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Abstract— Networked application developers have recently
started to use end-users’ computers as relay nodes – application
instances that also act as bridges between pairs of hosts running
the same application. Relay nodes can bring costs to both users
and network operators, at least in terms of increased bandwidth
consumption. An interesting problem is to characterize the nature
of relayed traffic and to detect its presence in the network. This
paper focuses on characterizing and detecting relayed traffic
generated by Skype, a popular voice over IP application that uses
relays. Our technique relies solely on flow-level properties rather
than on application- or protocol-specific information. Using two
different controlled experimental environments we generate and
collect a large amount of Skype-relayed traffic. We propose
several metrics to characterize the nature of relayed traffic. These
metrics together with the results obtained from the experimental
characterization of Skype-relayed traffic are used to detect Skype-
relayed traffic traversing the access point of a large network. We
show that the metrics proposed can be used to reliably detect
Skype-relayed traffic. Finally, we believe the metrics proposed
could be applied more broadly in the detection of relayed traffic
generated by other multimedia applications.

I. INTRODUCTION

Networked applications are using network resources in

increasingly ingenious ways to achieve greater scalability and

circumvent security limitations. One such example is the

emergence of relay nodes – application instances that not only

provide application services to local users, but also act as

bridges between remote nodes running the same application.

The use of a relay allows two nodes that could not otherwise

communicate (e.g., due to firewall or NAT [1] restrictions)

to do so, and can improve the quality of the communication

between two nodes by avoiding congested or faulty paths [2].

Although relay nodes are useful to application designers,

they have disadvantages from the perspective of users and

network operators. A node chosen to act as a relay must bear

the cost of relaying traffic. This cost is evident to users in

the form of slower communication (due to bandwidth use by

the relayed traffic) or financial costs, if payment for network

access is a function of bandwidth usage. Network operators

and small ISPs may also see drawbacks, as relayed traffic

can increase the amount of traffic entering and leaving their

network. For example, a single machine running Skype [3]

within our campus network relayed voice traffic at an average

rate of 2.1MB per hour over a period of 20 days.

Given the increasing use of application-level relay nodes

and their potential costs to users and network operators, it is

important to characterize the nature of relayed traffic and to

detect its presence in a network. Network operators would

probably like to know if traffic is being relayed through

hosts that belong to their network. Although the concept of

relaying is not new, an increasing number of applications

have started to make use of relay nodes. We can distinguish

such applications into two categories: multimedia applications

(where data flow continuously and have a moderate or high

average bit rate, e.g., greater than 15 kbps), and interactive

applications (where data flow sporadically in short bursts and

generally have a lower average bit rate, e.g., less than 5

kbps). Examples of multimedia applications that use relays

are Skype [3] and End System Multicast (ESM) [4], while

examples of interactive applications are Internet Relay Chat

(IRC) [5], MSN Messenger, and SSH. Multimedia applications

that use relays are likely to be more costly to users and network

operators, as these applications are much more bandwidth

demanding.

In this paper, we characterize relayed traffic generated by

a popular voice over IP application, namely Skype [3], and

propose a methodology for detecting Skype-relayed traffic.

We propose the use of several metrics that can effectively

characterize the nature of Skype-relayed traffic. In order to

obtain relayed traffic, we develop two different experimental

environments to generate and collect a large amount of Skype-

relayed traffic. This data is characterized using the different

metrics proposed. The observations obtained from this char-

acterization are used to propose a methodology for detect-

ing Skype-relayed traffic. Detection is performed by setting

thresholds for the various metrics. By tuning the thresholds,

the desired balance between true positives and true negatives

can be obtained. Finally, we apply the detection methodology

to a large aggregate traffic trace collected at the access point of

our university. Our results show that the metrics considered for

characterizing relayed traffic can reliably detect Skype-relayed

traffic.

An important consideration when designing a traffic clas-

sification methodology is the use of application- or protocol-

specific information, such as well-known port numbers. Since

applications are increasingly becoming more flexible and

diverse, new methods for traffic classification no longer rely on

this information [6]. As in such approaches, our methodology

for characterizing and detecting relayed traffic also does not

rely on application- or protocol-specific information. However,



our methodology does take into consideration the fact that

the application is transmitting real-time voice traffic. For this

same reason, we believe our methodology could be extended

to characterize and detect relayed traffic generated by other

multimedia applications.

The evaluation of our detection methodology is also a

challenge, since it is not trivial to know precisely when traffic

is indeed being relayed. In order to obtain a benchmark

for Skype-relayed traffic detection, we propose a heuristic

for identification of Skype traffic that uses Skype-specific

information. Using this information, we obtain the true set

of Skype-relayed traffic. Although of independent interest, the

heuristic is used only to evaluate the detection methodology.

The detection of relayed traffic has been addressed in other

contexts. The problems of detecting “stepping stones” [7–9]

and identification and reconstruction of large attacks [10] have

been extensively investigated within the intrusion detection

context. The problem of flow correlation in mix networks [11,

12] has more recently been studied in the context of anonymity

systems. However, none of these efforts have investigated

relayed traffic generated by multimedia applications, such as

Skype. Moreover, the methodology developed for these prior

studies do not necessarily apply in our context. To the best of

our knowledge, this is the first work to characterize relayed

traffic generated by a multimedia application (i.e., Skype) and

to propose a specific methodology for its detection.

The remainder of this paper is structured as follows. In the

next section we define relayed traffic and present the different

metrics used for its characterization. In Section III, we dis-

cuss our controlled experimental environment and characterize

Skype traffic using the proposed metrics. Section IV presents

the payload-based Skype traffic identification heuristic. In

Section V, we evaluate the performance of detecting Skype-

relayed traffic by analyzing an aggregate traffic trace collected

at our university’s gateway. Section VI presents a discussion

of the related work. Finally, Section VII concludes the paper

with a summary of our contributions and discussion of future

work.

II. PROBLEM DEFINITION

Relayed traffic is traffic generated by a given end-host, that

is passed through one or more end-hosts (“relays”) before

reaching its final destination. Figure 1 shows an example of

relayed traffic. End-host n1 generates traffic that first passes

through end-host nr before reaching its final destination, end-

host n2. From the perspective of the transport layer, there are

two bidirectional connections in this example: one between n1

and nr and another between nr and n2. As we will see shortly,

these connections may differ in type (e.g., one connection may

be TCP and the other UDP), duration, and throughput.

A relay node may or may not be interested in the data traffic

being relayed, and may or may not perform transformations

on the relayed data. For example, node nr may be watching

a streamed video generated by node n1 that is then forwarded

to node n2. On the other hand, node nr might simply act

as a bridge between node n1 and n2, receiving and sending
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Fig. 1. Example of relayed traffic between end-hosts n1 and n2

packets. A relay node may also actively change the nature of

the traffic being relayed. Many different types of transforma-

tions are possible, ranging from simple transformations such

as transport protocol changes (e.g., UDP to TCP), application-

level header modifications, and fragmentation/composition of

data packets, to more complex operations, such as data com-

pression/decompression, and CODEC changes. In principle,

a relay node can perform any kind of transformation on

the relayed data. In practice, however, current relay nodes

perform only simple transformations, most likely to minimize

the computational and communication load placed on relay

nodes.
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Fig. 2. Network scenario under consideration. End-host nr is used as a relay
by two end-hosts outside the network

In this paper, we take the perspective of the operator of

a large network, who is monitoring incoming and outgoing

traffic at an access link, as illustrated in Figure 2. Our goal

is to determine whether traffic is being relayed through some

end-host belonging to the network, using only IP and transport

header information collected by the monitor to make this

decision. In general, this problem is difficult and we will focus

on relayed traffic generated by Skype. We will use the fact that

Skype-relayed traffic is voice traffic (which poses constraints

on maximum delays and minimum bit rates) but will not

use application specific information such as well-known port

numbers or distinct packet sizes, nor will we examine packet

payloads.

Thus far, we have only informally defined a relay and the

traffic being relayed; let us now make this definition more

precise. Intuitively, we know that a relay takes an input “flow”



of data and forwards the data to its final destination. But what

is meant by a “flow”? In many measurement studies, a “flow”

is defined as a sequence of packets with the same 5-tuple

(source and destination IP addresses, source and destination

port numbers, protocol number) where adjacent packets are not

too far apart from each other (e.g., a 60 second maximum inter-

arrival time between adjacent packets in the same flow) [13,

14]. But this definition alone will not suffice for our purpose

for several reasons. First, we add the notion of a direction to

a flow (e.g., source-to-relay, or relay-to-destination). Second,

a flow can carry both data and control traffic, although only

data traffic is relayed. Third, a single flow can contain disjoint

sets of relayed data traffic interleaved with control traffic.

These characteristics can appear in flows generated by Skype

for example. Figure 3 shows a single Skype flow containing

two voice calls that were relayed (the first call starting at

approximately 200 seconds and ending at approximately 400

seconds, and the second call starting at approximately 800

seconds) and were separated by some control traffic.
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Fig. 3. Example of a single Skype flow containing two different relayed
voice calls (each call is mapped into a separate burst of packets)

Given these considerations, we introduce the notion of a

burst of packets (to avoid confusion with the colloquial use

of the word “flow”) in order to characterize relayed traffic. A

burst of packets is a contiguous piece of a flow and is defined

as a sequence of packets that has a minimum average data

rate (e.g., at least 10 kbps) and a minimum duration (e.g.,

at least 30 seconds). By requiring a burst of packets to have

a minimum average bitrate we can distinguish between data

and control traffic, since the average bitrate of data traffic is

much higher than that of control traffic. This distinction is

important, as we are interested in characterizing only relayed

traffic. Also, note that a single flow can contain multiple bursts

of packets, which in Skype can correspond to multiple voice

calls, as illustrated in Figure 3.

We use a simple change detection algorithm to detect the

start time and end time of a burst of packets within a flow.

In particular, we adopt an EWMA (Exponential Weighted

Moving Average) to keep track of the data rate associated with

a flow. The EWMA of a given flow is defined as follows:

Ai = (1 − α)Ai−1 + αIi (1)

where Ii represents the average data rate of the i-th second of

the flow and A0 and I0 are set to zero. Note that the EWMA is

updated every second since the start of a flow. A burst starts if

the EWMA goes above a certain threshold (Ai > R1) and ends

when the EWMA goes below another threshold (Ai < R2). In

order to detect the start of a burst we use a more aggressive

parameter for the EWMA (large α). However, we use a more

conservative parameter to detect the end of a burst (smaller

α). In particular, we use α = 0.75 and α = 0.15 for the two

cases, respectively. Each flow has a single EWMA value and

its parameter, α, is changed as soon as the start/end of a burst

is detected.

Each burst i contains a sequence of packets and has several

quantities of interest:

• Ni: number of packets in burst i
• T j

i , j = 1, . . . , Ni : timestamp of the j-th packet of burst

i
• Zj

i , j = 1, . . . , Ni : size in bytes of the j-th packet of

burst i
• Si = T 1

i : start time of burst i in seconds

• Ei ≥ TNi

i : end time of burst i in seconds

• Di = ⌈Ei − Si⌉: duration of burst i
• Y k

i , k = 1, . . . , Di : total number of bytes sent dur-

ing the k-th second of burst i (mathematically, Y k
i =

∑Ni

l=1
I(T l

i − Si ∈ [k − 1, k))Zl
i , where I(·) is the

indicator function, returning 1 when its argument is true

and 0 otherwise)

• Bi =
∑Ni

j=1
Zj

i : total number of bytes carried by burst i
• Ri = Bi/(Ei − Si) : average data rate of burst i

Note that it suffices to monitor TCP/UDP packet headers to

construct flow and burst structures.

We use the notion of a burst to characterize and detect

relayed traffic. We assume bursts carrying relayed traffic must

have opposite directions (one entering, the other leaving the

network), have the same end-host (same IP addresses) within

the network being monitored and have different end-hosts

(different IP addresses) outside the monitored network 1. The

relay detection problem is to determine if two bursts that could

be carrying relayed traffic (e.g., candidate bursts) are in fact

carrying relayed traffic.

In order to detect relayed traffic we focus on a few statistical

metrics involving a pair of bursts. Let i and j denote two

bursts. We consider the following metrics:

• Si,j = |Si − Sj | : the difference between the start times

of bursts i and j
• Ei,j = |Ei − Ej | : the difference between the end times

of bursts i and j
• Bi,j = Bi/Bj : the ratio between the number of bytes

carried by bursts i and j
• Xi,j : the maximum cross correlation between time series

Yi and Yj

1We will not consider the scenario where traffic is relayed through more
than one end-host within the monitored network. In particular, note that Skype
uses at most one relay node for any given voice call.



Here Xi,j is defined as maxd∈{−Di,...,0,...,Di} xi,j(d), where

xi,j(d) is the cross correlation between time series Yi and Yj

at lag d [15]. For completeness, this is defined as:

xi,j(d) =

∑

k(Y k
i − Ri)(Y

k−d
j − Rj)

√

∑

k(Y k
i − Ri)2

√

∑

k(Y k−d
j − Rj)2

(2)

The metrics defined above will help us assess if two candi-

date bursts indeed carry relayed traffic. In particular, consider

two bursts corresponding to Skype-relayed traffic. Due to the

application requirements (i.e., voice over IP), the start time

difference and end time difference of the bursts should be

very small, as packets cannot be stored at the relay node for

long periods of time. Moreover, since Skype does not perform

complex transformations on the relayed traffic, the burst size

ratio should be close to one and the time series of the two

bursts should have a very high degree of correlation. These

observations will allow us to detect Skype relayed traffic.

There are other metrics that can be adopted to characterize

and detect relayed traffic. Prior work on the relay detection

in other contexts has proposed other metrics, such as the

packet counts in ON and OFF periods, cumulative byte count

difference. However, they are not applicable to the character-

ization or detection of multimedia traffic relays. For example,

the technique based on On-Off periods, which has been ap-

plied to interactive applications [7, 8] fails because multimedia

traffic patterns do not necessarily exhibit On-Off behavior.

The technique based on packet counts does not perform well

because packet splitting or merging can (and does in the case

of Skype) occur at the relay nodes. Another approach would be

to use the cumulative byte count difference between incoming

and outgoing bursts as a metric; a similar idea was proposed

in [9]. Intuitively, this metric should work well under the

assumption that a relayed burst conserves byte count (i.e.,

number of bytes arriving at the relay should be equal to

the number of bytes departing the relay). Unfortunately, byte

count conservation is a strong assumption within the domain

of multimedia applications and can sometimes be (and is in

the case of Skype) violated. Moreover, this metric is fairly

sensitive to packet losses that are not retransmitted, as in the

case of traffic relayed using the UDP protocol (as in the case

of Skype).

III. CHARACTERIZATION OF SKYPE-RELAYED TRAFFIC

In this section we characterize Skype-relayed traffic using

data collected from two different controlled experiments. In

the first experiment, we control the two nodes that are used

to make a relayed Skype call. This allows us to generate

relayed traffic with different characteristics, such as different

transport protocols and different packet loss rates. In the

second experiment, we control the relay node used to relay

traffic between two Skype users. This provides us with real

relayed traffic, generated by real Skype users. The goal of

both experiments is to collect a large amount of Skype-

relayed traffic and then characterize this data using the metrics

presented in the previous section.

TABLE I

PARAMETERS AND RESULTS FROM CONTROLLED EXPERIMENT I

Parameters Value

Transport protocol type UDP in UDP out
UDP in TCP out
TCP in TCP out

Packet loss probability 0.00 and 0.05

Duration of each call approximately 3 minutes

Number of UDP in UDP out calls 505

Number of UDP in TCP out calls 269

Number of TCP in TCP out calls 307

Total number of relays used 1081

A. Experiment I: Relayed traffic generated between two con-

trolled Skype nodes

Hub

SC1

SR

tcpdump

firewall

Dummy-

net

Introduce loss 

from SC1 to SR

SC2

Internet

Fig. 4. Configuration of controlled experiment I

In this first experiment we control the two hosts running

Skype that are used to make a relayed Skype voice call. By

using a firewall to block packets between the two hosts we

force Skype to use a relay node. This relay node is not under

our control and is chosen by Skype. Moreover, by adequately

configuring the firewall, we can control the transport protocol

used by Skype both to and from the relay node. Since Skype

can use both TCP and UDP to deliver voice packets [16],

we have four possible pairs of transport protocol combina-

tions: UDP in-UDP out, TCP in-TCP out, UDP in-TCP out,

and TCP in-UDP out, where “in” and “out” represent traffic

flowing to and from the relay node, respectively. Finally, we

also introduce artificial packet loss on the path between one of

the end-hosts and the relay node. By controlling the packet loss

rate on one of the paths, we obtain Skype-relayed traffic under

different loss regimes. We used dummynet [17] to generate

Bernoulli losses. The experimental setting discussed here is

illustrated in Figure 4. Note that data is collected by a host

connected to the same hub where the two controlled nodes

are connected. Using tcpdump [18] we capture all packets

sent from SC1 to SR and all packets sent from SR to SC2.

Note that we capture packets sent from SC1 before losses are

artificially introduced.

The above experimental setting was used to make hundreds
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Fig. 5. Empirical cumulative distribution of burst start time
difference
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Fig. 6. Empirical cumulative distribution of burst start time
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Fig. 7. Empirical cumulative distribution of burst end time
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Fig. 8. Empirical cumulative distribution of burst end time
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of 2 Skype-relayed calls (we automated the call setup/tear

down procedure) each of duration three minutes. Throughout

the experiment, several different relay nodes were used and

although most of them were located in the United States,

some relay nodes in Europe and Asia were also used. Table

I summarizes the parameters and results from the experiment.

Using the data collected we characterize Skype-relayed

traffic based on the metrics described in the previous sec-

tion. This characterization provides a benchmark for Skype-

relayed traffic that is used to generate guidelines for detection

of Skype-relayed traffic. As we next discuss, Skype-relayed

traffic exhibits particularities that can be used to identify it

without resorting to any application-specific information.

The results are presented for each transport protocol pair and

for different packet loss rates. We start investigating the start

time difference between two bursts of Skype-relayed traffic

(recall Si,j , with i and j corresponding to a pair of Skype-

relayed bursts). Figures 5 and 6 show the empirical cumulative

distribution of the start time difference. Note that all relayed

2We note that the use of a fixed call duration time (i.e., 3 minutes) had
little influence on the characterization of relayed traffic. As long as the call
has a minimum duration (such as one minute) the duration of the call will
have little impact on the metrics being studied. In particular, Experiment II
shows similar results to Experiment I, where voice calls are real and have
variable duration.

bursts have a start time difference of less than 5 seconds. In

fact, the vast majority of the relayed bursts (i.e., 99% of them)

has a start time difference of less than 3 seconds. We also

observe that introducing a packet loss rate of 5% has little

effect on the start time difference (Figure 6).

Figures 7 and 8 show the empirical cumulative distribution

of the end time difference between two bursts of Skype-relayed

traffic (recall Ei,j , where in this case i and j are Skype-

relayed bursts). The characterization of the end time difference

is similar to the start time difference when no artificial packet

loss is introduced. Note that all end time differences are less

than 5 seconds in this case. However, for the case with 5%

packet loss end time differences are longer, especially for the

TCP in TCP out case. This increase is due mainly to packet

retransmissions at the end of the voice call and the loss of TCP

FIN packets, which are responsible for gracefully terminating

the TCP connection. In any case, all end time differences

between two bursts of Skype-relayed traffic are less than 16

seconds.

Figures 9 and 10 show the empirical complementary cumu-

lative distribution of the maximum cross correlation between

two bursts of Skype-relayed traffic (recall Xi,j , where in this

case i and j are Skype-relayed bursts). We observe that the

transport protocol pair significantly impacts the maximum

cross correlation. As one might expect, the UDP in UDP out
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combination yields the best maximum cross correlation, as

the traffic in both connections is not shaped by any con-

gestion control or flow control mechanism. In particular,

note that 85% of the relayed traffic has a maximum cross

correlation greater than 0.9 in this case. A similar result

is obtained for the UDP in TCP out combination, although

with a slightly lower maximum cross correlation. Finally,

the TCP in TCP out yields an even lower maximum cross

correlation, especially under the 5% packet loss rate. This

is expected, as the first TCP burst will contain many packet

retransmissions while the second burst will not. In any case,

the maximum cross correlation is still surprisingly high, even

in the TCP in TCP out. In fact, 95% of all Skype-relayed

traffic has a maximum cross correlation of at least 0.37,

regardless of transport protocol combination and packet loss

rate (not shown in graphs).

Finally, we investigate the burst size ratio between two

bursts of Skype-relayed traffic. Figures 11 and 12 show the

empirical cumulative distribution of the burst size ratio (recall

Bi,j , where in this case i and j are Skype-relayed bursts). Note

that for the case where no artificial packet loss is introduced,

the burst size ratio of all Skype-relayed traffic is very close to

1. For the case of 5% packet loss rate, the empirical cumulative

distribution for the burst size ratio changes noticeably. In

particular, the distribution, which in the case of no artificial

packet loss has a single mode, now has more than one

mode. Note that in this regime, the TCP in TCP out protocol

combination has the largest burst size ratio, as many packets

will be retransmitted by the protocol.

B. Experiment II: Traffic relayed over a controlled Skype node

In this second experiment we control and monitor the relay

node used by two Skype nodes. By running Skype continu-

ously on an end-host with a powerful CPU (e.g., Pentium 4)

and with a good connection to the Internet (e.g., 100Mbps

Ethernet) for a prolonged period of time (e.g., a few days),

the host will end up being used as a relay node by other

Skype nodes. Figure 13 illustrates the experimental scenario

considered. Note that the relay node is connected to the same

hub as the dedicated host used to collect the data. We use

tcpdump [18] to capture all packets entering and leaving the

relay node. In contrast to the previous experiment, in this

experiment the data collection point and the relay node are

very close to each other (i.e., in the same LAN).

By running this experiment for 20 days, hundreds of Skype

calls were relayed through our controlled host. Our Skype host

relayed traffic for Skype hosts located in several parts of the

world, including Europe, Asia, and South America. With the

data collected in this experiment, we can characterize Skype-

relayed traffic of real voice calls from a more vast end-host

population than the two end hosts used in experiment I.
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Fig. 13. Configuration of controlled experiment II

Although no other application was running on our controlled

host, not all traffic entering and leaving the host was Skype

voice traffic. In particular, Skype itself can generate and

receive a significant amount of traffic that is not voice traffic.

Instead, this traffic is required for maintaining the peer-to-

peer network and for providing services such as the location

of users in the network (i.e., directory service). This kind of

traffic becomes significant when a running instance of Skype

is promoted and starts to operate in “super node” mode [16]

(which occurred during our experiments).

Since we are interested in characterizing only relayed voice

traffic, we had to exclude all “non-voice” traffic from the data

collected. Separating voice traffic is not a trivial task as it is

hard to guarantee that a pair of bursts entering and leaving

our host is indeed a relayed voice call. In order to minimize

the chances of mistakes, we are aggressive in our approach

to exclude “non-voice” traffic (i.e., possibly excluding some

legitimate relayed voice traffic, but unlikely considering any

“non-voice” traffic). In particular, only pairs of bursts that

conform to the parameters shown in Table II are considered

as voice traffic. All other bursts collected are discarded.

Some of the parameters chosen in Table II were obtained

from the results of the previous experiment. In particular,

we use a maximum of 30 seconds for start and end time

differences, as such value is much larger than any instance

of the previous experiment. Finally, it is possible that more

than two bursts of packets start and end within 30 seconds of

each other, generating multiple candidates for relayed bursts.

In this case, we use a simple priority rule, where the pair of

bursts which has the smallest start time difference is chosen

as the relay pair. However, no conflict needed to be resolved

in the data collected for this experiment.

Over the period of 20 days, we observed a total of 341
Skype-relayed bursts of packets, corresponding to a total of

1.11Gbytes of data. We now characterize the nature of these

relays using the same metrics as before. Figures 14 and 15

show the empirical cumulative distribution for the start and

the end time differences between two bursts of Skype-relayed

traffic, respectively. Note that for 99% of the Skype relayed

traffic, the start time difference is less than 6 seconds while the

end time difference is less than 10 seconds. Again, we observe

TABLE II

PARAMETERS FOR DETERMINING CANDIDATE RELAYS

Parameter value

Minimum burst duration 30 seconds

Minimum packet count for flow 300 packets

Maximum start time difference 30 seconds

Maximum end time difference 30 seconds

Conflict resolution criteria Smaller burst start time difference

that start and end time differences for the vast majority of

Skype-relayed traffic are small. This observation is consistent

with the results of the previous experiment when no artificial

packet loss was introduced.

Figure 16 shows the empirical complementary cumulative

distribution of the maximum cross correlation between two

bursts of Skype-relayed traffic. The vast majority of maximum

cross correlation observed (i.e., 99% of them) is above 0.41.

Note that the distribution for maximum cross correlation

is very similar to the distribution of UDP in UDP out and

UDP in TCP out protocol pairs of the previous experiment.

This is because most of the relays observed in this experiment

are of the types UDP in UDP out and UDP in TCP out (i.e.,

96% of relays). However, the ratio of relays that have a

maximum cross correlation of at least 0.95 is even higher

than that of the UDP in UDP out combination in the previous

experiment. One possible reason for the higher correlation is

that in this experiment, the monitoring point is very close to

the relay node (i.e., same LAN). However, in the previous

experiment, the monitoring point was very close to the two

communicating end-hosts and potentially far from the relay

node. This observation is to our advantage as our goal is to

detect Skype-relayed traffic by monitoring the access link of

a large network, in which case, relay nodes will be close to

the monitoring point (i.e., same WAN).

Finally, Figure 17 shows the distribution of the burst size

ratio between two bursts corresponding to Skype relayed

traffic. Note that 99% of the burst size ratios lie below 1.15,

indicating that the vast majority of relayed bursts in Skype

have very similar sizes.

IV. PAYLOAD-BASED SKYPE TRAFFIC IDENTIFICATION

In this section we describe a heuristic that can be used

to identify Skype traffic. Although the heuristic uses Skype-

specific information present in the packet payload, our relay

detection mechanism does not. The goal here is to filter out

non-Skype traffic and obtain a set of Skype-only traffic which

can then be used as a benchmark for the relay detection

mechanism. Note that the heuristic itself may be of interest,

as it provides an effective method for identifying Skype traffic

when packet payloads are available. However, the heuristic

does not detect Skype-relayed traffic, it only identifies Skype

traffic.

Before describing the heuristic, we first give some details

about the functionality of Skype. Along with other peer-to-

peer (P2P) applications, Skype does not use any well-known
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Fig. 17. Empirical cumulative distribution of burst size ratio
of voice calls relayed by our Skype node

port number. However, it does use a single port number which

is randomly chosen when the application is first installed. This

port number is used to receive incoming TCP connections

and UDP packets. Moreover, all outgoing UDP packets also

contain this port number. After being randomly chosen, the

port number is saved locally and used on all future executions

of the application. Note however that users can explicitly

change this port number by configuring Skype to use either

port 80 or 443 (well-known port numbers for HTTP and

HTTPS protocols).

Skype users must first logon and authenticate themselves

before using the application. The logon process is com-

posed of two subprocesses: software version verification and

user authentication. For the software version verification,

Skype makes a TCP connection to a well-known server (i.e.,

ui.skype.com) and reports the application version currently

running [16, 19]. We noticed that even if the option for auto-

matic Skype version verification was explicitly disabled, Skype

still contacted the well-known server. The second subprocess is

user authentication. This is done either directly by contacting

some predetermined logon server or by contacting one or more

Skype super nodes. Besides the communication during the

logon and authentication process, the application also contacts

a set of Skype super nodes in order to register itself into the

P2P network, which is done by sending UDP packets to the

port numbers they are listening to.

The key observation is that these control packets departing

a Skype node have as source port the randomly chosen port

number that will be used for Skype voice traffic, including

relayed traffic. Our heuristic works as follows. We first identify

the IP address of all hosts that have executed Skype. This is

done by inspecting the payload of packets destined to the well-

known server 3. Because of the mandatory version verification

process, which is always done using a single server, it is easy

to determine the IP address of hosts running Skype within

a network. However, determining the port number used by a

given Skype host to send/receive voice traffic is more difficult.

We correlate the version verification message with the fact that

super nodes are contacted in order to obtain the (possibly)

random port number used by a given Skype host. Note that

these two events usually occur closely to each other in time

(i.e., as soon as the application is launched). In particular,

we count how many times a given source port number is

used right after (or before) a Skype version verification packet

is observed. If the same port number is used many times

3In practice, we do not need to inspect the payload of the packet as all
connections to port 80 of the well-known version verification server are
requests initiated by Skype clients (the server does not serve any web content).



TABLE III

DETAILS OF PACKET TRACE COLLECTED AND ANALYZED

Date Day Start Dur Direc. Packets Bytes Num. of flows

2005-05-09 Mon 15:00 17 hours Bi-direc. 328M 414 GBytes 1501K

to different hosts within the next few packets, we say that

this port is the Skype port number. Knowing the IP address

and port numbers of identified instances of Skype within

the network allows us to later identify Skype voice traffic

sent/received by this end-host.

It has recently been argued that some versions of Skype

always contacts a limited number of hard-coded bootstrap

servers using UDP messages [16]. Therefore, we could al-

ternatively obtain the UDP port number of a given Skype

instance by simply monitoring messages to these known

servers. However, it is not clear whether the list of hard-coded

IP addresses changes from one version of Skype to another.

It is important to note that the heuristic above would not

work with Skype instances that run on hosts using DHCP or

that are behind a NAT. The DHCP could assign a different

IP the host in subsequent executions of Skype, as a NAT box

could assign a different port number in subsequent executions.

However, most of the end-hosts in our campus network,

including the hosts in dormitory area, have a fixed IP address

and are not behind NATs. Moreover, hosts running behind

NAT boxes are not used to relay Skype traffic.

V. DETECTION OF SKYPE-RELAYED TRAFFIC

In this section, we evaluate the effectiveness of using the

proposed metrics as a mechanism to detect Skype-relayed

traffic. We establish the true population of Skype-relayed

traffic present in a large packet trace and use this to measure

the performance of the proposed metrics. After presenting the

results, we discuss some learned lessons.

A. Experimental setting

We consider the experimental scenario illustrated in Figure

2, where the access link of a large network is monitored.

In particular, we consider our campus network, which is

composed of thousands of computers and users. We monitor

the gigabit access link connecting the campus network to the

commercial Internet service provider. A packet capture card

(called a DAG [20] card) copies all packet headers (including

part of the payload) traversing the link (in both directions) to

disk along with an accurate time stamp. Using the monitoring

infrastructure, we collect a 17-hour packet trace. Table III

shows the details of the trace collected.

B. Determining the true population of Skype-relayed traffic

In order to identify as many Skype instances as possible

within the campus network, we monitored the access link of

the campus network for a period of 10 days before collect-

ing the 17-hour packet trace. Whenever a Skype client was

identified within the monitored network (using the heuristic

described in Section IV), we registered its IP address and port

number into a database.

This set of IP addresses and port numbers was then used to

filter out all Skype traffic from the 17-hour packet trace that

was subsequently collected. However, not all Skype traffic is

voice traffic. As discussed earlier, Skype nodes can generate

control traffic. We discard such traffic by ignoring flows that

do not have any bursts or that have a very low average bit

rate (i.e., less than 10 kbps). We are left with a packet trace

containing (almost surely) only Skype voice traffic.

Finally, we determine the set of Skype-relayed traffic by an-

alyzing the Skype-only packet trace. In particular, we compare

the respective start and end time of pairs of Skype voice traffic

bursts that have a common host within our network and that

are in different directions (one flow entering, the other leaving

the network). If the respective differences are smaller than 30

seconds, we say that these two bursts are indeed Skype-relayed

traffic. Using this method, a total of 381 Skype-relayed traffic

bursts were identified in the 17-hour trace collected. We will

refer to this set of relayed bursts as the true population of

Skype-relayed traffic. In particular, these relays will provide a

benchmark to evaluate our detection mechanism which does

not use any application-specific information.

C. Evaluation of results

In order to evaluate how the metrics proposed fare in

detecting Skype-relayed traffic, we will consider true positive

and true negative ratios. Formally, the true positive and true

negative ratios are given as follows:
• true positive ( = 1 - false negative) =

Num. of true Skype relays classified as Skype relays

Num. of true Skype relays

• false positive ( = 1 - true negative) =

Num. of false Skype relays classified as Skype relays

Num. of false Skype relays

The entire Skype-like relayed traffic population is obtained

by considering as relays all pairs of bursts that conform to

the parameters summarized in Table II. This yields a total of

12193 possible relayed bursts, from which only 381 are true

Skype relays. Of course, most of these pairs of bursts are not

actual relays. By a careful choice of threshold for each of

the proposed metrics, we can drastically reduce this set, while

removing very few Skype relays. In particular, each choice
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of threshold for each parameter induces true positive and true

negative ratios.

We first consider each metric in isolation. This will give in-

sights on how each metric performs, individually, in detecting

Skype-relayed traffic. We will also consider setting thresholds

for multiple metrics at the same time. Intuitively, this should

yield a better detection of Skype-relayed traffic.

Figure 18 shows the true positive and true negative ratios

when the start time difference is used as the sole criteria to

detect Skype-relayed traffic. Note that each threshold value

for the start time difference induces different true positive and

true negative ratios. As expected, by increasing the threshold

we obtain a higher true positive ratio but at the same time a

lower true negative ratio (as more non Skype-relayed traffic is

wrongly identified as Skype relays). Note that by considering

pairs of bursts that start at most 1 second apart (threshold of 1

second) we obtain true positive and true negative ratios larger

than 0.90. This indicates that the start time difference can

effectively be used to correctly identify Skype-relayed traffic.

Figure 19 shows the true positive and true negative ratios when

the end time difference is used as the sole criteria to detect

Skype-relayed traffic. The results are similar to the start time

difference.

Figure 20 shows the true positive and true negative ratios

when maximum cross correlation is used. Note that this metric
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Fig. 22. Receiver operator characteristic curve (ROC) for each classifier

alone yields 0.92 true positive ratio and 0.92 true negative

ratio (when the threshold is set to 0.55). Within the different

metrics, maximum cross correlation provides the best criteria

for detection of Skype traffic. Finally, Figure 21 shows the

true positive and true negative ratios when the burst size ratio

is used. Figure 22 shows the receiver operator curves for each

metric, which also indicate that the overall detection accuracy

is best when maximum cross correlation is used.

From these results, we can observe a clear trade-off between

true positive and true negative ratios. However, it is desirable



to have both ratios as close as possible to one. Note that by

using any of the metrics alone it is possible to achieve a 0.88

ratio for both true positive and true negative, under the right

choice for the threshold.

We also consider the use of multiple metrics to detect

Skype-relayed traffic. In order to obtain the best combination

among all possible threshold values for the four metrics, we

perform a brute-force search over the parameter space. We

discretize the threshold values for each metric (as shown in the

figures) and compute the true positive and true negative ratios

for each combination of thresholds, i.e., using the metrics si-

multaneously. Using this algorithm we can achieve a 0.96 true

positive ratio and 0.96 true negative ratio. The thresholds that

yield this performance are: 11 seconds for start time difference,

13 seconds for end time difference, 1.33 for burst size ratio,

and 0.38 for maximum cross correlation. Interestingly, each

of the thresholds corresponds to the threshold that we need

to choose in order to obtain 99% of relays in our controlled

experiment II respectively (see Figures 14, 15, 16, and 17).

D. Lessons and guidelines

Although maximum cross correlation achieves the best

results for a single metric in terms of true positive and true

negative ratios, better ratios can be obtained if all metrics

are used simultaneously. However, this improvement is not

very significant. This occurs because the metrics are somewhat

correlated. For example, a relayed traffic burst that has large

start time and end time differences is likely to have a low

maximum cross correlation. It would be interesting to explore

how these metrics correlate with one another, as this can guide

the development of an even better detection.

We have also noticed that traffic generated by applications

other than Skype is sometimes misclassified as being Skype-

relayed traffic. By visually inspecting the time series associ-

ated with the bursts and looking at port numbers used, we

identified several of these applications. A few examples are

HTTP proxy, PlanetLab [21] overlay applications, a popular

online arcade game (i.e., Kartrider), a Gnutella-variant P2P

file sharing application (i.e., Bearshare), and a popular online

game running on XBOX. Interestingly, it is possible that

some of the traffic identified as Skype-relayed traffic is indeed

relayed traffic (albeit not Skype). In particular, some of these

false positives have a very high maximum cross-correlation

and a burst size ratio near one. We suspected that these burst

pairs may indeed be other types of relays. Interested readers

are referred to our technical report [22] for the details of our

further investigation.

Although our results indicate that we can effectively identify

Skype-relayed traffic, the performance of our methodology in

accurately detecting Skype-relayed traffic could be in jeopardy

as more and more applications start to make use of relays.

In particular, it seems that in order to accurately identify

the application responsible for generating a particular relayed

traffic, application-specific information will have to be used.

This observation is supported by the fact that relayed traffic

from a given application domain, such as multimedia traffic,

will likely have very similar characteristics under the metrics

we have defined.

In terms of Skype, there are a few ideas that make use of

application-specific information that could improve the accu-

racy of the classification methodology. For example, we may

exploit the way that Skype uses port numbers. Specifically,

when UDP is used for both for incoming and outgoing bursts,

the destination port number of incoming packets is identical to

the source port number of outgoing packets. This seems to be

a unique feature of Skype (at least to the extent that we have

observed) and could be used to aid application classification

of the relayed traffic. A similar behavior, where port numbers

of incoming and outgoing packets are the same, sometimes

also occurs when TCP and UDP are used for relaying traffic.

E. Extensions to other applications

As we have observed with some of the false positives,

the methodology proposed for detection of Skype-relayed

traffic can indeed be used to detect traffic relayed by other

applications. In particular, the methodology could be extended

to other multimedia applications such as End System Multicast

(ESM) [4]. In fact, we have conducted some preliminary

controlled experiments using ESM and our results indicate

that some metrics are applicable, while others would need to

be modified. In ESM, unlike Skype, a relay node is usually

interested in the data traffic being relayed (i.e., the user are

also consuming the data). The implication of this characteristic

is that the start time difference and the end time difference for

the ESM-relayed traffic will not be necessarily small. In fact,

they can be arbitrarily large. Interested readers are referred to

our technical report [22] for an example of ESM trace showing

large start and end time differences and a discussion of other

more relevant metrics.

VI. RELATED WORK

Detecting relayed traffic by monitoring an access link is

a topic that has received some recent attention, particularly

within the context of intrusion detection [7–10]. However,

most of the efforts in that context have focused on detecting

relayed traffic generated by interactive applications. Therefore,

the various assumptions about traffic behavior and conse-

quently their methodology, do not apply to the domain of

multimedia applications, as discussed at the end of Section II.

More recently, within the context of attack identification, Sekar

et al. [10] suggested using the temporal order of flow start

times to identify nodes that are being used as relays. The use

of temporal order of start times is similar to our idea of using

start time differences. However, their work is preliminary and

does not characterize or evaluate the effectiveness of detecting

relays based on temporal ordering of flows. Moreover, the use

of temporal ordering of flows alone will not lead to an effective

criteria to detect Skype-relayed traffic (as the false positive

ratio will be very high).

A problem similar to the relay detecion problem, known as

flow correlation attacks, has also been investigated in the con-

text of mix networks which are used in anonymity preserving



systems [11, 12]. The goal of these studies is to match (or to

make it hard to match) a flow arriving at a node with a flow

departing the same node. Since the node is purposely trying to

defeat the correct identification of in/out pairs, this problem

is generally harder. In any case, techniques based on cross-

correlation of packet counts have been successfully suggested

for identifying relays [12]. However, the assumptions are

usually too strict to be directly applied to multimedia traffic

relays.

Another related area of work is the classification of network

traffic based on the application generating the data. Several

methods to classify traffic have been proposed in the liter-

ature [6, 23–26]. Traffic classification can help the detection

of relayed traffic when the applications that make use of

relay nodes are known and can be identified. For example,

traffic classification can be performed by profiling application-

specific signatures [23, 26]. However, our focus in this work is

to develop a technique that does not rely on any application-

or protocol-specific information.

VII. CONCLUSION

In this paper, we have characterized the nature of Skype-

relayed traffic using different metrics. In particular, we have

proposed the following metrics: start and end time differences,

byte size ratio, and maximum cross correlation between two

relayed bursts of packets. Using these metrics, we propose

a methodology for detection of Skype-relayed traffic based

on thresholds. Our approach relies solely on flow-level traffic

characteristics, rather than on application- or protocol-specific

information.

In order to generate and collect a large amount of relayed

traffic, we developed two different controlled experimental

environments using Skype. In the first environment, voice

traffic generated by two nodes under our control is relayed

over some node in the Internet. In the second environment,

two real Skype nodes use a relay node under our control to

communicate. The data collected was characterized using the

metrics we proposed.

We apply our detection methodology to an aggregate packet

trace collected at the access point of our university. Our

results show that the proposed metrics can be reliably used to

detect Skype-relayed traffic, yielding both low false positive

and low false negative ratios. Particularly, when using the

maximum cross correlation as the sole criteria for detecting

Skype-relayed traffic we obtain a 8% false negative and

8% false positive ratios. However, by simultaneously using

multiple metrics we can achieve an even higher accuracy.

Particularly, we obtain a 4% false negative and 4% false

positive ratios when all metrics are used together. Because

of such improvements, we argue that multiple criteria should

be used when detecting relayed traffic.

As part of on-going work, we are currently evaluating our

methodology on other multimedia applications, such as End

System Multicast, and other P2P video streaming applications.
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