of a 5'cap, an non-coding untranslated region (UTR) flanking both 3' and 5'-ends, poly(A)-signal marking for cleavage at downstream polyA-site, and a string of adenine residues attached to the post-transcriptionally modified transcript following polyadenylation.

Figure 3. Polyadenylation

Polyadenylation in eukaryotic cells occurs before transcription is completed in the nascent mRNA. It involves the binding of Cleavage and Polyadenylation Specificity Factor (CPSF) to a polyadenylation signal (PAS) and recruitment of Poly(A) Polymerase. Downstream at a GU-rich region, Cleavage Stimulation Factor (CstF) is recruited by CPSF and cleaves the transcript at the polyA-site. PAP initiates the addition of adenine residues to make up the poly(A)-tail.

Figure 4. Alternative polyadenylation in the 3'UTR creates transcript isoforms

The white bar represents an mRNA 3'UTR. Usage of variant PAS and cleavage at different polyA-sites involved with alternative polyadenylation results in truncation of the 3'UTR and transcript isoforms that may have altered downstream metabolism due to escape from regulatory sequence elements.

Figure 5. Bioinformatics analysis workflow

Data processing and workflow for PolyA-seq analysis and transcript annotations.

Figure 6. Graphical representation of PAS use in mouse

- A) Depicts PAS use in all comprehensive transcripts in testis (dark gray bars) and liver (light gray bars) at the same polyA-site within a 100bp margin.
- B) Depicts PAS use in "honed" transcripts, where testis reads are greater than liver by at least one and PAS differ between matched transcripts at the same polyA-site within a 100bp margin, for testis and liver.

Figure 7. Size distribution of male germ cells and gating for live cells

Live cells were gated into populations based on size. The P1 population was identified as the live cell population after backgating with PI stain.

Figure 8. Two distinct cell populations were identified with DRAQ5 nuclear stain

FACS histogram depicting two distinct populations based on fluorescence by DRAQ5 emission. spermatocyte and round spermatid populations are labeled Based on cell-specific PCR markers.

Figure 9. PolyA-seq libraries from mouse

PolyA-seq libraries from mouse testicular tissue, liver, and pooled male germ cells (round spermatids and spermatocytes). Male Germ Cells 1 and Male Germ Cells 2 indicate prepared libraries from two separate sorts and biological replicates.

TABLES

Gene	Somatic	Testis	Validation	Reference
	s (kB)	(kB)		
ADP ribosylation factor (ARF)	3.0	1.8, 1.3, 1.1	In situ hybridization, RACE-PCR	Mishima et al., 1992
Angiotensin converting enzyme (ACE)	4.5	4.5	Northern blot	Thekkumkara et al., 1992
Basic leucine zipper and W2 domains 1 (BZW1)	2.9	1.8	Northern blot, 5'- and 3'RACE, Western blot	Yu et al., 2006
Cleavage polyadenylation specificity factor 6 (CPSF6)	4.0	2.1	Northern blot, 3'RACE	Sartini et al., 2007
Cleavage and polyadenylation specificity factor subunit 5 (NUDT21)	4.5	1.1	Northern blot, 3'RACE	Sartini et al., 2007
Deleted in azoospermia associated protein 1 (DAZAP1)	2.4	1.8	Northern blot, 3'RACE	Yang & Yen, 2013
DNA polymerase IV (DinB)	5	4.4, 3.2	Northern blot, RT-PCR	Gerlach et al., 1999
Excision repair gene (ERCC6)	7	5, 3.5	Northern blot	Troelstra et al., 1993
Kruppel-like factor 4 (KLF4)	0.67	$ \begin{array}{c} 1.1, 1.0, \\ 0.66, 0.38 \end{array} $	Northern blot, RT-PCR	Goodman et al., 2005
RanGAP1	3.5	3.5, 2.8	Northern blot	Krebber & Ponstingl, 1996
Ring finger protein 4 (RNF4/SNURF)	3.0	3.0, 1.6	Northern blot	Yan et al., 2002
Sp1 transcription factor (Sp1)	8.8	4.1, 3.7, 3.2, 1.4	Northern blot	Thomas et al., 2005
Translation initiation factor 2α (eIF-2α)	4.2	1.6, 1.7	Northern blot	Miyamoto et al., 1996
Triose phophate isomerase (TPI)	2.6	1.5, 1.4	Northern blot	Russell & Kim, 1996

Table 1. Testis-specific genes with alternative poly(A) signals in the 3'-UTR

Literature-mined testis-specific transcripts with APA-mediated 3'UTR isoforms as validated by molecular biology experiments.

	Total Number of	Number of Transcripts	Percent of Transcripts Annotated
Human 1	19906	143	0.718%
Human 2	10179	86	0.844%
	Numbe	r of Transcripts	
		Honed	Percent of Transcripts Honed
Human 1		1082	5.435%
Human 2		546	5.363%

Table 2. Human transcript numerical data

Numerical data for PolyA-seq data following annotation and creation of "honed" subset from Human 1 and Human 2 data files.

	Testis	Testis Std	Liver	Liver Std	
	Average	Dev	Average	Dev	P-Value
AATAAA	9141	4140.817	9192.5	4232.034	0.991
ACTAAA	143.5	67.175	138.5	60.104	0.944
ATTAAA	2970.5	1354.109	2926.5	1318.754	0.976
AGTAAA	679	298.399	659.5	283.549	0.952
TATAAA	679.5	316.076	681.5	297.691	0.995
GATAAA	276	128.693	262.5	127.986	0.925
AATATA	298	144.249	311	135.764	0.934
CATAAA	353.5	170.412	360.5	174.655	0.971
AAAAAG	159	79.195	159.5	88.388	0.995
AATACA	344	181.019	352	161.220	0.967

Table 3. Human PAS statistics

Counts for PAS usage in both human PolyA-seq data files for testis and liver were compared for differential usage. Standard deviation and P-values calculated using Student's unpaired t-test indicate that there is no significance.

	TAAG AAT		15	2 1	0 1	5	2 3	8 1.	2 1	2 1	6 2
	AAA	7		8	3	6	35	30	4	2	56
	AATACA	1	34		2	1	3	11	4	1	3
	AATATA	0	27	2		0	2	28	3	1	7
Liver	ACTAAA	0	12	2	2		2	10	3	2	1
PAS	AGTAAA	0	53	1	2	1		22	5	2	7
	ATTAAA	3	186	3	13	4	17		7	8	14
	CATAAA	0	32	4	1	1	7	16		4	6
	GATAAA	1	14	2	2	1	5	13	5		3
	TATAAA	5	81	5	5	0	10	37	3	1	

Table 5. Human 2 Honed PAS spread

						Liver	PAS				
		AAAAG	AATAAA	AATACA	AATATA	ACTAAA	AGTAAA	ATTAAA	CATAAA	GATAAA	TATAAA
	AAAAG		9	1	0	0	1	4	0	0	3
	AATAAA	7		34	18	5	26	95	21	5	39
	AATACA	0	5		0	1	2	2	2	2	1
S	AATATA	0	5	0		0	0	9	0	0	2
٧d	ACTAAA	2	3	1	0		0	0	2	0	1
site	AGTAAA	1	19	3	0	4		7	1	3	7
ЪТ	ATTAAA	4	56	2	13	4	8		10	5	19
	CATAAA	2	6	2	2	1	1	4		1	1
	GATAAA	0	5	1	0	0	3	3	1		2
	TATAAA	2	11	3	4	2	2	10	5	1	

Τ T

69

Table 4. Human 1 Honed PAS spread

Г

Т Ι

	Total Number of Transcripts	Number of Transcripts Annotated	Percent of Transcripts Annotated	Number of Transcripts Honed	Percent of Transcripts Honed
Mouse	6341	34	0.536%	251	3.958%

Table 6. Mouse comprehensive numerical data

					Liver	PAS				
	AAAAG	AATAAA	AATACA	AATATA	ACTAAA	AGTAAA	ATTAAA	CATAAA	GATAAA	TATAAA
AAAAG		6	0	1	1	2	2	0	0	1
AATAAA	5		17	11	5	22	65	13	5	26
AATACA	0	11		1	0	2	3	0	3	0
AATATA	1	12	1		0	1	8	2	2	8
ACTAAA	0	6	0	0		1	1	0	0	2
AGTAAA	1	27	0	1	0		6	3	2	3
ATTAAA	5	92	9	8	3	9		9	5	8
CATAAA	0	11	2	0	1	0	7		0	3
GATAAA	0	7	1	0	0	3	3	0		0
TATAAA	0	27	4	2	0	1	7	2	0	

ZAG sitsoT

S
mosomo.
all chr
ad for
S spre
ise PA
7. Moi
Table

						Liver	PAS				
		AAAAG	AATAAA	AATACA	AATATA	ACTAAA	AGTAAA	ATTAAA	CATAAA	GATAAA	TATAAA
	AAAAG		3	0	0	0	0	0	0	0	1
	AATAAA	0		12	8	4	13	39	11	1	14
	AATACA	0	3		1	0	1	0	0	3	0
S	AATATA	1	3	1		0	0	1	1	2	5
∀ds	ACTAAA	0	2	0	0		1	0	0	0	0
sites	AGTAAA	1	12	0	0	0		3	2	1	2
Т	ATTAAA	4	34	2	8	2	4		5	2	6
	CATAAA	0	4	0	0	1	0	2		0	1
	GATAAA	0	3	0	0	0	2	2	0		0
	TATAAA	0	12	0	2	0	0	3	0	0	

Table 8. Honed mouse PAS spread

Gene	Chr	DNA Coord	inates (2007)	PolyA Co	ordinates	PAS	Liver Reads	Testis Reads	3'UTR Isoform (kb)	Published Liver Isoforms (kb)	Published Testis Isoforms (kb)
ACE	11	105829261	105851259	105850572	105850573	ATTAAA	50	337	2.5	5	2.5
ARF	14	27457683	27476744	NOT FOUND						1.8	1.8, 1.1
8ZW1	-	58449980	58463392	58462333 58463391	58462334 58463392	ATTAAA AATAAA	32	8 7	1.6 2.7	2.7	2.7, 1.6
CPSF6	10	116814029	116781724	116785906 116786094 116786364 116784274	116785907 116786095 116786365 116786365 116784275	ATTAAA AATAAA AATAAA AATAAA AGTAAA	40 / 4	5 8 0 31 0	4 <mark>.</mark>	4	4.0, 2.1, 1.5
DAZAP1	10	79727736	79751158	79750545 79750642 79750801 79750816	79750546 79750643 79750802 79750817	AATAAA AATAAA AATATA AATATA AATAAA	0 7 1 <u>3</u> 0	9 0 8		2.4	2.4, 1.8
DinB/POLK	13	97312440	97250644	97250644	97250645	AATAAA	0	6	ć		5, 4.4, 3.2
eIF-2a	12	79963059	79987997	NOT FOUND							

 Table 9. Literature-mined transcripts in PolyA-seq data

Transcripts from Table 1 manually identified in PolyA-seq mouse data.

Gene	Chr	DNA Coordi	inates (2007)	PolyA Co	ordinates	PAS	Liver Reads	T estis Reads	3'UTR Isoform (kb)	Published Liver Isoforms (kb)	Published Testis Isoforms (kb)
ERCC6	14	33326707	33394175	NOT FOUND							
K1f4	4	55540009	55545347	NOT FOUND							
NUDT21	~	96543303	96560939	NOT FOUND							
RanGAP1	15	81560349	81534678	81534683 81535319	81534684 81535320	AATAAA ATTAAA	188 0	527 14	3.5	3.5, 2.8	3.5, 2.8
RNF4	S	34679039	34696079	34694135 34696082	34694136 34696083	AAAAG AATAAA	4 97	15 31	m	3.0, 1.6	3.0, 1.6
Sp1	15	102236747	102266835	102263249 102263376 102266820	102263250 102263377 102266821	AATAAA AATAAA ATTAAA ATTAAA	0 10	5 36			4.1, 3.7, 3.2.
IPI	9	124764314	124760610	124760733	124760734	AATAAA	482	348			2.6, 1.5, 1.4

	ariant X7	/ariant X1	/ariant X4	/ariant X3		/ariant X2		omosome	omosome	ant X1		script		script		script		script		script		script		script	4	script		
Long Gene Name	uncharacterized LOC101055630, transcript v	RIKEN cDNA 1700123101 gene, transcript v	RIKEN cDNA 1700123101 gene, transcript v	RIKEN cDNA 1700123101 gene, transcript v	RIKEN cDNA 1700123101 gene	RIKEN cDNA 1700123101 gene, transcript v	ARP10 actin-related protein 10	amyotrophic lateral sclerosis 2 (juvenile) chr reoion candidate 11 (human)	amyotrophic lateral sclerosis 2 (juvenile) chr	region, candidate 11 (human), transcript vari	ATPase, class I, type 8B, member 5	cilia and flagella associated protein 221, tran	variant X1	cilia and flagella associated protein 221, tran	variant X4	cilia and flagella associated protein 221, tran	variant X3	cilia and flagella associated protein 221, tran	variant X2	cilia and flagella associated protein 221, tran		culta and flagella associated protein 221 , tran variant $X7$	cilia and flagella associated protein 221	cilia and flagella associated protein 221, tran	variant X6	cilia and flagella associated protein 221, tran	variant X8	meprin 1 alpha
Short Gene Name	LOC101055630	1700123I01Rik	1700123I01Rik	1700123I01Rik	1700123101Rik	1700123101Rik	Actr10	Als2cr11		Als2cr11	Atp8b5		Cfap221		Cfap221		Cfap221		Ctap221		01ap221	Cfan221	Cfap221	4	Cfap221		Cfap221	Mep1a
Accession Umber	XM 011250945.1	XM_011248643.1	XM_006531820.2	XM_011248645.1	NM_001165919.1	XM_011248644.1	NM_019785.2	NM 175200-4		XM_011238605.1	NM_177195.3	I	XM_011247976.1		XM_011247979.1		XM_011247978.1		XM_01124/97/.1	1 0000000000000000000000000000000000000	AIM_U1124/900.1	XM 006529404.2	NM 001115074.1	I	XR_878321.1		XM_011247981.1	NM_008585.2
Liver Reads	4990	-	1	-	1	1	984	- - -	1	12	329		6		6		6	,	ر م	c	ر م	6	6		6		6	34
Testis Reads	4	5	5	5	S	S	354	Ŷ	þ	9	202		42		42		42	(42	ć	4	42	42		42		42	126
Liver PAS	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA		AATAAA	AGTAAA		AGTAAA		AGTAAA		AGTAAA	E	AGTAAA	V V V LUV	AULAAA	AGTAAA	AGTAAA		AGTAAA		AGTAAA	ATTAAA
Testis PolyA-site PAS	20263443 AATAAA	3206272 AATAAA	3206272 AATAAA	3206272 AATAAA	3206272 AATAAA	3206272 AATAAA	29367036 AATAAA	36595984 A A T A A A		36595984 AATAAA	40217253 AGTAAA		34502591 AGTAAA		34502591 AGTAAA		34502591 AGTAAA		34502591 AGTAAA	24507501 ACT A A A	AAA 100 16020040	34502591 AGTAAA	34502591 AGTAAA		34502591 AGTAAA		34502591 AGTAAA	29840303 ATTAAA
Chr	chr7	chr19	chr19	chr19	chr19	chr19	chr12	chr1		chr1	chr4		chr1		chr1		chr1		chrl	1.40	CIILI	chr1	chr1		chr1		chrl	chr17

 Table 10. Mouse comprehensive transcript annotation

Chr	Testis PolyA-site PAS	Liver PAS	Testis Reads	Liver Reads	Accession Umber	Short Gene Name	Long Gene Name
chr11	69477715 AATAAA	AATAAA	302	46	XM_006532123.2	Crhr1	corticotropin releasing hormone receptor 1, transcript variant X1
chr11	69477715 AATAAA	AATAAA	302	46	NM_007762.4	Crhr1	corticotropin releasing hormone receptor 1
chr4	11259081 AATAAA	AATAAA	45	4	NM_172338.2	Dnajc16	DnaJ (Hsp40) homolog, subfamily C, member 16
chr2	3244353 AATAAA	AATAAA	9	9	NM_010074.3	Dpp4	dipeptidylpeptidase 4, transcript variant 1
chr2	3244353 AATAAA	AATAAA	9	9	NM_001159543.1	Dpp4	dipeptidylpeptidase 4, transcript variant 2
chr2	3244353 AATAAA	AATAAA	9	9	XM_006498691.2	Dpp4	dipeptidylpeptidase 4, transcript variant X2
chr2	3244353 AATAAA	AATAAA	9	9	XM_006498692.2	Dpp4	dipeptidylpeptidase 4, transcript variant X3
chr2	3244353 AATAAA	AATAAA	9	9	XM_011239274.1	Dpp4	dipeptidylpeptidase 4, transcript variant X1
chr2	3244353 AATAAA	AATAAA	9	9	XM_006498693.2	Dpp4	dipeptidylpeptidase 4, transcript variant X4
chr11	70341354 AATAAA	AATAAA	7	8	XM_011249261.1	Efcab3	EF-hand calcium binding domain 3, transcript variant X1
chr11	70268648 CATAAA	CATAAA	5	7	XM 011249261.1	Efcab3	EF-hand calcium binding domain 3, transcript variant X1
Chrd	28875660 ATTA A A	CATAAA	75	4	- NM 001040131.2	Fif4a0	eukaryotic translation initiation factor 4, gamma 2,
			04	F	7.1 CTOLOTOO	23-11-1	eukaryotic translation initiation factor 4, gamma 2,
chr7	28825669 ATTAAA	CATAAA	25	4	NM_013507.3	Eif4g2	transcript variant 1
chr5	31462146AATAAA	AATAAA	11	11	NM_001161738.1	Glmn	glomulin, FKBP associated protein, transcript variant 2
chr5	31462146 AATAAA	AATAAA	11	11	NM_001161739.1	Glmn	glomulin, FKBP associated protein, transcript variant 3
chr5	31462146AATAAA	AATAAA	11	11	NM_133248.2	Glmn	glomulin, FKBP associated protein, transcript variant 1
chr5	31462146 AATAAA	AATAAA	11	11	XM_011249410.1	Glmn	giomulin, FKBF associated protein, transcript variant X2
chr5	31462146AATAAA	AATAAA	11	11	XM 006534800.2	Glmn	glomulin, FKBP associated protein, transcript variant X1
chr10	62021220 AATAAA	AATAAA	12	3	NM_025431.2	Llph	LLP homolog, long-term synaptic facilitation (Aplysia)
chr10	62021286 ACTAAA	AATAAA	6	3	NM_025431.2	Llph	LLP homolog, long-term synaptic facilitation (Aplysia)

Chr	Testis PolyA-site PAS	Liver PAS	Testis Reads	Liver Reads	Accession Umber	Short Gene Name	Long Gene Name
chr18	70785780 AATAAA	AATAAA	78	43	XM_006525496.2	Me2	malic enzyme 2, NAD(+)-dependent, mitochondrial, transcript variant X1
chr18	70785780 AATAAA	AATAAA	78	43	NM_145494.2	Me2	malic enzyme 2, NAD(+)-dependent, mitochondrial
chr17	29840278 AGTAAA	ATTAAA	б	34	XM_006523751.2	Mepla	meprin 1 alpha, transcript variant X1
chr17	29840278 AGTAAA	ATTAAA	ю	34	NM_008585.2	Mep1a	meprin 1 alpha
chr17	29840303 ATTAAA	ATTAAA	126	34	XM_006523751.2	Mepla	meprin 1 alpha, transcript variant X1
chr17	29840303 ATTAAA	ATTAAA	126	34	NM_008585.2	Mepla	meprin 1 alpha
chr9	21560546ATTAAA	ATTAAA	229	49	XR_379407.2	Myo5c	myosin VC, transcript variant X5
chr9	21560546ATTAAA	ATTAAA	229	49	XM_006510937.2	Myo5c	myosin VC, transcript variant X4
chr9	21560546ATTAAA	ATTAAA	229	49	XM_011242693.1	Myo5c	myosin VC, transcript variant X1
chr9	21560546ATTAAA	ATTAAA	229	49	XM_006510935.2	Myo5c	myosin VC, transcript variant X2
chr9	21560546ATTAAA	ATTAAA	229	49	XM_006510936.2	Myo5c	myosin VC, transcript variant X3
chr9	21560546 ATTAAA	ATTAAA	229	49	NM 001081322.1	Myo5c	myosin VC
chr9	21560546ATTAAA	ATTAAA	229	49	XM_011242694.1	Myo5c	myosin VC, transcript variant X8
chr9	45738040 TATAAA	TATAAA	6	-	NM_001165957.1	Nme9	NME/NM23 family member 9
chr11	44268073 AATAAA	AATAAA	3	4	NM_010927.3	Nos2	nitric oxide synthase 2, inducible
chr11 chr8	44268073 AATAAA 4259731 AATAAA	AATAAA AATAAA	3 28	40	XM_006532446.2 NM_001083906.1	Nos2 Nr3c2	nitric oxide synthase 2, inducible, transcript variant X1 nuclear receptor subfamily 3, group C, member 2

	Testis		Testis	Liver		Short Gene	
PolyA-site	PAS	Liver PAS	Reads	Reads	Accession Umber	Name	Long Gene Name
37455839	ΑΑΤΑΤΑ	ΑΑΤΑΤΑ	C	14	XM 006510643 2	Pnn7r1b	protein phosphatase 2, regulatory subunit A, beta, transcript
37455839	AATATA	AATATA	1 0	14	XM 011242614.1	Pop2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant X1
37455839	AATATA	AATATA	5	14	– XM 006510641.2	Ppp2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant X2
37455839	ΑΑΤΑΤΑ	ΑΑΤΑΤΑ	0	14	XM 006510642.2	Ppp2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant X3
3745583	9 ΑΑΤΑΤΑ	ΑΑΤΑΤΑ	6	14	– NM 001034085.2	Ppp2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant 1
3745583	9 ААТАТА	AATATA	7	14	– NM 001286553.1	Ppp2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant 3
3745583	9 AATATA	AATATA	7	14	NM 028614.3	Ppp2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant 2
1661168	1 ATTAAA	ATTAAA	4	9	– XM 011250461.1	Relb t	avian reticuloendotheliosis viral (v-rel) oncogene related B, ranscript variant X4
1661168	1 ATTAAA	ATTAAA	4	9	- XM 011250459.1	Relb t	avian reticuloendotheliosis viral (v-rel) oncogene related B, ranscript variant X2
1661168	1 ATTAAA	ATTAAA	4	9	– XM 006539675.1	Relb t	avian reticuloendotheliosis viral (v-rel) oncogene related B, ranscript variant X1
1661168	ΙΑΤΤΑΑΑ	ΔΤΤΔΑΔ	. 4	9	1 09703C110 MX	Relk t	avian reticuloendotheliosis viral (v-rel) oncogene related B,
0011001		ATTAAA		о ч	1 CYVUSCIIO WA		autority variant XX avian reticuloendotheliosis viral (v-rel) oncogene related B,
1661168	TTAAA	ATTAAA	+ 4	9	NM 009046.2	Relb t	avian reticuloendotheliosis viral (v-rel) oncogene related B, ranscrint variant 1
1661168	1 ATTAAA	ATTAAA	4	9		Relb t	avian reticuloendotheliosis viral (v-rel) oncogene related B, ranscript variant 2
793361	3 TATAAA	TATAAA	ω	5	XM_006510575.2	Slc44a2	solute carrier family 44, member 2, transcript variant X1
793361	3 TATAAA	TATAAA	ю	5	NM_001199186.1	Slc44a2	solute carrier family 44, member 2, transcript variant 1
793361	3 TATAAA	TATAAA	б	5	XM_011242593.1	Slc44a2	solute carrier family 44, member 2, transcript variant X2
793361	13 TATAAA	TATAAA	<i>ი</i> ი	S I	NM_152808.3	Slc44a2	solute carrier family 44, member 2, transcript variant 2
793361	3 TATAAA	TATAAA	с	5	XM_006510576.1	Slc44a2 s	solute carrier family 44, member 2, transcript variant X3

Table 1	Chr	Testis PolyA-site PAS	Liver PAS	Testis Reads	Liver Reads	Accession Umber	Short Gene Name	Long Gene Name
	chr5	8069175 AATAAA	AATAAA	5	12	NM_009274.2	Srpk2	serine/arginine-rich protein specific kinase 2
	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249757.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X8
	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249752.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X2
<u> </u>	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249754.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X5
<u> </u>	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249751.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X1
<u> </u>	chr5	8069175 AATAAA	AATAAA	S	12	XM_011249758.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X10
	chr5	8069175 AATAAA	AATAAA	5	12	XM_006535660.2	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X4
	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249756.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X7
<u> </u>	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249753.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X3
<u> </u>	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249755.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X6
	chr5	8069175 AATAAA	AATAAA	5	12	XM_006535661.2	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X9
	chr5	8069175 AATAAA	AATAAA	5	12	XM_011249759.1	Srpk2	serine/arginine-rich protein specific kinase 2, transcript variant X11
	chr2	30200330 AATAAA	AATAAA	501	106	NM_019667.2	Stam2	signal transducing adaptor molecule (SH3 domain and ITAM motif) 2
<u> </u>	chr4	43579931 AATAAA	AATAAA	45	34	XM_006538046.2	Tbc1d2	TBC1 domain family, member 2, transcript variant X1
<u> </u>	chr4	43579931 AATAAA	AATAAA	45	34	NM_198664.3	Tbc1d2	TBC1 domain family, member 2
	chr4	43579931 AATAAA	AATAAA	45	34	XM_006538048.1	Tbc1d2	TBC1 domain family, member 2, transcript variant X3
2	chr4	43579931 AATAAA	AATAAA	45	34	XM_006538047.2	Tbc1d2	TBC1 domain family, member 2, transcript variant X2
	chr11 chr11	62418307 AATAAA 62418387 AATACA	AATACA AATACA	676 87	18	NM_019507.2 NM_019507.2	Tbx21 Tbx21	T-box 21 T-box 21
_								

ene Long Gene Name	tandem C2 domains, nuclear, transcript variant X6	b transmembrane protein 87B, transcript variant X1	b transmembrane protein 87B, transcript variant X3	b transmembrane protein 87B, transcript variant X2	b transmembrane protein 87B	tropomodulin 1, transcript variant X1	tropomodulin 1	tropomodulin 1, transcript variant X2	5 transmembrane protease, serine 15, transcript variant 2	5 transmembrane protease, serine 15, transcript variant 1	tetratricopeptide repeat domain 37, transcript variant X2	tetratricopeptide repeat domain 37, transcript variant X1	tetratricopeptide repeat domain 37	tetratricopeptide repeat domain 37, transcript variant X3	tetratricopeptide repeat domain 37, transcript variant X4	unc-80 homolog (C. elegans), transcript variant X9	unc-80 homolog (C. elegans), transcript variant X1 unc-80 homolog (C. elegans), transcript variant X6
Short Ge Name	Tc2n	Tmem871	Tmem871	Tmem871	Tmem871	Tmod1	Tmod1	Tmod1	Tmprss15	Tmprss15	Ttc37	Ttc37	Ttc37	Ttc37	Ttc37	Unc80	Unc80 Unc80
Accession Umber	XM_006516305.2	XM_006500243.1	XM_011239791.1	XM_011239790.1	NM_028248.2	XM_006537772.2	NM_021883.2	XM_006537773.1	NM_178855.4	NM_008941.3	XM_006517233.1	XM_006517232.1	NM_001081352.1	XM_006517234.2	XM_006517235.2	XM_011238547.1	XM_011238540.1 XM_011238544.1
Liver Reads	-	б	ŝ	б	б	20	20	20	7	7	4	4	4	4	4	20	20
Testis Reads	8	4	4	4	4	14	14	14	ю	ю	6	6	6	6	6	19	19 19
Liver PAS	AAAAG	ATTAAA	ATTAAA	ATTAAA	ATTAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	ATTAAA	ATTAAA ATTAAA
Testis PolyA-site PAS	60128929 AATATA	69709896 ATTAAA	69709896 ATTAAA	69709896 ATTAAA	69709896 ATTAAA	43040893 AATAAA	43040893 AATAAA	43040893 AATAAA	13776825 AATAAA	13776825 AATAAA	21827706 AATAAA	21827706 AATAAA	21827706 AATAAA	21827706 AATAAA	21827706 AATAAA	44059182 ATTAAA	44059182 ATTAAA 44059182 ATTAAA
Chr	chr12	chr2	chr2	chr2	chr2	chr4	chr4	chr4	chr16	chr16	chr13	chr13	chr13	chr13	chr13	chr1	chr1 chr1

Name	olog (C. elegans), transcript variant X7	olog (C. elegans), transcript variant X2	olog (C. elegans), transcript variant X8	olog (C. elegans), transcript variant X5	olog (C. elegans), transcript variant X10	olog (C. elegans), transcript variant X3	olog (C. elegans), transcript variant X4	olog (C. elegans), transcript variant X11	olog (C. elegans)	domain 60, transcript variant X2	domain 60, transcript variant X1	domain 60, transcript variant X3	domain 60	FYVE domain containing 19, transcript variant 1	FYVE domain containing 19, transcript variant 2	FYVE domain containing 19, transcript variant		FYVE domain containing 19, transcript variant	FYVE domain containing 19, transcript variant			
Long Gene	unc-80 hon	unc-80 hon	unc-80 hon	unc-80 hon	unc-80 hon	WD repeat	WD repeat	WD repeat	WD repeat	zinc finger,	zinc finger,	zinc finger. X6	zinc finger, X3	zinc finger,	zinc finger,	X4	zinc finger. X2	zinc finger. X5				
Short Gene Name	Unc80	Unc80	Unc80	Unc80	Unc80	Unc80	Unc80	Unc80	Unc80	Wdr60	Wdr60	Wdr60	Wdr60	Zfyve19	Zfyve19	Zfvve19	Č Zfvve19	, 7610	Z13 V61 7	Zfyve19	Zfyve19	Zfyve19
Accession Umber	XM_011238545.1	XM_011238541.1	XM_011238546.1	XM_006496086.2	XM_006496092.2	XM_011238542.1	XM_011238543.1	XM_006496093.2	NM_175510.3	XR_381520.2	XM_006515780.2	XM_011244097.1	NM_146039.3	NM_028054.3	NM_001164827.1	XM 006500207.2	– XM 006500204.2	- 		XM_006500205.1	XM 011239781.1	XM_006500206.2
Liver Reads	20	20	20	20	20	20	20	20	20	12	12	12	12	6	6	6	6	c		6	6	6
Testis Reads	19	19	19	19	19	19	19	19	19	б	ю	б	ю	43	43	43	43	5	t 0	43	43	43
Liver PAS	ATTAAA	ATTAAA	ATTAAA	ATTAAA	ATTAAA	ATTAAA	ATTAAA	ATTAAA	ATTAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	~ ~ <u>+</u> ~ ~	VENTER	AATAAA	AATAAA	AATAAA
Testis PolyA-site PAS	44059182 ATTAAA	44059182 ATTAAA	44059182 ATTAAA	44059182 ATTAAA	44059182 ATTAAA	74644387 AATAAA	74644387 AATAAA	74644387 AATAAA	74644387 AATAAA	60090049 AATAAA	60090049 AATAAA	60090049 AATAAA	60090049 AATAAA			60090049 AATAAA	60090049 AATAAA	60090049 AATAAA				
Chr	chr1	chr1	chr1	chr1	chr1	chr1	chrl	chrl	chr1	chr12	chr12	chr12	chr12	chr2	chr2	chr2	chr2	("40	CIII 2	chr2	chr2	chr2

Chr	Testis PolyA-site	Liver PolyA-site	Testis PAS	Liver PAS	Signal Match	Testis Reads	Liver Reads	Abs Diff	Ratio Ranking
chr16	10530301	10530347	ATTAAA	CATAAA	FALSE	1834	1	1833	1834
chr2	179910989	179911079	AATAAA	ATTAAA	FALSE	2712	7	2705	387.428571
chr15	76176363	76176413	AATAAA	ACTAAA	FALSE	283	1	282	283
chr2	29946464	29946528	ATTAAA	AATAAA	FALSE	238	1	237	238
chr8	73928447	73928530	AATAAA	ACTAAA	FALSE	817	4	813	204.25
chr16	20605545	20605503	AATAAA	CATAAA	FALSE	685	4	681	171.25
chr11	109529107	109529046	AATAAA	ACTAAA	FALSE	332	2	330	166
chr11	4793651	4793687	AATAAA	CATAAA	FALSE	133	1	132	133
chr17	80600650	80600707	AATAAA	AGTAAA	FALSE	132	1	131	132
chr19	6985513	6985467	ATTAAA	AATATA	FALSE	1210	10	1200	121
chr11	115939887	115939930	AGTAAA	AATAAA	FALSE	327	3	324	109
chr17	23961710	23961702	AGTAAA	AATAAA	FALSE	5481	52	5429	105.403846
chr10	77028419	77028367	AATAAA	TATAAA	FALSE	286	ю	283	95.3333333
chr2	26313425	26313510	AATAAA	AATACA	FALSE	86	1	85	86
chr9	14315005	14315069	AATAAA	TATAAA	FALSE	235	3	232	78.3333333
chr11	70268691	70268644	ATTAAA	CATAAA	FALSE	515	7	508	73.5714286
chr3	57638751	57638686	AATAAA	AATATA	FALSE	68	1	67	68
chr4	106722297	10672253	ATTAAA	AAAAG	FALSE	197	3	194	65.6666667
chr7	29161807	29161861	AATAAA	AATATA	FALSE	233	4	229	58.25
chr7	104561446	104561435	ATTAAA	AATAAA	FALSE	44	1	43	44

Table 11. Mouse honed transcript subset

Mouse honed transcripts, where testis and liver transcripts are matched to the same polyA-site within a 100bp upstream and 100bp downstream, and extracted to retain transcripts using different PAS, sorted by absolute difference in read counts in testis and liver.

	Testis	Liver
Transcripts with Isoforms	61	83
Transcripts with 2 Isoforms	44	64
Transcripts with 3 or More Isoforms	17	19

Table 12. Individual testis and liver tissue transcript annotation numerical data from mouse

PolyA-seq tissue files from mouse were individually annotated to identify potential transcript isoforms using different polyA-sites in alternative polyadenylation.

Chr	PolyA-site	PolyA- score	Testis PAS	Reads Strand	Accession Number	Short Gene Name	Full Gene Name
chr2	9837701	9.133	AATAAA	4-	NM_198001.2	1110008P14Rik	RIKEN cDNA 1110008P14 gene
chr9	37351784	9.053	ATTAAA	29+	XM_006510578.2	1110032A03Rik	RIKEN cDNA 1110032A03 gene, transcript variant X2
chr11	6515601	5.396	AATAAA	206-	XM_006514705.1	Abca13	ATP-binding cassette, sub-family A (ABC1), member 13, transcript variant X1
chr11	6158572	3.071	AATATA	-6	XM_006514705.1	Abca13	ATP-binding cassette, sub-family A (ABC1), member 13, transcript variant X1
chr11	75387292	6.812	AATAAA	51+	XM_006533063.1	Abca8a	ATP-binding cassette, sub-family A (ABC1), member 8a, transcript variant X3
chr8	13884794	5.685	AATAAA	- 6	XR_387742.2	Abcc12	ATP-binding cassette, sub-family C (CFTR/MRP), member 12, transcript variant X2
chr5	9119039	7.446	AATAAA	1+	NM_001190443.1	Abcf2	ATP-binding cassette, sub-family F (GCN20), member 2, transcript variant 2
chr5	8068539	5.164	AATAAA	4+	XM_011248231.1	Acad12	acyl-Coenzyme A dehydrogenase family, member 12, transcript variant X1
chr2	32090041	3.79	AATAAA	+ 66	XM_011239257.1	Acp2	acid phosphatase 2, lysosomal, transcript variant X1
chr2	32090041	3.79	AATAAA	+ 66	XM_011239257.1	Acp2	acid phosphatase 2, lysosomal, transcript variant X1
chr7	27969892	10.12	TATAAA		XM_006540843.2	Adamts17	a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 17, transcript variant X2
chr2	4543105	3.347	AGTAAA	12 -	NM_029981.1	Adamts12	ADAMTS-like 2
chr2	4543264	7.798	ATTAAA	4 -	NM_029981.1	Adamts12	ADAMTS-like 2
chr2	4543264	7.798	ATTAAA	4 -	NM_029981.1	Adamts12	ADAMTS-like 2
chr5	36916738	7.348	ATTAAA	- 9	NM 177078.4	Adrbk2	adrenergic receptor kinase, beta 2, transcript variant 1
chr2	4053110	9.125	ATTAAA	15-	NM 026212.2	Agpat2	1-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, beta)
chr4	8794797	3.233	AATAAA	5 +	XR_390721.2	Akr7a5	aldo-keto reductase family 7, member A5 (aflatoxin aldehyde reductase), transcript variant X1

ChrPolyA-siteReadsStrandAccesion NumberNameFull Gene Namechrl 3659398 4.796 AATAAA $31+$ NM 175200.4 Als2cr11anyotrophic lateral selerosis 2 (juvenil)chrl 36595984 5.005 AATAAA $6-$ NM 175200.4 Als2cr11ranyotrophic lateral selerosis 2 (juvenil)chrl 36595984 5.005 AATAAA $6-$ XM 011238605.1 Als2cr11ranyotrophic lateral selerosis 2 (juvenil)chrl 36595984 5.005 AATAAA $9-$ XM 006540573.2 Als2cr11ranyotrophic lateral selerosis 2 (juvenil)chrl 35726383 5.236 AATAAA $9-$ XM 006540573.2 Ampd2ranyotrophic lateral selerosis 2 (juvenil)chrl 35726383 5.236 AATAAA $9-$ XM 006540581.2 Ampd2ranyotrophic lateral selerosis 2 (juvenil)chrl 35726383 5236 AATAAA $9-$ XM 006540581.2 Ampd2ranyotrophic lateral selerosis 2 (juvenil)chrl 3726119 508 AATAAA $36+$ NM 172794.4 Anhgap55Rho GTPase activating protein 35chrl 11349431 7196 AATAAA $36+$ NM 172794.4 Anhgap55Rho GTPase activating protein 35chrl 31381080 4578 AATAAA $36+$ NM 172794.4 Anhgap55Rho GTPase activating protein 35chrl 1349431 7196 AATAAA $6+$ NM 006540581.2 AnHATPase, class V, type 10A, transcriptivenil 46chr			PolyA-				Short Gene	
err 365840594.796ATAAA31+NM175200.4Ak2cr11anyotrophic lateral scleosis 2 (juvenil) err 365959845.005AATAAA6-NM175200.4Ak2cr11region, candidate 11 (human) err 365959845.005AATAAA6-XM011238605.1Ak2cr11region, candidate 11 (human) err 365959845.005AATAAA6-XM001238605.1Ak2cr11region, candidate 11 (human) ehr 365959845.036AATAAA6+XM006540573.2Ambd2adrosine monoplosphate dearninase 2 ehr 254261195.098AATAAA6+XM006540573.2Ambd2anyolid beta (A) precursor protein-bi ehr 254261195.098AATAAA10-XM006540573.2Ambd2antwordadrosine monoplosphate dearninase 2 ehr 179180487.251ATTAAA10-XM006540573.2Ambg21Rho GTPase activating protein-bi ehr 179180487.251ATTAAA36+NM172739.4Anhgap35Rho GTPase activating protein 35 ehr 19494317.196AATAAA36+NM172739.4Anhgap35Rho GTPase activating protein 35 ehr 19494317.196AATAAA36+NM172739.4Anhgap35Rho GTPase activating protein 35 ehr 19494317.196AATAAA6+XM006540581.2An15APPase, 4as V, Ype 10A,	Chr	PolyA-site (score Te	stis PAS	Reads Strand	Accession Number	Name	Full Gene Name
brt 36595984 5.005 ATAAA 6- NM 175200.4 Als2erl 1 region, candidate 11 (human), transcription chr1 36595984 5.005 ATAAA 6- XM 011238605.1 Als2erl 1 region, candidate 11 (human), transcription chr1 36595984 5.005 ATAAA 6- XM 006500868.2 Ampd2 varian X1 manscription chr2 37267508 5.236/ATAAA 6+ XM 006540573.2 Apbd2 manyloid beta (Ad) precursor protein-binace chr7 13494431 7.196/ATAAA 10+ XM 006540573.2 Apbd2 manyloid beta (Ad) precursor protein-binace chr7 13494431 7.196/ATAAA 10+ XM 00651058.2 AntBp35 Rho GTPase activating protein 35 chr7 13494431 7.196/ATAAA 6+ XM 00651058.2 AntBp35 Rho GTPase activating protein 35 chr1 13494431 7.196/ATAAA 6+ XM 00651058.2 AntBp35 Rho GTPase activating protein 35 chr7 <td>chrl</td> <td>36584059</td> <td>4.796 A∕</td> <td>ATAAA</td> <td>31 +</td> <td>NM_175200.4</td> <td>Als2cr11</td> <td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 11 (human)</td>	chrl	36584059	4.796 A∕	ATAAA	31 +	NM_175200.4	Als2cr11	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 11 (human)
nrti 36595984 5.005 ATAAA 6- XM 011238605.1 Als2cr11 region, candidate II (human), transcription chr3 57262638 5.236 ATAAA 9- XM 00650086.2 Ampd2 variant XI chr3 57262619 5.098 AATAAA 9- XM 00650086.2 Ampd2 variant XI chr7 25426119 5.098 AATAAA 6+ XM 006540573.2 Apba2 mmyold beta (A4) precursor protein-bi chr7 1349431 7.196 AATAAA 36+ NM 1727394 Anba25 Rlo GTPase activating protein 35 chr7 1349431 7.196 AATAAA 36+ NM 1727394 Anba25 Rlo GTPase activating protein 35 chr7 1349431 7.196 AATAAA 36+ NM 1727394 Anba205 Rlo GTPase activating protein 35 chr7 1349431 7.196 AATAAA 36+ NM 1727394 Anba205 Rlo GTPase activating protein 35 chr7	chrl	36595984	5.005 A∕	ATAAA	-9	NM_175200.4	Als2cr11	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 11 (human)
this 57262638 5.236 ATAAA 9- XM 006500868.2 Ampd2 adenosine monophosphate dearninase 2 chr7 25426119 5.098 ATTAAA 6+ XM 006540573.2 Apba2 amploid beta (A4) precursor protein-binements. chr2 17918048 7.251 ATTAAA 10- XM 006497541.2 Ahpa2 amploid beta (A4) precursor protein-binements. chr2 17918048 7.251 ATTAAA 10- XM 006497541.2 Ahpa2 Barbosylatio factor-like 15, transcript variant X1 chr7 13494431 7.196 AATAAA 8+ NM 172739.4 Ahpa935 Rho GTPase activating protein 35 chr1 13494431 7.196 AATAAA 8+ NM 102394.4 Ahpa35 Rho GTPase activating protein 35 chr1 13494431 7.196 AATAAA 8+ NM 00531628.2 Ah15 APPa-sic stating protein 35 chr1 19658080 4.681 GATAAA 8+ NM 005319581.2 Ap19 APP	chr1	36595984	5.005 A/	ATAAA	-9	XM_011238605.1	Als2cr11	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 11 (human), transcript variant X1
T_{T} 5.928 $ATAA$ 6 + XM 006540573.2 $Apba2$ $amyloid$ beta (A4) precursor protein-binember 2, transcript variant X1 chr2 17918048 7.251 $ATTAA$ 10 - XM 006540573.2 $Arhgap21$ Rho GTPase activating protein 35 chr7 13494431 7.196 $ATTAAA$ 36 + NM 17739.4 $Arhgap35$ Rho GTPase activating protein 35 chr7 13494431 7.196 $ATTAAA$ 36 + NM 172739.4 $Arhgap35$ Rho GTPase activating protein 35 chr7 13494431 7.196 $ATPa$ $Arhgap35$ Rho GTPase activating protein 35 chr13 21881080 4.578 $AATTAA$ 8 + NM 00531628.2 $ArHi$ $ATPas$, class V, type 10A, transcript V chr7 19683896 3.969 $TATAAA$ 6 + XM 006540581.2 $ArHi0a$ $ATPas, class V, type 10A, transcript V chr7 19723603 8.193 TATAAA 6+ XM 006540581.2 ArPlas, class V, type 10A, transcript V $	chr3	57262638	5.236 A/	ATAAA	-6	XM_006500868.2	Ampd2	adenosine monophosphate deaminase 2, transcript variant X1
chr2 17918048 7.251 ATTAAA 10- XM 006497541.2 Arhgap21 Rho GTPase activating protein 35 chr7 13494431 7.196 AATAAA 36+ NM 172739.4 Arhgap35 Rho GTPase activating protein 35 chr7 13494431 7.196 AATAAA 36+ NM 172739.4 Arhgap35 Rho GTPase activating protein 35 chr13 21881080 4.578 AATAAA 36+ NM 107239.4 Arhgap35 Rho GTPase activating protein 35 chr13 21881080 4.578 AATAAA 8- NM 0053176.8.2 Ar115 ADP-ribosylation facto-like 61, transcript V chr7 19723603 8.193 FATAAA 6+ XM 006540581.2 Ap10a ATPase, class V, type 10A, transcript V chr7 19723603 8.193 TATAAA 6+ XM 006540581.2 Ap10a ATPase, class V, type 10A, transcript V chr7 19723603 8.193 TATAAA 60+ XM 006540581.2 Ap10a ATPase,	chr7	25426119	5.098 A∕	ATAAA	+ 9	XM_006540573.2	Apba2	amyloid beta (A4) precursor protein-binding, family A, member 2, transcript variant X1
chr7 13494431 7.196 AATAAA 36 NM 172739.4 Arhgap35 Rho GTPase activating protein 35 chr7 13494431 7.196 AATAAA 36 NM 172739.4 Arhgap35 Rho GTPase activating protein 35 chr13 21881080 4.578 AATAAA 36 NM 172739.4 Arhgap35 Rho GTPase activating protein 35 chr13 21881080 4.578 AATAAA 8 NM 005517632.2 Arl15 ADP-ribosylation factor-like 15, transc chr2 30650820 4.681 GATAAA 8 NM 00229894 Arl6ip6 ADP-ribosylation factor-like 15, transc chr7 19723603 8.193 TATAAA 60<+	chr2	17918048	7.251 AT	FTAAA	10-	XM_006497541.2	Arhgap21	Rho GTPase activating protein 21, transcript variant X4
chr7 13494431 7.196 AATAAA 36+ NM 172739.4 Arhgap35 Rho GTPase activating protein 35 chr13 21881080 4.578 AATAAA 14+ XM 006517638.2 Ar115 ADP-ribosylation factor-like 15, transc chr2 30650820 4.681 GATAAA 14+ XM 006540581.2 Arhbip6 ADP-ribosylation factor-like 6 interacti chr7 19683896 3.969 TAAAA 64+ XM 006540581.2 Arp10a ATPase, class V, type 10A, transcript V chr7 19723603 8.193 TATAAA 60+ XM 006540581.2 Arp10a ATPase, class V, type 10A, transcript V chr7 19723603 8.193 TATAAA 60+ XM 006540581.2 Arp10a ATPase, class V, type 10A, transcript V chr1 19723603 8.193 TATAAA 60+ XM 006540581.2 Arp10a ATPase, class V, type 10A, transcript V chr1 19723603 8.193 TATAAA 60+ XM 006540581.2 Arp10a <td>chr7</td> <td>13494431</td> <td>7.196 A<i>f</i></td> <td>ATAAA</td> <td>36 +</td> <td>NM_172739.4</td> <td>Arhgap35</td> <td>Rho GTPase activating protein 35</td>	chr7	13494431	7.196 A <i>f</i>	ATAAA	36 +	NM_172739.4	Arhgap35	Rho GTPase activating protein 35
chr1321881080 4.578 ATAAA14+XM 006517628.2 Arl15ADP-ribosylation factor-like 15, transcript vchr2 30650820 4.681 GATAAA8-NM 0022989.4 Arl6ip6ADP-ribosylation factor-like 6 interactichr7 19683896 3.969 TATAAA $6+$ XM 006540581.2 Atp10aATPase, class V, type 10A, transcript Vchr7 19723603 8.193 TATAAA $60+$ XM 006540581.2 Atp10aATPase, class V, type 10A, transcript Vchr7 19723603 8.193 TATAAA $60+$ XM 006540581.2 Atp10aATPase, class V, type 10A, transcript Vchr7 19723603 8.193 TATAAA $60+$ XM 006540581.2 Atp10aATPase, class V, type 10A, transcript Vchr1 19723603 8.193 TATAAA $2+$ NM 178405.3 Atp10aATPase, class V, type 10A, transcript Vchr1 16122628 8.049 ATTAAA $2+$ NM 178405.3 Atp10aATPase, class V, type 10A, transcript Vchr1 16122628 8.049 ATTAAA $2+$ NM 178405.3 Atp1a2AtPase, class V, type 10A, transcript Vchr1 16122628 8.049 ATTAAA $2+$ NM 178405.3 Atp1a2ATPase, class V, type 10A, transcript Vchr1 16122628 8.049 ATTAAA $2+$ NM 0117780.1 Atp2c2ATPase, class V, type 10A, transcript Vchr6 83002564 6.645 A	chr7	13494431	7.196 A/	ATAAA	36 +	NM_172739.4	Arhgap35	Rho GTPase activating protein 35
chr2 30650820 4.681 GATAAA 8- NM_022989.4 Arlfoj6 ADP-ribosylation factor-like 6 interacti chr7 19683896 3.969 TATAA 6+ XM_006540581.2 App10a ATPase, class V, type 10A, transcript V chr7 19723603 8.193 TATAAA 60+ XM_006540581.2 App10a ATPase, class V, type 10A, transcript V chr7 19723603 8.193 TATAAA 60+ XM_006540581.2 App10a ATPase, class V, type 10A, transcript V chr1 19723603 8.193 TATAAA 60+ XM_006540581.2 App10a ATPase, class V, type 10A, transcript V chr1 16122628 8.049 ATTAAA 60+ XM_01241162.1 App10a ATPase, class V, type 10A, transcript V chr6 83002564 6.645 AATAAA 1+ XM_011241162.1 App2b2 ATPase, Na+/K+ transporting, alpha 2 chr6 83002564 6.645 AATAAA 3- XM_006531344.1 Ap2c2 ATPase, Na+/K+ transporting, plasma me chr6 83002559 5.4	chr13	21881080	4.578 A/	ATAAA	14 +	XM_006517628.2	Arl15	ADP-ribosylation factor-like 15, transcript variant X1
chr71963396 3.969 TATAA $6+$ XM 006540581.2 Ap10aATPase, class V, type 10A, transcript Vchr719723603 8.193 TATAAA $60+$ XM 006540581.2 Ap10aATPase, class V, type 10A, transcript Vchr719723603 8.193 TATAAA $60+$ XM 006540581.2 Ap10aATPase, class V, type 10A, transcript Vchr719723603 8.193 TATAAA $60+$ XM 006540581.2 Ap10aATPase, class V, type 10A, transcript Vchr119723603 8.193 TATAAA $60+$ XM 006540581.2 Ap10aATPase, class V, type 10A, transcript Vchr116122628 8.049 ATTAAA $2+$ NM 178405.3 Atp1a2ATPase, class V, type 10A, transcript Vchr6 83002564 6.645 AATAAA $1+$ XM 011241162.1 Ap2b2ATPase, class V, type 10A, transcript Vchr8 47082259 3.826 ATTAAA $3-$ XM 006531344.1 Ap2b2ATPase, Ca++ transporting, plasma mechr11 5973390 5.478 AATAAA $2+$ NM 001177890.1 Cacnalg 16 001177890.1 chr11 5973390 5.478 AATAAA $16-$ NM 001177890.1 Cacnalg 16 001177890.1 chr11 59784116 8.685 AATAAA $16-$ NM 001177890.1 Cacnalg 16 001177890.1 16 chr11 59775705 5.369 ATTAAA $6+$ NM </td <td>chr2</td> <td>30650820</td> <td>4.681 G/</td> <td>ATAAA</td> <td>- 8</td> <td>NM_022989.4</td> <td>Arl6ip6</td> <td>ADP-ribosylation factor-like 6 interacting protein 6</td>	chr2	30650820	4.681 G/	ATAAA	- 8	NM_022989.4	Arl6ip6	ADP-ribosylation factor-like 6 interacting protein 6
chr7197236038.193TATAA $60+$ XM 006540581.2 ApploaATPase, class V, type 10A, transcript vchr7196838963.969TATAAA $6+$ XM 006540581.2 ApploaATPase, class V, type 10A, transcript vchr7197236038.193TATAAA $60+$ XM 006540581.2 ApploaATPase, class V, type 10A, transcript vchr1197236038.193TATAAA $2+$ NM 178405.3 Atp10aATPase, class V, type 10A, transcript vchr1161226288.049ATTAAA $2+$ NM 178405.3 Atp1a2ATPase, class V, type 10A, transcript vchr683002564 6.645 AATAAA $1+$ XM 006531344.1 Atp2b2ATPase, class V, type 10A, transcript variant 4chr847082259 3.826 ATTAAA $3-$ XM 006531344.1 App2b2ATPase, Ca++ transporting, plasma mechr1159735390 5.478 AATAAA $2+$ NM 001177890.1 Cacnalg 16 chr1159735705 5.369 ATTAAA $16-$ NM 001177890.1 Cacnalg 16 subunit, transcript variant 4chr11 59775705 5.369 ATTAAA $6+$ NM 001177890.1 Cacnalg 16 subunit, transcript variant 4chr11 59775705 5.369 $ATTAAA$ $6+$ NM 001177890.1 Cacnalg 16 subunit, transcript variant 4	chr7	19683896	3.969 TA	ATAAA	+ 9	XM_006540581.2	Atp10a	ATPase, class V, type 10A, transcript variant X2
chr7196838963.969TATAAA $6_{1}+$ XM006540581.2Atp10aATPase, class V, type 10A, transcript vchr7197236038.193TATAAA $6_{0}+$ XM006540581.2Atp10aATPase, class V, type 10A, transcript vchr1161226288.049ATTAAA $2_{1}+$ NM178405.3Atp1a2ATPase, class V, type 10A, transcript vchr683002564 6.645 AATAAA $2_{1}+$ XM011241162.1Atp2b2ATPase, class V, type 10A, transporting, alpha 2chr847082259 3.826 ATTAAA $3_{1}+$ XM011241162.1Atp2b2ATPase, Ca++ transporting, plasma mechr847082259 3.826 ATTAAA $3_{1}+$ XM006531344.1Atp2c2ATPase, Ca++ transporting, presc, mchr1159735300 5.478 AATAAA $2_{1}+$ NM001177890.1CacnalgIG subunit, transcript variant 4chr1159784116 8.685 AATAAA $1_{6}-$ NM001177890.1CacnalgIG subunit, transcript variant 4chr1159735705 5.369 ATTAAA $6_{1}+$ NM001177890.1CacnalgIG subunit, transcript variant 4chr11 5973705 5.369 ATTAAA $6_{1}+$ NM001177890.1CacnalgIG subunit, transcript variant 4chr11 59775705 5.369 ATTAAA $6_{1}+$ NM001177890.1CacnalgIG subunit, transcript variant 4	chr7	19723603	8.193 TA	ATAAA	+ 09	XM_006540581.2	Atp10a	ATPase, class V, type 10A, transcript variant X2
chr7 19723603 8.193 TATAA 60+ XM 006540581.2 App10a ATPase, class V, type 10A, transcript v chr1 16122628 8.049 ATTAAA 2+ NM 178405.3 App1a2 ATPase, class V, type 10A, transporting, alpha 2 chr6 83002564 6.645 AATAAA 2+ NM 178405.1 App1a2 ATPase, Ca++ transporting, plasma me chr8 47082259 3.826 ATTAAA 3- XM 006531344.1 App2c2 ATPase, Ca++ transporting, pre 2C, m chr1 59735390 5.478 AATAAA 2+ NM 001177890.1 Caclum channel, voltage-dependent chr1 59735390 5.478 AATAAA 16- NM 001177890.1 Cacnalg 1G subunit, transcript variant 4 chr1 59735390 5.485 AATAAA 16- NM 001177890.1 Cacnalg 1G subunit, transcript variant 4 chr1 59775705 5.369 ATTAAA 6+ NM 001177890.1 Cacnalg 1G subunit, transcript varian	chr7	19683896	3.969 TA	ATAAA	+ 9	XM_006540581.2	Atp10a	ATPase, class V, type 10A, transcript variant X2
chrl16122628 8.049 ATTAAA 2 NM 178405.3 Atp1a2ATPase, Na+/K+ transporting, alpha 2chr6 83002564 6.645 $ATTAAA$ 1 XM 011241162.1 $Atp2b2$ $ATPase, Ca++$ transporting, plasma mechr8 47082259 3.826 $ATTAAA$ 3 XM 006531344.1 $Atp2b2$ $ATPase, Ca++$ transporting, type 2C, mchr11 59735390 5.478 $AATAAA$ 2 NM 001177890.1 Cacnalg $1G$ subunit, transcript variant 4chr11 59735390 5.478 $AATAAA$ 16 NM 001177890.1 Cacnalg $1G$ subunit, transcript variant 4chr11 59735390 5.478 $AATAAA$ 16 NM 001177890.1 Cacnalg $1G$ subunit, transcript variant 4chr11 59784116 8.685 $AATAAA$ 16 NM 001177890.1 Cacnalg $1G$ subunit, transcript variant 4chr11 59775705 5.369 $ATTAAA$ 6 NM 001177890.1 Cacnalg $1G$ subunit, transcript variant 4	chr7	19723603	8.193 TA	ATAAA	+09	XM_006540581.2	Atp10a	ATPase, class V, type 10A, transcript variant X2
chr6 83002564 6.645 AATAAA 1+ XM 011241162.1 Atp2b2 ATPase, Ca++ transporting, plasma me chr8 47082259 3.826 ATTAAA 3- XM 006531344.1 Atp2c2 ATPase, Ca++ transporting, plasma me chr11 59735390 5.478 AATAAA 2+ NM 001177890.1 Cachium channel, voltage-dependent chr11 59735390 5.478 AATAAA 2+ NM 001177890.1 Cacna1g 1G subunit, transcript variant 4 chr11 59784116 8.685 AATAAA 16- NM 001177890.1 Cacna1g IG subunit, transcript variant 4 chr11 59775705 5.369 ATTAAA 6+ NM 001177890.1 Cacna1g IG subunit, transcript variant 4	chr1	16122628	8.049 AJ	LTAAA	2+	NM_178405.3	Atp1a2	ATPase, Na+/K+ transporting, alpha 2 polypeptide
chr8 47082259 3.826 ATTAAA 3 -XM 006531344.1 Atp2c2ATPase, Ca++ transporting, type 2C, mchr11 59735390 5.478 $AATAAA$ 2 +NM 001177890.1 calcium channel, voltage-dependentchr11 59735390 5.478 $AATAAA$ 2 +NM 001177890.1 calcium channel, voltage-dependentchr11 59735390 5.478 $AATAAA$ 16 -NM 001177890.1 cancled grademchr11 59784116 8.685 $AATAAA$ 16 -NM 001177890.1 calcium channel, voltage-dependentchr11 59775705 5.369 $ATTAAA$ 6 +NM 001177890.1 Cacnal gcalcium channel, voltage-dependent	chr6	83002564	6.645 A/	ATAAA	1+	XM_011241162.1	Atp2b2	ATPase, Ca++ transporting, plasma membrane 2
	chr8	47082259	3.826 A1	LTAAA	3	XM_006531344.1	Atp2c2	ATPase, Ca++ transporting, type 2C, member 2
chr11597841168.685AATAAA16-NM_001177890.1Cacna1gIG subunit, transcript variant 4chr11597757055.369ATTAAA6+NM_001177890.1Cacna1g1G subunit, transcript variant 4	chr11	59735390	5.478 A/	ATAAA	+	NM 001177890.1	Cacnalg	calcium channel, voltage-dependent, T type, alpha 1G subunit, transcript variant 4
chr11 59775705 5.369 ATTAAA 6+ NM 001177890.1 Cacna1g 1G subunit, transcript variant 4	chr11	59784116	8.685 A/	ATAAA	16-	NM_001177890.1	Cacnalg	calcium channel, voltage-dependent, T type, alpha 1G subunit, transcript variant 4
	chr11	59775705	5.369 A7	TTAAA	+9	NM 001177890.1	Cacnalg	calcium channel, voltage-dependent, T type, alpha 1G subunit, transcript variant 4

Table 13. Testis tissue annotation from mouse identifying transcript isoforms

<u>, i i i</u>	PolyA-	Tastis DAS Roads	Strand	Accession	Short Gene	Full Cone Name
7.90	5	AATAAA 5	+ 2	NM 026201.3	Ccarl	cell division cycle and apoptosis regulator 1
5.2	92.	AATAAA 4	+ +	NM_026201.3	Ccar1	cell division cycle and apoptosis regulator 1
6.0	73.	AATAAA 1	+ 1	NM_001024624.2	Cdk15	cyclin-dependent kinase-like 5
3.2	45.	ATTAAA 2	5+	NM_001024624.2	Cdk15	cyclin-dependent kinase-like 5
7.9	46,	AATAAA 1	+	XM_011247976.1	Cfap221	cilia and flagella associated protein 221, transcript variant X1
9.3	349,	AGTAAA 42	5	XM 011247976.1	Cfap221	cilia and flagella associated protein 221, transcript variant X1
7.	354(GATAAA 2		XM 011247976.1	Cfap221	cilia and flagella associated protein 221, transcript variant X1
∞.	341	AATAAA 15		XM 006525090.2	Daam2	dishevelled associated activator of morphogenesis 2, transcript variant X10
3.	445	ATTAAA 1	+	XM_006525090.2	Daam2	dishevelled associated activator of morphogenesis 2, transcript variant X10
	8.03	AATAAA 55	5+	NM_138306.2	Dgkz	diacylglycerol kinase zeta, transcript variant 2
3.	313	AATAAA 20	+(NM_138306.2	Dgkz	diacylglycerol kinase zeta, transcript variant 2
	8.03	AATAAA 55	5+	NM_138306.2	Dgkz	diacylglycerol kinase zeta, transcript variant 2
3	.313	AATAAA 20	+(NM_138306.2	Dgkz	diacylglycerol kinase zeta, transcript variant 2
9	.777	AATAAA 4	+	NM_010060.3	Dnah11	dynein, axonemal, heavy chain 11
\mathfrak{C}	.426	AATAAA 25	-	NM_010060.3	Dnah11	dynein, axonemal, heavy chain 11
4	.0960.	AATAAA 1	-	XM_006497653.2	Dnm1	dynamin 1, transcript variant X7
∞	.176	ATTAAA 9	- 6	XM_006497653.2	Dnm1	dynamin 1, transcript variant X7
4	.0960.	AATAAA 1	-	XM_006497653.2	Dnm1	dynamin 1, transcript variant X7
8	.176	ATTAAA 9	- 6	XM_006497653.2	Dnm1	dynamin 1, transcript variant X7

ssionShort Gene berFull Gene NameberNameFull Gene Name 011249261.1 Efcab3EF-hand calcium binding don 01040131.2 Eif4g2eukaryotic translation initiati 01040131.2 Eif4g2family with sequence similari 01040131.2 Eif4g2family with sequence similari 010431.1 Ephb3family with sequence similari 011243123.1 Fam193afamily with sequence similari 011243123.1 Fam193afamily with sequence similari 011243123.1 Fam193afamily with sequence similari 01243123.1 Fam193afamily with sequence similari 011243123.1 Fam193afamily with sequence similari 011243123.1 Fam193afamily with sequence similari 01161738.1 fhnglomulin, FKBP associ		nain 3	nain 3	nain 3	nain 3X1	on factor 4, gamma 2	on factor 4, gamma 2			ty 193, member A	ant X13	ant X13	rotein	rotein	rotein	rotein	ript variant X4	ript variant X4		ript variant X4			
berNameFu 011249261.1 Efcab3EF 011249261.1 Efcab3EF 011249261.1 Efcab3EF 011249261.1 Efcab3EF 01040131.2 Eif4g2euk 001040131.2 Eif4g2euk 01040131.2 Eif4g2euk 01040131.2 Eif4g2euk 01040131.2 Eif4g2euk 01040131.2 Eif4g2euk 01040131.2 Eif4g2euk 01043.1 Ephb3Ep 01143.1 Ephb3Ep 011243123.1 Em193afan 01243123.1 Fam193afan 01243123.1 Fam193afan 011243123.1 Fam193afan 01161738.1 Glmnglo 001161738.1 Glmnglo 001	ll Gene Name	-hand calcium binding dom	aryotic translation initiatio	aryotic translation initiatio	1 receptor B3	1 receptor B3	nily with sequence similarit	osin-like 1, transcript varia	osin-like 1, transcript varia	mulin, FKBP associated pr	dicted gene, 30411, transcr	dicted gene, 30411, transcr	diotod cono 20411 tuoncou	ulcieu gelle, 20411, italisei									
ssionShort Gei berName ber ber Name ber Name ber Efcab3 ber Effag2 ber Effag2 ber Effag2 ber Effag3	ne Ful	EF-	EF-	EF-	EF-	euk	euk	Epł	Epł	fam	fam	fam	fam	fibr	fibr	gloı	gloı	gloı	gloı	pre	pree	nred	1
ssion ber 11249261.1 111249261.1 111249261.1 111249261.1 01040131.2 01040131.2 01040131.2 101243123.1 01243123.1 01243123.1 01243123.1 011249494.1 011249494.1 011249494.1 011249494.1 011249494.1 011249494.1 011249494.1 01124938.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1 001161738.1	Short Gei Name	Efcab3	Efcab3	Efcab3	Efcab3	Eif4g2	Eif4g2	Ephb3	Ephb3	Fam193a	Fam193a	Fam193a	Fam193a	Fbrs11	Fbrs11	Glmn	Glmn	Glmn	Glmn	Gm30411	Gm30411	Gm30411	
	ssion ber	011249261.1	011249261.1	011249261.1	011249261.1	001040131.2	001040131.2	010143.1	010143.1	001243123.1	001243123.1	001243123.1	001243123.1	011249494.1	011249494.1	001161738.1	001161738.1	001161738.1	001161738.1	373900.1	373900.1	13900 1	1.00 (01)
	Strand	+	+	I	I	I	I	I	I	I	I	I	I	I	I		I	I		+	I	+	
+ + + + + - Xtrand	Reads	7	4	515	5	336	25	63	201	4	10	4	10	3	5	10	11	15	24	1264	1	8	
Reads Strand 7 + 7 + 4 + 515 - 515 - 536 - 5336 - 5336 - 2336 - 2336 - 10 - 11 - 1264 + 8+ -	Festis PAS	AATAAA	AATAAA	ATTAAA	CATAAA	AATAAA	ATTAAA	AATAAA	ATTAAA	ATTAAA	ATTAAA	ATTAAA	ATTAAA	AATAAA	AGTAAA	AATAAA	AATAAA	AGTAAA	ATTAAA	AATAAA	ACTAAA	ATTAAA	
Festis PASReadsStrand AATAAA74AATAAA515AATAAA515AATAAA515AATAAA515AATAAA515AATAAA515AATAAA515AATAAA515AATAAA515AATAAA201ATTAAA201ATTAAA201ATTAAA10ATTAAA10AATAAA10AATAAA11AATAAA11AATAAA11AATAAA15AATAAA1264<	olyA- core	7.122	7.371	6.759	8.453	6.082	5.683	6.13	7.349	9.566	10.55	9.566	10.55	7.196	7.15	4.808	7.73	7.342	6.007	6.225	3.263	8.688	
Olys- Testis PAS Reads Strand 7.122 AATAAA 7+ 7+ 7.371 AATAAA 515- 4+ 6.759 ATTAAA 515- 4+ 6.759 ATTAAA 515- 4+ 6.759 ATTAAA 515- 4+ 6.082 AATAAA 515- 5- 8.453 CATAAA 515- 5- 6.082 AATAAA 515- 5- 6.082 AATAAA 336- 5- 5.683 ATTAAA 336- 5- 7.349 ATTAAA 201- 9- 9.566 ATTAAA 201- 10- 9.566 ATTAAA 10- 10- 7.196 AATAAA 10- 10- 7.196 AATAAA 10- 10- 7.13 AATAAA 10- 10- 7.13 AATAAA 10- 10- 7.342 ACTAAA 10- 10- 7.342 ACTAAA 11- 10- 7.323 <td>yA- F</td> <td>70341354</td> <td>70430382</td> <td>70268691</td> <td>70268648</td> <td>28826731</td> <td>28825669</td> <td>18220846</td> <td>18222321</td> <td>4081139</td> <td>4081299</td> <td>4081139</td> <td>4081299</td> <td>34334229</td> <td>34349836</td> <td>31458378</td> <td>31462146</td> <td>31459581</td> <td>31458981</td> <td>14717853</td> <td>14717773</td> <td>14717939</td> <td></td>	yA- F	70341354	70430382	70268691	70268648	28826731	28825669	18220846	18222321	4081139	4081299	4081139	4081299	34334229	34349836	31458378	31462146	31459581	31458981	14717853	14717773	14717939	
PolyA- site PolyA- score Testis PAS Reads Strand 70341354 7.122 AATAAA 7+ 70341354 7.122 AATAAA 7+ 70341354 7.122 AATAAA 515- 70430382 7.371 AATAAA 515- 70268691 6.759 ATTAAA 515- 70268691 6.082 AATAAA 515- 70268691 6.082 AATAAA 515- 70268691 6.082 AATAAA 515- 70268691 6.082 AATAAA 515- 28825669 5.683 ATTAAA 336- 28825613 6.082 AATAAA 201- 18220846 6.13 AATAAA 25- 18220846 6.13 AATAAA 261- 18220321 7.349 ATTAAA 201- 4081139 9.566 ATTAAA 201- 4081139 9.566 ATTAAA 201- 4081139 9.566 ATTAAA<	Pol site																						

Table 13. Testis tissue annotation from mouse identifying transcript isoforms

									iant X2	iant X2	oxyl terminus) 0 2	oxyl terminus) 2	script variant 1	script variant 1	script variant 1				nt X2	nt X2	ınscript variant	ınscript variant	ınscript variant	inscript variant
		ull Gene Name	ucose phosphate isomerase 1	clicase with zinc finger domain, transcript var	clicase with zinc finger domain, transcript var	cct (homologous to the E6-AP (UBE3A) carb omain and RCC1 (CHC1)-like domain (RLD)	cct (homologous to the E6-AP (UBE3A) carb main and RCC1 (CHC1)-like domain (RLD)	ositol polyphosphate phosphatase-like 1, tran	ositol polyphosphate phosphatase-like 1, tran	ositol polyphosphate phosphatase-like 1, tran	ulirin, RhoGEF kinase, transcript variant X25	ulirin, RhoGEF kinase, transcript variant X25	ulirin, RhoGEF kinase, transcript variant X6	(lysine) acetyltransferase 2B, transcript varia	(lysine) acetyltransferase 2B, transcript varia	otassium channel, subfamily T, member 1, tra 12	otassium channel, subfamily T, member 1, tra 12	otassium channel, subfamily T, member 1, tra 12	stassium channel, subfamily T, member 1, tra					
Short	Gene	Name F	Gpil gl	Helz he	Helz he	herc2 do	Herc2 do	Inppl1 in	Inppl1 in	Inppl1 in	Kalrn ka	Kalrn ka	Kalrn ka	Kat2b K	Kat2b K	Kcnt1 X	Kcnt1 X	Kcnt1 X	bo					
	Accession	Number	NM_008155.4	NM_008155.4	NM_008155.4	NM_008155.4	NM_008155.4	NM_008155.4	XM_006534505.2	XM_006534505.2	NM_010418.2	NM_010418.2	NM_010567.2	NM_010567.2	NM_010567.2	XM_006522383.2	XM_006522383.2	XM_006522363.2	XM_006523820.2	XM_006523820.2	XM 006497891.2	XM_006497891.2	XM 006497891.2	C 103207 200 J VA
	7	Strand	+	-	+	+	-	+	-			+	-	-	-	1	1	+	+	+	+		+	
	-	Keads	91	129	8	91	129	8	7	100	25	1	17	37	1	2	1	6	5	17	11	2	11	C
		l estis PAS	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AATAAA	AGTAAA	ATTAAA	AATAAA	CATAAA	AATAAA	ATTAAA	ATTAAA	AATAAA	ATTAAA	ATTAAA	AAAAG	AATACA	AATAAA	AATAAA	AATAAA	ΛΥΛΛΛ
	PolyA-	score	3.259	7.696	6.007	3.259	7.696	6.007	5.947	8.984	5.191	9.105	5.719	7.454	6.171	6.337	8.592	5.374	9.19	7.32	7.091	4.699	7.091	4 699
	PolyA-	site	31202601	31202731	31202735	31202601	31202731	31202735	72989006	72989698	17080387	17021041	19576908	19574578	19575195	31153603	31153435	31514010	39984006	39983866	3359478	3365863	3359478	1165861
		Chr	chr7	chr7	chr7	chr7	chr7	chr7	chr11	chr11	chr7	chr7	chr7	chr7	chr7	chr16	chr16	chr16	chr17	chr17	chr2	chr2	chr2	chr)

Table 13. Testis tissue annotation from mouse identifying transcript isoforms

					_	•	Short	
Chr	Polya- site	Polya- score	Testis PAS	Reads	Strand	Accession Number	Gene Name	Full Gene Name
chr9	21723148	6.3	AATAAA	12.		NM 001039522.1	Leo1	Leol, Pafl/RNA polymerase II complex component, homolog (S. cerevisiae)
chr9	21725453	5.206	AATAAA	51.		NM 001039522.1	Leo1	Leol, Pafl/RNA polymerase II complex component, homolog (S. cerevisiae)
chr9	21723148	6.3	AATAAA	12.		NM 001039522.1	Leo1	Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)
chr9	21725453	5.206	AATAAA	51.		NM_001039522.1	Leo1	Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)
chr10	62021220	5.765	AATAAA	12.		NM_025431.2	Llph	LLP homolog, long-term synaptic facilitation (Aplysia)
chr10	62021286	4.173	ACTAAA	.9	1	NM_025431.2	Llph	LLP homolog, long-term synaptic facilitation (Aplysia)
chr17	29840278	5.263	AGTAAA	3.		XM_006523751.2	Mep1a	meprin 1 alpha, transcript variant X1
chr17	29840303	8.118	ATTAAA	126-	+	XM_006523751.2	Mepla	meprin 1 alpha, transcript variant X1
chr6	91438451	7.43	AATAAA	-6	+	NR_027619.1	Mug-ps1	murinoglobulin, pseudogene 1
chr6	91439302	3.192	AATAAA	2	-	NR_027619.1	Mug-ps1	murinoglobulin, pseudogene 1
chr17	57343392	7.794	AATAAA	3736.		XM_006524822.1	My112a	myosin, light chain 12A, regulatory, non-sarcomeric, transcript variant X1
chr17	57343222	5.157	ATTAAA	3.	1	XM 006524822.1	Myl12a	myosin, light chain 12A, regulatory, non-sarcomeric, transcript variant X1
chr17	57321041	6.123	ATTAAA	1.	+	NM 023402.2	Myl12b	myosin, light chain 12B, regulatory
chr11	3420749	4.939	AAAAG	4.	1	XM_006514702.1	Myolg	myosin IG, transcript variant X3
chr11	3417525	7.665	GATAAA	15	1	XM_006514702.1	Myolg	myosin IG, transcript variant X3
chr19	3407783	7.144	AATAAA	9.	+	XM_011247222.1	Myrf	myelin regulatory factor, transcript variant X2
chr19	3409917	7.285	AATAAA	13.		XM_011247222.1	Myrf	myelin regulatory factor, transcript variant X2
chr2	29594973	5.953	AATAAA	12.		XM_006497751.1	Neb	nebulin, transcript variant X3
chr2	29778055	4.836	AATAAA	20-	+	XM_006497751.1	Neb	nebulin, transcript variant X3
chr2	29787264	5.579	AATAAA	12-	+	XM_006497751.1	Neb	nebulin, transcript variant X3
chr7	19881507	7.307	AATAAA	14-	+	XM_006507896.1	Nup98	nucleoporin 98, transcript variant X2
chr7	19888045	7.508	AATAAA	2.	,	XM_006507896.1	Nup98	nucleoporin 98, transcript variant X2
chr7	19881507	7.307	AATAAA	14	+	XM_006507896.1	Nup98	nucleoporin 98, transcript variant X2

PolyA- PolyA- Acce site score Testis PAS Reads Strand Num	PolyA- score Testis PAS Reads Strand Num	Testis PAS Reads Strand Num	Reads Strand Num	Strand Num	Acce	ssion ber	Short Gene Name	Full Gene Name
26803584 8.82ATTAAA 3- NM	8.82 ATTAAA 3- NM	ATTAAA 3- NM	3 - NM	- NM	MN	146584.2	Olfr1026	olfactory receptor 1026
30881726 8.985 AATAAA 158 - NM	8.985 AATAAA 158 - NM	AATAAA 158- NM_I	158- NM	- NM	MN	146974.1	Olfr1262	olfactory receptor 1262
5273932 6.75 AATAAA 1204 NM	6.75 AATAAA 1204 NM_1	AATAAA 1204- NM_1	1204 - NM_	- NM_	MN	146809.2	Olfr1426	olfactory receptor 1426
32387281 5.096 AATAAA 7+ XM	5.096AATAAA 7+ XM	AATAAA 7+ XM	7 + XM	+ XM	XM	006535208.2	Pcgf3	polycomb group ring finger 3, transcript variant X1
32387317 5.401 AATAAA 399 + XM	5.401 AATAAA 399 + XM	AATAAA 399+ XM	399+ XM	+ XM	XM	006535208.2	Pcgf3	polycomb group ring finger 3, transcript variant X1
10648166 5.924 ATTAAA 4- NM	5.924 ATTAAA 4 - NM	ATTAAA 4- NM	4- NM	- NM	MN	001190483.1	Pcsk5	proprotein convertase subtilisin/kexin type 5, transcript variant 1
10664318 6.678ATTAAA 40+ NM	6.678ATTAAA 40+ NM	ATTAAA 40+	40+ NM	+ WN	MN	001190483.1	Pcsk5	proprotein convertase subtilisin/kexin type 5, transcript variant 1
10980019 3.19ATTAAA 26+ NM	3.19ATTAAA 26+ NM	ATTAAA 26+ NM	26+ NM	+	MN	001190483.1	Pcsk5	proprotein convertase subtilisin/kexin type 5, transcript variant 1
10847799 3.493 AATAAA 1 + XM	3.493 AATAAA 1+ XM	AATAAA 1+ XM	1 + XM	+ XM	MX (011246053.1	Pdxdc1	pyridoxal-dependent decarboxylase domain containing 1, transcript variant X1
10840465 3.434 ATTAAA 7+ XM 0	3.434 ATTAAA 7+ XM 0	ATTAAA 7+ XM 0	7 + XM (+ XM (XM_(011246053.1	Pdxdc1	pyridoxal-dependent decarboxylase domain containing 1, transcript variant X1
4247895 8.623 AATAAA 761 + XM_0	8.623 AATAAA 761 + XM_0	AATAAA 761 + XM_0	761 + XM_0	+ XM_0	XM_0	06509228.2	Plekha2	pleckstrin homology domain-containing, family A (phosphoinositide binding specific) member 2, transcript variant X2
4259731 5.676 AATAAA 28- XM_00	5.676 AATAAA 28 - XM 00	AATAAA 28- XM 00	28 - XM_00	- XM_00	XM_00	6509228.2	Plekha2	pleckstrin homology domain-containing, family A (phosphoinositide binding specific) member 2, transcript variant X2
25370460 6.626AATAAA 8- XM_00	6.626AATAAA 8- XM_00	AATAAA 8- XM_00	8- XM_00	- XM_00	XM_0(06539437.2	Plekhg2	pleckstrin homology domain containing, family G (with RhoGef domain) member 2, transcript variant X3
38550660 3.326ACTAAA 6+ NM 0	3.326ACTAAA 6+ NM 0	ACTAAA 6+ NM 0	6 + NM_0	+ NM 0	0 MN	01195084.1	Plscr2	phospholipid scramblase 2, transcript variant A
38550511 6.71 TATAAA 2+ NM 0	6.71 TATAAA 2 + NM 0	TATAAA 2 + NM 0	$2 + NM_0$	+ NM 0	0 MN	01195084.1	Plscr2	phospholipid scramblase 2, transcript variant A
16903551 5.614 AATAAA 19+ NM 0	5.614 AATAAA 19 + NM 0	AATAAA 19+ NM 0	$19 + NM_0$	+ NM 0	0 MN	27514.2	Pvr	poliovirus receptor
16905822 4.132 ATTAAA 5- NM_0	4.132 ATTAAA 5- NM_0	ATTAAA 5- NM_0	5 - NM_0	- NM_0	NM_0	27514.2	Pvr	poliovirus receptor
4040027 5.665 AATACA 45- XM	5.665 AATACA 45- XM	AATACA 45- XM	45 - XM	- XM	ХM	006522171.2	Rbfox1	RNA binding protein, fox-1 homolog (C. elegans) 1, transcript variant X15
4038350 7.275 AGTAAA 11 - XM	7.275 AGTAAA 11 - XM	AGTAAA 11 - XM	11 - XM	- XM	XM	006522192.2	Rbfox1	RNA binding protein, fox-1 homolog (C. elegans) 1, transcript variant X35
4039974 6.109 ATTAAA 28 - XM 0	6.109 ATTAAA 28 XM 0	ATTAAA 28- XM 0	28 - XM_0	- XM_0	XM_0	06522171.2	Rbfox1	RNA binding protein, fox-1 homolog (C. elegans) 1, transcript variant X15

	PolyA-	PolyA-				Accession	Short Gene	
Chr	site	score	Testis PAS	Reads	Strand	Number	Name	Full Gene Name
chr1	13129199	5.59	AATAAA	1		XR_865164.1	Rdh10	retinol dehydrogenase 10 (all-trans), transcript variant X1
chr1	13129239	4.651	AATAAA	1		XR_865164.1	Rdh10	retinol dehydrogenase 10 (all-trans), transcript variant X1
chr1	13131364	3.835	AATAAA	5	-	XR_865164.1	Rdh10	retinol dehydrogenase 10 (all-trans), transcript variant X1
chr7	16611681	5.929	ATTAAA	4	+	XM_011250461.1	Relb	avian reticuloendotheliosis viral (v-rel) oncogene related B, transcript variant X4
chr11	84797937	9.286	AGTAAA	2		XM_006534630.2	Rnf213	ring finger protein 213, transcript variant X1
chr11	84797991	7.227	ATTAAA	15		XM_006534630.2	Rnf213	ring finger protein 213, transcript variant X1
chr7	20216933	4.926.	AATAAA	12	I	NM_009103.3	Rrm1	ribonucleotide reductase M1
chr7	20191567	9.61	AATAAA	58	I	NM 009103.3	Rrm1	ribonucleotide reductase M1
chr7	20216933	4.926.	AATAAA	12	I	NM_009103.3	Rrm1	ribonucleotide reductase M1
chr19	40813957	3.213	AATAAA	5	+	NM 009289.3	Slk	STE20-like kinase, transcript variant 1
chr19	40814024	3.409	GATAAA	7	+	NM 009289.3	SIk	STE20-like kinase, transcript variant 1
chr5	8069175	9.224	AATAAA	5	+	NM 009274.2	Srpk2	serine/arginine-rich protein specific kinase 2
chr5	8067773	3.542	TATAAA	53	+	NM_009274.2	Srpk2	serine/arginine-rich protein specific kinase 2
chr5	8067858	3.175	TATAAA	28	+	NM 009274.2	Srpk2	serine/arginine-rich protein specific kinase 2
chr3	88392340	8.976	AATAAA	464	+	XR 375536.2	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X1
chr3	88887897	7.014	AATAAA	8	-	XR_375536.2	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X1
chr3	88888252	6.74	AATAAA	14	1	XM 006501628.1	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X3
chr3	88392340	8.976.	AATAAA	464	+	XR 375536.2	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X1
chr3	88887897	7.014	AATAAA	8		XR_375536.2	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X1
chr3	88888252	6.74	AATAAA	14	-	XM_006501628.1	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X3

Chr	PolyA- site	PolyA- score	Testis PAS	Reads	Strand	Accession Number	Short Gene Name	Full Gene Name
chr7	27992192	5.12	AATAAA	52		NM_009302.3	Swap70	SWA-70 protein
g chr7	27992068	7.603	AATACA	6	+	NM 009302.3	Swap70	SWA-70 protein
chr7	27992268	5.032	AGTAAA	3	+	NM 009302.3	Swap70	SWA-70 protein
chr5	33976815	7.34	AATAAA	7	-	XM_011240758.1	Tbc1d1	TBC1 domain family, member 1, transcript variant X3
chr5	33971346	5.59	ATTAAA	4		XM 011240758.1	Tbc1d1	TBC1 domain family, member 1, transcript variant X3
chr4	43579800	6.99	AATAAA	147		XM_006538046.2	Tbc1d2	TBC1 domain family, member 2, transcript variant X1
chr4	43579931	8.811	AATAAA	45	+	XM_006538046.2	Tbc1d2	TBC1 domain family, member 2, transcript variant X1
chr4	43578421	4.635.	ATTAAA	11		XM_006538046.2	Tbc1d2	TBC1 domain family, member 2, transcript variant X1
chr11	62418307	5.24	AATAAA	676	+	NM_019507.2	Tbx21	T-box 21
chr11	62418387	3.647.	AATACA	87	ı	NM_019507.2	Tbx21	T-box 21
chr2	25322231	6.731	AATAAA	20		XM 006499150.1	Tfpi	tissue factor pathway inhibitor, transcript variant X6
chr2	25354175	10.17	ATTAAA	1		XM 006499145.1	Tfpi	tissue factor pathway inhibitor, transcript variant X1
. chr4	43040893	5.503	AATAAA	14		XM_006537772.2	Tmod1	tropomodulin 1, transcript variant X1
chr4	43066124	5.093	TATAAA	14	+	NM 021883.2	Tmod1	tropomodulin 1
chr6	94554524	6.404	AATAAA	31	ı	NM_011609.4	Tnfrsfla	tumor necrosis factor receptor superfamily, member 1a
chr6	94554563	6.374	ATTAAA	6	+	NM_011609.4	Tnfrsfla	tumor necrosis factor receptor superfamily, member 1a
chr14	56375931	8.86	AATAAA	3	+	NM 009429.3	Tpt1	tumor protein, translationally-controlled 1
chr14	56375975	6.891	ATTAAA	3	+	NM 009429.3	Tpt1	tumor protein, translationally-controlled 1
chr7	19833213	6.727.	AATAAA	151	+	NM 001109897.2	Trpc2	transient receptor potential cation channel, subfamily C, member 2
chr7	19842280	5.183	AATAAA	774		NM 001109897.2	Trpc2	transient receptor potential cation channel, subfamily C, member 2
chr7	19833213	6.727	AATAAA	151	+	NM 001109897.2	Trpc2	transient receptor potential cation channel, subfamily C, member 2
chr7	19842280	5.183	AATAAA	774		NM 001109897.2	Trpc2	transient receptor potential cation channel, subfamily C, member 2

	PolyA-	PolyA-				Accession	Short Gene	
Chr	site	score	Testis PAS	Reads	Strand	Number	Name	Full Gene Name
chr5	34694135	5.585	AAAAG	15	+	XM_006534851.2	Ulk1	unc-51 like kinase 1, transcript variant X3
chr7	34969647	7 7.521	ATTAAA	5		XM_006539676.2	Uri1	URI1, prefoldin-like chaperone, transcript variant X1
chr10	21088592	2 8.57	AATAAA	1	+	NM_175936.1	Vmn2r81	vomeronasal 2, receptor 81
chr10	21088688	3 5.255	AATAAA	9	+	NM_175936.1	Vmn2r81	vomeronasal 2, receptor 81
chr5	34906201	1 3.272	AATAAA	5	+	XM 011240713.1	Wdr19	WD repeat domain 19, transcript variant X1
chr5	34906286	5.444	AATAAA	10	+	XM_011240713.1	Wdr19	WD repeat domain 19, transcript variant X1
chr7	19833213	6.727	AATAAA	151	+	NR_104582.1	Xntrpc	Xndc1-transient receptor potential cation channel, subfamily C, member 2 readthrough, transcript variant 2
chr7	19842280) 5.183	AATAAA	774	1	NR_104582.1	Xntrpc	Xndc1-transient receptor potential cation channel, subfamily C, member 2 readthrough, transcript variant 2
chr17	32550039	9 6.27	ATTAAA	18	-	NM_028198.2	Xpo5	exportin 5
chr17	32553462	2 6.879	ATTAAA	35	ı	NM_028198.2	Xpo5	exportin 5
chr6	87042190	0 8.119	AATAAA	15	+	XM_006506015.2	Zfp637	zinc finger protein 637, transcript variant X1
chr6	87038276	5 6.172	AGTAAA	2	+	XM_006506015.2	Zfp637	zine finger protein 637, transcript variant X1

Table 13. Testis tissue annotation from mouse identifying transcript isoforms

	PolyA-	PolyA-				Accession	Short Gene	
Chr	site	score	Testis PAS	Reads	Strand	Number	Name	Full Gene Name
chr8	13884794	5.685	AATAAA	12		XR 387742.2	Abcc12	ATP-binding cassette, sub-family C (CFTR/MRP), member 12, transcript variant X2
chr8	13885506	3.284	ATTAAA	1		XR 387742.2	Abcc12	ATP-binding cassette, sub-family C (CFTR/MRP), member 12, transcript variant X2
chr5	9118869	3.982	AATAAA	6		NM 001190443.1	Abcf2	ATP-binding cassette, sub-family F (GCN20), member 2, transcript variant 2
chr5	9118989	7.59	AATAAA	4	+	NM 001190443.1	Abcf2	ATP-binding cassette, sub-family F (GCN20), member 2, transcript variant 2
chr5	9119039	7.446	AATAAA	23	+	NM_001190443.1	Abcf2	ATP-binding cassette, sub-family F (GCN20), member 2, transcript variant 2
chr5	9119122	4.327	ATTAAA	1	+	NM_001190443.1	Abcf2	ATP-binding cassette, sub-family F (GCN20), member 2, transcript variant 2
chr17	17403310	5.184	ATTAAA	12	+	NM_009593.2	Abcg1	ATP-binding cassette, sub-family G (WHITE), member 1
chr17	17456764	5.184	ATTAAA	2	+	NM_009593.2	Abcg1	ATP-binding cassette, sub-family G (WHITE), member 1
chr2	32090041	3.79	AATAAA	51	+	NM_007387.2	Acp2	acid phosphatase 2, lysosomal
chr2	32087222	4.308	AATATA	1	+	NM_007387.2	Acp2	acid phosphatase 2, lysosomal
chr12	29367036	5.107	AATAAA	984	+	NM_019785.2	Actr10	ARP10 actin-related protein 10
chr2	104610368	5.802	ATTAAA	3	ı	NM_001272052.1	Ada	adenosine deaminase, transcript variant 1
chr2	104610431	8.556	ATTAAA	1	I	NM 001272052.1	Ada	adenosine deaminase, transcript variant 1
chr1	36584059	4.796	AATAAA	19	+	NM 175200.4	Als2cr11	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 11 (human)
chr1	36595984	5.005	AATAAA	12		NM_175200.4	Als2cr11	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 11 (human)
chr1	51797358	7.459	AATAAA	5		NM_029711.1	Arpc2	actin related protein 2/3 complex, subunit 2
chrl	51789624	7.189	ATTAAA	21	1	NM 029711.1	Arpc2	actin related protein 2/3 complex, subunit 2

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

	PolyA-	PolyA-				Accession	Short Gene	
Chr	site	score	Testis PAS	Reads	Strand	Number	Name	Full Gene Name
chr5	8959224	7.001	AATAAA	17	+	XR_880822.1	Asic3	acid-sensing (proton-gated) ion channel 3, transcript variant X4
chr5	8959281	5.66	AATATA	2	+	XR_880822.1	Asic3	acid-sensing (proton-gated) ion channel 3, transcript variant X4
chr7	19723762	6.93	AATAAA	19	1	XM_006540581.2	Atp10a	ATPase, class V, type 10A, transcript variant X2
chr7	19683898	5.134	TATAAA	2	+	XM_006540581.2	Atp10a	ATPase, class V, type 10A, transcript variant X2
chr7	19723603	8.193	TATAAA	3	+	XM 006540581.2	Atp10a	ATPase, class V, type 10A, transcript variant X2
chr8	47082210	3.608	AATAAA	18	+	NM_026922.1	Atp2c2	ATPase, Ca++ transporting, type 2C, member 2
chr8	47083460	4.236	AATACA	1	1	NM_026922.1	Atp2c2	ATPase, Ca++ transporting, type 2C, member 2
chr11	66850492	7.45	AATAAA	4	_+	XR 879509.1	Brcal	breast cancer 1, transcript variant X2
chr11	66850447	3.664	GATAAA	4	+	XR 879509.1	Brcal	breast cancer 1, transcript variant X2
chr19	30172932	6.01	AATAAA	34	1	NM 001080706.1	Btafl	BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, (Mot1 homolog, S. cerevisiae)
chr19	30131551	6.044	ATTAAA	4	+	NM 001080706.1	Btafl	BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, (Mot1 homolog, S. cerevisiae)
chrl	10126849	6.484	AATAAA	7	+	XM 006496519.2	C130026I21Rik	RIKEN cDNA C130026121 gene, transcript variant X9
chrl	10126752	7.306	ATTAAA	6	+	XM 006496519.2	C130026I21Rik	RIKEN cDNA C130026121 gene, transcript variant X9
chr11	59784116	8.685	AATAAA	1504	1	NM 001177890.1	Cacnalg	calcium channel, voltage-dependent, T type, alpha 1G subunit, transcript variant 4
chr11	59775705	5.369	ATTAAA	7	+	NM 001177890.1	Cacna1g	calcium channel, voltage-dependent, T type, alpha 1G subunit, transcript variant 4
chr5	8960541	4.99	AATAAA	2		XR 389739.2	Cdk5	cyclin-dependent kinase 5, transcript variant X3
chr5	8963418	3.737	AATAAA	1	1	XM_006535626.2	Cdk5	cyclin-dependent kinase 5, transcript variant X1
chr4	3717410	8.608	AATAAA	1	+	NM 001081047.1	Cnksr1	connector enhancer of kinase suppressor of Ras 1
chr4	3718458	4.402	ATTAAA	4	+	NM 001081047.1	Cnksr1	connector enhancer of kinase suppressor of Ras 1

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

Chr	PolyA- site	PolyA- score	Testis PAS	Reads	Strand	Accession Number	Short Gene Name	Full Gene Name
chr6	5116584	7.108	AGTAAA	13		XM_011241052.1	Col28a1	collagen, type XXVIII, alpha 1, transcript variant X1
chr6	5112325	4.218	ATTAAA	4	I	XM_011241052.1	Col28a1	collagen, type XXVIII, alpha 1, transcript variant X1
chr6	5118096	5.181	ATTAAA	19	I	XM_011241052.1	Col28a1	collagen, type XXVIII, alpha 1, transcript variant X1
chr17	32848847	3.614	AATAAA	2	+	NM_001081335.2	Cul9	cullin 9
chr17	32847281	3.804	AGTAAA	ŝ	+	NM_001081335.2	Cul9	cullin 9
chr19	3808832	7.722	AATAAA	5	+	XM_006526639.1	Ddb1	damage specific DNA binding protein 1, transcript variant X1
chr19	3816303	5.28	GATAAA	13	+	XM_006526639.1	Ddb1	damage specific DNA binding protein 1, transcript variant X1
chr2	32819563	8.03	AATAAA	27	+	NM 138306.2	Dgkz	diacylglycerol kinase zeta, transcript variant 2
chr2	32820008	3.313	AATAAA	18	+	NM_138306.2	Dgkz	diacylglycerol kinase zeta, transcript variant 2
chr12	76551869	5.402	AATAAA	5		NM 010060.3	Dnah11	dynein, axonemal, heavy chain 11
chr12	76553476	3.426	AATAAA	58	I	NM_010060.3	Dnah11	dynein, axonemal, heavy chain 11
chr11	70336456	4.146	AATAAA	4	÷	XM 011249261.1	Efcab3	EF-hand calcium binding domain 3, transcript variant X1
chr11	70341360	9.013	AATAAA	~	+	XM 011249261.1	Efcab3	EF-hand calcium binding domain 3, transcript variant X1
chr11	70268691	6.759	ATTAAA	187	1	XM_011249261.1	Efcab3	EF-hand calcium binding domain 3, transcript variant X1
chr11	70268644	10.94	CATAAA	7		XM 011249261.1	Efcab3	EF-hand calcium binding domain 3, transcript variant X1
chr7	28826731	6.082	AATAAA	77	1	NM_001040131.2	Eif4g2	eukaryotic translation initiation factor 4, gamma 2, transcript variant 2
chr7	28825669	5.683	ATTAAA	8		NM_001040131.2	Eif4g2	eukaryotic translation initiation factor 4, gamma 2, transcript variant 2
chr7	28825725	5.91	CATAAA	4		NM_001040131.2	Eif4g2	eukaryotic translation initiation factor 4, gamma 2, transcript variant 2
chr4	3718458	4.402	ATTAAA	4	+	NM 001081047.1	Cnksr1	connector enhancer of kinase suppressor of Ras 1

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

Chr	PolyA- site	PolyA- score	Testis PAS	Reads	Strand	Accession Number	Short Gene Name	Full Gene Name
chr16	18220846	6.13	AATAAA	8		NM_010143.1	Ephb3	Eph receptor B3
chr16	18222321	7.349	ATTAAA	1		NM_010143.1	Ephb3	Eph receptor B3
chr5	4081141	7.584	ATTAAA	6		NM 001243123.1	Fam193a	family with sequence similarity 193, member A
chr5	4081301	9.566	ATTAAA	2		NM_001243123.1	Fam193a	family with sequence similarity 193, member A
chr2	12269220	8.528	AATAAA	8		NM 001164770.1	Fbxw2	F-box and WD-40 domain protein 2, transcript variant 4
chr2	12269431	3.755	ATTAAA	1		NM 001164770.1	Fbxw2	F-box and WD-40 domain protein 2, transcript variant 4
chr7	27823724	8.041	ACTAAA	7	+	XM_011250554.1	Ffar2	free fatty acid receptor 2, transcript variant X7
chr7	27823851	6.575	GATAAA	10	+	XM_011250554.1	Ffar2	free fatty acid receptor 2, transcript variant X7
chr5	31458378	4.808	AATAAA	10		NM_001161738.1	Glmn	glomulin, FKBP associated protein, transcript variant 2
chr5	31462146	7.73	AATAAA	11	1	NM 001161738.1	Glmn	glomulin, FKBP associated protein, transcript variant 2
chr5	31458981	6.007	ATTAAA	15		NM_001161738.1	Glmn	glomulin, FKBP associated protein, transcript variant 2
chr14	35225295	4.516	AATAAA	3		XM_006519864.2	Gm29776	predicted gene, 29776, transcript variant X2
chr14	35224245	8.582	AGTAAA	1	-	XM_006519864.2	Gm29776	predicted gene, 29776, transcript variant X2
chr13	14717853	6.225	AATAAA	2489	+	XR 873900.1	Gm30411	predicted gene, 30411, transcript variant X4
chr13	14717939	8.688	ATTAAA	32	+	XR 873900.1	Gm30411	predicted gene, 30411, transcript variant X4
chr7	31202601	3.259	AATAAA	19.	+	NM_008155.4	Gpil	glucose phosphate isomerase 1
chr7	31202729	9.25	AATAAA	3	-	NM_008155.4	Gpil	glucose phosphate isomerase 1
chr10	24493619	4.413	AATAAA	4	-	XM_011243546.1	Hcfc2	host cell factor C2, transcript variant X7
chr10	24492888	5.231	ATTAAA	19		XR_871726.1	Hcfc2	host cell factor C2, transcript variant X9

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

Chr	PolyA- site	PolyA- score	Testis PAS	Reads	Strand	Accession Number	Short Gene Name	Full Gene Name
chr11	72989023	3.632	AATAAA	18		XM_006534505.2	Helz	helicase with zinc finger domain, transcript variant
chr11	72989698	8.984	IATTAAA	208		XM_006534505.2	Helz	helicase with zinc finger domain, transcript variant
chr13	3645770	9.748	AATAAA	5		XM_011244681.1	Iqgap2	IQ motif containing GTPase activating protein 2,
chr13	3653067	, 8.708	AATAAA	2	+	XM 011244681.1	Iqgap2	IQ motif containing GTPase activating protein 2,
chr18	20832824	۱ 6.976	AATAAA	371	+	NM 001162942.1	Mapre2	microtubule-associated protein, RP/EB family, member 2, transcript variant 3
chr18	20832910	6.286	AATAAA	18	+	NM 001162942.1	Mapre2	microtubule-associated protein, RP/EB family, member 2, transcript variant 3
chr6	5166126	3.789	AATAAA	11		XM 006505086.2	Mios	missing oocyte, meiosis regulator, homolog (Drosophila), transcript variant X1
chr6	5184289	7.77	'ATTAAA	11		XM 006505086.2	Mios	missing oocyte, meiosis regulator, homolog
chr9	4386888	4.394	IAATAAA	2	+	XM_006509892.1	Mmp1b	matrix metallopeptidase 1b (interstitial collagenase), transcript variant X1
chr9	4386712	7.588	AATACA	6	+	XM_006509892.1	Mmp1b	matrix metallopeptidase 1b (interstitial collagenase), transcript variant X1
chr6	91438451	7.43	AATAAA	3	+	NR_027619.1	Mug-ps1	murinoglobulin, pseudogene 1
chr6	91439296	8.479	AATAAA	6		NR_027619.1	Mug-ps1	murinoglobulin, pseudogene 1
chr17	57343392	7.794	IAATAAA	206523		XM_006524822.1	Myl12a	myosin, light chain 12A, regulatory, non-sarcomeric,
chr17	57343222	5.157	'ATTAAA	6		XM 006524822.1	Myl12a	myosin, light chain 12A, regulatory, non-sarcomeric, transcript variant X1
chr17	57343479	7.05	CATAAA	20	+	XM 006524822.1	Myl12a	myosin, light chain 12A, regulatory, non-sarcomeric, transcript variant X1
chr8	4259731	5.676	AATAAA	40		XM_006530574.2	Nr3c2	nuclear receptor subfamily 3, group C, member 2, transcript variant X1
chr8	4256485	4.268	TATAAA	3	+	XM 006530577.2	Nr3c2	nuclear receptor subfamily 3, group C, member 2, transcript variant X3

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

	PolyA-	PolyA-			_	Accession	Short Gene	
Chr	site	score	Testis PAS	Reads	Strand	Number	Name	Full Gene Name
chrl	30859902	7.005	AGTAAA	ю.		NR_104361.1	Osgep11	O-sialoglycoprotein endopeptidase-like 1, transcript variant 3
chrl	30859665	4.227	TATAAA	1.		XR_373262.2	Osgep11	O-sialoglycoprotein endopeptidase-like 1, transcript variant X1
chr19	5106679	6.35	AAAAG	1.	+	NM_172635.3	Patl1	protein associated with topoisomerase II homolog 1 (yeast)
chr19	5107747	6.829	AATAAA	17.		NM_172635.3	Patl1	protein associated with topoisomerase II homolog 1 (yeast)
chr19	5131574	7.006	AATAAA	1		NM 172635.3	Patl1	protein associated with topoisomerase II homolog 1 (yeast)
chr19	10664318	6.678	ATTAAA	8	+	NM_001190483.1	Pcsk5	proprotein convertase subtilisin/kexin type 5, transcript variant 1
chr19	10980026	8.908	ATTAAA	9.	+	NM_001190483.1	Pcsk5	proprotein convertase subtilisin/kexin type 5, transcript variant 1
chr15	37305745	7.283	AATAAA	7.	1	NM_011117.2	Plec	plectin, transcript variant 1
chr15	37296015	7.391	ATTAAA	2.		NM_011117.2	Plec	plectin, transcript variant 1
chr16	34012000	3.439	AATAAA	36.		XM_006522734.2	Polq	polymerase (DNA directed), theta, transcript variant X2
chr16	34013228	6.358	AATAAA	6.		XM_006522734.2	Polq	polymerase (DNA directed), theta, transcript variant X2
chr9	37459367	3.908	AATAAA	4	+	XM_006510643.2	Ppp2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant X4
chr9	37455839	3.041	AATATA	14-	+	XM_006510643.2	Ppp2r1b	protein phosphatase 2, regulatory subunit A, beta, transcript variant X4
chr19	3385731	5.505	AATAAA	673	+	NM_011224.1	Pygm	muscle glycogen phosphorylase
chr19	3387996	3.602	AATAAA	3.	+	NM_011224.1	Pygm	muscle glycogen phosphorylase
chr15	60743948	7.196	AATAAA	- -		NM 001253809.1	Racgap1	Rac GTPase-activating protein 1, transcript variant 3
chr15	60748566	5.202	AATAAA	444.		NM 001253809.1	Racgap1	Rac GTPase-activating protein 1, transcript variant 3
chr15	60748818	5.238	AATATA	15.		NM 001253809.1	Racgap1	Rac GTPase-activating protein 1, transcript variant 3

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

	PolyA-	PolyA-				Accession	Short Gene	
Chr	site	score	Testis PAS	Reads	Strand	Number	Name	Full Gene Name
chr16	4040027	5.665	AATACA	147.		XM 006522171.2	Rbfox1	RNA binding protein, fox-1 homolog (C. elegans) 1, transcript variant X15
chr16	4040018	4.8	AGTAAA	17.	+	XM_006522171.2	Rbfox1	RNA binding protein, fox-1 homolog (C. elegans) 1, transcript variant X15
chr16	4039974	6.109	ATTAAA	191.		XM_006522171.2	Rbfox1	RNA binding protein, fox-1 homolog (C. elegans) 1, transcript variant X15
chr1	13129239	4.651	AATAAA	15.		XR 865164.1	Rdh10	retinol dehydrogenase 10 (all-trans), transcript variant X1
chr1	13131349	7.341	AATAAA	6.		XR 865164.1	Rdh10	retinol dehydrogenase 10 (all-trans), transcript variant X1
chr11	84799763	5.723	AATAAA	4.		XM_006534630.2	Rnf213	ring finger protein 213, transcript variant X1
chr11	84797944	8.78	AGTAAA	23.		XM_006534630.2	Rnf213	ring finger protein 213, transcript variant X1
chr11	84797991	7.227	ATTAAA	125.		XM_006534630.2	Rnf213	ring finger protein 213, transcript variant X1
chr16	8673174	9.264	AATAAA	1.	+	XM_006523038.2	Robo2	roundabout homolog 2 (Drosophila), transcript
chr16	8621658	3.626	ATTAAA	5.	+	XM_006523038.2	Robo2	roundabout homolog 2 (Drosophila), transcript variant X4
chr7	20191571	8.395	AATAAA	.9		NM 009103.3	Rrm1	ribonucleotide reductase M1
chr7	20216929	5.309	AATAAA	13.		NM 009103.3	Rrm1	ribonucleotide reductase M1
chr17	42929899	10.05	AATAAA	72.		XM 006524159.1	Safb2	scaffold attachment factor B2, transcript variant X3
chr17	42930148	5.291	AATAAA	22.	_	XM_006524157.2	Safb2	scaffold attachment factor B2, transcript variant X2
chr17	42910066	7.548	ATTAAA	1.		XM_006524157.2	Safb2	scaffold attachment factor B2, transcript variant X2
chr2	104505580	8.538	AATAAA	15	+	NM 012032.4	Serinc3	serine incorporator 3
chr2	104510480	7.152	AATAAA	6.		NM 012032.4	Serinc3	serine incorporator 3

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

Chr	PolyA- site	PolyA- score	Testis PAS	Reads	Strand	Accession Number	Short Gene Name	Full Gene Name
chr17	72008368	7.88	AATAAA	66	+	XM_011246335.1	Six2	sine oculis-related homeobox 2, transcript variant X2
chr17	72008327	7.448	TATAAA	1	+	XM 011246335.1	Six2	sine oculis-related homeobox 2, transcript variant X2
chr2	43538567	5.439	AATAAA	2	+	XM_006499047.2	Slc1a2	solute carrier family 1 (glial high affinity glutamate transporter), member 2, transcript variant X2
chr2	43537925	3.613	AATACA	1	+	XM 006499047.2	Slc1a2	solute carrier family 1 (glial high affinity glutamate transporter), member 2, transcript variant X2
chr11	62272947	9.323	AATAAA	19	+	XM_006534520.2	Sp2	Sp2 transcription factor, transcript variant X3
chr11	62274331	5.675	AATAAA	5	+	XM_006534520.2	Sp2	Sp2 transcription factor, transcript variant X3
chr5	8069175	9.224	AATAAA	12	+	NM 009274.2	Srpk2	serine/arginine-rich protein specific kinase 2
chr5	8067773	3.542	TATAAA	2	+	NM_009274.2	Srpk2	serine/arginine-rich protein specific kinase 2
chr5	8067865	8.007	TATAAA	9	+	NM_009274.2	Srpk2	serine/arginine-rich protein specific kinase 2
chr3	88392340	8.976	AATAAA	316	+	XR 375536.2	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X1
chr3	88888252	6.74	AATAAA	7		XM_006501628.1	Stpg2	sperm tail PG rich repeat containing 2, transcript variant X3
chr7	27992192	5.12	AATAAA	14	1	NM_009302.3	Swap70	SWA-70 protein
chr7	27992068	7.603	AATACA	1	+	NM 009302.3	Swap70	SWA-70 protein
chr19	32023062	8.732	ATTAAA	12	+	NM 145952.3	Tbc1d12	TBC1D12: TBC1 domain family, member 12
chr19	32022878	3.61	CATAAA	5	+	NM 145952.3	Tbc1d12	TBC1D12: TBC1 domain family, member 12
chr4	43579800	66.9	AATAAA	14	1	XM 006538046.2	Tbc1d2	TBC1 domain family, member 2, transcript variant X1
chr4	43579931	8.811	AATAAA	34	+	XM 006538046.2	Tbc1d2	TBC1 domain family, member 2, transcript variant X1

Table 14. Liver tissue annotation from mouse identifying transcript isoforms
į	PolyA-	PolyA-			, č	Accession	Short Gene	
Chr	site	score	Lestis PAS	Keads	Strand	Number	Name	Full Gene Name
chr11	62418307	5.24	AATAAA	278	+	NM_019507.2	Tbx21	T-box 21
chr11	62418387	3.647	AATACA	18	-	NM_019507.2	Tbx21	T-box 21
chr12	60128971	3.81	AAAAG	-	+	XM_006516305.2	Tc2n	tandem C2 domains, nuclear, transcript variant X6
chr12	60128929	5.119	AATATA	7	+	XM_006516305.2	Tc2n	tandem C2 domains, nuclear, transcript variant X6
chr12	60144326	5.535	ATTAAA	5	-	XM_011244191.1	Tc2n	tandem C2 domains, nuclear, transcript variant X3
chr2	25322231	6.731	AATAAA	46		XM_006499150.1	Tfpi	tissue factor pathway inhibitor, transcript variant X6
chr2	25354175	10.17	ATTAAA	325	-	XM_006499145.1	Tfpi	tissue factor pathway inhibitor, transcript variant X1
chr4	53873462	7.806	AATAAA	52	+	XM_011250037.1	Tmem245	transmembrane protein 245, transcript variant X1
chr4	53874889	4.668	ATTAAA	8	+	XM_011250037.1	Tmem245	transmembrane protein 245, transcript variant X1
chr4	11101523	3.713	AATAAA	15	+	XR_390735.1	Tmem82	transmembrane protein 82, transcript variant X1
chr4	11102358	4.099	AATAAA	10	+	XR_390735.1	Tmem82	transmembrane protein 82, transcript variant X1
chr4	43040893	5.503	AATAAA	20	-	XM_006537772.2	Tmod1	tropomodulin 1, transcript variant X1
chr4	43066124	5.093	TATAAA	1	+	NM 021883.2	Tmod1	tropomodulin 1
chr2	62169689	4.691	AGTAAA	11		XM 011239584.1	Trp53bp1	transformation related protein 53 binding protein 1, transcript variant X6
chr2	62169740	3.634	ATTAAA	7		XM 011239584.1	Trp53bp1	transformation related protein 53 binding protein 1, transcript variant X6
chr7	19833213	6.727	AATAAA	86	+	NM 001109897.2	Trpc2	transient receptor potential cation channel, subfamily C, member 2
chr7	19842280	5.183	AATAAA	14		NM_001109897.2	Trpc2	transient receptor potential cation channel, subfamily C, member 2
chrl	44059182	3.374	ATTAAA	20	+	XM_011238547.1	Unc80	unc-80 homolog (C. elegans), transcript variant X9
chr1	44160740	8.761	CATAAA	8		XM 011238547.1	Unc80	unc-80 homolog (C. elegans), transcript variant X9

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

	PolyA-	PolyA-				Accession	Short Gene	
Chr	site	score	Testis PAS	Reads	Strand	Number	Name	Full Gene Name
chr17	6040130	5.244	AATAAA	5	+	NM_001104564.1	Vmn2r102	vomeronasal 2, receptor 102
chr17	6039167	6.767	TATAAA	10	+	NM_001104564.1	Vmn2r102	vomeronasal 2, receptor 102
chr10	21088585	6.742	AATAAA	18	+	NM_175936.1	Vmn2r81	vomeronasal 2, receptor 81
chr10	21088688	5.255	AATAAA	50	+	NM_175936.1	Vmn2r81	vomeronasal 2, receptor 81
chr11	23389741	6.001	AATAAA	12	+	XM_006514801.2	Vrk2	vaccinia related kinase 2, transcript variant X1
chr11	23389742	6.637	AATAAA	3	1	XM 006514801.2	Vrk2	vaccinia related kinase 2, transcript variant X1
chr11	23389801	9.622	TATAAA	9	+	XM_006514801.2	Vrk2	vaccinia related kinase 2, transcript variant X1
chr2	91563825	4.125	AATAAA	57	+	NM_054068.2	Vsx1	visual system homeobox 1 homolog (zebrafish)
chr2	91562640	3.845	ATTAAA	1	+	NM_054068.2	Vsx1	visual system homeobox 1 homolog (zebrafish)
chr2	91564870	8.66	ATTAAA	75	+	NM_054068.2	Vsx1	visual system homeobox 1 homolog (zebrafish)
chr4	8070517	4.724	AATAAA	9		XM_006539245.2	Vwa5b1	von Willebrand factor A domain containing 5B1, transcript variant X6
chr4	8072409	5.393	AATAAA	10	1	XM_006539245.2	Vwa5b1	von Willebrand factor A domain containing 5B1, transcript variant X6
chr12	74644394	7.688	AATAAA	12	1	XR_381520.2	Wdr60	WD repeat domain 60, transcript variant X2
chr12	74645033	8.417	AATAAA	3	-	XR_381520.2	Wdr60	WD repeat domain 60, transcript variant X2
chr12	74644786	7.579	GATAAA	7	-	XR_381520.2	Wdr60	WD repeat domain 60, transcript variant X2
chr17	32550043	5.417	ATTAAA	13	1	NM_028198.2	Xpo5	exportin 5
chr17	32553462	6.879	ATTAAA	32	1	NM 028198.2	Xpo5	exportin 5
chr2	60090049	8.037	AATAAA	3138		NM 028054.3	Zfyve19	zinc finger, FYVE domain containing 19, transcript variant 1
chr2	60090135	7.184	AATAAA	6	-	NM_028054.3	Zfyve19	zinc finger, FYVE domain containing 19, transcript variant 1
chr2	60090259	7.647	TATAAA	23	1	NM 028054.3	Zfyve19	zinc finger, FYVE domain containing 19, transcript variant 1

Table 14. Liver tissue annotation from mouse identifying transcript isoforms

		Category Hit	
	Number	Against Total	
Category	of Genes	Genes	Subcategories
			cell communication (9), cell cycle
11 1			(4), cellular component movement
cellular process	14	16.66666667	(2), cytokinesis (2)
			biosyntheric process (2), catabolic
			process (1), generation of
			(1) nitro con compound ano cost
			(1), httrogen compound process (3), phosphate containing
			compound metabolic process (2)
metabolic process	14	16 66666667	primary metabolic process (10)
	11	10.0000007	
localization	12	14.28571429	RNA localization (1), transport
			regulation of biological processes
			(3), regulation of molecular
biological regulation	9	10.71428571	function (7)
			anatomical structure
			differentiation (1) death (1)
			ectoderm development (1),
developmental process	7	8.333333333	mesoderm development (4).
	,	0.5555555555	
			cellular defense response (1),
			immune response (2), response to
			biotic stimulus (1), response to
response to stimulus	7	8.333333333	external stimulus (2), response to
cellular component			cellular component biogenesis (1),
organization or		7 1 400 571 40	cellular component organization
biogenesis	6	7.142857143	(6)
immune system process	6	7.142857143	immune response (2)
multicelluar organismal	(7 1 400 5 7 1 40	single-multicellular organism
process	0	/.14285/143	
apoptotic process		1.1904/619	[no hit for lower level categories]
biological adhesion	1	1.19047619	cell adhesion (1)
reproduction	1	1.19047619	gamete generation (1)

Table 15. Gene ontology for biological processes in mouse annotatedtranscripts

Gene ontology (GO) was performed on comprehensive mouse annotated transcripts using PANTHER Classification System to identify represented biological processes.

Gene Short Name	Full Gene Name	Cell Specificity	Base Pairs (bps)	Round Spermatids	Spermatocytes
C-Kit	kit kit oncogene	spermatogonia	145	-	-
GFRα-1	glial cell line derived neurotropic factor family receptor alpha 1	spermatogonia	608	-	-
P450scc	cytochrome P450, family 11, subfamily A, polypeptide 1	Leydig	169	-	-
SYCP3	synaptonemal complex protein 3	Spermatocyte	469	-	+
Dbil5	diazepam binding inhibitor-like 5	round spermatid	121	+	_
PRM2	protamine 2	round spermatid	276	+	-
FSHR	follicle stimulating hormone receptor	Sertoli cell	356	-	-

Table 16. Isolated male germ cell purity validated with germ cell-specific primers

"+" = gene amplification, indicated by banding on gels, following RT-PCR

"-" = no gene amplification

Gene Short Name	Accession Number	bps	Forward Primer 5'> 3'	Reverse Primer 5'> 3'
C-Kit	X65998 1	145	CGCTCCAA- GAATGTAAGTGGC	CCCTGCTTTCGGTTAC-
GFRa-1	NM 010279.2	608	GCGACAGAC- TATCGTCCCTG	CACCAGCGAGAC- CATCCTTT
P450scc	NM_019779.3	169	GGTTCCACTCCTCAAA- GCCA	AAAGAAGCCCG- GATCTCGAC
SYCP3	NM_011517.2	469	CCTCAGATGCTTCGAGG GTG	CCCACTGCTG- CAACACATTC
Dbil5	NM_021294.2	121	CCCAGGGCGACTG- TAACATC	GCAATGTAGATCCTCATG GCAT
PRM2	NM_008933.1	276	ACAAGACCATGAAC- GCGAGG	GAGGCTTAG- TGATGGTGCCT
FSHR	NM_013523.3	356	TCATT- GAGGCCAGCCTTACC	CACTGTGGTGTTCCCAG- TGA

Table 17. Germ cell-specific primers used in PCR validation

	Input	Output	Percent Yield
Mouse Testis RNA	5µg	15.71ng	0.314%
Male Germ Cell			
RNA	2.5-5µg	0.8-2ng	0.04%

Table 18. Production of polyA+ mRNA

Yield of polyA+ mRNA from total RNA of male germ cell populations using the Oligotex mRNA Mini kit.

BIBLIOGRAPHY

- Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male-factor infertility: An update. Am J Repro Immunol 2008; 59: 2-11.
- Balhorn R. A model for the structure of chromatin in mammalian sperm. Jour of CellBio 1982; 93: 298-305.
- Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004; 116: 281-297.
- Bastos H, Lassalle B, Chicheportiche A, Riou L, Testart J, Allemand I, Fouchet P.
 Flow cytometric characterization of viable meiotic and postmeiotic cells by
 Hoechst 33342 in mouse spermatogenesis. ISAC 2005; 65A: 40-49.
- Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of prepuberal mouse isolation and morphological characterization. JCB 1977; 74: 68-85.
- Braun RE. Packaging paternal chromosomes with protamine. Nature 2001; 8: 10-12.
- Bryant JM, Meyer-Ficca ML, Dang VM, Berger SL, Meyer RG. Separation of spermatogenic cell types using STA-PUT velocity sedimentation. J Vis Exp 2013; 80: 1-9.
- Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 2007; 13: 313-327.
- Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 2001; 22: 604-610.
- Chang YF, Lee-Chang JS, Panneerdoss S, MacLean JA, Rao MK. Isolation of Sertoli,

Leydig, and spermatogenic cells from the mouse testis. BioTechniques 51:341-344.

- Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 2009; 7:e1000112.
- Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 1993; 15: 532-537.
- Darmon SK, Lutz CS. Novel upstream and downstream sequence elements contribute to polyadenylation efficiency. RNA Biol 2012; 10: 1255-1265.
- Dass B, Tardif S, Park JY, Tian B, Weitlauf HM, Hess RA, Carnes K, Griswold MD, Small CL, MacDonald CC. Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. Proc of the National Acad of Sci 2007; 104: 20374-20379.
- Derti A, Garrett-Engele P, MacIsaas KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T. A quantitative atlas of polyadenylation in five mammals. Genome Res 2012; 22: 1173-1183.
- Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011; 43: 853-866.
- Eddy EM. Regulation of gene expression during spermatogenesis. Semin Cell Dev Biol 1998; 9: 451-457.

Eddy EM. Male germ cell gene expression. Recent Prog Horm Res 2002; 57: 103-128.

Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 2013; 14: 496-506.

- Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reproductive BioMedicine Online 2007; 14: 734-745.
- Fox-Walsh K, Davis-Turak J, Zhou Y, Li H, Fu XD. A multiplex RNA-seq strategy to profile poly(A+)RNA: Application to analysis of transcription response and 3'end formation. Genomics; 98:266-271.
- Garrido N, Martínez-Conejero JA, Jauregui J, Horcajadas JA, Simón C, Remohí J, Meseguer M. Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Amer Society for Repro Med 2009; 91: 1307-1310.
- Getun IV, Torres B, Bois PRJ (2011): Flow cytometry purification of mouse meiotic cells. JoVE 2011; 50: 1-3.
- Gilbert SF. Developmental Biology. 6th ed. Sunderland, MA: Sinauer Associates; 2000. Spermatogenesis. Available from:

http://www.ncbi.nlm.nih.gov/books/NBK10095/.

- Gupta I, Clauder-Münster S, Klaus B, Järvelin AI, Aiyar RS, Benes V, Wilkening S,
 Huber W, Pelechano V, Steinmetz LM. Alternative polyadenylation diversifies
 post-transcriptional regulation by selective RNA-protein interactions. Mol Syst
 Biol 2014; 10(2): 719.
- Hafez D, Ni T, Mukherjee S, Zhu J, Ohler U. Genome-wide identification and predictive modeling of tissue-specific alternative polyadenylation.ISMB/ECCB 2013; 29: i108-i116.

- Hogue M, Li W, Tian B. Accurate mapping of cleavage and polyadenylation sites by 3'region extraction and deep sequencing. Methods Mol Biol 2014; 1125:119-129.
- Hoyert DL, Xu J. Deaths: Preliminary Data for 2011. NVSS 2012; 61: 1-52.
- Jamsai D, O'Bryan MK. Mouse models in male fertility research. Asian Jour of Andrology 2011; 13: 139-151.
- Ji A, Luo W, Li W, Hoque M, Pan Z, Zhao Y, Tian B. Transcriptional activity regulates alternative cleavage and polyadenylation. Molecular Systems Biology 2011; 7:534-546.
- Kleene KC. Connecting cis-elements and trans-factors with mechanisms of development regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 2013; 146(1): 1-19.
- Lai DP, Tan S, Kang YN, Wu J, Ooi HS, Chen J, Shen TT, Qi Y, Zhang X, Guo Y,
 Zhu T, Liu B, Shao Z, Zhao X. Genome-wide profiling of polyadenylation
 sites reveals a link between selective polyadenylation and cancer metastasis.
 Hum Mol Genet 2015; 24(9): 1-8.
- Lee LK, Foo KY. Recent insights on the significance of transcriptomic and metabolic analysis of male factor infertilty. Clin Biochem 2014; 47(2014): 973-982.
- Lee K, Haugen HS, Clegg CH, Braun RE. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci 1995; 92: 12451-12455.
- Legendre M, Ritchie W, Lopez F, Gautheret D. Differential repression of alternative transcripts: A screen for miRNA targets. PLOS 2006; 2: 1-10.

- Lewis SEM. Is sperm evaluation useful in predicting human fertility? Jour of the Soc for Reprod and Fertility 2007; 134: 31-40.
- Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W.H. Freeman; 2000.
- Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes & Development 2013; 27: 1-16.
- Lin Y, Li Z, Ozsolak F, Kim SW, Arango-Argoty G, Liu TT, Tenenbaum SA, Bailey T, Monaghan AP, Milos PM, John B. An in-depth map of polyadenylation sites in cancer. Nuc Acids Res 2012; 40: 8460-8469.
- Liu D, Brockman M, Dass B, Hutchins LN, Singh P, McCarrey JR, MacDonald CC, Graber JH. Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis. Nuc Acids Research 2007; 35: 234-246.
- Liu Y, Niu M, Yao C, Hai Y, Yuan Q, Liu Y, Guo Y, Li Z, He Z. Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling. Sci Rep 2015; Jan 30;5:8084. doi: 10.1038/srep08084.
- Lu J, Bushel PR. Dynamic expression of 3'UTRs revealed by Poisson hidden Markov modeling of RNA-Seq: implications in gene expression profiling. Gene 2013; 527(2): 616-623.
- Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3'-end processing. Cell Mol Life Sci 2008; 65: 1099-122.

Martin KC, Casadio A, Zhu H, E Y, Rose JC, Chen M, Bailey CH, Kandel ER.

Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 1997; 91(7): 927-938.

- Mayr C, Bartel DP. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009; 138: 673-684.
- Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nature 2008; 14: 1197-1210.
- McGarvey KM, Goldfarb T, Cox E, Farrell CM, Gupta T, Joardar vS, Kodali VK,
 Murphy MR, O'Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD,
 Webb D, Wright MW, Murphy TD, Pruitt KD. Mouse genome annotation by
 the RefSeq project. Mamm Genome 2015; 26(9-10): 379-390.
- McMahon KW, Hirsch BA, MacDonald CC. Differences in polyadenylation site choice between somatic and male germ cells. BMC Molecular Biology 2006; 7: 1471-2199.
- Mitra M, Johnson EL, Coller HA. Alternative polyadenylation can regulate posttranslational membrane localization. Trends Cell Mol Biol 2015; 10: 37-47.
- Ni T, Yang Y, Hafez D, Yang W, Klesewetter K, Wakabayashi Y, Ohler U, Peng W and Zhu J. Distinct polyadenylation landscapes of diverse human tissues revealed by modified PA-seq strategy. BMC Genomics 2013; 14:615.
- Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, John B, Milos PM. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010; 143:1018-1029.
- Patel ZP, Niederberger CS. Male factor assessment in infertility. Med Clin of North

Amer 2011; 95: 223-234.

Pang ALY, Johnson W, Ravindrananth N, Dym M, Rennert OM, Chan WY. Expression profiling of purified male germ cells: stage-specific expression patterns related to meiosis and postmeiotic development. Physiol Genomics 2006; 24: 75-85.

Rosner B. Fundamentals of biostatistics, third edition. Duxbury Press; 1990.

- Roy A, Lin Y, Matzuk MM. Genetics of idiopathic male infertility. The Genetics of Male Infertility 2007; 99-111.
- Saner-Amigh KJ, Halvorson LM. Andrology and fertility assessment. LabMedicine 2011; 42: 41-50.
- Sanger PL. Pathways to pregnancy and parturition. Washington: Current Conceptions; 2003.
- Sartini BL, Wang H, Wang W, Millette CF, Kilpatrick DL. Pre-messenger RNA cleavage factor I (CFm): Potential role in alternative polyadenylation during spermatogenesis. Biology of Reproduction 2008; 78: 472-482.
- Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 2011; 17:761-772.
- Shi Y. Alternative polyadenylation: New insights from global analyses. RNA Jour 2012; 18: 2105-2117.

- Sun J, Zhong L, Zhu Y, Liu G. Research on the isolation of mouse Leydig cells using differential digestion with a low concentration of collagenase. J Reprod Dev 2011; 57: 433–436.
- Sun Y, Fu Y, Li Y, Xu A. Genome-wide alternative polyadenylation in animals: insights from high throughput technologies. Jour of Mol Cell Bio 2012; 0:1-10.
- Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of humans and mouse genes. Nucleic Acids Res 2005; 33:201-212.
- Tseden K, Topaloglu O, Meinhardt A, Dev A, Adham I, Müller C, Wolf S, Böhm D, Schlüter G, Engel W, Navernia K. Premature translation of transition protein 2 mRNA causes sperm abnormalities and male infertility. Mol Reprod Dev 2007; 3:273-279.
- Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoforms regulation in human tissue transcriptomes. Nature 2008; 456:470-476.
- Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. PMC 2009; 10:57-63.
- White-Cooper H, Davidson I. Unique aspects of transcription regulation in male germ cells. CSH Perspect 2011; 1-17. Doi:10.1101/cshperspect.a002626.
- Yang C-K, Yen P. Differential Translation of Dazap1 Transcripts during Spermatogenesis. Yan W, ed. PLoS ONE 2013; 8(4):e60873. doi:10.1371/journal.pone.0060873.

Zhou Y, Li HR, Huang J, Jin G, Fu XD. Multiplex analysis of PolyA-linked sequences (MAPS): an RNA-Seq strategy to profile Poly(A+) RNA. Methods Mol Biol 2014; 1125:169-178.