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ABSTRACT 

 

This paper presents a critical review of the current work of experiment, theory of micro-nano-

mechanics, and numerical analysis on characterizing mechanical properties of nanocomposites. 

First, the classifications of nanomaterials are presented. Then nanoindentation testing and the 

corresponding finite element modeling are discussed, followed by analytical modeling stiffness of 

nanocomposites. The analytical models discussed include Voigt and Reuss bounds, Hashin and 

Shtrikman bounds, Halpin–Tsai model, Cox model, and various Mori and Tanaka models. These 

micromechanics models predict stiffness of nanocomposites with both aligned and randomly 

oriented fibers. The emphasis is on numerical modeling includes molecular dynamics modeling 

and finite element modeling. Three different approaches are discussed in finite element 

modeling, i.e. multiscale representative volume element (RVE) modeling, unit cell modeling, and 

object-oriented modeling. Finally, the mechanism of nanocomposite mechanical property 

enhancement and the ways to improve stiffness and fracture toughness for nanocomposites are 

discussed.  

 

Key words:  Nanocomposites; Mechanical properties; Multiscale modeling; Finite element 

analysis (FEA); Object-oriented modeling. 

 

 

 

1. INTRODUCTION 

 

Nanoscience and nanotechnology refer to the understanding and control of matter at the 

atomic, molecular or macromolecular levels, at the length scale of approximately 1 to 100 
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nanometers, where unique phenomena enable novel applications. Nanotechnologies are the 

design, characterization, production and application of structures, devices and systems by 

controlling shape and size at nanometer scale. According to Braun et al. [1], from 1980s, the 

growth of research papers dealing with the prefix called ‘nano’ is exponential. Among all the 

work, characterizing and modeling mechanical properties of nanocomposites is one of the most 

important subjects. 

 

Nanocomposites are composite materials in which the matrix material is reinforced by one or 

more separate nanomaterials in order to improve performance properties. The most common 

materials used as matrix in nanocomposites are polymers (e.g. epoxy, nylon, polyepoxide, 

polyetherimide), ceramics (e.g. alumina, glass, porcelain), and metals (e.g. iron, titanium, 

magnesium).   

 

Nanomaterials are generally considered as the materials that have a characteristic dimension (e.g. 

grain size, diameter of cylindrical cross-section, layer thickness) smaller than 100 nm. 

Nanomaterials can be metallic, polymeric, ceramic, electronic, or composite. Nanomaterials are 

classified into three categories depending on their geometry, as shown in Fig. 1 [2,3]:  

 

1. Nanoparticles: When the three dimensions of particulates are in the order of nanometers, 

they are referred as equi-axed (isodimensional) nanoparticles or nanogranules or nanocrystals.  

 

2. Nanotubes: When two dimensions are in the nanometer scale and the third is larger, 

forming an elongated structure, they are generally referred as ‘nanotubes’ or 

nanofibers/whiskers/nanorods.  

 

3. Nanolayers: The particulates which are characterized by only one dimension in nanometer 

scale are nanolayers/nanoclays/nanosheets/nanoplatelets. These particulate is present in the form 

of sheets of one to a few nanometer thick to hundreds to thousands nanometers long.  

 

The nanomaterials can also be distinguished in three types as natural, incidental, and engineered 

nanomaterials depending on their pathway [4]. Natural nanomaterials, which are formed through 

natural processes, occur in the environment (e.g. volcanic dust, lunar dust, magneto-tactic 

bacteria, minerals, etc.). Incidental nanomaterials occur as the result of man made industrial 

processes (e.g. coal combustion, welding fumes, etc.). Engineered nanomaterials are produced 

either by lithographically etching of a large sample to obtained nanoparticles, or by assembling 

smaller subunits through crystal growth or chemical synthesis to grow nanomaterials of the 

desired size and configuration. Engineered nanomaterials most often have regular shapes, such as 

tubes, spheres, rings, etc. U.S. Environmental Protection Agency divides engineered 

nanomaterials into four types. They are carbon-based materials (nanotubes, fullerenes), metal-

based materials (including both metal oxides and quantum dots), dendrimers (nanosized 
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polymers built from branched units of unspecified chemistry), and composites (including 

nanoclays). 

 

                 
 

                                    Figure 1. Various types of nanoscale materials [4]. 

 

Comparing to the conventional micro-composites, nanocomposites greatly improve the physical 

and mechanical properties. The nanoscale reinforcements over traditional fillers have the 

following advantages [5]:  

 1.  Low-percolation threshold (~0.1–2 vol.%). 

 2.  Large number density of particles per particle volume (10
6
–10

8
 particles/µm

3
). 

 3.  Extensive interfacial area per volume of particles (10
3
–10

4 
m

2
/ml). 

 4.  Short distances between particles (10–50nm at  ~1–8 vol.%). 

Although any kind of material can be produced to appear in a nanoscaled shape and size, 

carbon nanotubes and nanoplatelets as shown in Fig. 2 are the two kinds of nanoparticles that 

gained the most attention [6]. 

 

             
                          

Figure 2. Schematic of (a) nanotube and (b) nanoplatelet [6]. 
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This paper presents a thorough review of characterizing and modeling mechanical properties of 

nanocomposites. The critical review covers the current work on the experiment, theory, and 

numerical analysis in this area. Nanoindentation testing and the finite element modeling are 

discussed, followed by analytical modeling stiffness of nanocomposites. The numerical modeling 

includes molecular dynamics modeling and finite element modeling. Three different approaches 

are discussed in finite element modeling, i.e. multiscale representative volume element (RVE) 

modeling, unit cell modeling, and object-oriented modeling. Finally, the mechanism of 

nanocomposites mechanical property enhancement is explored, and the ways to improve their 

stiffness and fracture toughness are discussed.  

 

2. CHARACTERIZING AND MODELING OF NANOCOMPOSITES 

 

2.1 Nanoindentation Tests and Computing Simulations 

 

There are different ways to experimentally characterize nanocomposites. For example, tensile 

and flexural tests (mostly conducted on Instron machines), impact tests (conducted on pendulum 

impact testing machine) [7-11], and micro-compression tests [12,13].  Nanoindentation test is 

one of the most effective and widely used methods to measure the mechanical properties of 

materials. This technique uses the same principle as microindentation, but with much smaller 

probe and loads, so as to produce indentations from less than a hundred nanometers to a few 

micrometers in size. During the past dozen years or so, it has been widely used in measuring the 

mechanical properties of various nanocomposites [14-25] and human enamel and dentin [26-38]. 

 

Hardness (H) and elastic modulus (E) are calculated from the load-displacement curve obtained 

from a nanoindentation test. A typical load-displacement curve is shown in Fig. 3. As the 

indenter penetrates into the specimen, the loading curve climbs up. At some point, the maximum 

load Pmax is reached, and then followed by the unloading. If the material is perfectly elastic and 

has no hysteresis, the loading curve and the unloading curve will be identical. hmax gives a 

measure of the total maximum deformation, while hf represents the maximum permanent 

(plastic) deformation (final penetration depth). 
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Figure 3. Typical load-displacement curve of the nanoindentation test. 

 

The most commonly used method to obtain the hardness and the elastic modulus of a material by 

nanoindentation is the Oliver-Pharr method [25]. According to this method, the nanoindentation 

hardness as a function of the final penetration depth of indent can be determined by: 

 
A

P
H max=        (2.1) 

where Pmax is the maximum applied load measured at the maximum depth of penetration (hmax), 

A is the projected contact area between the indenter and the specimen. For a spherical indenter, 

fRhA π2=  (where R is the radius of the indenter), whereas for a pyramidal (Berkovich or 

Vickers) indenter, A can be expressed as a function of hf as 
128/1

8

4/1

3

2/1

21

2504.24 fffff hChChChChA +++++= L  (2.2) 

where C1 to C8 are constants and can be determined by standard calibration procedure. The final 

penetration depth, hf, can be determined from the following expression:  

∗−=
S

P
hh f

max

max ε       (2.3) 

where ε is a geometric constant, ε=0.75 for a pyramidal indenter, and ε=0.72 for a conical 

indenter. S* is the contact stiffness which can be determined as the slope of the unloading curve 

at the maximum loading point, i.e. 

 

maxhhdh

dP
S

=

∗ ⎟
⎠
⎞

⎜
⎝
⎛=       (2.4) 

The reduced elastic modulus Er is given by 
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A

S
Er

π
β2

∗

=        (2.5) 

where β  is a constant that depends on the geometry of the indenter. For both a Berkovich and a 

Vicker’s indenter, β =1.034, whereas for both a conical and a spherical indenter, β =1. The 

specimen elastic modulus (Es) can then be calculated as: 

 
i

i

s

s

r EEE

22 111 υυ −
+

−
=       (2.6) 

Where siE ,  and si ,υ  are the elastic modulus and Poisson’s ratio, respectively, for the indenter 

and the specimen. For a diamond indenter, Ei  is 1140 GPa and iυ  is 0.07. The contact stiffness, 

S*, can be derived from the unloading curve which simply obeys the following power law 

  
n

fhhBP )( −=       (2.7) 

where B and n are empirical constants that can be determined by fitting the experimentally 

measured pairs of data (P, h) during unloading. Thus the contact stiffness can be expressed as 

  1

max )(

max

−

=

∗ −=⎟
⎠
⎞

⎜
⎝
⎛= n

f

hh

hhBn
dh

dP
S     (2.8) 

Therefore, the specimen’s hardness H and elastic modulus sE  will be obtained from this set of 

equations. 

Indentation is a highly nonlinear problem. It involves large plastic deformation, material 

nonlinearity, and contact. In order to better understand and characterize the mechanical 

properties and to provide guidelines for proper design of experiments, finite element method is 

often used to simulate the nanoindentation tests [14, 15, 18, 38-51]. It is also noted that the 

primary mechanical properties extracted from a nanoindentation test are the hardness and the 

elastic modulus. Finite element simulation could be employed to get other properties, such as 

yield stress and hardening [38, 52-58]. Fig. 4(a) shows the geometry of indentation of a 

cylindrical specimen with a conical indenter, and 4(b) shows the Mises stress contour from the 

finite element analysis [15]. Note that the finite element meshes are the two-dimensional (axi-

symmetric) elements. Fig. 5 shows a three- dimensional nanoindentation finite element mesh 

system [18]. Note that because of symmetry, only half of the specimen volume was modeled.  
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Figure 4. (a) Geometry of indentation of a cylindrical specimen with a conical indenter. (b) The 

Mises equivalent stress field in the specimen during indentation at hmax = 600 nm. (The stress 

values must be multiplied by 10
7
 to respect the scale of the problem) [15]. 

 

2.2 Analytical Modeling Stiffness of Nanocomposites 

 

It is well known that composite materials have advantages over traditional materials. 

Nanocomposites, where nano-sized reinforcements (fillers) are dispersed in the base material 

(matrix), offer a novel class of composites with superior properties and added functionalities [59-

62].   Although the applicability of continuum mechanics (including micro mechanics) to 

nanocomposites has been subjected to debate [59,63], many recent works directly applying 

continuum mechanics to nanostructures and nanomaterials have reported meaningful results and 

elucidated many issues [64-73]. Thus, mechanics-based formulas for predicting the mechanical 

properties will be reviewed.  
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     Figure 5. Illustration of a three dimensional nanoindentation finite element model [18]. 

 

In nanocomposites, there are typically three kinds of fillers. They are cylinder-like nanofibers 

(nanotubes), flake-like (disk-like) platelets (nanolayers, nanoclays), and spheroid-like 

particulates, refer to Figs. 1 and 2. For the fiber-reinforced nanocomposites, there are two cases 

depending on the orientation of the fibers, i.e. aligned fibers and randomly oriented fibers, see 

Fig. 6 below.  

 

The popular micromechanical models for prediction of modulus of elasticity are summarized and 

discussed in the following: 

 

2.2.1 Voigt upper bound and Reuss lower bound (V-R model) 

 

Assumed aligned fibers, and fibers and matrix are subjected to the same uniform strain in the 

fiber direction, Voigt [74] got the effective modulus in the fiber direction as: 

 mfL EEE )1( φφ −+=       (2.9) 

Reuss [75] applied the same uniform stress on the fiber and matrix in the transverse direction 

(normal to the fiber direction), and got the effective modulus in the transverse direction as: 

 
mfT EEE

φφ −
+=

11
      (2.10) 

where φ  is the volume fraction of fiber in the two-phase composite system, and subscripts “f” 

and “m” respectively refer to the fiber and matrix, whereas the subscripts “L” and “T” refer to 
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the longitudinal and transverse directions, respectively. Equation (2.9) is the parallel coupling 

formula, and it is also called the “rule of mixtures”, whereas (2.10) is the series coupling 

formula, and it is also called the “inverse rule of mixtures”. 

 

               
                     a. Aligned fibers                                             b. Randomly oriented fibers 

 

             
 

                    c. Aligned platelets                                          d.  particulates 

 

     Figure 6. Schematics of nanocomposites:  (a) with aligned fibers; (b) with randomly 

     oriented fibers; (c) with aligned platelets; and (d) with randomly oriented particulates [6]. 

 

Equations (2.9) and (2.10) can be extended to any two-phase composites regardless the shape of 

the filler, and LE  and TE  represent the upper and lower bounds of the modulus of the composite, 

respectively. Note that in these formulas, only three parameters are involved, i.e. modulus of the 

fiber and the matrix, and the fiber volume fraction.  

 

2.2.2 Hashin and Shtrikman upper and lower bounds (H-S model) 

 

Hashin and Shtrikman [76,77] assumed macroscopical isotropy and quasi-homogeneity of the 

composite where the shape of the filler is not a limiting factor, and estimated the upper and lower 

bounds of the composite based on variational principles of elasticity. Depending on whether the 

stiffness of the matrix is more or less than that of the filler, the upper and lower bounds of the 
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bulk moduli, upperK  and lowerK , and shear moduli, upperG  and lowerG , of the composite are given 

as: 
1
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where the subscripts “f” and “m” refer to the filler (fiber) and matrix, respectively. The upper 

and lower bounds of the elastic modulus can then be calculated using the following relation: 

 
GK

K
E

/31

9

+
=       (2.15) 

Similar to Voigt and Reuss models, H-S model only involves three parameters. 

 

2.2.3 Halpin-Tsai model (H-T model) 

 

For aligned fiber-reinforced composite materials, Halpin and Tsai [78-81] developed the 

equations for prediction of elastic constants based on the work of Hermans [82] and Hill [83]. 

The H-T model is a semi-empirical model, and the longitudinal and transverse moduli are given 

by: 

m

L

L

L E
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m
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where  l and d are the length and diameter of the fiber, and Lη  and Tη  take the following 

expressions:  

mf

mf

L
EdlE

EE

)/(2+

−
=η       (2.18) 

mf

mf

T
EE

EE

2+

−
=η       (2.19) 

For aligned nanoplatelets as shown in Fig. 6 (c), equations (2.16) to (2.19) may still be used by 

replacing (l/d) with (D/t), where D and t are respectively the diameter and thickness of the 

platelet (refer to Fig. 2).  
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H-T model takes the consideration of the fiber geometry, and has five independent parameters. 

 

2.2.4 Hui-Shia model (H-S model) 

 

Mori and Tanaka [84] developed analytical expressions for elastic constants based on the 

equivalent inclusion model of Eshelby [85]. Taya and Mura [86] and Taya and Chou [87] used 

Mori-Tanaka approach to predict the longitudinal modulus of fiber-reinforced composites, Weng 

[88] and Tandon and Weng [89] further developed equations for the complete set of elastic 

constants of composite materials with aligned spheroidal isotropic inclusions.  Based upon the 

results of Tandon and Weng [89], Hui and Shia [90] and Shia et al. [91] derived simplified 

formulas for predicting the overall moduli of composites with aligned reinforcements with 

emphases on fiber-like and flake-like reinforcements, and found that their theoretical predictions 

agree well with experimental results. The H-S model presents the Young’s modulus as follows: 
1
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and α  is the aspect ratio of the filler, defined as the ratio of the filler’s longitudinal (with 

Young’s modulus LE ) length to its transverse (with Young’s modulus TE ) length. For example, 

refer to Fig. 2, dl /=α  for nanotube, Dt /=α  for nanoplatelet, and LE  will be along axis 3, 

and TE  will be along axis 1 (or 2).  

 

2.2.5 Wang-Pyrz model (W-P model) 

 

For a composite material composed of an isotropic matrix and randomly oriented transversely 

isotropic spheroids, Qiu and Weng [92] and Chen et al. [93] gave the formulas for the overall 

bulk and shear moduli using the Mori-Tanaka method. These formulas are expressed in terms of 
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the Eshelby tensor [85], thus are not final. Wang and Pyrz [94] further gave the closed and 

concise formulas for the overall bulk modulus and shear modulus as follows: 

)1(1 αφ
φϕ
−−

+= mm KKK      (2.25) 

)1(1 βφ
φψμμμ

−−
+= mm      (2.26) 

The expressions for ϕ , ψ , α  and β  are given in the Appendix.  

Note that W-P model is based on the Mori-Tanaka approach, and deals with the composite 

materials reinforced with randomly oriented and transversely isotropic spheroids. By varying the 

aspect ratio, the oblate spheroids can be approximate to platelets, and the prolate spheroids can 

be approximate to fibers. 

 

2.2.6 Cox model (Shear lag model) 

 

Shear lag model was the first micro-mechanics model for fiber-reinforced composites. Cox [95] 

analyzed a single fiber of length l and radius fr , which is encased in a concentric cylindrical 

shell of matrix having radius R. He derived the longitudinal modulus as 

mfLL EEE )1( φφη −+=      (2.27) 

where Lη  is a length-dependent efficiency factor, 
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RK  is a constant that depends on the fiber packing arrangements. For some typical fiber packing 

arrangements, the values of RK  are given in Table 1 [96].   

 

                         Table 1. Values for RK  in Eq. (2.29) 

FIBER PACKING 
RK  

Cox 3/2π =3.628 

Composite cylinders 1.000 

Hexagonal 32/π =0.907 

Square 4/π =0.785 

 

It is well known that the orientation of the dispersed phase has a dramatic effect on the 

composite modulus. It is apparent from their geometry that flake-like platelets can provide equal 
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reinforcement in two directions, if appropriately oriented, while fibers provide primary 

reinforcement in one direction. If the longitudinal modulus LE  and the transverse modulus TE  

are known, then the effective modulus of the composite with randomly oriented fibers and 

platelets in all three orthogonal directions are given by [97]: 

 TL

fiber

D EEE 816.0184.03 +=      (2.30) 

TL

platelet

D EEE 51.049.03 +=      (2.31) 

 

2.3 Molecular Dynamics Simulation 

 

In modeling mechanical properties of nanocomposites, there are two main approaches: one is 

molecular dynamics simulation using direct methods, and the other is finite element simulation 

using “continuum” methods. Molecular dynamics simulation is a technique that allows one to 

determining the physical and mechanical properties of materials in nanoscale through solving 

Newton’s equations of motion with the atoms interacting through assumed interatomistic 

potentials [98, 99]. It generates information such as atomic positions, velocities and forces from 

which some macroscopic properties can be derived by means of statistical mechanics. Molecular 

dynamics simulation usually consists of three constituents: (1) a set of initial conditions (e.g., 

initial positions and velocities of all particles in the system); (2) the interaction potentials to 

represent the forces among all the particles; (3) the evolution of the system in time by 

numerically solving a set of classical Newtonian equations of motion for all particles in the 

system [100]. In 1997, Cornwell et al. used molecular dynamics to predict the elastic properties 

of single-walled carbon nanotubes [101]. In recent years, molecular dynamics simulation has 

been extensively used in predicting mechanical properties of carbon nanotubes and nanotubes 

reinforced composites [102-109], graphite/epoxy nanocomposites [110-112], and other 

nanocomposites [113-119].  

 

Molecular dynamics simulation involves the proper selection of interaction potentials, numerical 

integration, periodic boundary conditions, and the controls of pressure and temperature to mimic 

physically meaningful thermodynamic ensembles. The interaction potentials together with their 

parameters form a force field which describes in detail how the particles in a system interact with 

each other. Such a force field may be obtained by quantum method, empirical method or 

quantum-empirical method. The criteria for selecting a force field include the accuracy, 

transferability and computational speed. The total potential energy U may consist of a number of 

bonded and non-bonded interaction terms: 

 ∑ ∑ ∑ ∑ ∑ −++++= bondednoninversiontorsionanglebond UUUUUU  (2.32) 

The first four terms represent bonded interactions, i.e., bond-stretching between two bonded 

atoms, angle-bending by three neighboring atoms, angle variation between two planes formed by 

four neighboring atoms, and angle variation of two planes formed by four atoms where one atom 
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is bonded to other three, as shown in Fig. 7 [120]. The last term represents non-bonded 

interactions between two atoms. It usually includes van der Waals and electrostatic interactions. 

 

 
 

          Figure 7. Bond structures and corresponding energy terms of a graphene cell [120]. 

 

Molecular dynamics simulations can be performed in different ensembles, such as grand 

canonical (μ VT), microcanonical (NVE), canonical (NVT) and isothermal–isobaric (NPT). The 

constant temperature and pressure can be controlled by adding an appropriate thermostat (e.g., 

Berendsen, Nose, Nose–Hoover and Nose–Poincare) and barostat (e.g., Andersen, Hoover and 

Berendsen), respectively. The software packages available for molecular dynamics simulations 

include DL-POLY developed by Daresbury Laboratory [121, 122], LAMMPS developed by 

Sandia National Laboratories [123], and TINKER developed by University of Washington [124].  

 

To demonstrate how to use molecular dynamics simulation to evaluate the mechanical properties 

of nanocomposites, the work by Adnan et al. [125] using molecular dynamics simulation to 

investigate the effect of filler size on elastic properties of polyer nanocomposites will be 

presented below. Adnan et al. constructed the nanocomposite by reinforcing amorphous 

polyethylene (PE) matrix with nano sized buckminister fullerene bucky-ball. Three types of 

bucky-balls,  32018060 C and ,C ,C (subscripts denote number of carbon atoms) with three different 

diameters (0.7, 1.2 and 1.7 nm, respectively) were utilized to incorporate size effect in the 

nanocomposites. The PE matrix was represented by united atom (UA)-CH2- units. All bucky-

balls were infused in matrix by approximately 4.5 vol%. Once the molecular structures were 

developed, the corresponding molecular mechanics force fields were defined. The PE chains 

were described by appropriate bond stretching, angle bending and dihedral potentials between -

CH2- units. The non-bonded van der Waals interactions within or between PE chains were 

modeled using lennard-Jones (LJ) potential [126, 127]. The functional form and parameters of 

the force field are shown in Table 2. 
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                     Table 2. Functional form and parameters for the force field [125] 
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            Figure 8. Cells of different neat and nanocomposites model used for simulation [125]. 
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Fig. 8 shows the cells of different neat and nanocomposites model used for simulation. Periodic 

boundary conditions were employed to replicate the unit cells in three dimensions. Software 

package DL_PLOY (version 2.14) was used in the simulation. All the calculations were carried 

out at a temperature of 300
0
K with 0.5 fs time steps. Two major steps of simulation for both neat 

polymer and nanocomposites were performed. In the first step, the equilibrium state of the 

molecular model was obtained, and then the model was subjected to different strain fields and re-

equilibrated. Adnan et al. applied a uniform strain field (0.5%) to the periodic cells of both neat 

polymer and nanocomposites. For the cases of hydrostatic tension and hydrostatic compression, 

they evaluated the bulk modulus K, and their results were shown in Table 3.  

 

            Table 3. Evaluation of bulk modulus K for various nanocomposites [125] 

System Type Hydrostatic Compression Hydrostatic Tension 

K(GPa) % Gain/loss K(GPa) % Gain/loss 

PE-C
60

 3.529 17.39 3.478 22.29 

PE-C
180

 3.454 14.90 3.272 15.04 

 

It is evident from Table 3 that elastic properties of nanocomposites are improved appreciably 

with the infusion of bucky-balls in PE matrix, and they are also significantly affected by the size 

of reinforcing bucky-balls.   

 

2.4 Finite Element Modeling 

 

As a very general and powerful numerical analysis tool, finite element method was used to 

predict mechanical properties of composite materials started in early 1970s [128-129]. Since 

then, various finite element models have been developed to characterize all kinds of composite 

materials [e.g. 130-136]. In 1991, Sumio Iijima, a Japanese scientist, discovered carbon 

nanotubes (CNTs) which possess exceptionally high stiffness and strength, as well as superior 

electrical and thermal properties [137-139].  Soon after that CNTs were used as reinforcement in 

developing nanocomposite materials. In the past decade or so, there have been explosively 

experimental work [e.g. 7, 8, 140-155] and analytical work [e.g. 156-169], as well as finite 

element modeling work [e.g. 170-198] on developing, analyzing and characterizing CNT 

reinforced nanocomposites and other nanocomposites. In the following, three finite element 

modeling approaches will be discussed. They are multiscale representative volume element 

(RVE) modeling, unit cell modeling, and object-oriented modeling. 

 

2.4.1  Multiscale RVE modeling 

 

Liu and Chen [180] extended the RVE concept used by Hyer [199] and Nemat-Nasser and Hori 

[200] for conventional fiber-reinforced composites at the microscale to nanoscale, and evaluated 

the effective mechanical properties of CNT-based composites by using a three-dimensional 
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nanoscale RVE based on elasticity theory and solved by the finite element method. An RVE is 

composed of a single (or multiple) nanofiller(s) with surrounding matrix material, plus proper 

boundary conditions to account for the effects of the surrounding materials. It is used as a 

building block to assemble the composite. Zhang et al. [201] linked continuum analysis with 

atomistic simulation by incorporating interatomic potential and atomic structures of CNTs 

directly into the constitutive law. Shi et al. [185] presented a hybrid atomistic/continuum 

mechanics method to study the deformation and fracture behavior of CNTs embedded in 

composites. The method is based on a representative unit cell divided into three distinct regions 

analyzed using an atomistic potential, a continuum method based on the Cachy–Born rule and a 

micromechanics method, respectively. Li and Chou [180] proposed a multi-scale modeling 

approach to study the compressive behavior of CNT/polymer composites. They modeled the 

nanotube at the atomistic scale and analyzed the matrix deformation using the continuum finite 

element method. The van der Waals interactions between carbon atoms and the finite element 

nodes of the matrix were simulated using truss rods.  

 

The multiscale RVE integrates nanomechanics and continuum mechanics, thus bridging the 

length scales from the nano- through the mesoscale. The procedure of multiscale RVE modeling 

is exhibited by the work of Tserpes et al. [172] in the following.  Tserpes et al. proposed a 

multiscale RVE to investigate the tensile behavior of CNT/polymer composites. The RVE is a 

rectangular solid whose entire volume is taken up by the matrix, and the nanotube is modeled as 

a three-dimensional (3D) elastic beam. The 3D solid elements and beam elements are used to 

model the matrix and nanotube, respectively. The RVE is synthesized in two steps. First, the 

behavior of the isolated nanotube is simulated using the progressive fracture model [202]. The 

concept of the model is based on the assumption that carbon nanotubes, when loaded, behave 

like space-frame structures. The bonds between carbon atoms are considered as load-carrying 

members while carbon atoms as joints of the members. The non-linear behavior of the C-C 

bonds is modeled by the modified Morse interatomic potential [203], and the nanotube structure 

is modeled by finite element method. Second, the nanotube is inserted into the matrix to form the 

RVE. The matrix is modeled by solid elements, and the nanotube is represented by 3D elastic 

beam elements created by binding the nodes of the matrix. The synthesis of the RVE is shown in 

Fig. 9.   

 

2.4.2 Unit cell modeling 

 

The conventional unit cell concept is the same as the RVE [132, 204]. Here we define a unit cell 

as a special RVE that it has a relatively big size (usually in micrometers) and contains a 

significant number of fillers (usually in tens to hundreds or more). Such defined unit cell is still 

the building block of the composite, but as it gets more complicated, analytical models are 

difficult to establish or too complicated to solve, and numerical modeling and simulation become 

a necessity.  
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                                              Figure 9. Synthesis of the RVE [172]. 

 

 

The most common method used to characterize the mechanical properties of nanocomposites 

with unit cell is the finite element method. Hbaieb et al. [177] examined the Young’s modulus of 

nanoclay/polymer nanocomposites with both 2D and 3D unit cells using the finite element 

method. Four unit cells were created. They are, respectively, 2D and 3D aligned and randomly 

oriented nanoclay particles models, as shown in Fig. 10. Two kinds of boundary conditions are 

considered. They are periodic boundary conditions and symmetrical boundary conditions. For 

the 2D models (both aligned and random cases) the periodic boundary conditions are: 

u(RE)=u(LE)+
1

δ  

v(RE)=v(LE) 

u(TE)=u(BE) 

v(TE)=v(BE)+
2

δ  

where RE, LE, TE, BE and 
1

δ  and 
2

δ  are the right, left, top, bottom edges and the axial and 

transverse displacements, respectively. The symmetrical boundary conditions for the 2D models 

are: 

u(LE)=0  

v(BE)=0 

u(RE)=δ   
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where δ  is the given normal displacement in the x direction. In addition, all edges are free of 

shear traction and the top edge is free of normal traction as well.   

       

For the 3D models (both aligned and random cases) only symmetrical boundary conditions are 

applied, and they are given as: 

u(LF)=0  

v(BF)=0 

w(BKF)=0 

u(RF)=δ  

where LF, BF, BKF and RF stand for left face, bottom face, back face and right face. All other 

faces are free of any displacement or traction constraints. The numerical results indicated that 2D 

models do not predict the elastic modulus of clay/polymer nanocomposites accurately. The Mori-

Tanaka model [89] gives reasonably accurate predictions of the stiffness of the nanocomposites 

whose volume fraction is less than 5% for aligned particles but underestimates the stiffness at 

higher volume fractions. For randomly oriented particles the W-P model [94] overestimates the 

stiffness of the nanocomposites.  

 

                         
Figure 10. Mesh details of the model for (a) 2D aligned particle distribution, (b) 2D 

randomly oriented-particle distribution, (c) 3D aligned particle distribution, and (d) 3D 

randomly oriented-particle distribution. Particle volume fraction is 5%, the particle aspect 

ratio is 50, Ep/Em=100, ν m=0.35, ν p=0.2. Subscripts p and m represent particle and 

matrix, respectively [177]. 

 

Recently, Lee et al. [170] used a 3D unit cell model to analyze the deformation behavior of 

randomly distributed Al18B4O33 whisker-reinforced AS52 magnesium alloy matrix composite. 

The Al18B4O33 whiskers are mμ3010 −  long and mμ0.15.0 −  in diameter. The dimensions of 
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the unit cell are 
3202010 mμ××  which contains (fully or partially) 260 whiskers. The volume 

fraction of the whiskers is 15%. Fig. 11 shows a typical unit cell (with the meshes of the 

whiskers) and an optical micrograph of the composite. For the Young’s modulus and overall 

elastic-plastic response of the composite, the finite element modeling results are in excellent 

agreement with the experimental results.  

 

 

            
Figure 11. (a) 3D random whisker-reinforced composite model, and (b) an optical micrograph of 

squeeze-infiltrated Al18B4O33/Mg random whisker composite [170]. 

 

2.4.3 Object-oriented modeling 

 

In both multiscale RVE modeling and unit cell modeling, two basic assumptions are made. First, 

nanofillers can be idealized to simple geometries such as spheres, ellipsoids, cylinders, or cubes. 

And second, nanocomposites can be reproduced by assembling a large number of such RVEs (or 

unit cells). This can be a serious limitation when dealing with complex and highly heterogeneous 

nanocomposites. For example, for highly variable and irregular angular structure of fillers, using 

approximation of simple geometrical particles could not capture the complex morphology, size, 

and spatial distribution of the reinforcement.  Therefore, the object-oriented modeling which is 

able to capture the actual microstructure morphology of the nanocomposites becomes necessary 

in order to accurately predict the overall properties. 

 

The object-oriented modeling is a relatively new approach. It incorporates the microstructure 

images such as scanning electron microscopy (SEM) micrographs into finite element grids. Thus 

the mesh reproduces exactly the original microstructure, namely the inclusions size, morphology, 

spatial distribution, and the respective volume fraction of the different constituents.  A object-

oriented finite element code, OOF [205, 206], developed by National Institute of Standards and 

Technology (NIST), has been extensively used in analyzing fracture mechanisms and material 

properties of heterogeneous materials [207-216] and mechanical properties of nanocomposites 
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[8, 178, 179, 217]. In the following, a 2D object-oriented finite element modeling will be 

discussed, followed by a 3D modeling. 

 

 

                       
 

Figure 12. Typical example of creating OOF model of PP/organoclay nanocomposites  (5 

wt% in clay content): (a) original SEM image, (b) captured SEM image portion, (c) image 

segmentation using pixel selection, and (d) finite element mesh (highlighted regions contain 

organoclay particles and the rest are PP matrices) [8]. 

 

 

Dong et al. [8] studied the mechanical properties of polypropylene (PP)/organoclay 

nanocomposites with different clay contents ranging from 1 to 10 wt%. Their work started with 

the specimen fabrication through experimental characterization to theoretical predictions and 

numerical modeling using OOF. SEM micrographs from longitudinal loading direction of the 

specimen were captured and mapped onto the finite element model, as shown in Fig. 12. The 

actual nano/microstructures (their size, shape, and distribution etc.) of the PP and the organoclay 

were used in the computational model, and each phase was attributed the corresponding material 

properties. The OOF modeling results for the tensile modulus show a good agreement with the 

experimental data and theoretical predictions. 

 

Chawala et al. [178] used 3D object-oriented finite element modeling to evaluate the mechanical 

behavior of SiC particle-reinforced Al composites. For a volume of 
320100100 mμ××  cell, 

there are about 100 SiC particles which produce 20% volume fraction. They compared the 
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results of the Young’s modulus and the stress-strain relations from the object-oriented 

(microstructure-based) model with the results of the experiment and the numerical results from 

simplified models (which include rectangular prism, multiparticle-ellipsoids, and multiparticle-

spheres, etc.). Some of the results were shown in Fig. 13. Their results indicate that 3D 

microstructure-based model can accurately predict the properties of particle-reinforced 

composites, while the simple analytical models can not as they do not account for the 

microstructural factors that influence the mechanical behavior of the material. 

 

 

                  
 

Figure 13. Comparison between 3D finite element models incorporating actual 

microstructure and approximation to spherical particles: (a) FEM models, (b) von Mises 

stress distribution in particles, and (c) plastic strain in matrix [178]. 

 

3. MECHANICAL PROPERTY ENHANCEMENT 

 

Fillers added to matrix can change the mechanical properties of the matrix material. Comparing 

to traditional composite materials, nanocomposites have the following characterizations:  

1. Nanoparticles can substantially improve the mechanical properties of the host matrix 

materials [140,142,218-220]. Even at very low filler volume content such as 1-5%, a 

considerable improvement of the mechanical properties can be achieved [143, 221-223].  

2. It is observed that for some nanocomposites, with the same filler volume fraction, the 

stiffness and strength increases as the particle size decreases [125,182, 224-227].   
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3. In general, the stiffness of nanocomposites tends to increase as the filler volume fraction 

increases. This function may be nonlinear. There may exist a critical volume fraction 

beyond which the stiffness starts decrease [228]. 

 

For conventional composite materials, micromechanics theories consider that the overall 

mechanical properties of composites are functions of constituent properties, constituent volume 

fraction, inclusion shapes and orientations, and state of dispersion. It does not consider the 

interactions between filler and matrix at their interface. For nanocomposites, the mechanical 

property enhancement not only depends on the above factors, but also depends on the interaction 

between the filler and the matrix.  

 

3.1 Mechanisms of stiffness and strength enhancement 

 

It is widely accepted that there is an interphase exist between the nanofillers and the matrix 

material in nanocomposites. This interphase is a transition region, which extends nanometers to 

micrometers over which the mechanical and physical properties change from the properties of 

filler to the properties of the matrix. Among many researchers who studied the nanocomposites 

interphase behavior, Boutaleb et al. [156] investigated the influence of interphase on the overall 

behavior of silica spherical nanoparticle/polymer composites by means of analytical and finite 

element methods. Fig. 14 shows a schematic of a composite material containing randomly 

located spherical nanoparticles (left) and a spherical nanoparticle coated with a graded interphase 

(right). The interphase is represented as a third phase around the nanoparticles. A model of 

axisymmetric RVE with periodical boundary conditions was examined. The analysis results 

show that the interphase is a dominant parameter controlling the overall nanocomposite 

behavior.   

 

To estimate the elastic modulus of the interphase in polymer nanocomposites, Saber-Samandari 

and Khatibi [229] developed a 3D unit cell model to represent the three constituent phases 

including particle, interphase and matrix. The elastic modulus of the interphase at any point, r, is 

described by a power law as: 
2/
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where Em and Ef are matrix and nanoparticle elastic moduli, respectively, rf and ri are the filler 

and interphase radii, and n is the intragallery enhancement factor which depends on the 

chemistry and surface treatment of the particles considered. 
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Figure 14. Schematic of a composite material containing randomly located spherical 

nanoparticles (left) and a spherical nanoparticle coated with an interphase (right) [156]. 

 

How exactly the interphase affects the nanocomposites properties is still a research topic. Some 

intend to think the interphase refined the grain size of matrix leads to smaller critical flaw size 

and higher strength. Some researchers believe that nanoparticles yield dislocations around them, 

and these dislocations release residual stresses in the matrix. Thus the defect size along the grain 

boundaries is reduced. There are also some researchers who think nanofillers impart additional 

strength of their own to the matrix through the interphase. Nevertheless to say, the strengthening 

mechanism of nanocomposites is not fully understood. Several mechanical properties of 

nanocomposites are also improved for the same reason, such as hardness, wear resistance, and 

thermal shock resistance.   

 

The interaction between nanofillers and matrix is the key to the nanocomposites properties 

enhancement. There are many factors affecting that interaction, such as the filler volume 

(weight) fraction, degree of dispersion, the filler geometry and orientation, etc. We assume the 

same volume fraction and identical degree of dispersion, only the filler geometry (aspect ratio) 

and orientation will be considered. We define a reactive surface area per unit volume of filler,γ , 

as 

V

A
=γ       (3.2)    

where A and V are surface area and volume of the filler, respectively.  Table 4 shows the major 

axis and the γ  value for some typical geometry of the nanofillers. 

 

Consider three most common geometries, i.e., sphere (nanoparticles), disk (nanoplatelets, 

nanolayers), and cylinder (nanotubes, nanofibers). For the cuboid, if a=b=c, it becomes a cube, 

close to sphere; if a=b>>c, it becomes a platelet; if a>>b≈ c, it becomes a rod, close to cylinder. 

Assume that the diameter of the sphere, the diameter of the cylinder cross-section, and the 
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thickness of the disk are the same. According to the values in Table 4, the reinforcement 

efficiency of the three geometries in the major axis direction, from good to poor, is sphere-

cylinder-disk. But nanoplatelets are thought to possess better reinforcement effects than those of 

spherical and fiber-like particles [230]. 

 

Table 4. γ  value and the major axis for typical filler geometries 

Name Shape γ Parameters 
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As the filler orientation is very important in reinforcement, equation (3.2) has to be modified to 

account for the effect of orientation of the filler surfaces. Now we define an effective surface 

area per unit volume of filler,γ , as 

V

A
=γ       (3.3) 

where A  is the effective filler surface area, and it represents the portion of surfaces which is 

normal to the direction of major axis (see Table 4). The value of γ  for sphere, disk, and cylinder 

in the major axis is 3/2t, 2/t, and 4/t, respectively. Therefore, in the major direction shown, the 

order of reinforcement efficiency, from good to poor, is cylinder-disk-sphere.  

 

If the nanofillers are randomly oriented, the reinforcement efficiency of nanospheres is probably 

better than that of nanolayers, and the reinforcement efficiency of nanolayers is probably better 
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than that of nanocylinders. This is because sphere is isotropic, and disk is transversely isotropic, 

and cylinder is anisotropic. 

 

For all the geometries of the filler, as the characteristic dimension (the smallest dimension) 

decreases, the value of γ  will increase. That is, the smaller the filler, the better enhancement it 

will provide. This is similar to the Hall-Petch effect on the strength of metals. Hall-Petch relates 

the yield stress of a metal to its average grain diameter d as 
2/1

0

−+= kd
y

σσ      (3.4) 

where 
0

σ  and k  are the constants related to the material of interest. The yield stress increases as 

the grain size decreases. It is also interesting to note that just as Hall-Petch equation does not 

apply to extremely fine grain sizes, fine size filler enhancement on nanocomposites may also 

have a limit. Schiotz and Jacobsen [231] investigated nanocrystalline copper, and pointed out 

that there may be a maximum in the strengthening that can be obtained by decreasing the grain 

size, so that below a certain critical grain size the strength begins to decrease again as the grain 

size decreases. 

 

3.2 Fracture Toughness 

 

Nanocomposites can not only improve stiffness and strength, but also fracture toughness [232-

242]. In general, the fracture toughness of nanocomposites increases as the volume fraction 

increases, and increases as the nanofiller size decreases. For silica/epoxy nanocomposites, 

Ragosta et al. [235] found the fracture toughness improved as the volume fraction of 15-nm 

silica particles increases. Similar results were obtained by Zhang et al. [234] with 25-nm silica 

particles, and by Chen et al. [232] with 12-nm silica particles. Through experiments and an 

analytical model, Adachi et al. [233] studied the mode I fracture toughness of silica/epoxy 

nanocomposites, and found that the toughness increased drastically as the silica volume fraction 

increased and the particle diameters decreased. In nanocomposites with a low volume fraction of 

particles, the volume fraction affected the fracture toughness more; and with high volume 

fractions, the particle size affected the fracture toughness more. 

 

Just as for stiffness and strength, the toughening mechanism of nanocomposites is also mainly 

from the interaction between the fillers and the matrix. Awaji et al. [243] observed silicon 

carbide/alumina nanocomposites by transmission electron microscopy (TEM), and found that 

silicon carbide nanoparticles were dispersed both inside the alumina grains and on the grain 

boundaries. The fracture toughness is improved by the change of fracture mode from 

intergranular fracture of monolithic alumina to transgranular fracture of nanocomposites. Fig. 15 

shows a schematic illustration of the toughening mechanism [244]. Nanoparticles are dispersed 

within the matrix grains. Then sub-grain boundaries or dislocation networks are generated 

around the nanoparticles (Fig. 15A). When the tip of a propagating large crack reaches this area, 

these dislocations in the matrix will operate as nano-crack nuclei in the vicinity of the 
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propagating crack tip (Fig. 15B). The highly stressed frontal process zone (FPZ) ahead of the 

crack tip is then released by nano-crack nucleation, and the nano-cracks expand the FPZ size, 

enhancing the fracture toughness of the materials [236].  

 

 

            
 

Figure 15. Schematic description of the toughening mechanism in nanocomposites.  

                  (A) Intra-type nano-structure, (B) FPZ creation [244]. 

 

4. CONCLUDING REMARKS 

 

Characterizing and modeling mechanical properties of nanocomposites is reviewed and 

evaluated. Nanocomposites are made by dispersing nanofillers (e.g., silicate and ceramic 

nanoparticles, CNTs, etc.) into matrix (e.g., some polymers, ceramics, metals, etc.). Comparing 

with conventional composite materials, nanocomposites have numerous advantages such as high 

mechanical and physical properties, and high reinforcement efficiency. The high enhancement of 

mechanical properties of nanocomposites is mainly attributed to the interaction between the 

nanofillers and the matrix material through the interphase which is a transition region from the 

nanofillers to the matrix, and the high value of the reactive surface area per unit volume of 

nanofillers.  

 

Comprehensive understand of the mechanisms of mechanical property enhancement is crucial in 

order to achieve the longstanding goal of predicting nanoparticles–nanocomposites–property 

relationships in material design and optimization. Experimental characterizing and 

nanomechanics-based computer modeling and simulation of mechanical properties of 

nanocomposites are the two wings in understanding the mechanisms. Many traditional 

simulation techniques have been employed, and some novel simulation techniques have been 
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developed to study nanocomposites. These techniques represent approaches at various time and 

length scales from molecular scale to microscale, and then to macroscale, and have shown 

success to various degrees in addressing many aspects of nanocomposites. The simulation 

techniques developed thus far have different strengths and weaknesses, depending on the need of 

research. Despite substantial progress made in the past decade, there are a number of challenges 

in computer modeling and simulation. New concepts, theories and computational tools should be 

developed. In general, there are two fronts that should be pointed out. First, there is a need to 

develop new and improved simulation techniques at individual time and length scales. Secondly, 

it is important to integrate the developed methods at wider range of time and length scales, 

spanning from quantum domain to molecular domain, to mesoscopic domain, and finally to 

macroscopic domain, to form a useful tool for exploring the structural and mechanical properties, 

as well as optimizing design of nanocomposites [100]. Specific challenges and the solution 

strategies are discussed in the following: 

 

1. In either developing new or characterizing the current exist nanocomposites, a 

comprehensive approach should be adopted that integrates the experimental techniques 

with nanomechanics-based analytical explorations and computer modeling and 

simulation.  

2. New computational tools are specially needed in the area of multiscale RVE modeling. 

The multiscale RVE modeling is in nature a “local-global” approach. In order to catch the 

local nano/micro characteristics, quantum mechanics or molecular dynamics needs to be 

explored. But the prediction of global macro-mechanical properties requires the 

continuum mechanics-based finite element method. How to transit from local to global 

becomes a research issue. Ogata et al. [198] proposed a way of combing quantum 

mechanics, molecular dynamics, and finite elements. In regions where the atoms obey the 

laws of continuum mechanics, the finite element method is used. However, in critical 

areas such as the extremity of a fracture, molecular dynamics and even quantum 

mechanics are required to obtain a more detailed study of the fracture process. The 

transition from the global to local levels involves a change of scale. Xiao and Belytschko 

[245] proposed a way of improving the numerical compatibility between regions modeled 

by molecular dynamics and those modeled using the finite element method. The 

suggested method is introducing a broad transition region by superposing the finite 

element mesh of the continuum region on the atomistic structure of the molecular 

dynamics region. Clearly, there is still a lot of work needs to be done in connecting the 

local parameters to the global parameters. 

3. In object-oriented finite element modeling, 2D modeling has been extensively used in 

nanocomposites [e.g. 8, 179, 217], and there are also some works on 3D modeling [e.g. 

178]. There are still issues to be resolved in 3D modeling, especially advanced object-

oriented 3D finite element codes.  
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APPENDIX 

 

Formulas Related to the Overall Moduli: 
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The constants R, iA (i =1, 2, 3, 4) and iB  (i =1, 2) are non-dimensional ones related to the elastic 

constants of the isotropic matrix and the transversely isotropic inhomogeneity.  
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where k, n, m, p, and l are the notations adopted by Hill. They can be expressed in general by 

stiffness tensor components as 
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For an isotropic material, the above constants degenerate into 
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f  and θ  are related to the geometry of the spheroidal inhomogeneity, which are  
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