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The development of the photonic crystal fibers (PCFs or microstructured fibers) has 

been one of the most intellectually exciting events in the optics community within the 

past few years. The introduction of air-hole structures in PCFs allows for new degrees of 

freedom to manipulate both the dispersion and optical nonlinearities of the fibers. Not 

only the zero group-velocity-dispersion of a PCF can be engineered from 500 nm to 

beyond 1500 nm, but the extremely high optical nonlinearities of PCFs also lead to 

ultrabroadband supercontinuum generation (>1000 nm) when pumped by nanoJoules 

femtosecond Ti:Sapphire laser pulses. Therefore, PCF is an ideal system for investigating 

nonlinear optics. 

In this dissertation, we present results of controlling nonlinear optical processes in 

PCFs by adjusting the input pulse properties and the fiber dispersion. We focus on 

supercontinuum, resulting from the extreme nonlinear processes. A simulation tool based 



xiii 

on the extended nonlinear Schrödinger equation is developed to model our experiments 

and predict output spectra.  

To investigate the impact of input pulse properties on the supercontinuum 

generation, we perform open- and closed-loop control experiments. Femtosecond pulse 

shaping is used to change the input pulse properties. In the open-loop (intuitively 

designed) control experiments, we investigate the effects of input pulse spectral phase on 

the bandwidth of supercontinuum generation. Furthermore, we use phase-sculpted 

temporal ramp pulses to suppress the self-steepening nonlinear effect and generate more 

symmetric supercontinuum spectrum. Using the genetic algorithm in closed-loops 

(adaptive) control experiment to synthesize the appropriate temporal pulse shape, we 

enhance the supercontinuum generation bandwidth and perform control of soliton self-

frequency shift. For both the open- and closed-loop control, simulation results show good 

agreement compared with the experiment optimized spectra. To our knowledge, this is 

the first time that femtosecond pulse shaping has been used to control the pulse nonlinear 

propagations in PCFs. 

We also develop a pulse compression model to study how the microstructured fiber 

dispersion characteristics can affect the supercontinuum temporal compressions. Using 

numerically simulated dispersion-flattened microstructured fibers at different 

wavelengths, simulation results show that it is possible to compensate the stable 

supercontinuum spectral phase and compress the pulse to the few-cycle regime. 
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CHAPTER 1 
INTRODUCTION 

Optical fibers have tremendous impact on the modern world. In 1979, progress in 

the fiber fabrication technology made it possible to manufacturer optical fibers with loss 

merely 0.2 dB/km in the 1550 nm wavelength region [1]. Conventional optical fibers are 

made of fused silica, which has zero group velocity material dispersion wavelength at 

1300 nm. The design of the conventional fiber (e.g., core size, refractive index 

differences between core and cladding) can shift the zero GVD of the fiber to 1550 nm. 

Optical fibers at this wavelength with low loss and small dispersion have revolutionized 

the telecommunications industry [2]. Meanwhile, optical fibers have also rapidly 

progressed the field of nonlinear fiber optics in the last 30 years [3]. Various nonlinear 

effects, including self-phase modulation, stimulated Raman scattering, parametric four-

wave-mixing, etc., have been studied extensively and the theory is well established by 

now. 

The emergence of photonic crystal fibers (PCFs) [4, 5] and their ability to easily 

generate supercontinuum have been one of the hottest topics in the optics community for 

the past several years. Photonic crystal fibers (e.g., microstructured fibers and photonic 

bandgap fibers) exhibit many special properties when compared to that of conventional 

fibers, mainly because of their unique design structures. Microstructured fibers [6] 

consist of a solid silica core surrounded by an array of air holes running along the fiber 

and its light guiding mechanisms is similar to that of conventional fibers. Photonic 

bandgap fibers (PBFs) [7] have a hollow core surrounded by the air-holes array, and the 
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guided light is confined to the low index core by the photonic bandgap effect. The air-

holes configuration of the PCFs gives a whole new level of freedom in the fiber design. 

Many PCFs that exhibit novel dispersion and nonlinear properties have been developed 

by carefully choosing the core size and air-filling fraction (air-hole size and pitch) of the 

PCFs. In particular, the zero group velocity dispersion wavelength of the PCFs can be 

engineered at any wavelength from 500 nm to above 1500 nm, which evidently make the 

Ti:Sapphire laser wavelength in the anomalous dispersion region of the PCFs. The 

tailorable dispersion properties and high nonlinearities exhibit in the PCFs lead to the 

ultrabroadband supercontinuum generation. The impact of the supercontinuum generation 

on the optical community is phenomenal and it has led to a renewed interest in 

investigating nonlinear fiber optics. In principle, the nonlinear mechanisms that lead to 

the supercontinuum generation for PCFs are similar to that of conventional fibers. 

However, the unique dispersion properties and high nonlinearities of the PCFs determine 

that the magnitude of the nonlinear processes is large in magnitude and the required 

power for the input pulse to generate sufficient broadband spectrum is much less than that 

for the conventional fibers. As a result, over an octave-spanning ultrabroadband 

supercontinuum can be generated using Ti:Sapphire laser pulses with only nJ-level 

energy [6]. 

The PCFs and the subsequent supercontinuum generation exhibit unparalleled 

properties, well beyond what conventional fiber can ever offer. These properties have 

distinguished themselves through a wide range of applications in the ever-widening area 

of science and technology. For example, the most important application of the 

supercontinuum generation lies in the field of optical metrology. The ultrabroad 



3 

 

bandwidth coherent light makes the measurement of relative frequency offsets possible. 

This led to the work of absolute optical frequency measurement which is one of the 

subjects of the 2005 Nobel price in Physics by Theodor Hänsch and John L. Hall [8]. 

Because supercontinuum generation in PCFs is a nonlinear effect in the extreme 

sense of “nonlinear,” researchers have put a great deal of effort to understand what kind 

of nonlinear interactions in the PCFs lead to the supercontinuum generation, what role 

and order and magnitude they are playing in the generation process. During this 

exploration, various simulation models have definitely played an important role. 

Simulation models based on the nonlinear Schrödinger equation are by far the most 

successful methods and have been well accepted by many researchers [9]. Now, it is 

commonly understood that supercontinuum generation is initialized by high order soliton 

generation, followed by the soliton splitting among with other nonlinear effects [10, 11]. 

Meanwhile, however, broadband noise of the supercontinuum generation in the PCFs has 

led to amplitude fluctuations as large as 50% for certain input pulse parameters [12]. 

Furthermore, supercontinuum generation is found to be extremely sensitive to the input 

pulse noise. Both the experiment and simulation have revealed that for the reasonable 

power fluctuations of the laser systems, sub-nanometer spectral structures of the 

supercontinuum vary from shot to shot [9, 13]. This problem greatly limits the 

application scope of supercontinuum generation.  

Although controlling supercontinuum generation (or any nonlinear process) is in 

general difficult because of the intrinsic fiber nonlinearity response to the input electric 

field, control of the supercontinuum generation is desirable and it will allow us to tailor 

the supercontinuum properties to suit for a specific application. It is also commonly 



4 

 

understood that the supercontinuum generations depend critically on both the input pulse 

properties and PCF characteristics. In this dissertation we will present the results of 

controlling supercontinuum generations using both of these two approaches. In particular, 

we investigate how the femtosecond pulse shaping can be used to control the 

supercontinuum generation by controlling the evolution of the temporal and spectral 

structure of optical pulses propagating in the microstructured fibers. We also simulate the 

supercontinuum pulse compression using the dispersion-flattened microstructured fibers.  

Femtosecond pulse shaping promises great advantages to the fields of fiber optics 

and photonics, ultrafast spectroscopy, optical communications and physical chemistry. In 

general, the pulse characteristics (e.g., pulse intensity modulation and pulse spectral chirp) 

one wants to use for a specific application may be different from what a laser system can 

directly offer. On the other hand, when optical pulses travel in a complex optical system, 

the optical components in the system will introduce significant amount of dispersion, 

which compromises the characteristics of ultrashort optical pulses. All these problems 

can be solved using femtosecond pulse shaping to alter the pulse intensity temporal 

profile for a specific application. Meanwhile, working with adaptive search algorithms 

(such as genetic algorithms) to efficiently search all the possible solutions for a direct 

target, adaptive pulse shaping has proven to be very useful when an intuitive driving 

pulse can not be directly derived. 

In this dissertation, we use femtosecond pulse shaping to change the input pulse 

properties and control the supercontinuum generations in the PCFs. Depending on 

whether an intuitive driving pulse is available, we present the results of both open- and 

closed-loop (adaptive) control experiments. Open-loop control schematics utilize 
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underlying physics to derive a suitable driving pulse. The experiment results of pulse 

shaping that change both the pulse spectral chirps and pulse intensity modulation (ramp 

pulse) are presented. Meanwhile, a simulation model based on the extended nonlinear 

Schrödinger equation using a split-step Fourier method is developed. We use this 

simulation tool to model our experimental control results. We use the adaptive pulse 

shaping to control supercontinuum bandwidth and soliton self-frequency shift. Again, the 

nonlinear Schrödinger equation modeled results for the adaptive pulse shaping helps us to 

understand why the final derived driving pulse can interact with the PCF and achieve the 

desired supercontinuum. To our knowledge, this is the first demonstration on how 

femtosecond pulse shaping can be used to control the evolution of the temporal and 

spectral structure of optical pulses propagating in PCFs. 

Pulse compression is one of the most obvious, yet most challenging, applications of 

the supercontinuum generations in PCFs. Because of the ultra-broad bandwidth of the 

supercontinuum, pulse duration of the compression results is expected to be within the 

few-optical-cycle regime. However, the fluctuations in the spectral phase of the 

supercontinuum generation for the input pulse and propagation noise greatly increase the 

difficulties of performing the pulse compression. Experimentally, the coherence of the 

supercontinuum (used as a benchmark for the potential compressibility of the 

supercontinuum generation) can be severely compromised due to the inherent 

fluctuations of the input pulse. However, theoretical investigations have revealed that the 

coherence increases linearly with a shorter fiber propagation length [14] and there exists 

an optimum compressed distance at which compressed pulses with negligible fluctuation 

and time shift can be obtained [15]. Therefore all current pulse compression experiments 
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involve a short piece of PCF, ranging from several mm to cm. Pulse characterization 

techniques such as FROG or SPIDER are used to retrieve the spectral phase of the 

supercontinuum. Current state of art compression experiment uses femtosecond pulse 

shaping (or even adaptive pulse shaping) with adequate phase compensation to generate 

compress pulses several femtoseconds in duration [16, 17]. 

Meanwhile, the dispersion of the PCFs is one of the main reasons that lead to the 

instabilities of the supercontinuum spectral phase, as evidenced by the increase in 

coherence when shortening the pulse propagation length. The unique PCFs structures 

provide another way to alter (minimize) the fiber dispersion even for a wide wavelength 

(over 300 nm, see Reeves et al. [18]). We use the simulation model based on the idea of 

dispersion-flattened PCF to perform the pulse compression for the controlled 

supercontinuum generation. 

The layout of this dissertation is described as follows. An introduction of the PCFs 

will be given in chapter 2, including the discussion of both the dispersion properties and 

nonlinearities of the conventional fibers and PCFs, as well as a layout of the nonlinear 

fiber optics: the extended nonlinear Schrödinger equation. In chapter 3 we will give an 

overview of some relevant experimental techniques, which consist of the methods of 

generating, characterizing, and temporal tailoring ultrashort pulses. Open-loop 

investigations of the influences of input pulse linear and quadratic chirp on the 

supercontinuum generation will be given in chapter 4, as well as the control results of 

suppressing the pulse self-steepening nonlinear effect in the supercontinuum generations. 

Chapter 5 discusses the closed-loop control experiments (adaptive pulse shaping), 

including the investigations of spectral broadening enhancement, soliton self-frequency 
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shift. We will discuss our supercontinuum generation pulse compression model and 

results using the dispersion-flattened PCF in chapter 6. Finally, in chapter 7, we present 

our conclusions. 
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CHAPTER 2 
PHOTONIC CRYSTAL FIBERS 

The main work of this dissertation concerns the application of shaped femtosecond 

optical pulses in controlling the nonlinear interactions in photonic crystal fibers (PCFs).  

In this chapter, we will first summarize the propagation, dispersion and optical 

nonlinearities in conventional fibers in section 2.1. This will lead to the discussion of 

nonlinear fiber optics (the extended nonlinear Schrödinger equation), including various 

nonlinear effects that govern the nonlinear pulse propagation in the conventional fibers 

and PCFs. In section 2.3, we will discuss various configurations of PCFs that have 

different fiber properties (nonlinearities and dispersion) and applications, followed by the 

discussion of mechanisms of supercontinuum generations and its applications. 

2.1 Conventional Fiber Optics – Propagation, Dispersion, and Optical Nonlinearities 

Pulses propagating in the PCFs follows the same dispersion and nonlinear 

propagation principles as that in the conventional fibers, although the nonlinearities 

exhibited in the PCFs are in much larger scales because of the special configuration 

(smaller mode volume, zero dispersion point, dispersion profile) of PCFs. Nonlinear 

pulse propagation in the conventional fibers has been studied extensively over the past 

few decades and the theories are well established. Therefore, before beginning a 

discussion of PCFs, it is important to understand how conventional fibers work. Section 

2.1 will give an overview of dispersion effect and optical nonlinearities in conventional 

fibers, followed by the well-established nonlinear pulse propagation theory (the nonlinear 

Schrödinger equation) in section 2.2. 
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Uncladded glass fibers were first fabricated in the 1920s. It was not until the 1950s 

that people realized that using a cladding layer is extremely important to the fiber 

characteristics and fiber optics experienced a phenomenal rate of progress [19]. In the 

simplest form, conventional optical fibers are cylindrical dielectric waveguides (fiber 

core), made of low loss materials such as silica glass, surrounded by a cladding layer 

made of doped silica glass with slight lower constant refractive index than the core. Such 

fibers are generally referred as step-index fibers. In graded-index fibers, the refractive 

index of the core decreases gradually from center to the core boundary. Modern 

fabrication technology produces fiber optical loss close to the theoretical minimum [1] 

(0.2 dB/km at 1550 nm), a loss level determined by the fundamental Rayleigh scattering 

in silica. The availabilities of low loss silica fibers led to a revolution in the field of 

optical fiber communications as well as the emergence in the field of nonlinear fiber 

optics. 

Guidance of light in optical fibers based on total internal reflection (TIR); that is, 

an optical fiber consists of a central core of refractive index 1n , where the light is guided, 

surrounded by an outer cladding area of a slightly lower refractive index 2n , the light 

rays with incident angle on the core-cladding interface greater than the critical angle 

)/(sin 12
1 nnc

−=θ  experience TIR. Therefore, the light rays incident on the fiber end 

satisfied the TIR can be guided without any refractive loss in the fiber core. The fiber can 

guide the light rays with different incident angles (different modes), as long as TIR is 

satisfied. 

In general, however, the TIR theory is too simplistic to explain fiber modes and 

propagation. One needs to start from Maxwell’s equations and apply appropriate fiber 
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boundary conditions to derive the mode solutions of the wave equation. A brief 

discussion will be given in this section. Interested readers can refer to Buck [20] and 

Agrawal [3] for more detailed discussion.  

Starting from Maxwell’s equations in the optical fibers, 
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In general, the polarization P
r

 can be expanded in powers of the electric field E
r

  

( ) ( )( ) .31
0 ⋅⋅⋅++⋅= EEEEP

rrr
M

rr
χχε                                      (2.4) 

( )3χ  is the third order susceptibility that governs the third order nonlinear effects. In 

general, ( )2χ  (second order susceptibility) should also be present in equation 2.4. 

However, even order nonlinear effects disappear for silica fiber as required by symmetry 

and are not included in the equation. 

Solving equation 2.3 requires the nonlinear ( )3χ  effect to be included, which will 

lead to the derivation of the extended nonlinear Schrödinger equation discussed in the 

next section.  
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For the mode propagation discussion, one can treat the nonlinear effect as a small 

perturbation to the total induced polarization and simply ignore it in the following 

discussion. This lead to the electric field wave equation 

,0
~

)(
~

2

2
22 =+∇ E

c
nE

rr ωω                                             (2.5) 

where )(ωn  is the refractive index of the fiber and ),(
~

ωrE
r

 is the Fourier transform of 

),( trE
r

. For an optical fiber, the natural symmetry is that of a cylinder. Thus, expressing 

the wave equation (2.5) in cylindrical coordinates ρ , φ  and z , and assuming 

),exp()exp()()(),(
~

ziimFArEz βφρωω ±=                            (2.6) 

where A  is a normalization constant, β  is the propagation constant ( zβ represents the 

phase of the field), and m  is an integer, )(ρF  is the solution of the well-known 

differential equation for Bessel functions 
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with solutions taking the form 
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where a  is the fiber core radius and 
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Similar derivations for the magnetic field from equation 2.5 to 2.9 can be obtained. 

Simply applying the boundary conditions that the tangential components of the electric 
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field and magnetic field are continuous across the core-cladding interface, one can derive 

the eigenvalue equation as 
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In general, the eigenvalue equation 2.10 has several solutions for β  for each 

integer m . It is customary to express these solutions by mnβ , where both m and n are 

integers and represent mode indeces. Each eigenvalue mnβ  corresponds to one specific 

mode supported by the fiber. The corresponding modal field distribution can be obtained 

from equation 2.6. There are two types of mode, designated as mnHE  and mnEH . For 

0=m , these modes corresponds to the fundamental transverse-electric (TE) and 

transverse-magnetic (TM) mode; whereas for 0>m , all six components of the 

electromagnetic field are nonzero. 

The number of modes supported by the fiber depend on its design parameter, 

namely the core radius and the core-cladding index difference 12 nn − . It is useful to 

define a normalized frequency parameter and it has a straightforward way to determine 

how many eigenmodes an optical fiber can support. Normalized frequency parameter can 

be expressed as, 

,2

2

2

10 nnakV −=                                                (2.11) 

where 00 2 λπ=k  is wave number corresponds to the central wavelength of the incident 

light in the vacuum. Using the normalized parameter, a complete set of eigenmodes can 

be derived. When the normalized frequency parameter is smaller than 2.405 (from the 

solution of the first zero of the Bessel function), only the fundamental mode is allowed to 
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propagate, in which case the fiber is called a single-mode fiber. Note that with fixed fiber 

parameters, there is a lowest wavelength (cutoff wavelength) that the fiber can sustain 

single-mode fiber. Single-mode fibers are widely used in pulse applications. 

The description of fibers includes two physical effects, fiber dispersion and 

nonlinear effects, both of which will be laid out in more detail in the next section. Below, 

we will take an example of optical fibers in telecommunications to briefly illustrate how 

these two aspects influence the performance of high speed optical networks. 

Optical fibers have revolutionized the telecommunications industry within the last 

decade. Single-mode fiber allows for a higher capacity to transmit information via the 

light pulses because it can retain the fidelity of each light pulse over longer distances. 

Supercontinuum generation offers the possibility of generating over 1000 dense 

wavelength-division multiplexing channels (DWDM) using only one single laser source, 

using over 10 THz single mode fiber bandwidth [21]. However, fiber dispersion, apart 

from the optical loss, will damage the fidelity and cause inter-symbol interference (ISI). 

Modern communication requires a high data transmission rate when using a single-mode 

fiber, thus short pulses are preferred.  

For propagating optical pulses, the mode-propagation constant β  solved in 

equation (2.10) can be expanded in a Taylor series at 0ω  where the pulse spectrum is 

centered, 
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The parameters 1β  and 2β  can be expressed as 
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where gn  is group index and gv  is group velocity. The envelope of an optical pulse 

moves at the group velocity gv  and the phase of underlying field evolves at phase 

velocity pv , as shown in figure 2.1. 2β  is commonly referred as group velocity 

dispersion (GVD), and the convention is that 02 >β  for normal dispersion and 02 <β  

for anomalous dispersion. GVD is mainly responsible for pulse broadening. The 

dispersion parameter D (in the unit of nmkmps ⋅ ) is commonly used in the fiber optics 

literature in stead of 2β . Its relation to 2β  is 
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Figure 2.1: Illustrations of the group velocity for pulse envelope and phase velocity of the 

underlying field.  
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3β  is the third order dispersion (TOD) and its inclusion is necessary when the pulse 

wavelength approaches the zero GVD point.  

Dispersion causes individual frequency components in a pulse to travel at a 

different velocity; thus, the individual frequency components making up the pulse 

separate and “diphase”.  As a result, the pulse duration increases as it propagates. For 

telecommunication applications, information distortion can be manifested in the temporal 

spreading and consequent overlap of individual pulses, thus ISI. This effect can be 

minimized by choosing the central wavelength of the pulse close to the zero dispersion 

point of the group velocity dispersion. 

 
 
Figure 2.2: Illustration of material dispersion for fused silica (zero GVD at 1.3 µm) as 

well as the waveguide dispersion contribution to the chromatic dispersion. 
Refer to Goff and Hansen [71]. 

There are three contributions to the fiber dispersion (chromatic dispersion). The 

first is the material dispersion, which manifests itself through the frequency dependence 

of the material refractive index ( )(ωn , as noted above). This intrinsic dispersion is 

determined by the material itself, and we have little control over this. The zero group 
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velocity dispersion (GVD) for the fused silica is 1.3 mµ , as shown in figure 2.2. 

Waveguide dispersion comes about because of the effective mode index of the dielectric 

waveguiding is wavelength dependent as well. The waveguide dispersion contribution 

can easily be manipulated. Changing the core size and the refractive index difference 

between the core and cladding can evidently change the waveguide dispersion. (As we 

will discuss below, the waveguide dispersion contribution of photonic crystal fibers is 

extremely larger compared to that of conventional fiber). Figure 2.2 illustrates that the 

zero chromatic dispersion of the fiber is shifted from the 1.3 mµ  zero material dispersion 

point to 1.55 mµ  because of the waveguide dispersion contribution, thus the name zero-

dispersion-shifted fiber. Furthermore, some fiber designs allow the waveguide dispersion 

to be customized and fine tuned. For example, graded-index fiber allows the refractive 

index of the core being designed in the form of a parabolic curve and decreasing toward 

the cladding [22]. Dispersion-compensating fiber (DCF) can be designed to have the 

exact opposite dispersion of the fiber that is used in a transmission system, therefore 

nullifying the dispersion caused by that fiber [23, 24]. However, all the designs and 

controls of the waveguide dispersion have limitations, with zero group velocity 

dispersion between 1.3 and 1.55 mµ . The last contribution to the fiber dispersion is the 

modal dispersion, which results from the group velocity differences between different 

guided modes in a multi-mode fiber. Modal dispersion cannot exist in a single-mode fiber, 

since by definition only one mode propagates in the fiber. 

Pulses propagating in optical fibers also experience nonlinear effects, apart from 

the dispersion effects. The magnitude of nonlinear effects is directly related to the input 

pulse peak intensity. These nonlinear effects can be generalized as generating new 
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frequency components (colors), or characterized as effects corresponding to different 

nonlinear mechanisms such as self-phase modulation (SPM), stimulated Raman 

scattering (SRS), etc. All these different nonlinear effects will be discussed in details in 

the next section. Since SiO2 is a symmetric molecule, second order ( )2χ  effects such as 

second-harmonic generation and sum-frequency generation cannot happen in silica fiber 

as required by symmetry. The nonlinearities in optical fibers are small, but they 

accumulate as light passes through many kilometers of fiber, especially when dense 

wavelength-division multiplexing (DWDM) [25] packs many channels into a single fiber. 

Unfortunately, the optical nonlinearities in a fiber are also governed by a material-

dependent parameter, the nonlinear index of refraction n2, and therefore selection of the 

material forces us to live with the size of the nonlinearity.  For fused silica, 

Wcmn /102 216
2

−×= .  However, a fascinating manifestation of the fiber nonlinearity 

occurs through temporal optical solitons [26] (discussed in details in the next section), 

formed as a result of the perfect balance between the anomalous group velocity 

dispersion and SPM nonlinear effect. Soliton effects are evidently extremely useful for 

the telecommunication application. The shape of the fundamental soliton does not change 

during propagation as a result of GVD and SPM completely balancing each other at a 

critical power (the fundamental soliton power), whereas higher-order solitons (providing 

certain higher input power levels) propagate in a periodic evolution pattern with original 

shape recurring at multiples of the soliton period. 

On the other hand, optical fibers allow high optical intensities to be maintained 

over relatively long fiber length; therefore can be used to enhance the nonlinear effects. 

For example, zero-dispersion-shifted fiber can have the zero GVD at 1550 nm where 
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fiber has minimum loss (0.2 dB/km). As the intense pulse propagates in an optical fiber, 

SPM along with all other nonlinear effects can lead to significant broadening of the 

optical spectrum; this very broad and continuous spectrum is called supercontinuum (SC). 

SC generation was first observed in 1970 by focusing picosecond pulses into a glass 

sample as a nonlinear medium [27], SPM is the primary mechanism that led to spectral 

broadening. Since then, the nonlinear media used for SC generation has evolved from 

gases and liquids to optical fibers. Figure 2.3 is an example of supercontinuum generation 

in conventional fiber. A supercontinuum bandwidth of 210 nm was generated by using 

500 fs pulse with over 4 m conventional fiber and the energy per pulse is 90 pJ [28].  

 
 
Figure 2.3: An example of 210 nm supercontinuum generation in the conventional fiber 

(dashed line). Refer to Nowak et al. [28]. 

The high effective nonlinearities of optical fibers have led to a dramatic reduction 

in the pump power requirements compared with those for other nonlinear media. The 

high optical intensities maintained over the propagation length will trigger a variety of 
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other nonlinear effects other than SPM, generating a much broader SC with a relative low 

input pulse peak level. As a result, SC generation is much easier and has important 

applications in various fields such as telecommunication, optical metrology and medical 

science, some of which will be discussed in more details in section 3. 

The problem of wavelength mismatch between optical fiber’s zero group velocity 

dispersion wavelength and femtosecond laser’s operating wavelength great limits the 

application of conventional optical fibers being used for SC generation. Ti:sapphire lasers 

are the most predominately used tunable solid-state ultrafast laser, with a central 

wavelength around 800 nm and optical bandwidths of over 300 nm, producing pulses in 

duration from a few femtoseconds to several picoseconds and pulse energies from nJ for 

the oscillators to as much as 25J for amplified sources, which makes Ti:Sapphire a great 

candidate as the laser source for the SC generation. However, at this wavelength range, 

silica fiber has such a large material dispersion (100 ps/km.nm) that the contribution of 

waveguide dispersion can essentially be ignored [3]. As a result, the initial input pulse 

with a short duration and intensive peak power experiences massive fiber dispersion, the 

pulse duration broadens very fast and the peak intensity drops dramatically. Therefore, 

the breadth and strength of the significant nonlinear interactions as well as the abilities of 

generating a very broad supercontinuum for Ti:Sapphire ultrafast laser source are greatly 

diminished. 

The key technological advance which has revolutionized the ability to investigate 

fiber dispersion and more importantly optical nonlinearities is the invention of photonic 

crystal fibers. We will discuss this in great detail in section 2.3, but first will layout the 

theory of nonlinear fiber optics. 



20 

 

2.2 Nonlinear Fiber Optics: Extended Nonlinear Schrödinger Equation 

For an understanding of the nonlinear phenomena in optical fibers as well as the 

mechanisms that leads to supercontinuum generation, it is necessary to consider the 

theory of electromagnetic wave propagation in dispersive nonlinear media, in particular, 

optical fibers. Before specifically focusing on photonic crystal fibers, in this section we 

review pulse propagation in optical fibers from a general perspective.  

This section follows closely to the Agrawal’s “Nonlinear Fiber Optics” [3]. In a 

frame of reference moving at the group velocity of the pulse, an extended nonlinear 

Schrödinger equation (NLSE) that governs the optical pulse propagation in single-mode 

fibers can be derived under the slowly varying envelope approximation ( 1/ <<∆ ωω ) as 
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where ),(
0 ),(),( tzietzAtzA φ⋅=  is the intensity temporal profile of the pulse, α is the fiber 

loss, β -terms correspond to the chromatic dispersion (CD) of the fiber. The mode 

propagation constant is 
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and describes the wave-vector of the light in the fiber. 

effcA

n 02ωγ =  

is the nonlinear parameter, a very important parameter that determines the magnitude of 

the optical nonlinearity. 

The predominant nonlinearity for silica fiber is the third order nonlinearity, 

governed by )3(χ since the second-order nonlinearity dispears due to the inversion 

sysmmetry at the silica molecular level and the magnitudes of higher-order nonlinearities 
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are too small for silica.  The third-order nonlinear susceptibility is responsible for elastic 

nonlinear processes such as self-phase modulation (SPM), cross-phase modulation 

(CPM), four-wave mixing (FWM) and third-harmonic generation (THG). The nonlinear-

index coefficient 2n  is related to )3(χ as  

),Re(
8

3 )3(

0

2 χ
n

n =                                                (2.18) 

where 0n  is the linear refractive index.  

Elastic nonlinear processes correspond to photon-photon interactions and no energy 

is exchanged between the electromagnetic field and the dielectric medium. THG and 

FWM are usually not efficient in optical fibers, unless special efforts are made to achieve 

phase matching. Nonlinear fiber optics also involves the stimulated inelastic scattering in 

which the optical field transfer part of its energy to the nonlinear medium via photon-

phonon interactions. These phenomena includes stimulated Raman scattering (SRS) and 

stimulated Brillouin scattering (SBS). 

The right hand side of the extended NLSE (Eq. 2.16) accounts for the nonlinear 

response of the fiber. The response function )(tR  can be written as  

( ) ( ) ( ) ( ) ,1 thftftR RRR +−= δ                                        (2.19) 

where Rf =0.15 represents the fractional contribution of the delayed Raman response. 

The Raman response function )(thR  takes an approximate analytic form as ( 1τ =12.2 fs 

and 2τ =32 fs)  

( ) ( ) ( ) ./sin/exp 12
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=                               (2.20) 

There are two very important length scales in nonlinear fiber optics: the dispersion length  

,/ 2
2

0 βTLD =                                                    (2.21) 



22 

 

and the nonlinear length  

( ) ./1 0PLNL γ=                                                     (2.22) 

DL  and NLL  provide the length scales over which dispersive or nonlinear effects become 

dominant for pulse evolution. 

For pulses shorter than 5 ps but wide enough to contain many optical cycles 

(width>>10 fs), the extended nonlinear Schrödinger equation can be simplfied as 
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using a Taylor-series expansion such that  
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The term proportional to 3β  governs the effects of 3rd order dispersion and become 

important for untrashort pulses because of their wide bandwidth. The term proportional to 

2β  is responsible for group velocity dispersion (GVD). It causes temporal pulse 

broadening when an unchirped pulse propagates in a single-mode fiber. Higher order 

dispersion become dominant when the input pulse central wavelength is near the zero 

GVD fiber dispersion or when the bandwidth of the pulse becomes a significant fraction 

of the central frequency. The term proportional to AA
2

 is responsible for SPM nonlinear 

effect, a phenomenon that leads to spectral broadening of optical pulses. In the 

anomalous-dispersion regime of an optical fiber, interplay between GVD and SPM can 

cooperate in such a way that the pulse propagates as an optical soliton. In the normal-
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dispersion regime, the combined effects of GVD and SPM can be used for pulse 

compression. The term proportional to 1

0

−ω  is responsible for self-steepening (SS) and 

shock formation. The last term proportional RT  to is responsible for self-frequency shift 

(SFS) induced by intrapulse Raman scattering. 

A fascinating manifestation of the fiber nonlinearity occurs through optical solitons, 

formed as a result of the interplay between the nonlinear and dispersive effects, i.e., 

anomalous fiber dispersion. A soliton is a special kind of wave packet that can propagate 

undistorted over long distances. If we define a parameter N  as  

,// 2
2

00
2 βγ TPLLN NLD ==                                            (2.26) 

the integer values of N  are found to be related to the soliton order. In time domain, the 

solution to the nonlinear Schrödinger equation for pure soliton propagation produces a 

solution of the form )(sec)( thtA = , as the solution given by Zakharov and Shabat using 

the inverse scattering method in 1971 [29]. The soliton order N  is determined not only 

by the characteristics of input pulse ( 0T , 0P  andγ ), but also the properties of the fiber 

itself (γ  and 2β ). Only a certain combination of these parameters can reach a soliton 

solution, given by an integer value of N . Note that to form a higher order soliton, the 

input peak power required increases quadratically, which is in turn more difficult. The 

shape of the fundamental soliton ( N =1) does not change during propagation, whereas 

higher-order solitons propagate in a periodic evolution pattern with original shape 

recurring at multiples of the soliton period 2/0 π⋅= DLz . As shown in figure 2.4 (a), 

fundamental soliton propagates in the fiber without distortion as GVD and SPM complete 

balance each other. For the higher order soliton (figure 2.4 (b)), SPM dominates initially 
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but GVD soon catches up and leads to the pulse contraction; therefore higher-order 

solitons propagate in a periodic evolution pattern with original shape recurring at 

multiples of the soliton period. From a physical point of view, soliton is generated 

because of the interplay between self-phase modulation and anomalous group velocity 

dispersion. When the soliton pulse propagates through the fiber, self-phase modulation 

generates new frequency components that are red-shifted near the red-end and blue-

shifted near the blue-end of the spectrum. As the red components travel slower than the 

blue components in the anomalous dispersion regime, self-phase modulation leads to a 

pulse narrowing effect which counteracts group velocity dispersion’s pulse broadening 

effect. By carefully choosing self-phase modulation and anomalous group velocity 

dispersion parameters, the pulse itself can become a soliton by adjusting itself to a 

hyperbolic-secant shape during propagation to make such cancellation as complete as 

possible.  

 
 
Figure 2.4: Temporal evolution over one soliton period for the first-order and the third-

order soliton. (a) The first order soliton (fundamental soliton) propagates 
without distortion. (b) The third order soliton repeats itself over one soliton 
period. 

Two other important nonlinear effects occurring during pulse propagation are self-

steepening and self-frequency shift induced by intrapulse Raman scattering. Self-

steepening results from the intensity dependence of group velocity in such a way that the 



25 

 

peak moves at a lower speed than the wings in time domain. As the pulse propagates 

along the fiber, the temporal shape becomes asymmetric, with its peak shifting toward the 

trailing edge [Fig. 2.5 (a)]. As a result of self-steepening, the trailing edge becomes 

steeper and steeper as the pulse propagates which implies larger spectral broadening on 

the blue side as self-phase modulation generates blue components near the trailing edge. 

Intrapulse Raman scattering affects the pulse spectrum in such a way that the Raman gain 

amplifies the low frequency components of a pulse by transferring energy from the high-

frequency components of the same pulse. As a result, the pulse spectrum shifts toward the 

low-frequency (red) side as the pulse propagates inside the fiber, a phenomenon referred 

as the self-frequency shift [Fig. 2.5 (b)].  

 
 
Figure 2.5: Illustrations of self-steepening and self-frequency shift nonlinear effects. a) 

Self-steepening effect in a nondispersive fiber propagation case. b) Spectrum 
showing the combined effects of self-steepening and self-frequency shift, the 
spectral modulation is induced by self-phase modulation. 

2.3 Supercontinuum Generations in Photonic Crystal Fibers 

Supercontinuum generations in photonic crystal fibers results from high 

nonlinearities and low fiber dispersion properties of the photonic crystal fibers. In this 

section we will first discuss various types of PCFs that have different dispersion and 

nonlinear properties, followed by the fascinating supercontinuum generation and 

applications. 
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2.3.1 Photonic Crystal Fibers 

The idea of photonic crystal fibers (PCFs) can be traced back to early 1970s [30], 

when it was suggested that a cylindrical Bragg waveguide with a central core surrounded 

by rings of high- and low-refractive index might be produced. However, it was not until 

1990s when the advances in the technology enabled the fabrication of these complex 

waveguide structures [4]. It is not an overstatement to say that the development of 

photonic crystal fibers (PCFs) is one of the most exciting events in optics for the past few 

years. Its impact on the optics community has been phenomenal and has led to a renewed 

interested in investigating nonlinear optical phenomena.  

PCFs may be divided into two categories: microstructured fibers, in which light is 

guided in a solid core by the similar principle as that of conventional fibers, and photonic 

bandgap fibers where the guided light is confined to the low index (hollow) core by the 

photonic bandgap (PBG) effect. 

Microstructured fibers consist of a solid silica core surrounded by an array of air 

holes running along the fiber, as shown in figure 2.6 (a). Since the microstructured 

cladding area (the microstructured air-filled region) is a mixture of silica and air holes, an 

effective refractive index is used to calculate the modal properties [32]. Light can still be 

guided inside the core according to the principle of total internal reflection as in standard 

optical fibers because the cladding has a lower effective refractive index than the solid 

core. 

Photonic bandgap fibers exhibit a hollow core or a core made of a dielectric whose 

refractive index is lower than the silica refractive index [Fig. 2.6 (b)]. The guiding 

mechanism of the photonic bandgap fibers differs dramatically from the microstructured 
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Figure 2.6: Cross-section electron micrograph of microstructured fiber and photonic 

band-gap fiber. (a) Microstructured fiber, refer to Ranka et al. [5]. (b) 
Photonic band-gap fiber, refer to Russell [31]. The darker spots with different 
shapes in both figures are air holes. 

fiber and conventional fibers. In photonic bandgap fibers, the periodicity of the air-hole 

lattice enables to trap the light in the core by two-dimensional photonic bandgaps [33]. 

The term photonic crystal comes from the analogy between electrons in the periodic 

potential of a semiconductor crystal and photons in a periodic index profile (formed by a 

regular air hole pattern). Similarly, photonic bandgap results from the well-known Bloch 

Theorem, which in turn means no light propagation modes are allowed in the photonic 

bandgap. As a result, only light with a given wavelength range can be guided in the 

hollow or dielectric core, as the PBG effect makes propagation in the microstructured 

cladding region impossible [7].  

The fabrication process of the PCFs is a basic stack-and-draw method [31]. First, 

capillary tubes and rods made of silica are stack together. In this step, an arrangement of 

the capillary tubes allows changing the air silica structure, therefore, providing the 

control flexibility of effective index of the cladding area. The PCFs are then fabricated by 
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feeding the stack into a hot furnace with a certain heating temperature at a proper speed, 

much in the same manner as conventional fibers. Various PCFs with complex air hole 

structures can be fabricated with different dispersion and nonlinear properties that are 

well suited for intended applications. 

Photonic crystal fibers exhibit many unique features when compared to standard 

optical fibers. The introduction of air-holes structure allows new degrees of freedom to 

manipulate both the dispersive and nonlinear properties of the PCFs. Many parameters 

can affect properties of the PCFs dramatically. These parameters include the size and 

shape of air-holes, air filling fraction, the choices of material used to fabricate PCFs as 

well as the dielectric core of photonic bandgap fibers.  

A detailed discussion of photonic bandgap crystals and fibers is beyond the scope 

of this dissertation, and can be found in Cregan et al. [7] and Knight et al. [34]. Only the 

properties of microstructured fiber will be discussed in the following section. 

The fiber mode theory describe in section 3.1 has found to be quite useful for 

describing mode propagation properties of the microstructured fiber. However, due to the 

intrinsic structure differences between the microstructured fibers and conventional fibers, 

it is crucial to be able to model the microstructured fiber in more rigorous ways, i.e., it 

requires field analysis using the exact boundary conditions of the microstructured air-

holes configuration. These microstructured fiber modal methods include beam 

propagation method [35], effective index modal [36], scalar beam propagation method 

[37] and vectorial plane-wave expansion method [38], multipole expansion method [39] 

and finite-element method [40, 41], etc. As a result, a large number of new 

microstructured fibers have been designed with novel waveguide properties suitable for a 
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wide range of applications. For instance, the effective index method allows rigorous 

calculation of effective refractive index of the cladding, which in this case is usually 

wavelength-dependent. The normalized frequency parameter V for a conventional fiber 

can eventually exceed single-mode limit of 2.405, providing a short wavelength and a 

large core radius. However, properly choosing the air-filling fraction of the 

microstructured fiber (defined as the ratio of the hole diameter d to the pitch of the lattice 

Λ), the normalized frequency parameter V can stay constant even at short wavelengths 

[42] or even with a large core radius [43, 44]. Making this constant V smaller than 2.405, 

a microstructured fiber can sustain the single-mode property over a very broad 

wavelength range, thus the name of endless single-mode microstructured fiber [42]. 

Other microstructured fibers that exhibit interesting properties include single-polarization 

single-mode PCF [45], highly birefringent PCF [46] and cobweb microstructured fiber 

[47], etc.  

As mentioned in section 2.1, conventional fibers have large normal material 

dispersion at the Ti:Sapphire laser operating wavelength, with modifications of the 

waveguide properties having little impact. This large normal dispersion greatly 

diminishes the magnitude of nonlinear effects and impairs the possibilities of 

supercontinuum generation. The invention of microstructured fibers has opened new 

opportunities for exploring nonlinearities in microstructured fibers. 

The strong wavelength dependence of the effective refractive index of the cladding 

of microstructured fibers leads to a new range of dispersion properties that cannot be 

achieved with conventional fibers. The waveguide dispersion properties of the 

microstructured fibers strongly depend on the air-filling fraction and core size. For 
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instance, increasing the air-filling fraction as well as decreasing the core size can 

dramatically increase the waveguide dispersion, allowing compensation of the silica 

material dispersion at any wavelengths range from 500 nm to beyond 1500 nm [48]. As a 

result, the zero group velocity dispersion wavelength can be pushed far below 800 nm 

[Fig. 2.7 (a)], making the Ti:Sapphire laser operating wavelength in the anomalous 

dispersion region and soliton propagation, for the first time, available for the visible  

 
 
Figure 2.7: Illustrations of tailorable dispersion properties of microstructured fibers. (a) 

Measured dispersion curve of a microstructured fiber with zero GVD below 
600nm, refer to Knight et al. [48]. (b) Microstructured fiber with a flat 
dispersion (curve B) by adjusting pitch size as 2.41 µm and air-filling fraction 
as 0.22, refer to Reeves et al. [18]. 

wavelength range. Furthermore, by choosing the proper fiber parameters such as air hole 

size and pitch, one can easily tailor the dispersion characteristics of the microstructured 

fiber, such as fabricating fibers with very low and flat dispersion over a relatively broad 

wavelength range [18], e.g., dispersion-flattened microstructured fiber (DFMF), as we 

can see in curve B in Fig. 2.7 (b). In general, a proper choice of air-hole sizes and pitches 

enable to engineer a variety of dispersion profiles. This precise control of the fiber 

dispersion greatly expands the horizon of fiber applications and allows customized fiber 

with tailored dispersion characteristics being used in a desired application. 
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The interest in microstructured fibers is not only because of their special waveguide 

properties, but more importantly, lies in the fact of the significant nonlinearities that 

exhibit in the microstructured fibers. Actually, the high efficiency of various nonlinear 

effects is directly related to the unique waveguide properties that allow the engineering of 

the zero dispersion point and tailoring the dispersion profile, in addition to the extremely 

small core area. When laser pulses with their central wavelength near the zero dispersion 

point propagate in microstructured fibers, the high peak intensities dominate the pulse 

evolution and LNL << LD. In particular, the pulse can still maintain a short duration and 

high intensity over a much longer fiber propagation length, inducing an extraordinary 

larger nonlinearity when compared to conventional fibers. As a result, this greater 

nonlinearity reduces the threshold pulse energy for observing nonlinear effects and 

nonlinear optical processes take place on a grand scale in microstructured fibers. These 

different nonlinear processes, including SPM, SRS, FWM and THG, have been observed 

in the microstructured fiber [49-52]. Furthermore, combining with the tailorable 

dispersion characteristics of the microstructured fibers, a number of dramatic nonlinear 

optical effects are observed at ~800 nm that were not previously possible or have been 

severely limited [6]. On the other hand, large core single-mode microstructured fibers can 

also be fabricated to minimize the nonlinear optical effects. 

Now let us turn to the most dramatic and amazing of the nonlinearities, ultra-

broadband supercontinuum generation. 

2.3.2 Supercontinuum Generation in Microstructured Fibers 

Supercontinuum generation is definitely the most fascinating outcome of the 

invention of microstructured fibers. In particular, it results directly from the combination 

of microstructured fibers’ enhanced nonlinearities and unique engineer-able dispersion 
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properties. Ranka’s postdeadline talk at Conference on Laser and Electro-Optics (CLEO) 

in 1999 as well as the paper published in early 2000 have a tremendous impact on the 

research conducted on fiber design probabilities, fiber dispersions and nonlinearities, as 

well as many important applications in the past few years. In this paper [6], an ultra 

broadband supercontinuum ranges from 400 nm to 1600 nm (figure 2.8) is generated in a 

 
 
Figure 2.8: An ultra broadband supercontinuum generated in a 75-cm section of 

microstructure fiber. The dashed curve shows the spectrum of the initial 100-
fs pulse. Refer to Ranka et al. [6]. 

specially designed “microstructured fiber” using Ti:Sapphire laser 100 fs pulses with 790 

nm central wavelength and only 0.8 nJ energy. The microstructured fiber consists of a 

silica core of 1.7 mµ  surrounded by an array of 1.3 mµ  diameter air holes in a hexagonal 

close-packed arrangement, see Fig. 2.6 (a), sustaining single-mode laser pulse 

propagation for wavelengths range from 500 nm to 1600 nm. It is quite surprising that the 

mode is well confined within the first air hole ring next to the core; the outer rings of air 

holes do not affect the fiber waveguide properties at all. With this air hole and pitch 

configuration, zero group velocity dispersion wavelength is pushed down to 767 nm, 
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making the Ti:Sapphire input pulse central wavelength in the anomalous fiber dispersion 

region. Nonlinear optical effects, include pulse compression, soliton propagation and 

efficient four-wave mixing are observed at 800 nm. All these nonlinear effects have been 

severely limited at this wavelength for conventional fibers.  

The intensive interest in the supercontinuum generations is well justified. First, 

performing the experiment of supercontinuum generation is not hard at all, considering 

the popularization of the Ti:Sapphire laser all over the world and the advantage of low 

power requirement. Numerous papers have been published on this subject, taking up a 

large portion of microstructured fiber literature. Many of the papers are about the 

applications of supercontinuum generation, which will be presented in details in the next 

section. The more significant reason for the interest in the supercontinuum generations 

lies in its complex process, that is, how the ultra broadband supercontinuum is generated? 

From a general point of view, there are two contributions which lead to ultra 

broadband supercontinuum generation. The first one comes from geometry. A 

microstructured fiber has an extremely small core area, nearly two orders of magnitude 

smaller when compared to that of conventional single-mode fiber. The tighter 

confinement of the mode propagation leads to an increased power density and enhanced 

effective nonlinearities. The second contribution is the tailorable dispersion 

characteristics of the microstructured fibers, resulting from both the ability to precisely 

engineer the air hole and pitch size as well as the high refractive index difference 

between the core and cladding. As a result, the zero GVD dispersion can be pushed down 

to visible wavelength range and the input Ti:Sapphire laser pulse that experiences a low 

fiber dispersion maintains a high peak power while propagating along. The enhanced 
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fiber nonlinearities combining with the intensive peak power of the laser pulse trigger 

many nonlinear processes, generating the ultra broadband supercontinuum. 

In principle, the supercontinuum generation process in microstructured fibers is not 

different from that in conventional fibers. Well established theories (see, for example 

Broderick et al [49] and references therein) explaining many nonlinear processes in 

optical fibers has been developed over years. However, supercontinuum generation is a 

nonlinear process in the extreme. It is evident that supercontinuum generation is not 

resulting from or dominant by one individual nonlinear process; on the contrary, it results 

from the complex interplay between various nonlinear optical processes and dispersion 

characteristics of microstructured fibers. The complexity also lies in the fact that the 

significant pulse spectral broadening process usually happens within the first several 

millimeters of the microstructured fiber at sufficiently high power due to the enhanced 

nonlinearities and low dispersion. It is crucial to understand the supercontinuum 

generation dynamics; in particular, the roles of different nonlinear optical processes play 

in a certain pulse propagation stages and their contributions to the final supercontinuum 

characteristics. The interpretations of the supercontinuum generation dynamics from the 

experimental data are sometimes misleading, as it is usually hard to separately study the 

individual nonlinear effect in the experiment when various nonlinear effects are 

interacting together in a tangled state. The extended NLSE model using the split-step 

Fourier transform method has proven to be a well-suited numerical technique that can 

truly simulate the pulse nonlinear propagation processes in the microstructured fibers. 

Besides the ability of investigating individual nonlinear effect and its contribution to the 

supercontinuum generation, this simulation model has also predicted some new 
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supercontinuum properties that have been experimentally verified. However, the 

complexity and ultra broadband properties of the supercontinuum generation require a 

large number of data points and an extremely small propagation step when implement the 

extended NLSE simulation model, necessitating the use of high speed computers only 

available to general researchers in the last five to ten years. 

Many papers have been published from the extensive research on the formation and 

evolution of the supercontinuum. A consentaneous conclusion has been formed based on 

the rigorous simulation and experimental results [10, 11]. It is believed that the 

development and evolvement of the supercontinuum is related to the formation and 

fission of higher order solitons in the microstructured fibers. As we mentioned in the 

section 2.2, in the anomalous dispersion region, higher order solitons are generated in the 

microstructured fiber due to the interplay between the SPM and GVD, where the soliton 

order is determined by equation 2.14. Without any perturbation, these higher order 

solitons will propagate in a periodic evolution pattern and supercontinuum generation 

would never occur. However, a small perturbation will affect a higher order (N>1) 

soliton’s relative group velocities and, subsequently, trigger the soliton fission: a higher 

order soliton with soliton order N breaks up to N fundamental solitons. These small 

perturbations include higher order dispersion, self-steepening nonlinear effect and soliton 

self-frequency shift. As a result of soliton fission and soliton self-frequency shift, the 

fundamental solitons continuously shift toward the longer wavelength of the broadened 

spectrum, causing a considerable spectral expansion on the red side. The blue side the 

supercontinuum is developed due to the blueshifted nonsolitonic radiation (NSR) [3, 10, 

53] or phase-matched radiation; that is, the blue dispersive wave component satisfying 
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the resonance condition gets amplified by the energy transferred from the phase-matching 

soliton under the influence of higher order dispersion [54]. Assuming the soliton 

frequency sω  and the nonsolitonic radiation component rω , the phase matching 

condition can be written as [53], 

,0/)()()( 0 =−−−−=∆ Pvgsrsr γωωωβωβκ                       (2.27) 

where β  is propagation constant, gv  is the group velocity, γ  is the nonlinear parameter 

and 0P  is the input peak power. Consequently, an ultra broadband supercontinuum is 

generated as the fundamental solitons continuously shift to the red side and the blue 

phase-matching components are developed and amplified. 

It is worth pointing out that supercontinuum is the outcome from interactions of the 

most complex nonlinear optical processes with fiber dispersion. Supercontinuum 

generation usually occurs within the first several millimeters of the propagation length, 

followed by the increasingly fine interference features from the interplay between the 

individual soliton and the related dispersive wave as supercontinuum continues to evolve 

along the microstructured fibers. It turns out to be true that any small input pulse power 

fluctuation can substantially change the features of this fine structure, as verified by both 

the simulation results and experimental evidences [9, 13]. The fine structure which tends 

to vary from shot to shot can be a huge problem for many applications. For example, 

stable spectral phases are required for supercontinuum pulse compression application. 

Researchers have put a lot of efforts in finding out the stability range for various 

applications. Consequently, different stability fiber lengths range from ~1cm to tens of 

centimeters corresponding to different input power levels have been found [15, 55]. 

Meanwhile, changing the microstructured fiber dispersion properties can evidently 
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minimize the instability of the supercontinuum. Detailed simulation results following this 

idea will be discussed in chapter 6. 

When the central wavelength of the input pulse is in the normal dispersion region 

of the microstructured fiber, supercontinuum can also be generated. Before the spectral 

broadened pulse reaching the anomalous dispersion region, due to the high peak power of 

the input pulse, SPM nonlinear effect is mainly responsible for the pulse spectral 

broadening at this stage. Meanwhile, the peak intensity of the pulse is still intense 

because of the low fiber dispersion. After the spectrum broadening into the anomalous 

dispersion region, higher order solitons are generated and the mechanisms similar to what 

have been described above lead to the supercontinuum generation. 

2.3.3 Applications of PCFs and Supercontinuum Generation 

The diversity of new or improved performance, beyond what conventional fiber can 

offer, means that PCF is finding an increasing number of applications in ever-widening 

areas of science and technology [31]. Photonic crystal fibers have important applications 

in the optical telecommunications. The enhanced waveguide nonlinearities in the 

microstructured fibers potentially make the telecommunication optical functions to be 

achieved within a much shorter fiber length comparing to that of conventional fibers [56]. 

Microstructured fibers also find applications in fiber lasers and amplifiers. Large mode 

area single-mode microstructured fiber allows one to obtain a high power output with 

relatively low power density. This way nonlinear phenomena and fiber damage due to 

overheating can be avoided, making large core microstructured fibers predestinated for 

high power operations [57]. Photonic bandgap fibers can be used in the sensor technology 

[58]. They can also be used for atom and particle guidance, which has a potential 

application in biology, chemistry and atomic physics. Particle levitation in hollow-core 
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fiber over 150 mm distance with 80 mW laser power has been reported [59]. Furthermore, 

the core of the photonic bandgap fibers can be filled with a variety of gases to study gas-

based nonlinear optics. In particular, stimulated Raman scattering in hydrogen-filled 

photonic bandgap fiber has been extensively studied [60]. On the other hand, photonic 

bandgap fibers filled with argon gas can be potentially used for high harmonic generation, 

a phenomenon occurs when the gas election experiencing the recombination process after 

being ionized by the ultrashort high-energy pulses [61]. 

Supercontinuum generation, the most fascinating outcome of the PCFs, has a far 

more important application scopes. First, it has become a nature candidate for 

telecommunication applications. To construct flexible and robust photonic networks, it is 

essential to control, manage and fully utilize the vast optical frequency resources 

available. Indeed, supercontinuum generation offers the possibility of generating over 

1000 dense-wavelength-division-multiplexing (DWDM) channels using only one single 

light source [21] while maintaining its coherent characteristics. Supercontinuum 

generation also has application in medical imaging [62-64]. For optical coherence 

tomography (OCT), longitudinal resolution in a biological tissue is inversely proportional 

to the bandwidth of the light source. Supercontinuum generation with high spatial and 

spectral coherence has increased the OCT longitudinal resolution to a micron level 

(~1.3 mµ , see Wang et al. [64]). The most important application of supercontinuum 

generation is in the field of optical metrology [65-67]. It makes the measurement of 

absolute optical frequency possible by establishing a direct link between the repetition 

rate of a mode-locked laser and optical frequencies. Using a carrier-envelope phase-

locked laser, an optical clock with accuracy 1–2 orders of magnitude better than the 
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currently used cesium atom clocks is demonstrated [68-70].  This work led to 2005 Nobel 

prize for two of the pioneers of the field, John Hall of JILA at the University of Colorado 

and Ted Hänsch of the Max Planck Institute for Quantum Optics [8]. 
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CHAPTER 3 
OVERVIEW OF EXPERIMENTAL TECHNIQUES 

To understand how ultrashort laser pulses interact with PCFs, it is important to 

understand the methods of generating, characterizing, and temporally tailoring ultrashort 

pulses. In this chapter, we will lay out the experimental tools used in our research. A brief 

introduction of ultrashort laser pulse and terminology will be given in section 3.1 and 3.2. 

We discuss the operating principles and performance of our home-build Ti:Sapphire laser 

oscillator and a commercial Coherent Mira 900 laser oscillator in section 3.3. A 

description and comparison of different ultrafast laser pulse characterization tools will be 

given in section 3.4. Finally, in section 3.5, we present the Fourier domain pulse shaping 

using the liquid crystal spatial light modulators. 

3.1 Ultrashort Laser Pulses 

Lasers are the basic building block of the technologies for the generation of short 

light pulses. Only four decades after the laser had been invented, the duration of the 

shortest produced pulse has been reduced nine orders of magnitude, going from the 

nanosecond (10-9 s) regime to the attosecond (10-18 s) regime [72]. One reason for 

generating ultrashort pulses is to challenge the physics limit: what is the shortest pulse 

mankind can generate? Another question may arise here: what kind of measurements can 

we make with these ultrashort laser pulses?  

One important application domain of ultrashort laser pulses is the behavior analysis 

(return to equilibrium) of a sample perturbed by the laser pulses [73-75]. If some 

processes in the sample are very fast compared to the duration of the perturbation, these 



41 

 

processes will be hidden during the perturbation so that only those processes which are 

slower than the pulse duration will be observed. Therefore, it will be easier to understand 

the faster processes if one can use a shorter perturbation. The unique property of 

ultrashort laser pulses makes them ideally suited for not only the initial perturbation of 

sample but also subsequent probing of the sample. 

On the other hand, ultrafast lasers can also be used to produce laser pulses with 

extremely high peak powers and power densities, which have applications such as 

multiphoton imaging [76, 77], generation of electromagnetic radiation at unusual 

wavelengths [78-80] and laser machining and ablation [81]. Meanwhile, the large peak 

intensities associated with ultrashort laser pulses make them well suited to various 

nonlinear wave-mixing processes, allowing the generation of new frequency components. 

Such processes include second-harmonic generation, sum-frequency generation, 

parametric oscillation and amplification, and continuum generation. 

3.2 Laser Pulse Terminology 

To better understand ultrafast laser system, ultrashort laser pulse characterization 

and shaping, we begin with some terminology [82]. 

3.2.1 Laser Pulse Time Bandwidth Product (TBP) 

A continuous wave laser generates continuous wave (CW) that is an 

electromagnetic wave of constant amplitude and frequency; and in mathematical analysis, 

of infinite duration. The time representation of the field (real part) is an unlimited cosine 

function. 

ti
eEtE 0

0)( ω=                                                    (3.1) 
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On the other hand, constructing a light pulse implies multiplying (3.1) by a bell-

shaped function, e.g., a Gaussian function. Mode-locked lasers generate this kind of 

pulses. In general, a pulse can be represented as 

,)()( )(0 titi
eetAtE φω=                                             (3.2) 

where )(tA  is the bell shaped function and )(tφ  is the pulse phase. The physical field is 

( )[ ]tERe . The general time and frequency Fourier transforms are 
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where )(ωE  is the pulse representation in the frequency domain. 

In particular, a Gaussian pulse can be written as 

tit eeEtE 0
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0)( ωτ−=                                               (3.4) 

A limited duration caused by the Gaussian envelope of the light pulse indicates a limited 

frequency bandwidth, which can be clearly seen after the Fourier transformation of the 

original temporal pulse (Eq. 3.4). 
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The pulse duration and spectral width are defined as the full width half maximum 

(FWHM) of the pulse intensity (
2

)()( tEtI ≡  and 
2

)()( ωω EI ≡ ) in time domain and 

frequency domain, respectively. In the case of a Gaussian pulse (Eq. 3.4 and 3.5), the 

pulse duration and spectral width are 
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Note that time bandwidth product (TBP, ftK ∆⋅∆= ) is a dimensionless number 

which depends on the shapes of the pulses, e.g., the shape of a Gaussian pulse is 

represented as function 
2)/( τte− . Table 3.1 gives values of K for Gaussian shape and 

hyperbolic secant shape which are the most commonly used pulse envelopes. 

Table 3.1: Time bandwidth products (K) for Gaussian and hyperbolic secant pulse shapes. 
Shape )(tE  ftK ∆⋅∆=  

Gaussian function 2)/( τte−  0.441 

Hyperbolic secant function 

)/cosh(

1

τt
 

0.315 

 
3.2.2 Laser Pulse Phase and Chirp 

The TBP value in table 3.1 can only be reached when the instantaneous angular 

frequency is constant and equals the central angular frequency 0ω , which can be seen 

from Eq. 3.4 and 0)( ωω =t . The pulse is called a Fourier transform-limited pulse. 

Now let’s consider a more general case, that is, the instantaneous angular frequency 

is a function of time. Suppose the phase of the pulse obeys a quadratic law in time, 

2
00 )()()( )( titititi
eetAeetAtE αωφω == ,                                   (3.7) 

then the instantaneous angular frequency varies linearly with time 

ttt αωφωω 2)( 00 +=∂∂+= .                                         (3.8) 

Depending on the sign ofα , the pulse is positive or negative “chirped”, i.e., linear chirp. 

It is very clear from Fig. 3.1, i.e., chirped Gaussian pulses, that the instantaneous 

frequency is more red in the leading part of the pulse and more blue in the trailing part 

when a positive chirped pulse is presented. 
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Figure 3.1: Illustration of Gaussian pulses with linear chirps. (a) A positive linear chirp. 

(b) A negative linear chirp. 

The pulse duration and spectral width in the linearly chirped Gaussian pulse are 
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The TBP will always be greater than the value listed in table 2.1. This discussion is also 

true if we start from the frequency domain with a chirped pulse. So the conclusion is that 

a Fourier-transform-limited pulse (the shortest pulse) is generated when the pulse with a 

fixed spectrum has no spectral phase. 

Unfortunately, when ultrashort pulses propagate in an optical system, many optical 

components (lenses, gratings, crystals) are dispersive and can generate some kind of chirp 

(linear and/or higher order chirp) that causes pulse temporal broadening. It is common 

practice to expand the spectral phase in a Taylor Series as 
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The linear and quadratic chirp are represented as )2(φ  and )3(φ , respectively. A pulse 

compressor [83] (a pair of parallel diffraction gratings and a retro-reflector) can 

compensate most of the linear chirp, but can do nothing about the higher order chirps. To 

obtain the shortest pulse, the overall spectral phase (chirp) has to be measured and 

compensated. This will be one of the applications of pulse characterization and pulse 

shaping which will be discussed later in this chapter. 

3.3 Femtosecond Lasers (Ti:Sapphire Lasers) 

Lasers are the basic building blocks to generate short pulses. Ti:Sapphire 

femtosecond laser has been studied extensively because its high performance. In order to 

understand how laser pulse can be temporally tailored and interact with the fibers, it is 

important to understand how femtosecond laser pulses are generated in the Ti:Sapphire 

lasers. In this section we will describe the properties of the Ti:Sapphire crystal, followed 

by the mode-locking discussion. We will also lay out the schematics and performance 

parameters of the Ti:Sapphire lasers used in our experiments. 

3.3.1 Ti:Sapphire Crystal 

In the past decade, the most spectacular advances in laser physics and, particularly, 

in the field of ultrashort light pulse generation [84, 85] have been based on the 

development of titanium-doped aluminum oxide (Ti:Al2O3, Ti:Sapphire) laser. 

Ti:Sapphire laser has been investigated extensively and today it is the most widely used 

tunable solid-state laser. Ti:Sapphire possesses a favorable combination of properties 

which are up to now the best broadband laser materials. First, the active medium is solid-

state, that means long operational time and laser compactness. Second, Sapphire has high 
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thermal conductivity, exceptional chemical inertness and mechanical resistance. Third, 

Ti:Sapphire crystal has the largest gain bandwidth and is therefore capable of producing 

the shortest pulse; it also provides the widest wavelength tunability [Fig. 3.2]. 

 
 
Figure 3.2: Normalized absorption and emission spectra of Ti:Sapphire for π polarized 

light. Refer to Rulliere [82]. 

From the fluorescence curve, the estimated the FWHM of the theoretical broadest 

spectrum is 190 nm, which corresponds to a 4.5 fs pulse if a Gaussian transform-limited 

pulse is assumed. In fact, custom build Ti:Sapphire laser that can generate 4.8 fs 

ultrashort pulse has been reported [86], merely two cycles of the optical field considering 

800 nm center wavelength. 

3.3.2 Kerr Lens Mode-Locking 

A large number of mode-locking techniques have been developed to generate short 

pulse with Ti:Sapphire as a gain medium: active mode-locking, passive mode-locking 

and self-mode-locking. Self-mode-locking (or Kerr lens mode-locking) has proven to be 
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the best way to achieve the mode-locking. Self-locking of the modes utilizes the 

nonlinear properties of the amplifying medium to favor strong intensity maxima at the 

expense of weak ones. 

The nonlinear effect called self-focusing is due to the fact that the refractive index 

of Ti:Sapphire is a function of input pulse intensity: ),(20 trInnn += . Because of the 

non-uniform power density distribution in the cavity Gaussian beam ),( trI  , the 

refractive index changes across the beam profile and the phase delay experienced by the 

beam is greater in the center of the beam than at the edge for 02 >n  [Fig. 3.3]. Therefore,  

 
 
Figure 3.3: Kerr lens modelocking principle: self-focusing effect by the optical Kerr 

effect. An example of hard aperture refers to Wikipedia [87]. 

the Ti:Sapphire crystal works like a nonlinear lens (Kerr lens) for high intensity light, 

with the focusing effect increasing with optical intensity. In the laser cavity, short noise 

bursts of light (pulses), which have higher peak intensities, are focused more tightly and 

are transmitted through the aperture, whilst lower intensities experience greater losses. 

By aligning the cavity in a way such that the resonator is lossier for CW beam than for 

pulses, the pulsed regime is favored and the laser will turn to mode-locked regime. The 
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favoring of pulsed regime over CW regime can be achieved by the cavity design, but is 

often supported by a hard aperture (shown in Fig. 3.3), that can simply cut off part of the 

CW beam at the focal region of the pulsed beam. 

3.3.3 Cavities of Ti:Sapphire Lasers 

Depending on the experiment requirement and consideration, we use two different 

types of Ti:Sapphire oscillators in our experiments, all of which will be discussed in 

details in the rest of this section. 

3.3.3.1 Home-build Ti:Sapphire oscillator 

For most of our experiments, we use a home-built Ti:Sapphire oscillator. The 

design of the oscillator is shown schematically in Figure 3.4. The intracavity is defined 

by prism pairs and four mirrors, M1, M2, M3 and the output coupler M4. The 

Ti:Sapphire crystal is located at the common focal plane of two 10-cm spherical mirrors 

M2 and M3. The laser system is pumped by focusing a multi-line Argon-Ion CW laser 

(Coherent Innova 310). The output coupler M4 is an 85% wedged mirror. The intracavity 

prism pairs are the key components for self-mode-locking (Kerr lens mode-locking). 

Hard apertures are placed in front of the cavity mirror M1 and output coupler M4. In this 

oscillator, mode-locking is initiated by instantaneously moving the first intracavity prism 

P1 and M3. The dispersion caused by intracavity prism pairs and other optical component 

in the cavity (crystal and OC) is partially compensated with the external prism pairs, 

which is designated in the Figure 3.4 as the phase compensator. With 4.9 W pumping 

power, our home-build Ti:Sapphire oscillator generates 300-400 mW average pulse 

power. The repetition rate is 91 MHz and energy per pulse is around 3 nJ. 
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Figure 3.4: Schematic diagram of the Ti:Sapphire Laser and the external phase 

compensator. P: prism. OC: output coupler 

The output spectrum is shown in Fig (b). It has a bandwidth of 65 nm and central 

wavelength of 805 nm. Fig (a) is the second order intensity autocorrelation, using a 

100 mµ KDP crystal. Assuming a Gaussian pulse shape, the measured FWHM of the 

laser pulse is ~18 fs.  

 
 
Figure 3.5: Second order intensity autocorrelation and spectrum of Ti:Sapphire laser 

pulse. (a) Temporal autocorrelation of the pulse. (b) Measured spectrum of the 
pulse. 
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3.3.3.2 Coherent Mira 900 system 

For the experiment described in section 4.3, we use the commercial Coherent Mira 

900 (Fig. 3.6) pumped by Ion CW Coherent Innova 400 laser. The Mira has a tunable 

wavelength range from 700 nm to 900 nm. From the schematics we can see there are 

several extra mirrors comparing with our oscillator. The only purpose is for the 

commercial compact design. Note that M8 and M9 are for alignment only and they are 

not in the oscillator cavity. However, Mira 900 does consist of a birefringent filter (BRF) 

which makes Mira 900 a central wavelength tunable laser. Such filters take advantage of 

the phase shifts between orthogonal polarizations to obtain narrow band outputs. 

Furthermore, the commercial design of a butterfly starter (not shown in the figure) 

between M3 and M4 makes mode-locking a breeze. The wavelength used in our 

experiment is 763 nm. With 8 W pumping power, the average output pulse power is 

about 450 mW. The repetition rate is 76 MHz and energy per pulse is around 6 nJ. 

 
 
Figure 3.6: Schematic diagram of a Coherent Mira 900 Ti:Sapphire laser. Refer to 

Coherent Mira 900 [88]. 

The spectral bandwidth of Mira 900 output pulse is very narrow comparing to our 

home-build Ti:Sapphire oscillator due to the BRF, in this case, 4.2 nm [Fig. 3.7 (b)]. The 
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temporal pulse duration is measured by FROG (see next section for details). The 

calculated pulse duration for transform-limited Gaussian pulse with measured spectral 

intensity is 215 fs. The measured pulse duration is 225 fs [Fig. 3.7 (a)]. 

 
 
Figure 3.7: FROG measurement of a Coherent Mira 900 Ti:Sapphire laser pulse. a) 

Temporal intensity. b) Spectral intensity.  

3.4 FROG and SPIDER 

Ultrashort laser pulses are the shortest events mankind ever generated. Before 

ultrashort laser pulses are used in experiments, pulse diagnostics are necessary. Since the 

femtosecond time scale is beyond the range of the fastest electronics, the pulse 

measurement techniques have to be redesigned in order to fully characterize the 

amplitude and the phase of the electric field. Most techniques are based on the idea 

“measuring pulse using the pulse itself!” Section 3.4.1 will briefly describe the standard 

techniques that determine the temporal profile of the pulse, such as auto-correlation and 

cross-correlation. Other techniques, which are more sophisticated giving both 

information of frequency and time, such as FROG and SPIDER, will be presented in the 

section 3.4.2 and 3.4.3. 
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3.4.1 Auto-Correlation and Cross-Correlation 

Maybe the most widely used technique for measuring femtosecond laser pulses is 

the second-order auto-correlation, which was first demonstrated in 1966 by Maier and co-

workers [89]. This method takes advantage of the second harmonic generation in 

nonlinear crystals. In Figure 3.8 the basic principle of SHG auto-correlation is displayed. 

This is typically used to measure the time duration of femtosecond pulses. 

 
 
Figure 3.8: Schematic diagram of a SHG auto-correlator. BS: beam splitter. SHG Xtal: 

second harmonic generation crystal. 

The incident laser pulse is split in two pulses by a 50/50 beam-splitter. Similar to a 

Michelson interferometer, the two pulses are reflected in each arm and subsequently 

focused onto a frequency-doubling crystal. The resulting second-harmonic-generation 

(SHG) auto-correlation trace is detected by a photo-multiplier as a function of the time 

delay τ  between the two pulses. The SHG crystals can be type I phase-matching or type 

II, and the two pulses can recombine collinearly or non-collinearly in the frequency 
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doubling medium. Figure 3.8 is an example of non-collinear recombination of the two 

pulses. The SHGs of each individual pulses are filtered by a hard aperture and a BG-39 

filter may also be used to eliminate the original laser pulse signal that pass through the 

SHG crystal. 

If the two fields are of intensity )(tI  and )( ttI ∆− , the auto-correlation of the two 

pulses is  

∫
∞

∞−
∆−=∆ dtttItItIac )()()(                                           (3.12) 

As can be seen from the equation, the auto-correlation is always a symmetric function in 

time. Therefore, auto-correlation gives very little information about the shape of the pulse. 

The most widely used procedure to determine the pulse duration is to "pre-assume" a 

pulse shape (usually hyperbolic secant or a Gaussian shape, for chirp-free and linear 

chirped pulses) and to calculate the pulse duration from the known ratio between the 

FWHM of the auto-correlation and of the pulse. Thus the auto-correlation function 

depends on the assumed shape of the pulse. Table 3.2 lists the relevant parameters for 

various shapes. 

Table 3.2: Relations between pulse duration and auto-correlation function duration for 
Gaussian and Hyperbolic secant function. 

Shape )(tIac  KTBP :  Pulse duration τt∆  

Gaussian function )
2ln4
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t
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−
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0.441 2  
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)
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(2

t

t
Sech

∆
0.315 1.5 

 
In cross-correlation, the ultrashort pulse is not correlated with itself. The cross-

correlation implies the use of a reference pulse of a known shape )(tI r  in order to 
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determine the temporal profile of an unknown laser pulse )(tI s . The intensity cross-

correlation to be measured is 

∫
∞

∞−
∆−=∆ dtttItItI rscc )()()(                                        (3.13) 

The convolution with the intensity of the reference pulse leads to a smooth cross-

correlation shape.  

The fundamental problem of auto-correlation and cross-correlation is that it does 

not uniquely determine the pulse characteristics. It cannot even accurately determine the 

pulse duration because a priori information about the pulse shape is required, which is 

sometimes impossible to obtain. Furthermore, a systematic analysis given in Chung et al. 

[90] shows that very similar autocorrelation traces and power spectra can be produced by 

pulses with drastic different shapes and durations. In fact, to fully characterize a pulse, 

including the intensity and phase in time domain or frequency domain, one needs a total 

number of 2N points. The correlation function only gives N points, meaning the pulse 

characterization for this technique is indeed quite under-determined. 

Of course, to understand the pulse itself, which includes what time a color occurs in 

a pulse, or equivalently, pulse spectral phase, full pulse intensity and phase 

characterization techniques are required. The development of several such kinds of 

technique occurs in the early 1990s. Among which, SHG frequency-resolved optical 

gating (FROG) and spectral phase interferometry for direct electric-field reconstruction 

(SPIDER) are the most well-known techniques. Frequency resolved optical gating uses 

two dimensional representation of the one dimensional electric field, while SPIDER uses 

one dimensional spectral interferometry. All of which will be discussed in details in this 

section. 
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3.4.2 Frequency Resolved Optical Gating (FROG) 

Frequency resolved optical gating (FROG) was first developed in 1993 [91, 92]. 

Frequency resolved optical gating is a method that can acquire both intensity and phase 

of a pulse without making prior assumptions about pulse shape. Frequency resolved 

optical gating is based on spectrally resolving autocorrelation function; therefore 

generating the spectrogram of the pulse to be measured (refer to Fig. 3.10 (a) as an 

example). A spectrogram, ),( τωS , is a two-dimensional representation of the pulse as a 

function of time delay and frequency (or wavelength), 

2

),(),( ∫
∞

∞−

−= dtetES ti

sig

ωττω ,                                    (3.14) 

where ),( τtEsig  is simply the autocorrelation signal and has several forms depending on 

different version of FROG techniques, e.g., self-diffraction (SD) FROG, polarization 

gating (PG) FROG, SHG FROG and third harmonic generation (THG) FROG. Among all 

these versions, only SHG FROG utilizes the second order nonlinearities while all the 

other versions rely on the third order nonlinearities to perform the autocorrelation. This 

makes SHG FROG one of the most widely used FROG techniques. For the SHG FROG, 

the ),( τtEsig  is simply a second order autocorrelation function, 

)()(),(, ττ −= tEtEtE sigSHG .                                       (3.15) 

Experimentally, a SHG FROG apparatus is an auto-correlator followed by a spectrometer. 

Therefore, instead of just measuring the intensity of the nonlinear optical signal generated 

by the two variably delayed pulses, the nonlinear optical signal ),( τωS  is spectrally 

resolved into a delay dependent spectrum, i.e., spectrogram. The resulting data is a two 

dimensional time-frequency representation of the pulse, that is, a 2D function of time 



56 

 

delay and optical frequency. The spectrogram obtained is referred to as the measured 

“FROG trace”, as show in Fig 3.10 (a). In some cases, the shape of the FROG trace can 

be interpreted to give an overview of the shape of the pulse.  

In order to “retrieve” the original pulse intensity and phase, a sophisticated iterative 

inversion algorithm needs to be applied to the 2D FROG trace. The two-dimensional 

phase retrieval algorithm has been well established in the field of image science. The 

electric field and phase of the pulse that created the FROG trace can indeed be uniquely 

determined from the FROG trace, e.g., Fig 3.10 (b) is an example of retrieved spectral 

intensity and phase of the pulse that created the FROG trace in Fig. 3.10 (a) (save a few 

trivial ambiguities). One reason that the FROG iterative retrieval algorithm converges 

well despite the absence of an absolute guarantee of convergence with the retrieval 

algorithm is that the FROG trace is “over-determined”. The FROG trace, unlike the auto-

correlation using N points to calculate the input pulse 2N-points field, has N2 points. 

Because of this build-in data redundancy, FROG technique guarantees a solution for an 

experimental trace; in addition, it also gains the ability of retrieving from the FROG trace 

that has a large amount of random noise [93]. In the FROG retrieval algorithm, 

convergence is always determined by calculating the root mean square difference (FROG 

error) between the measured FROG trace and the trace computed from the retrieved pulse 

field. Indeed, FROG error gives an estimate on how reliable the retrieved spectral 

intensity and phase are. 

Figure 3.9 is the schematic of our home-build FROG setup. We use this FROG for 

all our pulse characterization experiments. A 100 µm thick free-standing KDP crystal is 
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used for second harmonic generation. We use an image system after the crystal for 

imaging optimization purpose and providing a 10 times image magnification. 

We used single shot and multi-shot FROG techniques in our research. A multi-shot 

FROG trace consists of a series of 1-D spectra taken by manually change the delay stage  

 
 
Figure 3.9: Schematic diagram of a SHG FROG apparatus. BS: beam splitter. Xtal: 

crystal. 

position, whereas single-shot FROG trace itself is a 2-D image (delay vs. wavelength). 

Multi-shots FROG trace has a higher signal-to-noise ratio, but the whole acquisition time 

is much longer. To retrieve the FROG trace, we send the single-shot and multi-shot 

FROG trace to the retrieval algorithms (Femtosoft software). To get a reasonable FROG 

error, accurate delay axis and wavelength axis calibrations are required, as well as 

appropriate data correction procedures (background subtraction and flat-field correction). 

Fig. 3.10 is an example of using FROG technique in our example, with the original 

FROG trace shown in Fig. 3.10 (a) and retrieved spectral intensity and phase shown in 
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Fig. 3.10 (b). Note that the retrieved spectral phase shows an example of linear chirp 

(quadratic spectral phase) in the original pulse. The retrieved FROG error is 0.025 using 

FemtoSoft FROG V1.5.  

FROG is a very useful technique, particularly as temporal and spectral information 

are simultaneously measured, yielding a phase reconstruction. The downside is that 

sometimes spatial chirp and pulse-front tilt can be an issue when reliable FROG traces 

are desired.  A beam with spatial chirp has color varying spatially across the beam and it 

will tilt the FROG trice by a small angle. The pulse-front tilt means the pulse intensity 

front is not perpendicular to the pulse propagation vector and this effect will shift the zero 

delay line in the FROG trace. Furthermore, the FROG technique is not well suited for 

real time pulse monitoring and adaptive control experiments due to the time-consuming 

retrieval algorithms and occasionally expertise in the selection of reconstruction 

parameters. For other pulse characterization applications, FROG is an excellent choice. 

 
 
Figure 3.10: An example of experimental FROG trace and retrieved spectral 

intensity/phase profile correspond to the FROG trace. The spectral intensity is 
an example of Gaussian pulse and the spectral phase indicates a residual linear 
chirp for the original pulse.  
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3.4.3 Spectral Phase Interferometry for Direct electric-field Reconstruction (SPIDER) 

The technique, spectral phase interferometry for direct electric-field reconstruction 

(SPIDER), is a specific implementation of spectral shearing interferometry [94, 95]. This 

interferometric technique is based on the measurement of the interference between two 

pulses with a certain delay in time. These two pulses are spectrally sheared, i.e., they are 

identical except for their central frequencies. The spectrum of this pulse pair is an 

interferogram signal [Fig. 3.11] 

])()(cos[)()(2)()()( ωτωφωφωωωωω +−Ω+Ω+++Ω+= IIIIS     (3.16) 

where Ω  is the spectral shear (the difference between the central frequencies of the pulse 

pair), τ is the time delay between the pulses, )(ωI and )(ωφ  are the pulse spectral 

intensity and phase. 

 
 
Figure 3.11: Plot of an ideal interferogram. The interferogram is of the form shown in Eq. 

(3.16). The nominal spacing between the fringes is 1/τ. Refer to Shuman et al. 
[96].  

As mentioned in this section before, the full pulse characteristics in the frequency 

domain require determining both the )(ωI  and )(ωφ . The measurement of the electric 
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field is quite straightforward and the spectral phase can be extracted from the SPIDER 

interferogram. Evidently from the Eq. 3.16, the spectral shear Ω  determines discrete 

spectral phase sampling resolution, as only the spectral phase at a series of spectral 

frequency separated by Ω  can be determined. To utilize the SPIDER technique, the 

generation of spectrally sheared pulse pair is required. This is usually done [Fig. 3.12] by 

frequency mixing two pulse replicas, that is separated by delay time τ , with a chirped 

pulse in a nonlinear crystal. A pulse stretcher, e.g., a glass block in the Figure 3.12, is 

used to generate the chirped pulse. The chirped pulse needs to be much longer than the 

delay time τ  to satisfy the condition that each pulse replica can frequency mix with 

different frequency in the chirped pulse in the crystal. As a result, the unconverted pulses 

are spectrally sheared. The resulting interferogram is resolved with a spectrometer. After 

the interferogram is sampled properly, the spectral phase information can be extracted 

from the data. 

 
 
Figure 3.12: Schematic diagram of a SPIDER apparatus. BS: beam splitter. GDD: SF10 

glass block. TS: translational stage for delay adjustment. FM: focusing mirror. 
OMA: optical multichannel analyzer. SFG: upconversion crystal (BBO). 
Refer to Gallmann et al. [107]. 
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The SPIDER trace is one-dimensional, and the inversion is algebraic. The SPIDER 

pulse retrieval algorithm uses a direct inversion procedure [97], which is much faster 

comparing with the FROG’s iterative algorithms. As a consequence, real-time 

measurements (with a 20-Hz refresh rate) from the output of a regeneratively amplified 

laser system have been obtained [96]. Meanwhile, combination with SPIDER and 

adaptive pulse control makes real-time ultrashort coherent control possible. However, 

SPIDER requires a different optical setup for measurement of different optical pulses, 

which limits its flexibility because prior knowledge of the pulse chirp is required. 

Furthermore, the accuracy of SPIDER is reliant solely on the initial calibration, which 

cannot be checked in the same way as FROG, in which marginals of the FROG trace can 

be used to highlight any calibration irregularities [98]. 

3.5 Pulse Shaping 

Femtosecond pulse shaping [99] promises great advantages to the fields of fiber 

optics and photonics, ultrafast spectroscopy, optical communications and physical 

chemistry. Femtosecond pulse shaping also plays a major role in the field of coherent or 

quantum control [100], in which quantum mechanical wave packets or quantum state can 

be manipulated via the phase and intensity profiles of the input laser pulse. Changing the 

laser intensity temporal profiles can only be achieved by femtosecond pulse shaping. 

Meanwhile, several schemes have been proposed in which pulse shaping would favorably 

enhance laser-electron interactions. One application involves laser generation of large 

amplitude, relativistic plasma waves [101]. In recent years, the combination of the 

femtosecond pulse shaping with the adaptive control technique, i.e., adaptive pulse 

shaping, has led to several interesting demonstrations [102-104]. 
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In this section we will lay out the schematics of pulse shaping techniques in 

frequency and time domain, the practical consideration for implementing pulse shaping 

technique, as well as configurations of the pulse shaper used in our experiments. 

3.5.1 Femtosecond Pulse Shaping 

Femtosecond pulse shaping has passive and active control methods. Passive 

methods use grating pairs or prism pairs to give a relatively fixed and limited control of 

the pulse, such as the pulse stretcher used in the SPIDER apparatus and the pulse 

compressor in CPA systems. Active control methods use programmable modulators, 

which perform a much powerful and robust control over pulse phase and/or amplitude. 

Active methods can be performed in two domain, frequency domain or direct in-time. 

Frequency domain femtosecond pulse shaping has been studied extensively and the 

technique is well-developed by now. The method is based on liquid crystal (LC) device 

or acoustic-optic modulator (AOM) placed in the Fourier plan of a grating based zero 

dispersion 4f-configuration (Figure 3.14) to experimentally control the spectral phase 

and/or intensity of the pulse. The different wavelengths are spatially separated and can 

then be addressed individually in this case. This turns out to be a great advantage in 

conjunction with genetic algorithm for adaptive pulse shaping, because the desired 

control pulse can have a rather random phase pattern. However, the setup requires careful 

realignment after changing the wavelength and its large size can be a limitation in some 

applications. The detailed description of the 4f Fourier domain pulse shaping using LC-

SLM will be given later in this section.  

Direct in-time femtosecond pulse shaping can be achieved using an acousto-optic 

programmable dispersive filter (AOPDF). Acousto-optic programmable dispersive filters 

are based on the propagation of light in an acousto-optic birefringent crystal [Fig. 3.13]. 
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The interaction of an incident ordinary optical wave with a collinear acoustic wave leads 

to an extraordinary wave. The acoustic wave is modulated to achieve phase matching for 

the incident pulse to be scattered into the perpendicular polarization direction at different 

depth for different wavelength. Spectral phase and amplitude pulse shaping of a 

femtosecond optical pulse can then be achieved by controlling the frequency modulation 

and acoustic wave magnitude through the modulation of the RF voltage for the 

piezoelectric transducer. The optical output )(ωoutE  can be related to the optical input 

)(ωinE  and electric driving signal )(ωS  as [105] 

)()()( αωωω SEE inout ∝ ,                                       (3.17) 

with the scaling factor defined as 

)( cVn∆=α ,                                                (3.18) 

where n∆  is the index difference between the ordinary optical wave and extraordinary 

wave and V/c is the ratio of speed of sound to the speed of light. )(ωS  is numerically 

calculated and sent to the crystal. 

 
 
Figure 3.13: Principle of acousto-optic programmable dispersive filter (AOPDF). 

Compressed pulse is an example that AOPDF can be used as a pulse shaper to 
compensate the original chirped pulse phase. Refer to Verluise et al. [105]. 
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The collinear acousto-optic interaction and the reduced size result in an easy-to-

align device. Acousto-optic programmable dispersive filter have proven to be very useful 

to correct the time aberrations introduced in Chirped Pulse Amplifiers, for amplitude and 

phase control of ultrashort pulses [105], or even in characterization setups [106]. 

3.5.2 Fourier Domain Pulse Shaping Using Spatial Light Modulator 

Spatial light modulator (SLM) has been widely used in the Fourier domain pulse 

shaping technique because of its programmable shaping ability of addressing both the 

phase and amplitude of each individual frequency component of the input pulse. 

Combining with the Genetic Algorithm’s powerful abilities of efficiently searching the 

parameter space, adaptive pulse shaping using spatial light modulator has shown great 

potential to locate the right driving pulse for a specific application. In this section we will 

lay out the schematics of Fourier domain pulse shaping, followed by the discussion on 

how the SLM can be used to phase and amplitude control of the input pulse, as well as 

some experiment considerations. 

3.5.2.1 Fourier domain pulse shaping 

Fourier domain pulse shaping is the most successful and widely adopted pulse 

shaping method. Therefore, a setup consideration and design details will be discussed in 

this section. Figure 3.14 shows the basic Fourier domain pulse shaping apparatus, which 

consists of a pair of diffraction gratings and mirrors (or lenses), and a pulse shaping mask 

(LC-SLM). The individual frequency components contained within the incident ultrashort 

pulse are angularly dispersed by the first diffraction grating, and then focused to small 

diffraction limited spots at the back focal plane of the first mirror, where the frequency 

components are spatially separated along one dimension. Essentially the first mirror 

performs a Fourier transform which coverts the angular dispersion from the grating to a 
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spatial separation at the back focal plane. Spatially patterned amplitude and phase masks 

are placed in this plane in order to manipulate the spatially dispersed optical Fourier 

components. The second mirror and grating recombine all the frequencies into a single 

collimated beam. 

 
 
Figure 3.14: Schematic diagram of a Fourier domain pulse shaping apparatus using a LC-

SLM. In this setup, d1+d2=f to maintain the 4f configuration. LC-SLM: 
Liquid Crystal Spatial Light Modulator. 

In the 4f Fourier domain pulse shaper, the field immediately after the SLM mask 

M(x) is [99] 
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and 0w  is the radius of the focused beam at the mask plan 
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In these equations, inθ  and dθ  are the incident angle and diffraction angle for the grating, 

d is the grating parameter, f is the focal length of the focusing mirror (or the lens), inw  is 
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the radius of the incident beam before the first grating, 0ω  is the central frequency and c 

is the speed of light. 

For the discrete N pixel SLM device, the mask M(x) can be written as 
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where H(x) is the continuous mask that pre-defined for specific frequency filter, pw  is 

the physical width of each pixel of the SLM (see next section for details), the rectangular 

function is 1 for 21≤x  and 0 otherwise, ⊗  is for convolution.  

Assuming a linear space to frequency mapping )( 0ωωα −=x , the final electric 

field after the shaper can be expressed as 
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where H(t) is the Fourier transform of the function H(x), fδ  is the frequency bandwidth 

of each SLM pixel. 

The setup of the Fourier domain pulse shaping requires that the output pulse should 

exactly reproduce the input pulse if no mask is presented in the back focal plan of the 

first mirror [99]. In another words, the grating and mirror configuration can not introduce 

extra dispersion. There are several considerations. First, the second grating has to be 

carefully placed so that the incident angle on the second grating equals the output angle 

of the first grating. Second, 4f configuration must be maintained, which means the 

grating pairs must locate in the outside mirror focal planes and two mirrors are separated 



67 

 

by 2f. Note that sometimes lenses are used in the pulse shaper; however, using mirrors 

instead of lenses can minimize the material dispersion. 

3.5.2.2 Liquid crystal spatial light modulator (LC-SLM) 

The pulse shaper in our experiments uses LC-SLM (CRI SLM128-NIR) as the 

pulse phase modulation component. The LC consists of long, thin, rod-like molecules 

which are aligned with their long axes along the y direction without the external electrical 

field (see Fig. 3.15). When the voltage V is applied on the LC cell in the z direction, 

electric dipoles are induced and the electric forces tilt the LC molecules along z direction; 

causing a change in the refractive index for pulse polarized in y direction, while the 

refractive index in the x direction remains constant [108]. Therefore, the polarization of 

the incoming electric field must be parallel to the orientation of the long axis (y axis) of 

the liquid crystal molecules for use of the cell as a phase modulator. 

 
 
Figure 3.15: A sectional view of a liquid crystal layer between two glass plates. (a) No 

voltage applied. (b) Voltage is applied on the ITO electrodes in the z-direction. 
Refer to Weiner et al. [108]. 

The LC-SLM in our pulse shaper consists one LC layer, so it can only act as a pure 

phase modulator. However, SLM that consists two LC layers, in which their long axis are 
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in perpendicular directions, can be used as both a phase modulator and an amplitude 

modulator. 

The LC-SLM used in our experiments has 128 pixels that are 2 mm high, 

97 mµ wide, 15 mµ thick, and separated by 3 mµ gaps [Fig. 3.16]. Therefore, the phase 

shift applied to pixel “i” by the change of its refractive index is equal to 

i

i
i

mn

λ
µπφ 152 ⋅∆

=∆                                                     (3.24) 

 
 
Figure 3.16: Illustration of LC-SLM array that consists of 128 LC pixels. The dimension 

and positions of the pixels are given as well. Refer to Weiner et al. [108].  

3.5.2.3 Experimental considerations 

For the most part, we perform frequency domain femtosecond pulse shaping using 

liquid crystal spatial light modulators in our research. Two identical gratings (1200 

lines/mm) and spherical mirrors (f = 25 cm) are used in the setup. Depending on the 

experiments for different input central wavelength, the alignment is changed. If the 
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gratings and the SLM are designed for different pulse polarization directions, two half 

wave-plates have to be used before and after the SLM. The overall power convert 

efficiency is above 50% (comparing the pulse power launch into and after the pulse 

shaper). The SLM (CRI SLM128-NIR) positioned in the masking plane consists of 128 

individually addressable elements 100 mµ  wide with a 3 mµ  gap between pixels. 

Configuration of the shaper, i.e. positions of optical components and input pulse angle, 

can be calculated by applying grating equation and geometrical optics. The goal is 

utilizing a large number of SLM pixels to achieve a high pulse shaping resolution. 

Combining pulse shaper and open and/close close loop control (see chapter 4 for 

details) can yield great advantages in coherent pulse control over pulse interaction with 

PCFs. There are a few practical experimental considerations we need discuss before 

jumping into the next chapter. 

1. High pulse shaping resolution 

Using x as the coordinate in the transverse direction parallel to the front of the SLM, 

f for the focal length of the lens, dθ for the diffraction angle and D for the grating line 

spacing, the pulse shaping resolution can be written as 

dfDdxd θλ cos)(= .                                         (3.25) 

With pulse bandwidth (baseline) and SLM pixel size (x direction) available, diffraction 

angle dθ  and incident angle iθ  for the first grating can be determined. 

2. Liquid crystal voltage and phase shift calibration curve 

A given phase shift caused by the refractive index shift on an individual SLM pixel 

is a function of both wavelength and LC voltage. Even for a fixed wavelength, the change 
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in refractive index shift and voltage response of the LC is not a linear function. So LC 

voltage and phase shift calibration curves are required. 

Calibration curves can be established with the SLM placed between two crossed 

polarizers, each polarizer is placed 45 degrees to the long axis (y) of the LC molecules. 

Measuring the transmission coefficient as a function of driving voltage, for different 

wavelength and different SLM pixel (if necessary), and applying the equation 

( )φcos15.0 −=T , LC voltage and phase shift calibration curves can be measured [Fig. 

3.22]. For values that do not lie on one of the three curves, interpolation is used. 

 
 
Figure 3.17: CRI SLM phase shifting curves as a function of drive voltage for750nm, 

800nm and 850nm center wavelength. Linear interpolation can be applied to 
derive the phase shifting values for other wavelengths. Curves are measured 
by Anatoly Efimov. 
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3. SLM alignment 

It is critical to perform transverse SLM alignment. Since phase shift is a function of 

driving voltage and wavelength, it is important to know the exact frequency component 

for each individual SLM pixel. Fortunately, this calibration is fast and easy. Applying a 

large phase jump to several SLM pixels across the SLM array, watching the spectrum 

change can easily determine the corresponding wavelengths. Note that this wavelength 

and SLM pixel number calibration should be a linear function, according to equation 3.25. 

4. limitations of SLM 

The most important limitation of SLM is the Nyquist limit. The Nyquist sampling 

theorem states that the phase difference between two adjacent SLM pixels should not be 

greater than π . Therefore, the phase jump across the SLM array should be limited within 

128π . Else wise, it will cause an aliens problem. 

The pixelation effect is due to the gaps between two neighboring pixels. The 

spectral components that pass through the gap, although a small portion, will not 

experience the refractive index change. If an exact pulse shape is desired, this effect is 

observable as small imperfections between the desired and the measured shape. 
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CHAPTER 4 
CONTROL OF SUPERCONTINUUM GENERATION IN PCFS USING OPTIMALLY 

DESIGNED PULSE SHAPES 

This chapter will focus on the control of the supercontinuum generation in 

microstructured fibers using femtosecond pulse shaping.  Specifically, we will present 

results of our experiments on manipulating the bandwidth and shape of supercontinuum 

using optimally designed intensity profiles. In section 4.1, an overview of the two 

different types of control schemes will be presented, including both “open-loop” control 

and “closed-loop” control methods.  In the ultrafast coherent control community, open-

loop refers to control processes in which the optimal pulse shape for achieving a specific 

goal is determined by intuitive methods through careful consideration of the underlying 

physics.  In closed-loop control, a learning algorithm is applied experimentally to 

synthesize the optimal pulse.  We will discuss the considerations and setup of our open 

loop control experiment, as well as the NLSE simulation tools we used to model the 

experimental results in section 4.2. We investigate the effect of input pulse second order 

and third order spectral phase variations on the supercontinuum generation in section 4.3. 

In particular, effects of input pulse third order spectral phase on the supercontinuum with 

input pulse center frequency near the microstructured fiber zero dispersion (GVD) point 

are studied. Moreover, in section 4.4, we perform open loop control of pulse propagation 

self-steepening nonlinear effect in microstructured fiber using a pre-shaped “ramp” pulse 

to counteract the self-steepening. Simulation results based on the extended NLSE model 

corresponding to open loop control will also be presented and compared to experimental 
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results. A standard split-step Fourier algorithm [3] is used in the simulation model. 

Closed loop control experiments and results will be discussed in details in the next 

chapter. 

4.1 Control of Supercontinuum Generation in PCFs 

Continuum generation results from the nonlinear interactions between the input 

pulse and nonlinear media. Due to the intrinsic properties of nonlinear interactions, the 

resulting bandwidth of the continuum is much larger than that of the input pulse. 

Continuum generation has been studied over decades. Continuum generation of 400 nm 

bandwidth was first observed in the glass in 1970 [109]. Since then, the nonlinear media 

used for continuum generation has evolved from bulk glass and liquid to optical fiber. 

The low loss, tightly guided modes, and high nonlinearities of the optical fibers make 

them natural candidates for the supercontinuum generation. As such, optical fibers lead to 

a dramatic reduction in the pump power for the continuum generation. Various nonlinear 

effects such as SPM, SRS and FWM subsequently lead to the continuum generation in 

the optical fibers.  

Due to its high material dispersion at Ti:Sapphire wavelengths, continuum 

generation in the optical fibers has been mainly in the telecommunication wavelength 

region (~1550 nm) before the invention of PCFs. In addition to their extremely small core 

sizes, PCFs revolutionized continuum generation by introducing a large amount of 

waveguide dispersion contribution, which can cancel the fiber material dispersion and 

yield zero dispersion for as low as 500 nm [48]. The advantages of PCFs manifest 

themselves through a continuum generation range from 400 nm to 1600 nm 

(supercontinuum) using only a Ti:Sapphire oscillator [6]. Since then, supercontinuum 
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generation has quickly found applications in various fields such as telecommunication, 

optical metrology and medical science. 

In fact, the nonlinear mechanisms that lead to the supercontinuum generation in the 

PCFs are in no way different from that of continuum generation in conventional fibers. 

But in PCFs, the nonlinear interactions usually happen within the first several millimeters 

of the fiber length and in a much larger scale. A large amount of research in the area of 

supercontinuum generation in PCFs have been performed to explain the active roles of 

various nonlinear interactions that lead to the supercontinuum generation, including 

soliton generation and splitting, SPM, SRS, etc. Supercontinuum generates in PCFs as a 

result of high order soliton generation and splitting, followed by various other nonlinear 

interactions slight changing the supercontinuum envelope as propagating along the PCFs. 

Supercontinuum generation in PCFS is nonlinear processes in the extreme. Large 

modulation structures are easily seen in the continuum envelope due to the soliton 

splitting. Meanwhile, sharp sub-nm continuum features vary drastically from shot to shot 

[9, 13], as both the experimental and simulation results show that supercontinuum 

generation is extremely sensitive to the input pulse power fluctuation. In figure 4.1, left 

figure shows the experimental supercontinuum fine structure variation from three 

different shot, measured by X-FROG. Simulation result shown in the right figure 4.1 also 

reveal that for 1% input pulse power fluctuation, although the continuum envelope does 

not show dramatic change, the fine structures of the supercontinuum change drastically. 

This drawback greatly affects some of the supercontinuum generation applications, such 

as pulse compression and high precision optical metrology. Various research activities 

have been carried out to study the stabilities of the supercontinuum generation. In general, 
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these research interests include variation of the input pulse properties, microstructured 

fiber propagation length effects [15] and tailorable dispersion properties. Our approach in 

Chapter 6 will focus on the simulation of utilizing dispersion flattened microstructured 

fiber to study the pulse compression application. 

 
 
Figure 4.1: Sub-nm supercontinuum feature fluctuations as a result of input pulse power 

fluctuation. Left figure, experimental result of supercontinuum fine structure 
variation from three different shots, refers to Gu et al. [13]. Right figure, 
simulation of sub-nm supercontinuum feathers fluctuation as the input peak 
power varies by 1%, refers to Gaeta [9]. 

Controlling nonlinear optical processes in microstructured fiber is in general 

difficult, resulting from their intrinsic “nonlinear” responses to the input fields. 

Meanwhile, controlling the supercontinuum generation process in microstructured fibers 

is important for a number of applications. It allows us to extensively study various 

nonlinear processes and dispersion effects that lead directly to the fascinating 

supercontinuum generation, as well as gain the ability to generate the supercontinuum 

which properties are suited for one particular application. 

It is evident that the supercontinuum generation and pulse nonlinear propagation in 

the microstructured fibers strongly depend on both the input pulse parameters and 

microstructured fiber properties. The “control knobs” for supercontinuum generation in 

the microstructured fiber can therefore be characterized as the following two categories. 

“Control knobs” related to the microstructured fiber properties include simple controls 
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such as fiber length and more advanced controls such as fiber dispersion and nonlinear 

properties. As mentioned in the chapter 2, fiber dispersion properties can be engineered 

by choosing the proper fiber parameters such as air hole size and pitch; meanwhile 

changing the core diameter can subsequently alter the nonlinear response of the 

microstructured fiber. The input pulse parameters, on the other hand, are much easier to 

handle and have a larger number of “control knobs”. One can easily enumerate many 

input pulse parameters such as pulse power, wavelength, polarization or even the control 

of pulse chirp of some kind. Apolonski’s results published in 2002 examined the 

influences of these control “knobs” on the supercontinuum generations [110]. 

More generally, Fourier domain pulse shaping [99], in which Fourier synthesis 

methods are used to generate nearly arbitrarily shaped ultrafast optical waveforms has 

been proven to be a powerful tool and have applications in many optical fields such as 

high power laser amplifiers, quantum control and optical communications. When coupled 

with adaptive or learning algorithms [111], Fourier domain pulse shaping has shown to 

be very effective in exercising control over nonlinear optical processes and producing a 

specific “target” nonlinear output state.  

Two distinct control methods, open loop control and closed loop control, can be 

utilized to perform the Fourier domain pulse shaping. In general terms, open loop control 

is defined as the application of specific pulse or sequence of pulses and is carried out 

irrespective of the outcome of the experiment. In particular, for the pulse shaping 

technique, open loop control method utilizes knowledge of the underlying physics to 

intuit or derive a suitable control pulse. For example, the fundamental dark soliton was 

observed in optical fibers utilizing specially shaped and asymmetric input pulses, which 



77 

 

is in quantitative agreement with numerical solution to the nonlinear Schrödinger 

equation [112]. Open loop pulse shaping shows great advantage in the coherent control 

regime. Ultrafast coherent control of excitons in quantum wells use intuitively shaped 

pulse trains to investigate the generation process and intermediate virtual states in 

quantum structures [113]. Coherent control of Bloch oscillations using open loop pulse 

shaping provides a way to control the emitted THz radiation [114]. These are but a few of 

the recent applications of coherent control with shaped pulses.  For pulse nonlinear 

propagation in the microstructured fiber, the chirp (or the spectral phase) of the input 

pulse can be altered with much higher resolution in the Fourier pulse shaping comparing 

to that of Apolonski where multiple pairs of chirp mirrors were used; therefore gaining 

better abilities on how the input pulse spectral phase can affect the supercontinuum 

generation. Meanwhile, using the phase sculpted “ramp” pulse to counteract self-

steepening nonlinear effect allows us to suppress the blue-shifted continuum generation. 

Closed loop control, also referred as adaptive control, involves “feedback” through the 

repetitive application of optical waveforms synthesized using learning algorithms to 

ensure that the physical goals are met. Closed loop control coupled with Fourier domain 

pulse shaping have become a powerful means for optimizing a particular physical process. 

Closed loop control experiments and results will be discussed in details in the next 

chapter. To our knowledge, this dissertation and its related papers investigate for the first 

time how Fourier domain pulse shaping can be used to control the evolution the nonlinear 

pulse propagation in microstructured fibers. 

4.2 Open Loop Control Experiment Setup and NLSE Simulation 

We use two laser systems in the open loop control pulse shaping experiments, 

depending on the experiment of interest. The Mira 900 Ti:Sapphire laser system 
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generates pulses of 76 MHz repetition rate, with 6 nJ pulse energies, 200 fs pulse 

duration and pulse central wavelength is tunable from 700 nm to 900 nm. The bandwidth 

of the output pulse is ~5 nm, and the Mira 900 is used primarily to study the effect of 

third order input pulse phase on the supercontinuum generation when the input pulse’s 

central wavelength is close to zero GVD point the microstructured fiber (~ 763 nm).  For 

other open loop control experiments, we use a 82 MHz, 30 fs Ti:sapphire laser producing 

3 nJ pulses that centered at 800 nm. The bandwidth of this laser system is ~65 nm, a 

much larger bandwidth comparing to that of Mira 900 as one can easily see by comparing 

the pulse durations of these two laser systems. The output pulse train is phase-only 

shaped (pulse shaper that only modulates the pulse spectral phase) by an all-reflective 4f 

Fourier domain pulse shaper using a 128 pixel programmable liquid crystal spatial light 

modulator (LC-SLM) as described in Chapter 3. The focal length of the mirror used in 

the pulse shaper is 25 cm. Because the two laser systems have different central 

wavelengths and bandwidths, two considerations are taking into account with the design 

of pulse shaper to get high pulse shaping resolutions. 300 lines/mm grating pairs are used 

for Ti:Sapphire laser with 65 nm bandwidth and 1500 lines/mm grating pairs are used for 

Mira 900 laser with 5 nm bandwidth; the grating line spacings correspond to 3.3 mµ and 

0.67 mµ , respectively. Input pulse incident angles for pulse shapers can be easily 

calculated according to equation 3.16 to utilize large number SLM pixels and yield high 

pulse shaping resolutions. The power transmission through the pulse shaper is 

approximately ~40%. After the pulse shaper, the pulse is coupled into a piece of 

microstructured fiber using a 100x objective (Vickers w4017) of a numerical aperture 1.3. 

Meanwhile, the shaped pulse is characterized by the second harmonic generation 
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frequency resolved optical gating (SHG FROG) to verify the pulse temporal structure. 

Some dispersion is introduced by the glass in the objective; this is measured separately 

and compensated for in our experiments. The microstructured fiber consists of a 

1.7 mµ diameter silica core surrounded by an array of 1.3 mµ diameter air holes in a 

hexagonal close-packed arrangement. The microstructured fiber has a zero GVD 

wavelength ~760 nm and the coupling efficiency using the objective is estimated to be 

20%. The supercontinuum generated in the microstructured fiber is collimated using a 

50x objective and the spectrum is recorded using a 0.25 m spectrometer with a CCD 

detector. An example of the supercontinuum generation in our experiment is show in 

figure 4.2.  Figure 4.3 shows the schematics of open loop control experiment setup.  

 
 
Figure 4.2: An example of supercontinuum generation in experiment. Inset: a dramatic 

picture of supercontinuum after a grating, taken by Anatoly. 
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Figure 4.3: Schematic diagram of the open loop control experiment. SLM: Spatial light 

modulator. SHG FROG: Second harmonic generation frequency resolved 
optical gating. 

We follow the experimental considerations discussed in section 3.5.2.3 to setup and 

characterize the pulse shaper. For pulse shapers corresponding to different input central 

wavelengths, we use LC voltage and phase shift calibration curves (Fig. 3.16) and 

linearly interpolate the values that do not lie on the curves. Meanwhile, we perform 

wavelength-to-pixel calibrations for the pulse shaper setups to verify the phase shaping 

resolutions. In both cases, ~100 pixels over the whole 128 pixels are used for the pulse 

shaping. In addition, both autocorrelation and FROG are used to verify the output pulse is 

the replica of the input pulse when imposing zero additional phases on the pulse shaper. 

To modal our experiments, we use an extended nonlinear Schrödinger equation [3] 

(NLSE, described in details in Chapter 2) with a standard split-step Fourier algorithm to 

compute the propagation of shaped pulses in the microstructured fiber. The NLSE has 

been proven to be valid for femtosecond pulses in the limit that the optical frequency 

bandwidth approaching the central frequency of the pulse [3, 9, 115]. A higher order split 

step method [115] is used to insure the stability for high input peak powers. In the 
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simulation model, the time resolution is 0.5 fs, the total sampling points is 214=16384 and 

the propagation step size is chosen as 0.5 mm. The frequency resolution is therefore 

111.1 GHz. The input temporal profile of the pulse for the NLSE is calculated from the 

inverse Fourier transform of the experimentally determined input pulse spectrum and 

spectral phase, in which the latter is specified from the additional phase induced by the 

pulse shaper in the condition that the phase of the original unshaped pulse has been well 

compensated (transform-limited pulse). For the fiber characteristics including the fiber 

dispersion parameters, we use the parameters taken from the literature for input pulse 

central wavelength of 770 nm [9]. Here is the list of fiber characteristics that we use in 

our simulations. 

Table 4.1: List of the microstructured fiber parameters used in the NLSE simulation 
model. 

Parameter (unit) Value 

2n  ( 12 −Wcm ) 
16100.2 −×  

γ  ( 11 −− Wkm ) 3.96  

effA  ( 2mµ ) 63.1  

2β  ( 12 −kmps ) 72.0−  

3β  ( 13 −kmps ) 21016.2 −×  

4β  ( 14 −kmps ) 510296.1 −×  

 
4.3 Influences of Quadratic and Cubic Spectral Phase on Propagation Dynamics 

As the first example of open loop pulse shaping experiment, we examine the 

influences of quadratic and cubic spectral phase to the output supercontinuum generation 

when the input central wavelength is in the anomalous dispersion region of the 



82 

 

microstructured fiber. For the Ti:Sapphire 800 nm laser system used in this experiment, 

the output pulse peak power is 100 kW. Considering 40% power transmission through the 

pulse shaper and 20% fiber coupling efficiency, it corresponds to a nonlinear length of ~1 

mm (defined in equation 3.25) calculating from the fiber parameters list in table 4.1), 

which is 103 times shorter than the dispersion length for this microstructured fiber. This 

ratio manifests itself through the drastic nonlinear effects in the microstructured fiber 

which consequently lead to the supercontinuum generation. The magnitudes of various 

nonlinear effects (i.e., supercontinuum bandwidth) taken place in the microstructured 

fiber critically depend on the input pulse peak power, which is determined by the input 

pulse spectral phase given a fixed spectrum. Figure 4.4 illustrates this point, in which 

simulation results using the experimentally determined Ti:Sapphire laser spectrum show 

pulse peak intensity variations as a function of pulse spectral phase. Note that the pulse 

spectral phase is determined by the following equation. 
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where 0ω  is the central angular frequency and the φ(i) are the higher order phase terms 

defined in equation 3.11. Note that the linear phase shift does not affect the pulse peak 

intensity, therefore is not considered in the discussion. In Figure 4.4 (a) and (b), the pulse 

peak intensity drops continuously with the increases of both cubic and quadratic spectral 

phase. Since pulse peak intensity changes do not depend on the sign of the introduced 

spectral phases, only positive cubic and quadratic spectral phase are shown in the figures. 

It is quite obvious that the peak intensity dropping is much faster for the quadratic 

spectral phase coefficients than the cubic phase coefficients, as the dropping ratio is over 

50% for the quadratic phase of 2000 fs2 and less than 1% for the cubic phase of 2000 fs3, 
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although it also applies for the phase changes according to equation 4.1. In addition, the 

temporal intensity profiles showing in figure 4.4 (c) illustrate this huge dropping ratio 

difference between the quadratic phase and cubic phase. Note that for both quadratic and 

cubic phase variation, acquiring maximum pulse peak intensity implies a zero spectral 

phase (transform-limited) for the input pulse. 

 
 
Figure 4.4: Simulation results of the pulse peak intensity as a function of pulse spectral 

phase. In (a) and (b), the pulse peak intensity verses pulse cubic and quadratic 
spectral phase, respectively. (c) Comparison of the pulse temporal intensity 
with transform-limited pulse, pulse with quadratic spectral phase of 2000 fs2 
and cubic spectral phase of 2000 fs3. 

Based on previous discussions, we investigate the influences of input pulse 

quadratic and cubic spectral phase on the supercontinuum generations. The experimental 

results showing in figure 4.5 nicely authenticate the theoretical explanations. The spectra 

of supercontinuum generation change dramatically upon variations of input pulse 

quadratic spectral phase. The bandwidth of the supercontinuum is greatly suppressed 

when introducing extra quadratic spectral phase, reducing from 450 nm for the transform-

limited input pulse to 250 nm for the induced quadratic spectral phase of the largest 

magnitude. There are only slight (but experimentally measurable) influences of the cubic 

spectral phase on the supercontinuum generation. Corresponding to the pulse peak 

intensity variations for introduced pulse quadratic and cubic phase, the latter shows a 
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much smaller supercontinuum generation influences, although the maximum 

supercontinuum bandwidth is still generated by a transform-limited input pulse. There is 

also an added discovery when looking into the experimental data. We expect to see the  

 
 
Figure 4.5: Experimental results of supercontinuum generation dependence on the input 

pulse quadratic and cubic spectral phase. In both (a) quadratic phase variation 
and (b) cubic phase variation, the supercontinuum obtains the broadest 
bandwidth for transform-limited input pulse. 

soliton generation from the supercontinuum since the input central wavelength is in the 

anomalous dispersion region and soliton generation results from the interplay between 

the fiber anomalous dispersion and self-phase modulation effect. Both figures show the 

evidence of soliton generation, as evidenced by the spilling off of a large spectral 

component on the long wavelength side of the supercontinuum and its subsequent shift to 

the red side of the spectrum as the phase is minimized. The first interesting observation is 

that soliton generation disappears when large magnitudes of the spectral quadratic phase 

are presented; resulting from the steep peak intensity drop for the input pulse and that 

soliton order is proportional to the square root of input pulse peak power. Meanwhile, 

whereas the spectral quadratic phase acts as a coarse control knob for the positions of 

soliton generation, the spectral cubic phase shows the fine tunability. Therefore, it is 

understandable that the peak intensities of the input pulse actually perform the control 
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over soliton generation, as further illustrated by both the closed loop experimental and 

simulation results discussed in the next chapter. 

To further investigate the influence of the input pulse spectral phase on the pulse 

propagation dynamics, we study the case that the input pulse frequency is near the zero 

GVD point of the microstructured fiber. It is known that finite bandwidth pulses centered 

at the zero dispersion wavelength experience both normal and anomalous dispersion. 

Near the zero GVD point of the microstructured fiber the dispersion length of the third 

order fiber dispersion (TOD), dL3 , is comparable to or even smaller than that of second 

order fiber dispersion (SOD) dL2 . Here i

i

diL βτ=_  where τ  is the input pulse duration 

and iβ  is the ith order fiber dispersion parameter. Therefore TOD plays an important role 

for the fiber dispersion property as well as the interplay between the fiber dispersion and 

self-phase modulation nonlinear effect when dL3  is comparable to dL2 . In addition, for 

the input pulses presenting a cubic spectral phase, the intrinsic fiber TOD can compensate 

the cubic spectral phase and compress the input pulse, providing the sign of the cubic 

spectral phase is opposite to the sign of the intrinsic TOD; therefore enhancing the 

magnitude of nonlinear effects (i.e., SPM) by increasing the pulse peak power as pulse 

propagates along the fiber and generating a broader supercontinuum. When the signs of 

input pulse cubic spectral phase and fiber TOD are the same, nonlinear effects are 

suppressed due to the fact that the fiber TOD induces extra spectral phase and lower the 

pulse peak power along the propagation length. 

The zero GVD point of the microstructured fiber listed in the table 4.1 is estimated 

to be ~760 nm. To make the input central wavelength close to the zero GVD point of the 

microstructured fiber, in the first set of experiments, we use our home-build Ti:Sapphire 
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oscillator and push the laser pulse central wavelength down to 770 nm. At this particular 

wavelength, dd LL 23 ≈ , as one can easily see by the calculation using the listed 

parameters. Upon changing only the cubic spectral phase of the input pulses, the 

supercontinuum maximum bandwidth should occur for a fiberL)3(
3 φβ = , where 3β  is 

the fiber TOD parameter and )3(φ corresponds to the input pulse cubic spectral phase. 

Note that in this equation the signs of 3β  and )3(φ  should be opposite, as only in this case 

the fiber TOD can interact with the propagating pulse to compensate the pulse 

intrinsic )3(φ . We use two pieces of microstructured fibers with different fiber length of 5 

cm and 70 cm to study the influence of input pulse cubic spectral phase on 

supercontinuum generation bandwidth. As we can see from figure 4.6 (a), the 

experimental output spectra bandwidths from the 5 cm microstructured fiber show a 

dramatic asymmetry upon examining the sign change of the input pulse cubic spectral 

phases, indicating fiber TOD dispersion has a different effects on the positive and 

negative pulse cubic spectral phases. The maximum bandwidth occurs when the input 

pulse )3(φ is -500 fs3. This corresponds to the fiber TOD parameter 3β  of a value +0.01 

ps3/km, which is in reasonable agreement with the reported 3β  value above. According to 

the equation, for the 70 cm microstructured fiber, proportionally more )3(φ is needed and 

the GVD broadening will play a larger role, thus the effects of pulse cubic phase should 

be minimal when imposing same amount of )3(φ as for the short fiber, which can be seen 

in figure 4.6 (b). 
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Figure 4.6: Experimental results of supercontinuum generation bandwidth from 5 cm and 

70 cm microstructured fibers as a function of input pulse cubic spectral phase. 
(a) Bandwidth changes of SC generation from 5 cm MSF with variation of 
input pulse Φ(3). Inset: output spectra from a 5 cm MSF with variation of input 
pulse Φ(3). (b) Bandwidth of SC generation from 70 cm MSF with variation of 
input pulse Φ(3). 

In order to further exam this effect and move closer to the zero GVD point of the 

microstructured fiber, we use the Mira 900 wavelength-tunable laser oscillator. It has a 

wavelength-tunable range of 700 nm to 900 nm. The drawback is that the bandwidth of 

the Mira 900 laser pulse (5 nm) is rather small compare to the home-build Ti:Sapphire 

laser. Therefore, to see an enhanced effect of the fiber TOD comparing to the first set of 

experiments, the central wavelength of the Mira system has to be tuned very closely to 

the absolute zero GVD point of the fiber. However, the fiber parameters provided in table 

4.1 are only estimated values at this precision level, and the pulse shaper also needs to be 

adjusted each time when the tuned central wavelength is changed. In order to find the 

absolute zero GVD point of the fiber, we first bypassed the pulse shaper and projected the 

laser beam directly into the microstructured fiber and find that output spectra have the 

maximum bandwidth at 763 nm. Since input pulses have a small bandwidth and 

experience the minimal GVD at zero GVD point, thus generating maximum bandwidth 

supercontinuum at this wavelength, 763 nm is the zero GVD point of the fiber. Based on 
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the previous discussion, we investigate the influence of input pulse cubic spectral phase 

on the supercontinuum generations at this particular wavelength. Both the experimental 

and simulation results are shown in figure 4.7 (a) and (b), respectively; the red curves are 

the output supercontinuum spectra for transform-limited input pulses. Since we use 45 

cm of microstructured fiber, in order to see the optimal supercontinuum generation, the 

amount of input pulse cubic spectral phase is changed proportionally. In figure 4.7 (a),  

 
 
Figure 4.7: Experimental and simulation results of supercontinuum generation bandwidth 

from a 45 cm microstructured fiber as a function of input pulse cubic spectral 
phase. The input pulse central wavelength is at the zero GVD point of the 
fiber. (a) Experimental results of bandwidth changes of SC generation with 
variation of input pulse Φ(3). Inset: experimental output spectra. (b) Simulation 
result of bandwidth changes of SC generation with variation of input pulse 
Φ(3). 

the experimental results show a considerable improvement compare to that of the 770 nm 

input central wavelength, as the maximum bandwidth expansion for the supercontinuum 

generation is nearly doubled. It is also evident from the inset of the figure 4.7 (a) that the 

bandwidths of the output spectra increase upon inducing proper amount of negative cubic 

spectral phase, while decreasing continuously for positive cubic spectral phase variations. 

The modulation in the bandwidth verses input cubic spectral phase curve is due to the 

laser power fluctuation. The simulation results (figure 4.7 (b)) show a good agreement 

with the experimental results. The maximum bandwidth of the supercontinuum spectrum 
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occurs for the same amount of input pulse cubic spectral phase change as the 

experimental results and the red sides of supercontinuum generation shows the exact 

same tendency as the experimental results. 

Finally, before concluding this section, we discuss more about the phase 

compensation to generate a transform-limited input pulse. A transform-limited input 

pulse is the prerequisite to investigate the influence of input pulse spectral phase on the 

supercontinuum generations. Depending on different experimental conditions, i.e., 

different input laser systems and pulse shaper setups, one can use autocorrelation or SHG 

FROG to verify if the input pulse is indeed a transform-limited pulse. As discussed in the 

last chapter, autocorrelations can be used to properly adjust pulse shaper configuration 

and perform a preparatory exam on the transform-limited property of the pulse. We use 

autocorrelation to fine-tune the pulse shaper setups for both laser systems. However, 

when utilizing Mira 900 laser system, the back reflection of the input laser pulse on the 

microstructured fiber coupling surface travels back to the laser cavity, as a result of a 

good cleaving and flatness of the fiber tip. Therefore, the laser mode-locking conditions 

are disturbed and can not maintain a proper working condition. For the home-build laser 

system, a pinhole is pre-placed and the back reflection intensity is decreased, therefore 

the laser mode-locking disturbance is not observed. We choose to use a Faraday isolator 

to cut off the feedback to the laser, in this case, the unwanted back reflection. A Faraday 

isolator, by its definition, uses Faraday Effect to transmit the polarised light in only one 

direction. Using the Faraday isolator, however, will induce a considerable amount of 

quadratic spectral phase to the input pulse. In order to compensate this extra quadratic 

phase, we use SHG FROG to characterize the pulse after the Faraday isolator and acquire 
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the phase information. With the pulse shaper introducing opposite measured phase on the 

pulse and therefore compensating the residual quadratic phase, we use the SHG FROG 

again to verify the transform-limited pulse generation. The FROG retrieved spectral 

intensities and phases before and after the phase compensation are shown in figure 4.8 (a) 

and (b), respectively. Obviously, the extra phase induced by the Faraday isolator is 

successfully compensated. The pulse shaper is also used to compensate the phase induced 

by the coupling objective for all the experiments. 

 
 
Figure 4.8: SHG FROG measurements of the spectral intensities and spectral phases of 

the pulses before and after the phase compensation using a pulse shaper. The 
spectral intensities and phases are shown in white curves and blue curves, 
respectively. (a) Before the phase compensation, there is a large amount of 
spectral phase showing in the blue curve. (b) After the phase compensation, a 
minimal spectral phase indicates a transform-limited pulse. 

To conclude this section, we have presented an experimental and theoretical 

investigation of open loop pulse shaping control of influences of the input pulse quadratic 

and cubic phase on the supercontinuum generations. When the input pulse is in the 

anomalous dispersion region of the microstructured fiber, for both input pulse quadratic 

and cubic spectral phase variations, the transform-limited input pulse generates the 

supercontinuum with the largest bandwidth. Meanwhile, the input pulse peak power can 

be used to tune the central wavelength of the generated soliton in this wavelength range. 
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In addition, the influence of input pulse cubic spectral phase on the supercontinuum 

generation is investigated when the input pulse central frequency is close to the zero 

GVD point of the microstructured. Pulse compression due to the interaction between the 

TOD of the microstructured and input pulse cubic spectral phase with the opposite sign is 

concluded with the observed supercontinuum bandwidths variation. 

4.4 Open Loop Control of Self-Steepening Nonlinear Effect 

In this section we present both the experimental and simulation results to show that 

the self-steepening nonlinear effect in the microstructured fiber can be controlled using 

pre-shaped temporal ramp pulse. Self-steepening nonlinear effect results from the 

intensity dependence of the group velocity for the propagating pulse in a way that the 

high power peak experiences a temporal delay relative to the lower intensity wings. 

While pulse propagating along the fiber, as shown in figure 2.2 (a), the high intensity  

 
 
Figure 4.9: Spectral blueshifted asymmetry due to self-steepening. The output spectra are 

plotted as a function of input pulse peak power. 

peak shifts towards the pulse trailing edge, leading to a steepening of the pulse followed 

by the formation of an optical shock front. An asymmetric blue-shifted spectral  
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broadening occurs in the frequency domain as the result of interaction between self-phase 

modulation and self-steepening. As an example, we show the spectral blueshifted 

asymmetry due to self-steepening nonlinear in figure 4.9, where a dramatically increasing 

blueshifted asymmetry is shown as the 13 fs input pulse peak intensity shift from 30 W to 

2.5 kW. 

The parameter governing the self-steepening effect is ( )001 τω≡s , where 0ω  is the 

input pulse central angular frequency and 0τ is the input pulse duration. The distance at 

which the shock is formed and significant spectral asymmetries can be observed is 

( )sLz NLs 39.0=  [3], which is approximately 15 cm for our experimental conditions. For 

the 70 cm microstructured fiber, both the experimental and simulation results show that 

the transform-limited pulse experiences severe self-steepening effect and there are large 

blue-shifted spectral broadenings in the output spectra, as shown in the black curves in 

figure 4.11 (a) and (b). 

To suppress the self-steepening nonlinear effect, it is intuitive to pre-shape the 

input pulse in such a way that the steepness lies on the leading edge of the input pulse. As 

this pre-shaped pulse propagates along the microstructured fiber, the forward “ramp” 

pulse become more symmetric to the pulse center due to the self-steepening effect; 

therefore, as a result, the blue-shifted spectral broadening asymmetry is suppressed. The 

input forward “ramp” pulse is synthesized using the phase-only pulse shaper with phase 

masks synthesized using the Gerchberg-Sexton algorithm [116] and verified by the SHG 

FROG measurement. Figure 4.10 shows the FROG measurement results, where (a) and 

(b) are the experimental FROG trace and reconstructed FROG trace, respectively. The 

FROG error is 0.002, indicating a reliable reconstruction result. The retrieved temporal 
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intensity and phase of the input forward “ramp” pulse are shown in Figure 4.10 (c). For 

comparative purposes, we also generate input pulse with backward “ramp”. Note that for 

both “ramp” pulses and input unshaped transform-limited pulse, the pulse shapes and 

durations are different. When using pulses shaped via the Gerchberg-Sexton algorithm, 

the peak intensity of the unshaped transform-limited pulse is attenuated to the same level 

as that of the “ramp” pulses since supercontinuum generation depends critically on the 

input pulse peak intensities. 

 
 
Figure 4.10: SHG FROG measurement results of phase sculpted forward “ramp” pulse 

generation. (a) and (b), the experimentally measured FROG trace and 
reconstructed FROG trace, respectively. (c), measured temporal intensity and 
phase of the forward “ramp” pulse. SHG FROG, second harmonic generation 
frequency resolved optical gating. 

We use the pre-shaped forward “ramp” pulse to suppress the self-steepening and 

blue shifted spectral broadening effect. The experimentally generated output spectrum 

from the microstructured fiber corresponding to this pulse is shown as the red curve in 

figure 4.11 (a). It is evident that the supercontinuum generated by the forward “ramp” 

pulse is smoother and shows less broadening toward the blue side than that by the 
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transform-limited symmetric input pulse (output spectrum shown as the black curve in 

figure 4.11 (a)). Upon recording the phase for generating the forward “ramp” pulse and 

use it as the input for the NLSE model, we simulate the supercontinuum generation 

corresponding to this input forward “ramp” pulse. The simulation result shown as the red 

curve in figure 4.11 (b) is in good agreement with the experimental output spectrum, with 

a modulation depth of the red and blue-shifted components nearly identical to that 

observed in the experiment. Meanwhile, simulation results also verify that a smoother 

output spectrum is generated with more uniform broadening towards both red and blue 

sides. Note that when the input pulse has the same polarity (backward) “ramp” as the 

self-steepening formed optical shock, the output spectrum exhibits a similar character to 

that of the transform-limited pulse, with deep spectral modulation and asymmetric 

broadening  

 
 
Figure 4.11: Experimental and simulation results of suppression of self-steepening effect 

using pre-shaped forward ramp pulse. (a) The experimentally observed output 
spectrum from a 70 cm MSF obtained with a transform-limited pulse (black 
curve), and forward (red curve) and backward (green curve) “ramp” pulses. (b) 
NSLE simulation of the supercontinuum from a transform-limited pulse 
(black curve) and the shaped forward “ramp” pulse (red curve). 
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toward the blue (shown as the green curve in figure 4.11 (a)). Therefore it is evident that 

the forward “ramp” pulse shape (not the longer pulse duration) actually performs the 

suppression of the self-steepening and generates smoother spectral output. Our 

simulations of the evolutions of the pulse temporal intensity while pulse propagating in 

the microstructured fiber for the forward and backward “ramp” pulses corroborate this 

conclusion. The temporal output for the forward “ramp” pulse (figure 4.12 (a)) shows a 

less structured envelope and trailing edge when compared with the temporal output for 

the backward “ramp” pulse (figure 4.12 (b)). In addition, the evolutions of the pulse 

propagation in the fiber for these two input “ramp” pulse indicate the self-steepening 

nonlinear effect is indeed compressed by introducing the forward “ramp” pulse. 

 
 
Figure 4.12: Simulation results of the evolutions of the pulse temporal intensities as a 

function of propagation length in the microstructured fiber for the forward and 
backward “ramp” pulse. The time scale and propagation length is normalized 
to the input pulse duration and fiber length, respectively. The insets in the 
figures are the demonstration of the input “ramp” pulses for clarification 
purpose. (a) Evolution of the pulse temporal intensities as propagating in the 
fiber for forward “ramp” pulse. (b) Evolution of the pulse temporal intensities 
as propagating in the fiber for backward “ramp” pulse. 

As a conclusion for this section, we successfully counteract the self-steepening 

nonlinear effect by intuitively introducing a forward “ramp” pulse. Both the experimental 
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and simulation result corroborate this conclusion. Therefore the blue-shifted spectral 

broadening asymmetry due to the self-steepening is also suppressed.  



97 

CHAPTER 5 
CLOSED LOOP CONTROL OF THE SUPERCONTINUUM GENERATION IN PCFS 

VIA ADAPTIVE PULSE SHAPING  

We have investigated open loop control of the supercontinuum generation in 

microstructured fibers in the previous chapter.  Here we present the results of the closed 

loop control (adaptive pulse shaping) of supercontinuum generation. In section 5.1, we 

cover the aspects of closed loop control and give a brief introduction of genetic 

algorithms, as well as the experimental details of our adaptive pulse shaping method. In 

section 5.2, an investigation of adaptive pulse shaping enhancement of the 

supercontinuum spectral broadening will be presented. In addition, we will present the 

adaptive pulse shaping results of controlling soliton self-frequency shift in section 5.3. In 

particular, both the magnitude of soliton self-frequency shift and duration of the 

generated soliton can be fine-tuned within a specified range.  Simulation results based on 

the NLSE elucidating the mechanisms of the optimizations will be discussed in details in 

both sections. 

5.1 Closed Loop Control and Genetic Algorithms 

Closed loop control (or adaptive control) methods comprise the other major branch 

of the control methods [111]. Unlike the open loop control methods, which use as a 

prerequisite the underlying knowledge to derive proper control pulse, closed loop control 

methods use system feedback coupled to learning algorithms to efficiently search all the 

possible control pulses. The process of searching the proper control schematics stops, 

automatically or manually, when a certain set conditions are met. In controls terminology, 
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the entire possible set of pulses being searched is called the “parameter space”, while the 

criterion (or criteria) which account for the control goals (the set of physical parameters 

to be optimized) is called the “cost function”. The pulse parameters that can be optimized 

in closed loop control experiments using phase-only shaping include pulse phase (and 

hence temporal shape), energy, duration, number of pulses, etc... Particularly for the 

closed loop control of supercontinuum generation in the microstructured fiber, we are 

going to lay out the results of optimizing the supercontinuum bandwidth and controlling 

soliton self-frequency shift in this chapter.  

A Labview-based data acquisition program based on learning algorithm (genetic 

algorithm) is build to coordinate the closed loop control schematics and efficiently search 

the parameter space. The interface is designed so that the evolution of the cost function 

can be monitored during the optimization process. One can easily tell if the cost function 

design is appropriate depending on the convergence of the evolution. Besides, the setup 

of the parameter space, such as the number of the parents and mutation rate (definition 

see below), can be easily readjust using this interface. More importantly, this Labview-

based program allows us to synthesize all the data acquisitions and analysis together; 

therefore the genetic algorithm can run without any interruption. 

Because of the unique properties of closed loop control compared to that of open 

loop control, there are several general considerations that need to be discussed. Obviously, 

the intrinsic dynamics of the closed loop control determines that it is a time consuming 

process compared to the open loop control, due to the potentially large parameter space 

and the initial conditions, namely that there is no “best” pulse to begin with. Given the 

advances in the microprocessor technology, closed loop control simulated in a computer 
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can be extremely fast. However, when implementing the closed loop control in the 

experimental conditions, the total processing time to find a proper control input is 

extremely variable, ranging from minutes to days depending on the time for the process 

loop of individual application. This leads to a prerequisite for the control system that it 

has to maintain a stable working condition in order for closed loop control schematics to 

work. Of course with the advances in adaptive control technology, indirect adaptive 

control or self-tuning adaptive control [117] can implement the predictable system 

variation into the closed loop control methods. But for the system that cannot maintain a 

stable working condition or the system variation is unpredictable in a timely manner, 

closed loop control methods are not well suited. Another important fact for the closed 

loop control is that the designs of the parameter space and cost function greatly determine 

if the searching process will be convergent and if, by any means it is convergent, an 

efficient searching is presented for the loop processes. This brings up the next topic of the 

closed loop control methods, the selection of a suitable learning algorithm: the genetic 

algorithm. 

A genetic algorithm (GA) is a global optimization technique that mimics paradigms 

of biological evolution to efficiently search multi-dimensional complex parameter space 

[118]. The GA starts with a genome (or chromosome) and creates a population of 

chromosomes (parents). Using genetic operators such as crossover and mutation, new 

individuals (children) are generated in the parameter space from the original parents and 

serve as the “trials” in the control schematics. The generated results correspond to each 

individual child are evaluated by the cost function which calculates the cost value for 

every trial. Depending on how “good” each individual child is, that is, judging from the 
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cost values, the GA picks the best children with the number same as the original 

population of the parents. That finishes the first loop. The best children chosen in this 

loop will serve as the parents for subsequent genetic operators in the next loop. Genetic 

operators serve as the functionalities to generate children from the parents. There are 

many genetic operators available depending on different genome configurations (for 

example, binary or decimal). The most widely used fundamental genetic operators are 

“cross-over” and “mutation”. The cross-over operates on selected genes from parent 

chromosomes and creates new offspring. Taking binary chromosome as an example (see 

table 5.1, cross-over operator), the simplest way to perform cross-over is to randomly 

choose two chromosomes and cross-over point first, followed by a concatenation of 

everything before the cross-over point from the first chromosome and everything after the 

cross-over point from the second chromosome; therefore two offspring are generated 

after one cross-over operation. More complicated cross-over operator involves two or 

more randomly selected cross-over points. Choosing cross-over operator configured for  

Table 5.1: Illustration of the cross-over operator and mutation operator (binary 
chromosome). 

Cross-over Operator Mutation Operator 

Chromosome 1 11011 | 00101110110 Offspring 1 1101111000011010

Chromosome 2 00011 | 11000011010 Offspring 2 0001100101110110

Offspring 1 11011 | 11000011010 Child 1 1111111000011010

Offspring 2 00011 | 00101110110 Child 2 0001000101111110

 
specific closed loop control can improve the performance of the genetic algorithm. The 

mutation operates on the offspring to generated children. The simplest mutation operator 

just randomly changes one or more digits of the offspring, as illustrated in table 5.1. 

Mutation is extremely important for the genetic algorithm because it prevents the 
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searching algorithm from falling into a local optimum of the parameter space. Meanwhile, 

GA parameters such as the cross-over rate and mutation rate can greatly affect the 

efficiency of the searching processes. 

The integration of closed loop control using the GA and Fourier domain pulse 

shaping (namely, adaptive pulse shaping) yields great advantages in the control of 

various nonlinear processes. Adaptive pulse shaping is very important in the pulse 

compression application [102, 109] and amplified femtosecond pulse laser [103, 120]. 

Adaptive can also be used to generate arbitrary femtosecond pulse shape [121]. Some 

other specific examples of adaptive pulse shaping include enhancement and tuning of the 

high order harmonics [122], nonlinear broadening [123] and soliton self-frequency shift 

in conventional fibers [124]. 

Considering the fact that supercontinuum generation is a nonlinear effect in the 

extreme, that is, starting with SPM and high order soliton generation and followed by 

various nonlinear effects that are in a tangled state interacting with each other, control of 

supercontinuum generation in microstructured fiber is in general difficult. In many cases 

the optimal driving pulse to achieve desired supercontinuum feathers cannot be generated 

by intuition, thus open loop control methods are not suitable for these instances. Adaptive 

pulse shaping technique is then the natural approach when the driving pulses for 

achieving particular control goals cannot be easily derived. With the proper design of the 

parameter spaces and cost functions, adaptive pulse shaping using the GA can efficiently 

derive the desired driving pulse. Since the derivation process is automatically controlled 

by the GA and the control program, sometimes it is not very clear how the derived 

driving pulse can achieve a specific control goal in physics. However, one of the primary 
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goals of the GA control is to learn something about the system from the optimization. 

After recording each step in an optimization process for the adaptive pulse shaping 

technique, in particular, the phase patterns that generate the best driving pulses in each 

loop, one can study these driving pulses as well as use the NLSE simulation model to 

investigate underlying physics. Our experimental and simulation results discussed in the 

next several sections enumerate this approach. For the closed loop optimization of the 

supercontinuum bandwidth, after careful investigations of the driving pulse spectral 

phase evolution, we conclude that the optimization process generates the right input pulse 

spectral phase to compensate the fiber dispersion effect; therefore generating a broader 

supercontinuum. For the adaptive control of soliton self-frequency shift, by feeding the 

experimentally determined input driving pulse spectral phase into the NLSE simulation 

model and studding the soliton generation process, we conclude that the pulse shaper acts 

as a sensitive amplitude filter to generate the accurate input pulse peak power; therefore 

performing a control of both the magnitude of the soliton self-frequency shift and soliton 

duration. 

Based on this brief introduction of closed loop control and the GA, it is easy to 

deduce and understand how pulse shaper can be used in the closed loop control to 

manipulate the pulse nonlinear propagation in the microstructured fibers. The adaptive 

pulse shaping schematic is shown in figure 5.1. For each loop, there are many groups of 

phase generated in the parameter space by genetic operators. Population size, which is 

defined as total chromosomes numbers for each generation, is another parameter for GA. 

If there are too few chromosomes, the GA has few possibilities for performing the cross-

over operation and only a limited parameter space is explored. If the population size is 
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too large, the GA slows down. Choosing an appropriate population size depending on 

different types of phase parameterization is critical to the search algorithm. We used 7-bit  

phase parameterization for the adaptive control experiment, which corresponds to 128 

possible pulse phases for each generation. All these groups of phases are sent to the pulse 

shaper to generate driving pulses with different intensity temporal profiles. Supercontinua 

generated by the microstructured fiber are collected by spectrometer for each driving 

pulse and analyzed by the GA. The GA uses user-defined cost function to evaluate the 

continua and locate the phase groups that attached to the optimal driving pulses. These 

phase groups are then sent to the next loop and serve as the parents for next generation. 

 
 
Figure 5.1: Schematic diagram of the closed loop control (adaptive pulse shaping) 

experiment. MF: Microstructured fiber. GA: Genetic algorithm. 

In the closed loop control experiments discussed in this chapter, we use the 

Ti:Sapphire laser system that generates 800 nm, 3 nJ and 30 fs laser pulses as the input 

for the adaptive pulse shaping experiment. A 70 cm microstructured fiber is used for the 

supercontinuum generation experiment. 

5.2 Enhancement of Spectral Broadening via Adaptive Pulse Shaping 

The supercontinuum bandwidth is very important for many applications. For 

example, supercontinuum generation in the microstructured fiber has applications in the 

optical imaging [62-64], where its longitudinal resolution in a biological tissue is 

inversely proportional to the bandwidth of the light source. Submicron axial resolution in 
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the optical coherent tomography has been achieved utilizing the extreme wide bandwidth 

of the supercontinuum [125]. High precision optical metrology requires the bandwidth of 

the supercontinuum large enough (over one octave) in order to measure the absolute 

frequencies of the comb structures [67]. Laser based precision spectroscopy based on the 

optical frequency comb technique promises to revolutionize high precision spectroscopy 

and is one of the subjects of Nobel Prize in Physics in 2005 [8]. Supercontinuum 

generation yields great advantage in measure the absolute frequencies of the optical 

frequency comb, where the frequency displacement can be determined by measuring the 

beat signal between the high frequency and frequency doubled low frequency component 

[8]. In addition, the telecommunication applications require a supercontinuum coherent 

source with a large bandwidth to generate over 1000 dense-wavelength-division-

multiplexing (DWDM) channels [21]. 

We investigate how closed loop control using adaptive pulse shaping can be used to 

increase the bandwidth of the supercontinuum generations in microstructured fibers. In 

this adaptive pulse shaping experiment, Taylor series coefficients of the input pulse 

spectral phase up to the 5th order:  
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are selected as the parameter space for the GA, with 7-bit (27=128) parameterization for 

each coefficient in the Taylor series expansions. Since the control goal is to maximize the 

bandwidth of the supercontinuum, the cost function is calculated as the integration of the 

spectral intensity in both ends of the supercontinuum generation. Assuming a transform-

limited input pulse, the blue end and red end of the supercontinuum are in the range of 
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500-570 nm and 950-1020 nm, respectively.  Therefore, the cost function is defined as 

the integrated spectrum in these regions: 
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The optimization process starts with a transform-limited input pulse as the driving 

pulse (genome); this ensures that any improvement from this start point will be a 

nontrivial optimization, i.e., any change of the input pulse that generates a broader 

supercontinuum is more complicated than that of the transform-limited pulse. Figure 5.2 

(a) shows the evolution of the cost function value (achievement) during the optimization. 

It is evident that the spectral density in the target spectral ranges of the supercontinuum is 

increased, as the achievement is nearly doubled during the optimization processes. After 

 
 
Figure 5.2: Experimental results of closed loop control of optimization of 

supercontinuum generation bandwidth. (a) The improved achievement (cost 
function value) as a function of generation index. (b) The experimentally 
observed evolution of the output spectrum, showing increased bandwidth as 
the optimization progresses. 

approximately 20 generations, the optimization begins to stagnate. The evolution of the 

supercontinuum spectrum is shown in figure 5.2 (b), with over 10% increase of the output 

spectra bandwidth during the optimizations. 
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Since the optimization starts from a transform-limited driving pulse, any 

improvement of the supercontinuum generation bandwidth should correspond to a true 

enhancement of the nonlinear interactions in the microstructured fiber caused by 

changing the input driving pulse properties. After the optimization, the supercontinuum 

generation bandwidth increases by 10% and the cost function value that designates the 

integrated spectral intensity in the selected optimization bands increases by a factor of 2. 

As noted above, it is important to examine the evolution and resulting optimized 

driving pulse to try to clarify how the adaptive pulse shaping using GA educes the 

optimized input driving pulse that enhances the nonlinear interactions in the 

microstructured fiber. Upon recording the driving pulse spectral phases of which yield 

the maximum cost value (supercontinuum bandwidth) in each generation, we are able to 

exam the evolution of spectral phase pattern and clarify the mechanism leading to the 

optimization process. As we can see from figure 5.3, the phase pattern evolves visibly 

during the first two generations, accompanied by only slight changes for the rest 

optimization processes. In the open loop control experiment discussed in the previous 

chapter, we observed broadening of the output spectrum when introducing a negative 

input pulse cubic spectral phase that later being compensated by the TOD of the 

microstructured fiber. As the result of the open loop control experiment, the input pulse 

experiences compression when start propagating along the fiber; therefore generating a 

broader supercontinuum comparing to the input pulse without addition spectral cubic 

phase. Following this elucidation, we conclude that during the optimization GA is able to 

generate the driving pulse with the optimized spectral phase that interacts with the all 

orders of fiber dispersion. The optimal driving pulse experiences compression when 



107 

 

starting propagating along the fiber; therefore generating higher peak intensity and 

increasing the magnitude of the following nonlinear interactions. As a result, the 

achievement increases by a factor of 2. This conclusion is consistent with evolution of the 

recorded input pulse spectral phase pattern. The visible change of the pulse spectral phase 

pattern at the beginning of the optimization corresponds to the generation of the second 

order spectral phase in order for the input pulse to compress as a result of interaction with 

the second order dispersion of the microstructrued fiber. Further in the optimization 

process, the higher order dispersions of the fiber are compensated because of the 

continuously broadened supercontinuum generation accompanied with only slight 

variations of the input pulse spectral phase pattern. 

 
 
Figure 5.3: Evolutions of phase pattern for adaptive pulse shaping experiment of 

supercontinuum bandwidth enhancement. 

Finally, we use this adaptive pulse shaping experiment as an example to illustrate 

several considerations relevant to the adaptive control method. We have found that the 

design of the parameter space in the implementation of the GA greatly influences the 

performance of the adaptive pulse shaping, in particular, the speed and efficacy of the 
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convergence. In fact, we first select the intuitive parameter space for the adaptive pulse 

shaping experiment, namely a random parameter space, i.e., starting from a random phase 

value for the input driving pulse at every SLM pixel in the pulse shaper. However, this 

intuitive parameter space was found to be ineffective. Even with a sufficient large 

number of genomes (parents) and individuals (children), supercontinuum generation is 

rather inefficient due to the randomization of the parameter space. For the entire 

optimization process for a reasonable period of time (for example, several hours), the 

output continuum is even narrower than that for the transform limited input pulse due to 

the randomized phase parameter space. Therefore we select a parameter space that 

utilizing the Taylor expansion coefficients of the input pulse spectral phase and 

successfully perform the adaptive pulse shaping experiment of the supercontinuum 

broadening. In this case, the optimization process starts from a near transform limited 

pulse which insures that any improvement will be a nontrivial case comparing to the 

starting point. The other consideration of the adaptive control schematics is the system 

stability during the optimization process, i.e., the stability of the laser system used in the 

experiment. For example, the temperature fluctuation and other perturbations can break 

the laser mode-locking schematics during the optimization process and laser beam-

pointing instability [126] can substantially change the pulse peak intensities that coupled 

into the front end of the microstructured fibers. In order to by pass these instabilities and 

“virtually” maintain the stable system conditions, we record all the parameters for each 

loop, including all the data (parents, children and cost values) in the GA. After the system 

is back online and working in a stable condition, the adaptive pulse shaping can be 
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resumed by recollection of all the recorded parameters in the GA.  This allows us to carry 

out our experiments over times ranging from one to ten hours or more. 

5.3 Adaptive Control of Soliton Self-Frequency Shift 

Soliton generation is the result of interplay between the SPM nonlinear effect and 

anomalous dispersion. Soliton self-frequency shifts (SSFS) following the soliton fission 

is also responsible for the initiation of the supercontinuum generation [10, 11]. Besides, 

much research has been done on the SSFS in the microstructured fiber in the past few 

years. Specific examples include investigations of SSFS effect in the PCFs [127, 128], 

SSFS cancellation in the PCFs [129], SSFS effect in dispersion engineered fiber [18] and 

10 GHz soliton pulse generator using SSFS in PCFs [130]. Recent work done by Efimov 

et al. show that it is possible to stabilize the soliton propagation in the conventional fiber 

using adaptive pulse shaping [124].  

As another example of closed loop control experiment, we investigate how the 

adaptive pulse shaping can be used to control the soliton self-frequency shift, in particular, 

simultaneously control the magnitude of the self-frequency shift and the duration of the 

shifted soliton. To our knowledge, this is the first time that adaptive pulse shaping is used 

for controlling SSFS in the microstructured fiber. 

A randomized parameter space is used, i.e., each of the 128 elements in the pulse 

shaper SLM is allowed to vary in the range π20 − with 8 bit resolution. The cost value is 

defined as a comparison value in the frequency domain between the experimental 

generated soliton and the target Gaussian-shaped soliton of specified width at a particular 

wavelength, 
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where the value of J represents the cost value. In this equation, the first part of the right 

hand side stands for the wavelength comparison contribution and the second part stands 

for the soliton width comparison contribution. The σ terms in each denominator 

determine the fitting tolerance to a target soliton and the W coefficient provides weights 

for each of the target criteria. rgetatλ  and rgetatλ∆  represents the target soliton position and 

target soliton width, respectively. λ  and λ∆  represents the soliton position and width for 

experimentally generated soliton. Note that the generated soliton central wavelength 

corresponds to the control of the magnitude of soliton self-frequency and the soliton 

width in the frequency domain corresponds to the duration of the shifted soliton in the 

time domain. 

Figure 5.4 (a) and (b) shows the output spectra with experimentally generated 

target solitons specified at different wavelengths and with different soliton widths, 

respectively. In figure 5.4 (a), three soliton are generated with a fixed width of 15 nm at 

three wavelengths, 900 nm, 925 nm and 950 nm. In each soliton generation case, the 

wavelength difference between the generated soliton and target soliton is less than 1 nm, 

indicating essentially 100% achievement. In addition, blueshifted nonsolitonic 

components that satisfy the phase-matching condition are observed in the output spectra. 

The second set of closed loop control experimental results shown in figure 5.4 (b) 

demonstrate that solitons can be generated at a fixed central wavelength of 925 nm with 

different soliton widths range from 15nm to 54 nm. Note that in the widest soliton 

generation case (green curve in figure 5.4 (b)), the spectral signature indicates that a 
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higher order soliton is undergoing a fission process into two fundamental solitons. To 

determine the region of central wavelength and width that the randomized parameter 

space can successfully access in the adaptive pulse shaping experiment, we performed a 

series control experiments for the soliton generations with different target parameters, i.e., 

different combinations of soliton widths and soliton central positions. In the 

experimentally determined control range, a fundamental soliton can be generated and 

tuned continuously from 900 nm to 950 nm with a bandwidth range of 10 nm to 40 nm. 

The bandwidth range of the generated soliton corresponds to soliton durations ranging 

from 22 fs to 90 fs. The adaptive pulse shaping is unable to achieve the targeted states 

outside of these ranges. 

 
 
Figure 5.4: Experimental results of closed loop control of soliton self-frequency shift. (a) 

Three soliton generations with different central wavelengths and a fixed width. 
(b) Three soliton generations with a fixed central wavelength and different 
widths. 

The experiment discussed in this section is an excellent demonstration on how the 

adaptive pulse shaping with the GA can be used to control the extremely complex 

nonlinear interactions in the microstructured fibers; in particular, the GA is able to 

synthesize the input driving pulse by efficiently searching a randomized parameter space 

and perform the control of soliton self-frequency shift. Again, we examine the inevitable 
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question for the closed loop control experiment: what is the physics behind the 

optimization and why the optimization works? Note that we use a randomized parameter 

space in this adaptive pulse shaping experiment, the intrinsic “random” property 

practically makes the interpolation of the driving pulse functionality much more difficult. 

To answer the previous question, we carefully exam the driving pulse that target 

the soliton self-frequency shift with 15 nm width at 925 nm central wavelength (output 

spectrum shown in red curve in figure 5.4 (a)). The experimentally determined driving 

pulse in frequency domain and time domain are shown in figure 5.5 (a) and (b), 

respectively, with the intensity profiles shown in red curves and phase profiles shown in 

blue curves. Unsurprisingly, the spectral phase of the input driving pulse that is 

responsible for optimized soliton generation is quite complex (blue curve, figure 5.5 (a)), 

 
 
Figure 5.5: An example of the experimentally determined input driving pulse in the 

frequency domain and time domain. The driving pulse is for soliton 
generation at 925 nm with a 15 nm bandwidth. (a) The spectral intensity and 
phase of the driving pulse. (b) The temporal intensity and phase of the driving 
pulse. Inset: temporal intensity on a larger time scale. 

as evidenced by the lack of smoothness and series of discrete phase jump from pixel to 

pixel. The resulted temporal intensity and phase of the driving pulse are shown in figure 

5.5 (b). The temporal intensity structures resemble a “noise burst”, with an ultrashort 

coherent feather embedding in a longer series of pulses with much lower random 
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intensities and irregular temporal spacing. The temporal intensity is shown in a larger 

time scale in the inset figure. It is evident that the pulse energy is distributed over a much 

larger time scale compare to that of a transform-limited pulse, with the main portion of 

the pulse energy lies in the central ultrashort coherent feather. Therefore the peak 

intensity of the coherent feature is lower than that of the transform-limited pulse. 

Interestingly, the pulse shaper which is designed for phase shaping only acts as a highly 

sensitive amplitude filter in this experiment, which is not quite surprising since a straight-

forward inverse Fourier transform from the frequency domain with randomized spectral 

phase structures can evidently yield variation of the pulse peak intensity in the time 

domain. Recall the open loop control experiments we discussed in the previous chapter 

that demonstrate the pulse peak intensity variation due to the modifications of the input 

pulse spectral phase can evidently perform a control of the soliton self-frequency shift 

magnitude. Especially for the case of the modifications of the input pulse cubic spectral 

phase, where in that experiment the magnitude of the cubic spectral phase variation only 

change the pulse peak intensity by a relative small amount (figure 4.2 (a)), we observe 

the sensitive control over the central wavelengths of soliton generation (figure 4.3 (b)). 

Based on this observation and previous discussion on the input driving pulse central 

coherent feature, we simulate the soliton generation positions as a function of pulse input 

peak pulse with other customized and fixed input pulse parameters. As shown in figure 

5.6 (a), the central wavelengths of the simulated soliton generations shift towards long 

wavelength side of the output spectra continuously with the increase of the input pulse 

peak intensity. As for this specific configuration, the soliton position shifts from 920 nm 

to 945 nm when the input pulse peak intensity change from 8 kW to 30 kW. 
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Figure 5.6: Simulation results of soliton central wavelength as a function of input pulse 

peak intensity. (a) Output spectra as a function of input pulse peak intensity. 
(b) Specified soliton generation at different central wavelengths with input 
pulse peak intensity variations. 

Therefore, we conclude for the mechanism of the optimized driving pulse 

generating a target soliton that satisfies two criteria that the phase-only pulse shaper acts 

as a very sensitive amplitude filter by introducing a rather “random” spectral phase 

pattern and the driving pulse with precisely tuned peak intensity performs the control 

over the soliton self-frequency shift. 

Using the experimentally determined driving pulse temporal intensity and phase, 

we simulate the soliton self-frequency shift with the extended NLSE model. Once again, 

as shown in figure 5.7, the simulation result (red curve) faithfully reproduces the 

experimental result (blue curve), although the simulated soliton shifts slightly to the red 

side. Upon examination of the pulse propagation in the microstructured fiber using the 

simulation model, the spectral feather begins to show modulation structures after 

propagating 20 cm of fiber length, as the similar modulation pattern can be seen from the 

800 nm spectral peak for the simulation result in figure 5.7. The soliton separates from 

the 800 nm spectral peak around 35 cm of propagation length and almost reach the final 

target position at 55 cm. In the time domain, the soliton self-frequency shift is illustrated 
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by the temporal broadening of the central coherent feather accompanied by the coherent 

beating between the target soliton and its phase-matching nonsolitonic component. 

 
 
Figure 5.7: Spectra comparison of experimentally optimized soliton generation and 

simulated soliton using experimentally determined driving input pulse. 

In this adaptive control experiment, the positions and durations of the 

experimentally generated solitons can be fine-tuned within the specified range. 

Considering the control of the input driving pulse features in the time domain, the pulse 

shaper acts as a sensitive amplitude filter to precisely control the intensity of central 

coherent spike and the energy distribution between this main peak and the random 

“noise” on each side. The driving pulse spectral phase, however, is rather a “random” 

pattern at a glance. To gain the insight on how sensitive the amplitude filter is, that is, to 

which degree the “random” spectral phase perform the control of target soliton generation, 

we intentionally scramble the “random” phase. By altering 10% of the spectral phase 
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pixels a π  phase jump, there is a measurable shift of 30 nm for the target soliton 

generation, as evidently shown in figure 5.8. Therefore, the stability of the soliton self-

frequency shift to the driving pulse is somewhat fragile.  

 
 
Figure 5.8: Simulation results of the sensitivity of soliton generation to the input driving 

pulse fluctuation. (a) Driving pulse phase pattern before (red curve) and after 
(black curve) 10% π phase jump. (b) The simulated output spectra for the 
soliton generations corresponding to the phase pattern shown in (a), red and 
black curves, respectively. 

In the simulation processes of soliton self-frequency shift, we come across a very 

interesting observation. The simulated soliton generation position is also dependent on 

the microstructured fiber dispersion parameters. As shown in figure 5.9, changing the 

fiber TOD parameter 
3β  only influences the position of the blue phase-matching 

nonsolitonic component, whereas changing the second order dispersion 2β  and the fourth 

order dispersion 4β  affect both the soliton position and the phase-matching component. 

By comparing the experimentally generated soliton position with these simulation results, 

we are able to independently determine the dispersive properties of the microstructured 

fiber. We find out that the best agreement with the experimental results occur for 

2β = kmps /579.4 2− , 3β = kmps /10725.1 32−×−  and 4β = kmps /10178.3 44−× , which 
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is in reasonable agreement with the literature values listed in table 4.1 considering the 

current 800 nm input central wavelength. 

 
 
Figure 5.9: Simulation investigation of the sensitivity of soliton self-frequency shift to the 

fiber dispersion properties. (a), (b) and (c) are for fiber second, third and 
fourth order dispersion, respectively. Note that βi

(0) (i=2,3,4) stands for the 
original fiber dispersion parameter. 

To conclude, we have successfully controlled the magnitude of the soliton self-

frequency shift (central wavelength) and the duration of the shifted soliton (width) using 

adaptive pulse shaping. Both soliton generation parameters can be tuned within the 

specified control ranges. After carefully examining the optimized driving pulse profiles 

and using the NLSE simulation model to simulate the target soliton generations, we find 

the underlying mechanism responsible for the optimization of the soliton self-frequency 

shift. The phase-only pulse shaper is acting as a sensitive amplitude filter for the driving 

pulse by introducing an optimized “random” spectral phase pattern. The target soliton 

generation is the result of the precisely controlled temporal central coherent feather of the 

optimized driving pulse. 

Finally, we use this adaptive pulse shaping experiment as an example to illustrate 

another aspect of closed loop control methods, that is, the design considerations of the 

cost function to achieve multiple control goals. In fact, the success of this adaptive pulse 

shaping experiment is closely related to the design of the cost function. As one can see 
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from equation 5.2, in order to simultaneously control the central wavelength and the 

duration of the shifted soliton width, we implement several ingenuities in the design of 

the cost function. The weight parameter for each of the target criteria can yield the 

preference of one control goal over the other. The configurations of tolerance parameter 

advance the searching standard by tightly control one or both target criteria. Meanwhile, 

the design of the individual functions, i.e., reciprocal function and exponential function, 

yields another advantage on the searching efficiency. The cost function design critically 

determines the performance of the closed loop control experiment. In order to gain the 

ability of achieving multiple control goals using only one cost function, considering the 

example discussed above will be very helpful. 
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CHAPTER 6 
ROUTES TO PULSE COMPRESSION USING DISPERSION-FLATTENED 
MICROSTRUCTURED FIBER: SIMULATIONS USING THE NONLINEAR 

SCHRODINGER EQUATION 

6.1 Motivation and Overview of Pulse Compression 

As we have shown in the previous chapters, control of supercontinuum generation 

is possible using shaped optical pulses. Up until this point, we have considered “control 

knobs” available through shaping of the input pulse. Here, we consider how the 

dispersive properties of the fiber can be manipulated to control the output spectrum. In 

particular, our goal in this chapter is to investigate how the exact character of the 

dispersion in PCFs can be used to produce smooth supercontinuum spectra for pulse 

compression.  

Pulse compression can broadly be described in two stages: first, the creation of 

sufficient bandwidth is performed through the pulse generation and any subsequent 

nonlinear interactions which further broaden the spectrum. Second, the residual higher 

order phase is removed via pulse compression techniques. Given a coherent frequency 

spectrum with some residual spectral phase, pulse compression can be considered 

theoretically through one simple Fourier transformation: given a fixed spectral shape, the 

pulse duration is the temporally shortest only if the pulse is transform-limited (no 

frequency chirp). In fact, the simulation results described in figure 4.3 in chapter 4 have 

illustrated this point by showing a larger pulse spectral phase subsequently leads to a 

lower temporal pulse peak intensity, which is equivalent to a longer pulse duration given 

fixed pulse energy. Meanwhile, compression of a pulse with broader bandwidth is 
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equivalent to generating a shorter pulse, which results directly from the time-bandwidth 

product constant described in chapter 2. After broadband coherent pulses are generated, 

pulse compression is commonly carried out by accurate measurements of pulse frequency 

chirps (dispersion), followed by proper dispersion compensation via a grating pair, 

chirped mirrors, or other means. 

Optical fibers, by confining high intensity laser pulses in a small core area and 

subsequent nonlinear interactions, have become a natural candidate to generate 

broadband coherent pulses. Continuum generations in conventional fibers have been 

studied over three decades. Single-mode conventional fibers have relative low 

nonlinearities and high dispersions in the near infrared and visible wavelength region. 

Although a record of 6 femtoseconds is generated using a single-mode conventional fiber, 

a copper-vapor laser-pumped amplifier was used and the nonlinear broadening 

mechanism was dominated by the self-phase modulation, limiting the amount of spectral 

bandwidth [131]. Later on, hollow cylindrical fibers made of fused silica and filled with 

high pressure noble gases are used to perform pulse spectral broadening [132, 133]. The 

advantages of higher input pulse threshold intensity (for certain noble gases) and 

controllability of nonlinear strength for different gas type and pressure made them 

particularly interesting for compression of high energy laser pulses. As results, 

compressed pulses of 3.8 fs and 3.4 fs have been generated with two cascaded hollow 

fibers and a single argon-filled hollow fiber with 15 µJ and 94 µJ input pulse energy [119, 

16]. However, all these demonstrations for the hollow fibers require amplified laser input 

pulses and self-phase modulation is mainly responsible for pulse nonlinear broadening. 

With the advent of photonic crystal fibers (particularly microstructured fibers), 
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ultrabroadband supercontinuum generation can be easily achieved in the laboratory by 

Ti:Sapphire femtosecond laser pulses with only nJ pulse energy. The extremely high 

nonlinearities of microstructured fibers lead to spatially coherent and over-an-octave-

spanning supercontinuum with pulses without any pre-amplifications [6]. Such an 

enormous bandwidth of the supercontinuum generation can potentially lead to single-

cycle pulse generation. Meanwhile, hollow PCFs (with air cores) can self-compress 

extremely high intensity (above 100 MW) femtosecond laser pulses due to the waveguide 

contribution [134].  

One of the most important requisites for the pulse compression is an accurate 

measurement of the pulse spectral phase. The spectral phase of a broadband pulse can be 

measured using the FROG and SPIDER pulse characterization techniques described in 

chapter 2. Meanwhile, pulse compression also requires proper phase compensation. 

Various phase compensation techniques have been developed, such as prism-pair used in 

our home-build Ti:Sapphire laser system, grating-pair that usually being used in chirped 

pulse amplifier system, and dielectric chirped mirrors [135, 136]. However, these 

techniques provide limited phase compensation abilities and mainly can only compensate 

linear pulse chirp. Also, different dispersion compensation usually requires carefully 

realignment. For very broadband pulses, phase compensation can be carried out by 

Fourier domain pulse shaping, e.g., programmable pulse shaper using LC-SLM. An 

overview of Fourier domain pulse shaping is given in chapter 2.  

Recently, researchers have shown great interest in pulse compression based on the 

supercontinuum generations in microstructured fibers because the coherent bandwidth 

exceed 1000 nm. However, what seems like a simple idea in principle turns out to be an 
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extremely nontrivial problem in reality. In 2002, both the simulation results for the 

supercontinuum generation based on the extended nonlinear Schrödinger equation model 

and experimental measurements of the retrieved continuum spectral fine structure and 

spectral phase using XFROG (cross FROG) show that supercontinuum sub-nm fine 

structures are extremely sensitive to the input pulse power fluctuations [9, 13]. 

Simulations show that even with 0.1% input pulse power variation, fine structures of the 

supercontinuum generation change dramatically. Simultaneously, Dudley’s simulation 

results utilize a coherent function to quantitatively study the supercontinuum coherence 

variations as a function of fiber propagation lengths, input pulse durations and input pulse 

wavelengths [137]. Later on, simulation results specifically targeting the supercontinuum 

compressibility show that there exists an optimum compressed distance at which 

compressed pulses with negligible fluctuation and time shift can be obtained [15]. The 

propagation fiber length for optimum supercontinuum compression is a few centimeters. 

Finally, Dudley and Coen considered generalized fundamental limits of pulse 

compression to few-cycle region based on supercontinuum generation in microstructured 

fibers [14]. Unsurprisingly, almost all the research results discussing the supercontinuum 

compressibility are based on the simulation results, which mainly based on the nonlinear 

Schrödinger equations model in either frequency or time domain. It is now a consensus 

that the main nonlinear spectral broadening for the supercontinuum generation is 

happening during the first few centimeters or even millimeters of the microstructured 

fiber length. After that point, pulse peak power drops quite a lot and the fiber dispersion 

effects begin to dominate the propagation dynamics. As a result, sub-nm modulation 

structures show up in the continuum intensity envelope and subsequently are very 
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sensitive to the input pulse noise. Meanwhile, pulse compressibility for supercontinuum 

generation is preferable of short input pulse duration and supercontinuum generations are 

more stable when the input pulse center frequency is in the microstructured fiber normal 

dispersion region. Evidently all the pulse compression experiments based on the 

supercontinuum generation use short femtosecond input pulse and microstructured fiber 

lengths are usually several millimeters. For example, 6.8 fs pulse duration is achieved by 

compressing supercontinuum generated in 3 mm of microstructured with Ti:Sapphire 

laser 12 fs input pulses [138]. In addition, 5.5 fs compression pulse is generated using 15 

fs Ti:Sapphire laser and 5 mm microstructured fiber [17]. Although the nonlinear 

mechanism responsible for the supercontinuum generation in these two experiments is 

still mainly self-phase modulation, broad band continua are generated using only nJ low 

pulse energy from Ti:Sapphire lasers; this is evidently benefiting from the high 

nonlinearities of the microstructured fibers. Recently, when launching the input pulse in 

the anomalous dispersion region of the microstructured fiber (zero GVD wavelength 744 

nm), sub-5-fs pulse compression is achieved using a 12 fs Ti:Sapphire laser centered at 

800 nm [139]. Finally, it is worth mentioning that the nonlinearity itself in the photonic 

nanowire generated from the microstructured fiber also gives another way to directly 

perform the pulse compression. This is based on the soliton effects discussed in chapter 2 

that higher order solitons tends to self-compress within the soliton period. By carefully 

design the fiber length that corresponds to the soliton self-compress distance, 6.8 fs 

compressed pulse is directly generated from the photonic nanowire with 70 fs input pulse 

[140]. Despite all the instabilities related to the supercontinuum generation in the 

microstructured fiber, the pulse compression application results are quite inspiring.  
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In fact, all the pulse compression experiments use adaptive pulse shaping based on 

the Fourier domain pulse shaping and SPIDER pulse characterization. Adaptive pulse 

shaping using the feedback of the supercontinuum spectral phase from the SPIDER 

measurement can counteract the possible continuum instabilities. Adaptive pulse 

compression has been studied extensively and interesting readers can refer to Yelin et al. 

[102] for details.  

In contrast to the methods described above, we consider another way to generate 

clean, broad spectra from PCFs. The tailorable dispersion properties of the 

microstructured fiber provide an additional way to stabilize the supercontinuum spectral 

phase. The instabilities of the supercontinuum generation are partly caused by the high 

dispersion presented by the microstructured fiber regarding the whole supercontinuum 

spectral bandwidth. Although the zero GVD wavelength can be engineered from 500 nm 

to above 1500 nm, the net GVD can dramatically increase to several hundred ps/(nm km) 

for wavelength shift of 100 nm from the zero GVD point (high dispersion slope). 

However, by carefully choosing the structure parameters of fiber, e.g., core size and air-

holes pitch, dispersion-flattened microstructrued fibers can be manufactured that have 

minimal dispersions over several hundred nm spectral range. In this chapter, we present 

the pulse compression simulation results based on the supercontinuum generation from 

dispersion flattened microstructured fibers using the nonlinear Schrödinger equation 

model.  

6.2 Simulation of Pulse Compression Using Dispersion Flattened Microstructured 

Fiber 

In this section we will discuss the schematics of pulse compression simulation 

using continuum generation of the dispersion-flattened microstructured fibers. 
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6.2.1 Dispersion Flattened Microstructured Fibers  

Dispersion properties of microstructured fibers can be tailored by choosing proper 

air-holes sizes and filling fractions in the silica glasses [141]. Dispersion flattened 

microstructured fibers (DFMFs) [18] have applications in telecommunication systems, in 

which a uniform fiber respond in the different wavelength channels is essential to the 

wavelength-division multiplexing (WDM) system. DFMFs are also very important for 

any system supporting ultrashort soliton pulse propagation, since the residue third order 

dispersion can potentially destroy the soliton transmission features.  

The idea of dispersion flattened photonic crystal fiber was first demonstrated in 

1999 by Ferrando et al. [142], in which a full vector biorthonormal-basis modal method 

was used to calculate the waveguide dispersion with different core size to pitch ratio 

( Λ/a ) and air filling fractions. As a result of compensation of the material dispersion 

from the waveguide contribution of the photonic crystal fiber, a near-zero flat chromatic 

dispersion (total fiber dispersion) is achieved for a wide spectral range (~200 nm) 

centered at 1050 nm. The material dispersion for the fused silica has a zero group-

velocity-dispersion wavelength at 1.3 mµ (see material dispersion curve in figure 2.1), 

the design of DFMF requires that not only the material dispersion is compensated at one 

specific wavelength, i.e., dispersion shifted microstructured fiber, but also a total (or near 

total) compensations of the material dispersion for a wide spectral range around that 

specific wavelength. DMFMs are mainly used for two wavelength ranges: the 

telecommunication window around 1.55 mµ  and the Ti:Sapphire laser wavelength range 

around 800 nm. Due to a high material dispersion slope around the zero GVD wavelength 

(1.3 mµ ) for fused silica, the demonstrations of the DFMF around the telecommunication 
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window are rather convenient. Many designs of the DFMFs [143-146] have been 

proposed during the past few years in the telecommunication window based on full-

vector waveguide simulation methods, such as full-vector finite element method (FEM), 

finite difference method and biorthogonal modal method. Meanwhile, the precise controls 

of the microstructured fiber fabrication allow building the DFMFs at 1.55 mµ  according 

to the design parameters [147, 18, 148]. Reeves, et al., also clearly showed soliton effects 

to the supercontinuum generations [18]. Although the theory and fabrication of the 

DFMFs in the telecommunication window are well established by now, the development 

at the Ti:Sapphire laser wavelength is somehow limited by the relative high material 

dispersion for the fused silica. However, simulations have shown that it is possible to 

generated DFMF centered at 800 nm with a flat dispersion range over 200 nm [149]; 

similar simulation results have led to the fabrication of DFMFs at 1.5 mµ . Meanwhile, 

microstructured fiber design using a genetic algorithm exhibits itself as an effective way 

to search all the combinations of fiber configurations to generate user-defined chromatic 

dispersion properties [150]. Therefore, the research of DFMF at 800 nm is still very 

promising.  

6.2.2 Simulations of Pulse Compression 

Simulations of pulse compression using the supercontinuum generations from 

dispersion flattened microstructured fibers involve the following steps, i.e., see figure 6.1 

for details. First, continua are generated in DFMFs with specific dispersion curves using 

30 fs transform-limited input pulses based on the nonlinear Schrödinger equation model. 

Second, the spectral phases of the generated supercontinua are numerically extracted and 

the required negative compensation phases are calculated. Finally, the negative 
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compensation phases are applied to the simulated pulse shaper compressor and the 

compressed pulse are generated with applying the original supercontinua with the net 

minimal spectral phase.  

 
 
Figure 6.1: Schematics of pulse compression simulation using supercontinuum generation 

and dispersion flattened microstructured fiber. T-L pulse: transform-limited 
pulse. DFMF: dispersion flattened microstructured fiber. 

To study the pulse compression using the simulated supercontinuum generations 

and DFMFs, we investigate several parameters. First and most importantly, pulse 

compression and supercontinuum generations depend critically on the microstructured 

fiber length and dispersion properties, e.g., different DFMFs centered either near the 

telecommunication window or Ti:Sapphire laser wavelength with different flattened 

dispersion curves. Second is the practical phase compensation effects associated 

experimental pulse shaper compressor using LC-SLM. The phase compensation 

resolution effects discussed in chapter 3 with different LC-SLM pixel numbers are 

simulated and discussed in this chapter. Meanwhile, pulse compression results using an 

ideal phase compensator, i.e., perfect phase compensation without the pixel effects, are 

also presented for comparison purposes. Also, input pulse properties such as the input 
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pulse peak power can dramatically affect the compression results. This effect is also 

discussed in our simulations.  

6.3 Supercontinuum Pulse Compression at 800 nm 

In this section we will focus on the simulations of supercontinuum pulse 

compression using DFMF for the Ti:Sapphire laser wavelength at 800 nm. We will first 

discuss the dispersion curve and parameters for the DFMF used in the simulations, 

followed by the investigations of fidelities of supercontinuum pulse compression. Finally, 

we present the pulse compression results for different input pulse power and propagation 

lengths.  

6.3.1 Supercontinuum Generation Using DFMF at 800 nm 

Since the fabrication of DFMFs at this wavelength have not been fully developed 

yet, we use a DFMF dispersion curve in Reeves et al. [18] and shift the center wavelength 

to 800 nm to study the possibilities of supercontinuum pulse compression at Ti:Sapphire 

laser wavelength.  
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Figure 6.2: Dispersion profile for the DFMF around Ti:Sapphire laser wavelength at 800 

nm. CD: chromatic dispersion. 
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Table 6.1: List of DFMF parameters in the NLSE simulation model at 800 nm. 
Parameter (unit) Values 

2n  ( 12 −Wcm ) 
16102.2 −×  

γ  ( 11 −− Wkm ) 7.15  

effA  ( 2mµ ) 11  

2β  ( 12 −kmps ) 424.0−  

3β  ( 13 −kmps ) 41038.6 −×  

4β  ( 14 −kmps ) 71086.6 −×  

5β  ( 15 −kmps ) 91003.3 −×−  

6β  ( 16 −kmps ) 121001.5 −×  

7β  ( 17 −kmps ) 151050.3 −×−  

 
The dispersion profile in figure 6.2 has a very wide range of flattened dispersion. In 

order to accurately describe the flattened dispersion in the nonlinear Schrödinger 

equation model, we use the dispersion coefficients up to the 7th order defined in equation 

2.12 and the values of these coefficients are listed in table 6.1, along with other fiber 

parameters. The time resolution is chosen as 0.5 fs and the sample number is 214=16384, 

which leads to a frequency resolution of 122 MHz. 

Figure 6.3 is an example of output supercontinuum and spectral phase which is 

generated from 30 fs transform-limited pulses with peak power of 10 kW propagating 

through 9 cm of DFMF with dispersion profile shown in figure 6.2. There are several 

interesting features from the generated continuum. First, the spectral envelope shows a 

main signature of self-phase modulation nonlinear effect. It is understood that the  
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Figure 6.3: Supercontinuum output and spectral phase with 30 fs 10 kW T-L input pulse 

propagating through 9 cm DFMF. Smooth phase profile is generated with 
phase range within 60 rad. 

superbroadband continuum generation is a result of higher soliton generation, followed 

by the soliton splitting to the longer wavelength and the blueshifted nonsolitonic radiation 

expanding to the shorter wavelength. The soliton is generated by the interplay between 

the self-phase modulation and fiber anomalous dispersion. In fact in the DFMF, the 

minimal flat dispersion prevents the higher order soliton generation. Therefore, as a result, 

continuum generation is dominant by the self-phase modulation and self-steepening 

nonlinear effects. Due to the minimal flat fiber dispersion, the spectral phase associate 

with the continuum generation is rather smooth in the entire spectral range except a 

relative small dip at the input wavelength 800 nm. The total spectral phase that needs to 

be compensated later by the simulated LC-SLM based pulse shaper is within 60 rad. The 

Nyquist limit discussed in chapter 3 requires that the phase difference between two 

adjacent SLM pixel to be less thanπ . Considering the current commercial availabilities 
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of 128 and 640 pixels SLM, it should be possible to compensate the phase range in figure 

6.3; it also gives us more freedom to investigate the possible pulse compressibilities with 

higher input powers and longer DFMF propagating lengths. Note that because of the low 

responsivity for normal silicon based detector below 450 nm, the supercontinuum 

generated below this wavelength is cut off for future pulse compression.  

6.3.2 Validation of Fidelity of Supercontinuum Pulse Compression 

One of the most important prerequisite of performing pulse compression is the 

stability of the spectral phase. From the previous figure we see a smooth supercontinuum 

spectral phase generation for the entire spectrum and the phase range is well within the 

compensation range of the SLM. But if the spectral phase changes dramatically due to 

input pulse power fluctuation, and, since the system response time for phase 

retrieval/compensation is much longer than the corresponding phase change (governed by 

the pulse repetition rate, the compressed pulse using the phase compensation before the  

 
 

Figure 6.4: Simulation of output supercontinuum spectral intensity and phase variations 

with 1% input pulse noise. (a) is the intensity variation and (b) is the phase 

variation. Minimal variations for the spectrum and phase are shown in the 

figure. 
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phase change may be completely off the target. In order to preliminarily study this effect, 

we intentionally vary the input pulse peak power by 1%, a 10 times larger input pulse 

noise level compare to the level used in the previous research paper (0.1%, see Gaeta [9]). 

Figure 6.4 presents the simulation results of continuum generations upon 1% input pulse 

peak power fluctuation with the same input pulse and fiber parameters used in figure 6.3. 

Although there is a minimal spectral intensity changing with the input noise level, the 

corresponding fluctuations in spectral phase above 600 nm are unobservable.  

The compressed pulse quality (or pulse compressibility) is closely related to the 

spectral coherence of the generated supercontinuum. The coherence function is defined as 

[17],  
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where the angle brackets denote an ensemble average over independently generated 

supercontinuum pairs ( ) ( )[ ]λλ 21 , EE . The coherence values have been widely accepted as 

a criterion to access the possible compressibilities for the supercontinuum generation 

[137, 14, 17] and a median coherence of 0.7 can be used as an indicator of good 

compressibility. Figure 6.5 (b) shows 100 run simulations of supercontinuum generation 

when the input pulse power has 5% RMS fluctuation, with all the other pulse and fiber 

parameters fixed. The black continuum curve in the figure shows the averaged 

supercontinuum spectrum. The calculated coherence values as a function of wavelength 

are shown in figure 6.5 (a). There is a good coherence over a wide spectrum range except 

at the input pulse wavelength 800 nm and below 600 nm. It is worth mentioning that the 

5% RMS input power noise is equivalent to the random input power fluctuation range 
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from 90% to 110%. In practical, this is based on the low frequency classical noise that 

may present over the relative long phase retrieval time (several seconds for a single 

SPIDER measurement). This noise level is far above the typical Ti:Sapphire laser pulse 

shot-to-shot noise level which is only on the order of 0.1% [9]. In general, the coherence 

results showed in figure 6.5 (a) validate that the supercontinuum pulse compression gives 

a good fidelity using the DFMF approach. 

 
 
Figure 6.5: Calculated coherence as a function of wavelength from the electric field of 

continuum generation for 5% RMS input pulse power noise in 100 runs. (a) 
Coherence curve for the entire continuum spectrum. (b) Output spectrum with 
5% input power noise for 100 run supercontinuum generations. 

To further illustrate that using the DFMF can greatly improve the fidelity of 

supercontinuum pulse compression, we compare the simulations of generated continuum 

spectral intensity/phase using DFMF and a regular microstructured fiber, e.g., the 

microstructured fiber used in the open- and closed-loop control experiments in the 

previous two chapters. The simulation results are shown in figure 6.6. All the input pulse 

parameters are the same for the simulation comparison and the peak intensity of the input 

pulse is 8 kW.  The same propagation length of 11 cm is used for both fibers. Figure (a) 

is a comparison of generated continuum spectra for DFMF and the regular 



134 

 

microstructured fiber; figure (b) shows the spectral phases. The differences in both 

figures for the continuum spectra and phases are quite obvious. The supercontinuum 

generated using the DFMF is much broader and smoother comparing to that of the 

regular microstructured fiber, indicating a much shorter compressed pulse providing 

successful phase compensations. The continuum spectral phase for the DFMF is rather 

smooth for the entire spectral range, especially for the spectral range above 900 nm. 

Meanwhile, the high modulations showed in the continuum envelope for the regular 

microstructured fiber exhibit themselves as abrupt phase jumps for the entire spectral 

range. Although the spectral continuum features are mainly in the range from 600 nm to 

1000 nm and the spectral phase is relatively flat in the middle, the phase jumps on the 

edges of the window can not be well compensated by the SLMs. As a result, the 

supercontinuum generated by DFMF shows an enhanced pulse compressibility 

comparing to that of regular microstructured fiber. 

 
 
Figure 6.6: Simulated continuum generation for DFMF fiber and a regular 

microstructured fiber. (a), comparison of output spectra. (b), comparison of 
spectral phases. A much broader continuum spectrum and smooth phase for 
the DFMF are the direct proof of the enhanced pulse compressibility. 
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To generalize this section, there are several considerations for the supercontinuum 

pulse compression based on the phase compensation. First and most importantly, a stable 

continuum spectral phase that is not very sensitive to the input pulse noise is a 

prerequisite. For the purposes of characterizing the simulation result, using the coherence 

curve corresponds to an ensemble of continuum generation results for different input 

pulse noises level is a very convenient way to gain insight of the qualities of compressed 

pulses. In fact, the 5% RMS input pulse noise level used in this section is quite large 

compare to the normal laser shot-to-shot noise level. To our knowledge, only in Schenkel 

et al. [17] that the authors use this 5% RMS noise level to determine the supercontinuum 

compressibility, while shot-to-shot noise level (<1%) is used by all the other simulation 

papers. Second, even with a good coherence results, the supercontinuum pulse 

compression is also affected by the smoothness and the range of the continuum spectral 

phase. This is because of the limited phase compensation abilities of the SLM based 

pulse compressor. In fact, the phase compensation abilities determined by the Nyquist 

limit for the SLM with different pixel numbers are actually overstatements from our 

experiences. Therefore, smooth continuum spectral phase with small range, (e.g., less 

than several hundred for the entire compensation range for 640-pixel SLM), are also very 

important for experimentally performing the supercontinuum pulse compression. We are 

going to discuss this effect later in this chapter. 

6.3.3 Supercontinuum Pulse Compression Results at 800 nm 

Compression of the supercontinuum pulse using DFMF require phase 

compensations of generated supercontinua, which are simulated by adding calculated 

negative phase to the original continua, i.e., simulated pulse compressor. To investigate 

the pixel effects related to the practical SLM based pulse shaper, pulse compression 
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results correspond to different SLM pixel numbers are simulated. For comparison 

purposes, compression results using an ideal phase compensator with infinite SLM pixel 

number are also presented. Figure 6.7 is an example of pulse temporal intensity profiles 

before and after pulse compression. The simulation results correspond to 8 kW input 

pulse propagating through 10 cm DFMF. Compressed pulses using phase compensators 

with different SLM pixel numbers (128, 640) and an ideal compensator are shown in 

figure 6.7 (b). The phase compensation is performed as the following steps. First, the 

supercontinuum spectral phase for the designated compensation range is sliced into a 

number of regions depending on the simulated SLM pixel numbers. The average phase 

values in each region are calculated and treated as the values for SLM phase 

compensation. Each calculated average phase value is subtracted from the original 

spectral phase point in the regions and the net results are the compensated spectral phases. 

Finally, an inverse Fourier transformation is performed to generate the compressed pulses.  

 
 
Figure 6.7: Simulated supercontinuum pulse compression for DFMF fiber. a), 

supercontinuum temporal pulse before phase compensation. b), compressed 
pulses using SLMs with different pixel numbers and an ideal phase 
compensator. 
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For experimental considerations of pulse compression based on the Fourier domain pulse 

shaping using SLM, section 3.5.2 gives detailed formula description illustrating the 

temporal field of the shaped pulse. In figure 6.7 (b), the pulse is compressed to ~2 fs 

using simulated pulse compressor with different SLM pixel numbers. Evidently, 

compressed pulse with 640-pixel SLM faithfully reproduces the pulse shape comparing 

to that of ideal compressor. 128-pixel SLM can also compensates the spectral phase very 

well; a small peak intensity drop for the compressed pulse is barely observable. This can 

be explained as a result of the combination of generated smooth continuum spectral phase 

and the total phase range (<60 rad) for the entire spectrum, as well as and phase 

compensation abilities of 128-pixel SLM discussed in the previous section.  

Finally, we simulate supercontinuum pulse compression using DFMF for different 

fiber propagation lengths and input pulse peak powers. The pulse duration after phase 

compensation is calculated as the full-width-half-maximum (FWHM) of the compressed  

 
 
Figure 6.8: Simulated supercontinuum pulse compression results using DFMF for 

different fiber lengths and input pulse peak powers at 800 nm. (a) 
Compression results for different fiber lengths with 8 kW input power. (b) 
Compression results for different input pulse peak powers propagating 
through 8 cm fiber length. 
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pulse. Figure 6.8 (a) shows the compressed pulse durations as a function of fiber 

propagation distance using 30 fs T-L input pulse with 8 kW peak power. Pulse 

compression results for different input pulse peak power with a fixed 8 cm DFMF are 

shown in figure 6.8 (b). Both figures list the pulse compression results using three phase 

compensation resolutions: 128-pixel SLM, 640-pixel SLM and an ideal compensator. 

Pulse compression results of less than 2 fs are acquired with high input power and long 

propagation length. Note that for these simulation results, 128-pixel SLM is good enough 

to perform precise phase compensation and generating short compressed pulses.  

6.4 Supercontinuum Pulse Compression 1550 nm  

In this section we will briefly discuss the simulations of supercontinuum pulse 

compressions using DFMF at telecommunication wavelength 1550 nm. For this 

wavelength, the simulations and fabrications for the DFMFs have been well established 

and fibers are commercially available. Therefore, we use the dispersion property of a real 

DFMF [18] to simulate the supercontinuum generation and the feasibilities of pulse 

compression at 1550 nm. 

The fiber dispersion and nonlinear parameters are listed in table 4.2. The dispersion 

curve is shown in figure 6.9 (a) inset. The dispersion shape is the same as the dispersion 

curve described in the previous section, except that the center wavelength is shifted to 

1550 nm.  

Figure 6.9 (a) is an example of supercontinuum generation using the DFMF at 1550 

nm, with 30 fs 10 kW T-L input pulse propagating through 50 cm of fiber length. 

Comparing to figure 6.3 of the supercontinuum generation for DFMF at 800 with the 

same input pulse propagating through only 9 cm fiber, the supercontinuum generation 

ability for the DFMF at 1550 is greatly diminished. This is because of the relative large  
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Table 6.2: List of DFMF parameters in the NLSE simulation model at 1550 nm. 
Parameter (unit) Values 

2n  ( 12 −Wcm ) 
16102.2 −×  

γ  ( 11 −− Wkm ) 03.2  

effA  ( 2mµ ) 44  

2β  ( 12 −kmps ) 55.1−  

3β  ( 13 −kmps ) 3105.6 −×  

4β  ( 14 −kmps ) 5101.6 −×  

5β  ( 15 −kmps ) 71004.1 −×−  

6β  ( 16 −kmps ) 101001.1 −×−  

 

 
 
Figure 6.9: Simulated supercontinuum generation and coherence for DFMF at 1550 nm. 

(a) An example of generated continuum spectral intensity and phase. Inset: 
dispersion curve for the DFMF at 1550 nm. (b) Calculated coherence as a 
function of wavelength.  

effective area, e.g., 44 2mµ  for 1550 nm and 11 2mµ  for 800 nm, the nonlinear 

coefficient is 8 times smaller than that for the DFMF at 800 nm. Meanwhile, the 

signature of the self-phase modulation nonlinear effect in the continuum envelope is quite 
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obvious. For the coherence properties at 1550 nm, we use 100-run simulations of 

supercontinuum generation with input pulse noise level of 1% RMS, which is realistic 

considering the input pulse shot-to-shot noise level of the order of 0.1%. The calculated 

coherence values as a function of wavelength are plotted in Figure 6.9 (b). Taking the 

coherence value of 0.7 as a standard to determine the compressibility of supercontinuum 

generation, the coherence curve is rather good for the entire spectral range, except a few 

dips corresponding to the modulations in the spectral envelope.  

The longer propagation length leads to a larger phase range for the entire spectrum. 

In fact, although the phase range needs to be compensated is less than 120 rad, the 

compensation ability of 128-pixel SLM is not sufficient for precise phase compensation. 

Figure 6.10 shows the compressed pulse durations for different DFMF lengths and input 

pulse peak powers. The input pulse power for figure 6.10 (a) is 10 kW and the 

propagation length for figure 6.10 (b) is 20 cm. As evidenced in figure 6.10 (a), the 

compressed pulse durations have visible discrepancies for phase compensation performed 

by the 128-pixel SLM and ideal phase compensator. Although the compressed pulse 

shapes using 640-pixel SLM still faithfully follow that of the ideal compensator, the 

compressed pulse temporal range for the 128-pixel SLM is much wider than the other 

two cases. An example of this deficient phase compensation ability for the 128-pixel 

SLM will be given later in this chapter. In fact, the simple FWHM metric to describe 

pulse duration is no longer valid in this case. However, experimentally performing the 

precise phase compensation is still feasible by using 640-pixel SLM. Meanwhile, the 

continuum pulse compression results shown in figure 6.10 have a lower limit of ~ 5 fs, 
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which is comparable to the current state-of-art supercontinuum pulse compression 

experimental record.  

 
 
Figure 6.10: Simulated supercontinuum pulse durations after compression using DFMF at 

1550 nm for different fiber lengths and different input pulse peak powers. (a) 
Compression results for different fiber lengths. (b) compression results for 
different input power. 

6.5 Supercontinuum Pulse Compression 1050 nm  

For comparison of the supercontinuum pulse compression using DFMFs, we 

simulate the compression results using a commercially available nonlinear 

microstructured fiber (Crystal Fibre, NL-1050-ZERO-2) at 1050 nm. The dispersion 

curve and fiber parameters are shown in figure 6.11 and table 4.3, respectively. This fiber 

has a relative high nonlinearity of 37 km-1W-1 compare to the DFMFs in the previous 

discussion, e.g., 2.03 km-1W-1 for DMFM at 1550 nm and 15.7 km-1W-1 for DMFM at 800 

nm. This is the direct result of the extremely small effective area of only 3.52 2mµ  

associated with this fiber. Although the nonlinearity of the fiber is relative high, it is still 

smaller than the other high nonlinearity fibers (range from 70 km-1W-1 to above 100 km-

1W-1). Meanwhile, the dispersion is 10 times larger than that of DFMFs in the previous 

discussions.  
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Figure 6.11: Dispersion curve for a nonlinear microstructured fiber.  

Table 6.3: List of the nonlinear microstructured fiber parameters in the NLSE simulation 
model at 1050 nm. 

Parameter (unit) Values 

2n  ( 12 −Wcm ) 
16102.2 −×  

γ  ( 11 −− Wkm ) 35.37  

effA  ( 2mµ ) 52.3  

2β  ( 12 −kmps ) 205.5−  

3β  ( 13 −kmps ) 31038.1 −×  

4β  ( 14 −kmps ) 410416.2 −×  

5β  ( 15 −kmps ) 710542.7 −×−  

6β  ( 16 −kmps ) 910174.1 −×  

7β  ( 17 −kmps ) 1310712.6 −×−  
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The dispersion Taylor expansion coefficients up to 7th order are used in the 

simulation model with all the other input pulse and simulation parameters same as 

previous discussion. 

Because of the large fiber dispersion, as we discussed in the first section of this 

chapter, extremely short fiber length has to be used to ensure the stabilities of generated 

continuum spectral phase. Unlike the tens of cm of fiber length used in the DFMFs, a 

fiber length on the order of mm has to be used for continuum pulse compression based on 

the dispersion properties of this nonlinear fiber. On the other hand, compare to the other 

nonlinear fiber used to perform continuum pulse compression, the nonlinearities of this 

fiber is very low. Therefore, to get a short compressed pulse, the input pulse power has to 

be large enough to generate sufficient continuum bandwidth. Figure 6.12 (a) is an 

example of broadband supercontinuum generation  

 
 
Figure 6.12: Supercontinuum generation and the coherence in the nonlinear fiber for 1 cm 

fiber length and 400 kW input pulse peak power. (a) Spectral intensity and 
phase for the supercontinuum generation. (b) Calculated Coherence as a 
function of wavelength. 

with fiber length of only 1 cm and input pulse peak power 400 kW (or pulse energy of 1 

mJ assuming 100 MHz pulse repetition rate). The peak power level is 40 times larger 

than that for the DFMF with the same generated continuum bandwidth. The coherence 
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results are calculated from 100-run continuum generation with 1% RMS input pulse noise. 

The coherence results shown in figure 6.12 (b) indicate a good compressibility. However, 

due to the large dispersion presented for this nonlinear fiber, the total phase range for the 

entire spectral window is over 400 rad. 

From the previous discussion, it is not surprising that 128-pixel SLM can not 

compensate the phase within this range. This effect is shown in figure 6.13 (b) inset, 

where the deficiency of the phase compensation by the 128-pixel SLM manifests itself 

through the low intensity central feature and many small peaks on the larger time scale. 

Figure 6.13 (a) gives an example of the temporal pulse before the phase compensation, a 

much longer pulse comparing to that for the DFMFs. It is also clearly shown in figure 

6.13 (b) that there is some discrepancy in the compressed pulse peak intensity even for 

the 640-pixel SLM phase compensation when compared to that of ideal phase 

compensator. Although a short compressed pulse is generated in  

 
 
Figure 6.13: An example of continuum temporal pulse before and after phase 

compensation for the nonlinear fiber at 1050 nm. (a) Temporal pulse before 
compression. (b) Temporal pulse after the phase compensation with different 
SLM pixel numbers. Figure (b) shows the effects of insufficient SLM phase 
compensation.  
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the simulation, the insufficient phase compensation for the large phase range presented 

because of the dispersion properties of the nonlinear fiber may cause serious problems in 

the real experiment.  
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CHAPTER 7 
CONCLUSION 

In this work, we have presented both experimental and simulation results of 

characterizing and controlling the extreme nonlinear supercontinuum generations in 

photonic crystal fibers using two different approaches: the input pulse characteristics and 

photonic crystal fiber properties.  

Owing to the ability to tailor the waveguiding properties of microstructured fibers, 

the zero group-velocity-dispersion point of the fiber can be engineered at any wavelength 

from 500 nm to above 1500 nm. This allows for the control of the dispersive properties of 

the fiber, and in particular, allows us to shift the dispersion point below 800 nm, 

Ti:Sapphire laser wavelength.  Thus, femtosecond pulses can be easily generated in the 

anomalous dispersion region of the microstructured fiber. Meanwhile, the high 

nonlinearities of the microstructured fiber due to the extremely small effective area, in 

particular, higher order soliton generation followed by the subsequent soliton splitting 

and other nonlinear effects, lead to the greater than octave-spanning ultrabroadband 

supercontinuum generation with pulses only a few nanoJoules in energy.  

The supercontinuum generation properties in the microstructured fibers depend 

critically on the input pulse characteristics. We have used femtosecond pulse shaping to 

change the intensity temporal profiles of the Ti:Sapphire lasers input pulses. Depending 

on whether an intuitive control pulse can be directly derived, we have used both open-

loop and closed loop control to study how the input pulse characteristics can affect the 

temporal and spectral evolutions of the supercontinuum generations. Also, we have 
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developed a simulation tool based on the extended nonlinear Schrödinger equation to 

model our experiments and predict the continuum outputs. For open-loop control, we 

investigate the effects of input pulse quadratic and cubic phase to the bandwidth of 

supercontinuum generation. The broadest supercontinuum generation occurs with 

transform-limited input pulses, (i.e., pulses without any residual spectral phase), when the 

input pulse central wavelength is in the anomalous dispersion region of the 

microstructured fibers. This is because the magnitude of the nonlinear effects that lead to 

the supercontinuum generation is directly proportional to the input pulse peak power; our 

simulation results also verify that the transform-limited pulse has the largest peak 

intensity. Furthermore, the input pulse cubic phase plays an important role when the input 

pulse center wavelength is near to the zero group-velocity-dispersion point of the 

microstructured fiber. Our experimental results show that input pulses with cubic spectral 

phase that has the same magnitude and opposite sign when compared to the fiber third 

order dispersion-induced pulse spectral phase lead to the supercontinuum generation with 

the largest bandwidth. This is can be explained as the corresponding pulse self-

compression leading to the increased peak intensity; therefore enhancing the magnitude 

of the pulse nonlinear interaction with the microstructured fiber, followed by the broader 

supercontinuum generation. Meanwhile, the self-steepening nonlinear effect is 

responsible for the blue-shifted supercontinuum generation asymmetry. We have 

generated phase-sculpted temporal ramp pulses to suppress the self-steepening effect. 

The FROG measurements were used to verify the generation of the temporal ramp pulse. 

Both experimental and simulation results show that more symmetric supercontinuum 

generations are achieved due to the suppression of the self-steepening nonlinear effect. 
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For the closed-loop control experiments, we have used “adaptive” pulse shaping with 

genetic algorithm to investigate the nonlinear broadening enhancement and soliton self-

frequency shift for the supercontinuum generation.  The feedback controls use the genetic 

algorithm to efficiently search all the parameter spaces and derive suitable driving pulses 

for different control goals. A nonlinear broadening enhancement of 20% was achieved. A 

close examination of the driving pulse spectral phase evolutions for each generation 

reveals that the genetic algorithm is able to generate the driving pulse with the optimized 

spectral phase that interacts with the all orders of fiber dispersion. Also, by carefully 

design the parameter space and cost function, we perform the controls of both the 

magnitude of soliton self-frequency shift and the width of the generated soliton. By 

feeding the spectral phases of the driving pulses into the simulation model, it is clear that 

the phase-only pulse shaper acts as a sensitive amplitude filter and the genetic algorithm 

generates the driving pulse with suitable peak intensity and duration; therefore solitons 

generation with different widths and self-frequency shift magnitudes are achieved.  

The tailorable dispersion properties of the microstructured fiber yield another way 

to perform the control of supercontinuum generation. We have used the simulated 

dispersion flattened microstructured fiber to investigate the possibility of supercontinuum 

pulse compression. Simulated pulse compression results using DFMFs at different center 

wavelengths are presented. In particular, for both Ti:Sapphire laser wavelength and 

telecommunication wavelength, our simulation results have shown that using DFMFs 

greatly enhances the stabilities of the generated supercontinuum spectral phase, therefore 

improves the qualities of the supercontinuum pulse compression. Meanwhile, we have 

also discussed the phase compensation abilities associate with the practical SLM pixel 
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number and present the pulse compression results corresponding to the different input 

pulse peak power and fiber lengths. For comparison, we present the simulation results 

using a nonlinear microstructured fiber with high dispersion property and discuss the 

limitations of conventional supercontinuum pulse compression.  

To our knowledge, we have presented for the first time how the femtosecond pulse 

shaping can be used to control the supercontinuum generation by controlling the 

evolution of the temporal and spectral structure of optical pulses propagating in the 

microstructured fibers. Also, supercontinuum pulse compression using DFMFs has 

presented itself as a new approach to stabilize the continuum spectral phase and improve 

the quality of compressed pulses.  
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