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ABSTRACT 

In this paper we characterize and model the cost of rework in 
a Component Factory (CF) organization. A CF is responsible 
for developing and packaging reusable software 
components. Data was collected on corrective maintenance 
activities for the Generalized Support Software reuse asset 
library located at the Flight Dynamics Division of NASA’S 
GSFC. We then constructed a predictive model of the cost of 
rework using the C4.5 system for generating a logical 
classification model. The predictor variables for the model 
are measures of internal software product attributes. The 
model demonstrates good prediction accuracy, and can be 
used by managers to allocate resources for corrective 
maintenance activities. Furthermore, we used the model to 
generate proscriptive coding guidelines to improve 
programming practices so that the cost of rework can be 
reduced in the future. The general approach we have used is 
applicable to other environments. 

Keywords 
Software Process Improvement, cost of rework, software 
metrics, classification models, prediction models. 

INTRODUCTION 
Previous research has shown that software reuse has a great 
potential to improve software development productivity and 
product quality [6][25][19]. For example, effective reuse of 
knowledge, processes and products from previous 
experience can decrease software development cost, reduce 
project delivery time and improve software quality [5][13]. 

However, reuse will not just happen-rather, components 
must be designed for reuse, and organizational elements 
must be created to enable projects to take advantage of the 
reusable software artifacts [2][11][26]. 

To facilitate the packaging and reuse of software 
development experience, an infrastructure called the 
Component Factory (0’) has been proposed [4]. The CF is a 
separate entity from the organization that produces 
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applications. The CF is responsible for developing and 
packaging reusable software components. It creates and 
maintains a software component repository for future reuse 
and supplies reusable components to the development 
organization upon demand. 

Several studies have empirically examined the 
characteristics of reusable components. For example, [22] 
investigated new versus reused code in a large collection of 
FORTRAN projects to analyze the pros and cons of creating 
a component from scratch versus modifying an existing 
component. Also in [25], eight medium scale Ada projects 
were assessed with respect to the defects found in newly 
developed and reused components. However, none of these 
works were concerned with software components that were 
developed exclusively for reuse. As far as we know, studies 
of reuse have focused on the side of the project organization, 
which reuses the components, rather than on the side of the 
CF, which creates the components. The primary reason for 
this different focus appears to be that not many software 
companies have a CF set up to develop and maintain 
reusable software components. Another potential 
explanation is that the few existing CFs have not collcctcd 
sufficient data allowing them to evaluate the diffcrcnt 
aspects of the development and maintenance of reusable 
components. 

In this paper we present a study that characterizes and 
models the cost of rework for a library of reusable 
components. This library, known as the Generalized Support 
Software (GSS) reuse asset library, is located at the Flight 
Dynamics Division (FDD) of NASA’s Goddard Space Flight 
Center (GSFC). Component development began in 1993. 
Subsequent efforts focused on generating new components 
to populate the library and on implementing specification 
changes to satisfy mission requirements. The first 
application using this library was developed in early 1995. 

The asset library currently consists of 921 Ada83 
components totaling approximately 5 15 KSLOC. Based on a 
review of the first 58 GSS error correction reports, 102 of 
these 921 components have required error correction one or 
more times. We first characterize the 58 error correction 
reports in terms of source of error, class of error (both 
defined below), effort required to isolate the error, and effort 
required to correct the error. We then use a machine learning 
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algorithm, C4.5 [21], to construct a model for approximate 
prediction of the cost of rework (“high” or “low”), using 
internal source code metrics of the components that are 
changed. The prediction model can help managers of the 
GSS asset library in the decision-making process by 
providing them with guidelines for predicting where 
corrective maintenance resources will most be needed. The 
model also consists of a set of easily interpretable coding 
guidelines that can be applied in improving current practices 
in order to reduce the cost of future rework. We expect that 
the process used to model rework in the GSS environment 
can be used in other environments to provide equally 
effective prediction models and coding guidelines that are 
appropriate for those environments. 

In [ 161, various modeling techniques were used to predict 
maintenance productivity. In that article, the only product 
metric that was considered was a software size measure 
based on LOC. In [S], a machine learning algorithm was also 
used to predict the cost of rework in an Ada environment 
using internal product metrics. Unlike the components we 
have studied, however, the components analyzed in [S] were 
developed to satisfy specific application requirements. The 
current paper is, to our knowledge, the first that applies 
machine learning techniques to help manage the 
maintenance of reusable components, and to improve the 
way these components are produced in order to reduce 
maintenance costs within a CF. 

The paper is organized as follows. It first presents the 
framework in which this study was conducted: the FDD, the 
Software Engineering Laboratory (SEL), and the GSS 
domain engineering and application deployment processes. 
The paper then presents the method for data collection and 
analysis. Then, the results of our analysis, including 
descriptive statistics that characterize the components and a 
predictive model of rework effort, are presented. We 
conclude the paper with a summary and directions for future 
work. 

ENVIRONMENT OF THE STUDY 

The FDD 

GSFC manages and controls NASA’s Earth-orbiting 
scientific satellites and also supports human space flight. For 
fulfilling flight dynamics responsibilities for both of these 
complex missions, the FDD developed and now maintains 
over 100 different software systems, ranging in size from 10 
thousand source lines of code (KSLOC) to 300 KSLOC, and 
totaling approximately 4.5 million SLOC. This software 
covers three separate subdomains of the FDD mission: 
mission planning, orbit determination, and attitude1 
determination. 

To increase the amount and type of reuse, and at the same 
time to drastically reduce the cycle time needed to develop 
and test new software systems, the FDD embarked on the 
GSS Domain Engineering Process in 1993. This process 
achieves rapid deployment by utilizing an object-oriented 

1. The term “attitude” refers to a spacecraft’s orientation in 

space. 

architecture in which the reusable assets are the generalized 
specifications for the reusable software components, as well 
as the reusable software components themselves (written in 
Ada83). Adopting this architecture and process results in a 
paradigm shift from developing software applications to 
configuring software applications. The GSS reuse asset 
library is the software component repository examined in 
this paper. 

The SEL 

The Software Engineering Laboratory began in 1976 with 
the goals of understanding the software process and product 
in the FDD, determining the impact of available 
technologies, and infusing the identified/refined methods, 
techniques, and products back into the environment. The 
approach has been to identify technologies with potential, 
apply them, and study their effect, based on studying the 
impact of the changes on such issues as cost, reliability, and 
quality. The participating organizations are the FDD, the 
University of Maryland, and Computer Sciences 
Corporation. 

Over the years, the SEL has investigated numerous 
techniques and methods in over a hundred projects to 
understand and improve the software development process 
and product in their environment [20]. The result of this 
legacy is an organization and personnel that are quite 
interested in experimentation with new technologies and not 
averse to change. They are also a part of an environment 
that is quite successful at the type of work in which they are 
involved. 

The approaches used for learning include the concept of the 
Experience Factory (EF). The focus of the EF in the SEL is 
on collecting metrics and lessons learned from standard 
projects and from special experiments, and then analyzing 
these data and packaging them into guide books, models, and 
training courses that can be spread to all areas of the 
development organization. The EF is different from the 
Project Organization (PO) which focuses on the 
development and maintenance of applications. Their 
relationship is depicted in Figure 1. The SEL EF has 
developed and packaged: 
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resource models and baselines (e.g., local cost models, 
resource allocation models) 

change and defect baselines and models (e.g., defect pre- 
diction models, types of defects expected for the applica- 
tion) 

project models and baselines (e.g., actual vs. expected 
product size) 

process definitions and models (e.g., process models for 
Cleanroom, Ada waterfall model) 

method and technique evaluations (e.g., best method for 
finding interface faults) 

products and product parts (e.g., Ada generics for simula- 
tion of satellite orbits) 

quality models (e.g., reliability models, defect slippage 
models, ease of change models), and 

------- :- - - . 
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Figure 1: The relationship between the Experience Factory 

and the Project Organization. 
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Figure 2: The relationship between the Component Factory 

and the Project Organization. 

l lessons learned (e.g., risks associated with an Ada devel- 
opment). 

These models are built to understand the local environment, 
identify areas for improvement, attempt improvement via 
change, and form bases for evaluating that change against 
goals. 

The Component Factory (CF) organization is a sub- 
organizational structure of the EF-an addition to the 
traditional EF. The CF focuses on generating a configuration 
architecture and reusable components, based on learning 
over time. This learning is in the form of analysis and 
synthesis of what is most effective for reuse (as well as what 
is expected to be needed for configuring applications) for the 
future development of products in a certain class. To staff a 
CF, some members of the PO functionally become members 
of the CF, although they may continue to think of themselves 
still as PO members. (See Figure 2.) That is, some mission 
analysts and application developers become domain analysts 
for the CF, and some application developers become 
component engineers for the CF. The domain analysts 
design the architecture and class specifications of the reuse 

asset library. The component engineers then construct the 
reusable class components. The PO takes advantage of this 
architecture and asset library to configure new systems. The 
PO’s mission analysts now compare mission requirements to 
the asset library’s functional specifications and produce a 
mission specification document that tells the PO’s 
application configurers-application developers are no 
longer needed-how to configure the desired system from 
the reuse library assets. The traditional elements of the EF, 
together with the CF staff, then study how effective this 
process and the asset library have been for future 
improvement 

Project Component Factory: 
Organization: 1 Assat Davelopmant 
Application . 

B Folh, stsndard 
. 

Figure 3: The GSS domain engineering and 

application deployment process. 

The GSS Process 

The activites of the CF and the PO in the GSS domain 
engineering and application deployment process are shown 
in more detail in Figure 3. The process relies on five 
functionally distinct teams, although some personnel may 
overlap between teams (particularly between the component 
engineers and the application configurers). The domain 
analysts write the class and category specifications. The 
component engineers code the classes and categories that, 
together with the specifications, make up the GSS rcusc 
asset library. The mission analysts analyze the mission 
requirements and specify which classes need to be used for a 
given mission and how they should be configured. The 
application configurers configure the desired mission 
applications from the available classes and categories in the 
GSS reuse asset library, instantiate the generics, and perform 
integration testing of the application. The application testers 
conduct acceptance testing of the configured mission 
application. 

DATA COLLECTION AND ANALYSIS METHOD 

Definitions 

Errors are defects in the human thought process that arc 
made while trying to understand and communicate given 
information, solve problems, or use methods and tools. 
Faults are concrete manifestations of errors within the 
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software. 

In this study, an error is represented by a single software 
Change Request Form (CRF) [15] filled by developers and 
configurers to institute and document a change to one or 
more components. A CRF results in modifications to one or 
more components in the reuse asset library. CRFs are also 
generated for enhancements, requirements changes, and 
adaptation. The current paper examines only error correction 
CRFS. 

A fault pertains to a single component and is evidenced by 
the physical change of that component in response to a 
particular error CFG. In this study, we define a component as 
as an Ada file in configuration management. A faulty 

component version becomes afixed component version after 
it is corrected. We are only interested in the faulty 
component versions. 

Data Collection 

We collected data on: (1) error identification and error 
correction (which follow initiation of a CRF), including the 
names and version numbers of the source code components 
that had faults in them, and (2) source code metrics 
characterizing these particular components. 

Between 9th March 1994 and 21st September 1995, a total 
of 58 GSS error correction CRFs were generated, meaning 
58 errors were identified. (In addition, 96 additional GSS 
CRFs were generated for requested enhancements, 
adaptations, and requirements changes.) Most of the GSS 
error correction CRFs were initiated by configurers, who 
uncovered problems during instantiation of the Ada generics 
and integration testing of the configured application, prior to 
turning over the configured application to acceptance 
testing. A very small minority of the CRFs-perhaps ten 
percent-were initiated by a maintainer of the reuse asset 
library following the report of a failed application test item 
by the independent tester group during conductance of 
acceptance testing of the application.. 

The CRF data analyzed by our study consisted of (1) the 
classification of errors by source and class, (2) the names of 
components changed to correct the errors, (3) the effort 
expended to isolate all faults associated with the error, and 
(4) the effort required to correct all of these faults. Each of 
these is described below. 

Isolation and correction effort was measured on a 4-point 
ordinal scale: 1 hour, from 1 hour to 1 day, from 1 to 3 days, 
and more than 3 days. In addition, the maintainer provides 
the source of the error (requirements, functional 
specification, design, code, or previous change). Once an 
error is found during configuration and testing, the 
maintainer finds the cause of the error, locates where the 
modifications are to be made, and determines that all effects 
of the change are accounted for. Then the maintainer 
modifies the design (if necessary), code, and documentation 
to correct the error. Once the maintainer fixes the error, the 
maintainer provides the names of the components changed 
(in our case the faulty components). The maintainer also 
specifies the class of the error (initialization, internal/ 
external interface, user interface, database, algorithm, etc.). 
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The Amadeus tool [l] was used to extract source code 
metrics from all faulty component versions. A description of 
the source code metrics that were found useful is given in the 
results section of this paper. If after the extraction of some 
metrics it was found that they had zero variation (e.g., the 
number of Goto’s), we excluded these metrics from further 
analysis. 

Data Analysis: Characterization 

The first data analysis task was to characterize or describe 
the errors. The objective of this characterization is to 
understand better the nature of the errors and how they are 
distributed. For this, basic pie charts were used. 
Furthermore, basic bivariate analysis using contingency 
tables and chi-square tests [24] was conducted to identify if 
there were any relationships between the source and class of 
errors and the rework effort. 

Since the contingency tables tended to be sparse in some 
instances (i.e., cell frequencies approaching zero), we 
dichotomized each of the isolation and correction cost 
variables. We therefore considered isolation or correction 
effort of 1 hour as Low, and effort greater than 1 hour to be 
High. 

Data Analysis: Modeling 

A cost of rework model should allow: (1) the prediction of 
which components are likely to be associated with costly 
rework, and (2) provide programming guidelines that can be 
used to prevent costly rework in the future. The cost of 
rework is measured as the rotczl effort taken to isolate and 
correct an error. 

Unit of Analysis 

The unit of analysis for developing the model is a faulty 
component version. During rework, a total of 118 changes 
were made to 102 components to fix these 58 errors. Four of 
the components were changed three times (i.e., on three 
different CRFs), 8 components were changed twice, and the 
remaining 90 were changed only once. 

Approximately 75% of the components in the library are 
generated using a code generator. When software changes 
are necessary, maintainers do not make changes directly to 
the outputs of the code generator. Instead, the inputs to the 
code generator are changed, and new versions of the output 
components are generated. Given that rework effort is only 
directly affected by the characteristics of the component 
versions that are actually changed by the maintainers, 
component versions that are automatically regenerated by 
the code generator should not be included in our analysis. 
Where the components associated with a CRF include the 
input to the code generator as well as the output component, 
we excluded the modified output versions in our analysis. 
This leaves a total of 76 faulty component versions which 
are the basis of our analysis. 

Model Specification 

The model that we developed identifies component versions 
that are associated with costly rework rather than trying to 
predict the exact effort for reworking a component version. 
We therefore use the characteristics of a faulty component 
version as input into the model, and the total rework effort 



for the error as the output of the model. Given that the model 
we developed is a classification model, it classifies a 
component version into ones of two rework cost categories: 
Low Cosr and High Cost. (Note that these categories are 
different from the one described in the “Characterization” 
paragraph above because, for the model we are interested in 
tofu1 rework effort, while in characterization we look at 
isolation and correction separately.) This allows the model to 
predict whether a component version is associated with a 
costly, or otherwise, error. 

Modeling Technique 

The modeling technique that we used is a machine learning 
algorithm called C4.5 [21]. The C4.5 algorithm partitions 
continuous attributes, in our case the internal product 
metrics, finding the best threshold among the set of training 
cases to classify them on the dependent variable. As well as 
being useful for prediction, the generated tree provides 
decision rules characterizing component versions that fall 
into each one of the two rework cost categories. 

We chose this technique because the models are 
straightforward to build and are also easy to interpret. In 
addition, this class of modeling techniques has been used in 
the software engineering literature to build prediction 
models [23], and therefore there already is some familiarity 
with it. Of course, other classification techniques, e.g., 
Optimized Set Reduction [9] or logistic regression [6], could 
have been used. However, our goal here is not to compare 
classification techniques. 

Potential Application of the Model 
A prediction identifying component versions that are going 
to be associated with costly errors can help managers 
allocate resources for the maintenance activities. The 
availability of rules as part of the model can help prevent 
high rework cost in the maintenance environment. For 
example, rules that characterize high rework cost can be 
treated as proscriptive programming guidelines for 
developing future components. It is on proscriptive rules that 
we focus in this study. 

It should be noted, however, that the model does not identify 
which component versions in the asset library are likely to 
have faults, only which of the faulty versions should be more 
or less expensive to isolate and correct. Application of such 
predictions assumes that the manager knows beforehand 
which components are likely to contain a fault. Models for 
the prediction of fault-prone Ada components in the SEL 
environment have been developed in the past [9]. Once a 
component version has been identified as potentially fault- 
prone, then it is possible to predict the cost of rework 
category when fixing an error that leads to faults in that 
version. Using this additional information, a manager can 
improve the resource allocation for maintenance. 

Dependent Variable 

To build a classification model, we dichotomize our 
dependent variable, which is the total cost of rework. We 
converted the four effort categories into average values 
following [3]. We assumed an 8 hour day, and took the 
average value for each of the categories of rework. 

286 

Therefore, the category of “1 Hour” was changed to 0.5 
hours, the category of “1 hour to 1 Day” was changed to 4.5 
hours, the category of “from 1 to 3 Days” was changed to 16 
hours, and the category of “more than 3 Days” was changed 
to 32 hours. We then summed up these vahtcs for isolation 
and correction costs. This gives us an average overall rework 
cost. The median of total rework cost per CRF was 5 hours, 
and we used that as the cutoff point for dichotomization. 
Based on this dichomotomization, we have 33 component 
versions that were associated with errors requiring a low cost 
of rework and 43 that required a high cost of rework. 

Independent Variables 

Internal product metrics have been widely used to predict 
quality attributes such as productivity and software quality 
[14]. Here, we are interested in studying the use of internal 
product metrics of the faulty GSS component versions to 
predict the cost of rework. Previous research investigated the 
use of the characteristics of the change as the basis for the 
prediction of correction effort [lo], however, the 
characteristics of the change are usually not available before 
the change is actually made (or at least not before isolation 
of the error). We only wanted to use information that would 
be available before isolation in order to develop a model for 
predicting total rework effort. 

Evaluation of the Model 
To evaluate the model, we need criteria for evaluating the 
overall model accuracy and for evaluating the strength of the 
rules. Evaluating model accuracy tells us how good the 
model is expected to be as a predictor. Evaluating the 
strength of the rules tells us the extent to which WC can trust 
these rules as programming guidelines. 

Evaluating Prediction Accuracy 
Three criteria for evaluating the accuracy of predictions arc 
the predictive validity criterion, and measures of correctness 
and completeness. These are defined below with reference to 
Table 1. Table 1 shows symbols for frequencies. 

A criterion of prediction validity has been presented in [ 17). 
This basically involves laying out the frequencies as in Table 
1, and calculating the chi-square statistic. If the value is 
larger than a critical value then it is claimed that the model 
has predictive validity. The authors state that a model that 
does not meet the criterion of predictive validity should be 
rejected. This does not necessarily mean that a model that 
meets the predictive validity criteria should be accepted (it 
would be easy to demonstrate that if the classification model 
predicted all High Cost components as Low Cost and vice 
versa - i.e., very high misclassification - it would still have 
high predictive validity). We use this criterion to dcterminc 
whether there is any association between the real rework cost 
of a component and its actual rework cost. 



Predicted Rework Cost 

Low cost High Cost 

Real Rework Cost Low Cost 

High Cost 

Table 1: Evaluating the accuracy of predicted classifications. 

Correctness is defined as the percentage of component 
versions that were predicted to be costly to rework and were 
actually costly to rework. We want to maximize correctness 
because if correctness is low, then the model is identifying 
more component versions as being costly to rework when 
they really are not costly to rework, which could lead to an 
over-allocation of resources to making changes (i.e., 
wastage). 

Correctness 
= ( n,,“:Zz,,)x loo 

Completeness is defined as the percentage of those 
component versions costly to rework and were predicted to 
be costly to rework. We want to maximize completeness 
because as completeness decreases, more versions that were 
costly to rework are mis-identified as not costly to rework, 
which would lead to a shortage of resources for making 
changes.. 

Completeness 
= ( n,~nlTz2,)x loo 

In order to calculate values for correctness and 
completeness, we used a V-fold cross-validation procedure 
[7]. For each observation X in the sample, a model was 
developed based on the remaining observations (sample - 
X). This model was then used to predict whether observation 
X will have high rework or low rework. This validation 
procedure is commonly used when data sets are small. 

Evaluation of Rules 
The generated model from all 76 versions is also useful for 
providing proscriptive guidelines to programmers. The 
guidelines inform the programmers of the characteristics of 
faulty components that tend to require costly rework. By 
producing components that do not have these characteristics, 
there is a greater chance that components will be produced 
that are not costly to rework. There are two ways for 
evaluating such rules. First by measuring the number of 
cases that a rule classified correctly. Second, by appeal to the 
intuition of programmers in the environment (i.e., do the 
rules make sense to them). 

RESULTS 

Characterizing Errors 

Distribution of Errors by Error Source 
Figure 4 shows the overall distribution of errors (the 58 
errors) by error source. Requirements and functional 
specification errors are those triggered by a 

misunderstanding of user requirements, and are introduced 
into the system by the process of transforming user 
requirements into project requirement specifications. Design 
errors are those introduced in the process of transforming 
requirements and specifications into detailed (component- 
level) design. Coding errors are those that occur when 
transforming the detailed design to code, such as mistyping 
a variable name, incorrectly coding an assignment statement, 
or incorrectly coding the exit criteria of a loop. Finally, 
errors resulting from a previous change are those that were 
not in the system until some other change was implemented 
(in which case the implementation of the previous change 
did not consider all of its possible effects, or the change was 
simply implemented incoiectly). 

Requirements 
3% 

Code 
45 % 

Design 
9% 

Figure 4: Distribution of errors by source. 
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Initialization 

17% 

External Interface, 3 % 

Data 

45 % ~ 

Internal 

Interface 
--..~ _ 12% 

Computational 

/ Logic 

17% 

Figure 5: Distribution of errors by class. 

Coding errors are responsible for approximately half of the 
errors found during acceptance testing (45%), followed by 
errors from requirements and functional specifications 
(29%), previous changes (17%), and finally design (9%). 

It is interesting to note the small amount of design errors 
compared with requirements, specification, and coding 
errors. In part, this stems from the fact that most of the 
“design” of the GSS library is done during the specification 
phase. The object classes and the relationship between such 
classes of the three types of applications developed in the 
FDD (orbit, attitude and mission support) are, in fact, 
defined during the requirements analysis phase. The 
description of the methods of GSS classes are also done 
during the analysis. 

Distribution of Errors by Error Class 
The components in the library are based on generalizations 
of existing algorithms that were previously used in earlier 
systems. Therefore logic and computational errors are 
expected to be low (17% and 5% respectively as seen in 
Figure 5). 

Initialization errors are responsible for 17% of the errors 
found during acceptance testing. (Initialization errors are 
those which result from an incorrectly initialized variable, 
failure to reinitialize a variable, or because a necessary 
initialization was missing; failure to initialize or reinitialize a 
data structure properly upon a component’s entry/exit is also 
considered an initialization error). Once an application is 
created using the component library, a minimal set of 
integration tests are run. Particularly for an initial version of 
an application, this can result in a large number of 
initialization errors since this would be the first time the 
components have been configured in this fashion. 

Data (value or structure) are responsible for the largest 
proportion of errors caught by the configurers and testers 
(see Figure 5). Data errors are those provoked by any error 
resulting from an incorrect use of a data structure. Examples 
of data errors are the use of incorrect subscripts for an array, 
the use of the wrong variable, the use of the wrong unit of 
measurement, or the inclusion of an incorrect declaration of 
a variable local to the component. One potential explanation 

for the large incidence of Data errors is that the Ada 
compiler catches a large proportion of the errors that would 
fall in the other categories, but many common Data errors 
will pass through compilation. This could be, for example, 
specifying a variable as POSITIVE instead of NATURAL. 

Characterizing the Cost of Rework 

Distribution of Errors By Cost of Isolation and Correction 

Most of the GSS errors had a low isolation cost (60%) and a 

low correction cost (64%). It can be hypothesized that the 

design of the GSS architecture and the use of coding 
standards help reduce the time necessary to isolate errors, as 
well as the application of object-oriented design principles. 
Another explanation for the relatively low rework costs in 
general is that the people responsible for correcting errors in 
the GSS components have participated in the development of 
these components. They have, therefore, a good 
understanding of the design and realization strategies 
implemented into the code. 

It should be noted that the median number of components 
changed for each CRF is 1 (maximum is 6), and the median 
number of other components examined is zero (with a 
maximum of 5). To test the hypothesis that the number of 
changed and examined components is related to the cost of 
isolation and correction, we used the Mann-Whitney U test 
[24]. No difference was found for the number of components 
examined when isolation cost was considered. When 
considering correction cost, it was found that mom 
components are changed for high correction cost CRFs 
compared to low cost CRFs (at an alpha level of 0,05). No 
difference was found for number of components examined 
and correction cost. 

Impact of Error Source on Rework Effort 
Table 2 shows the distribution between the categories of 
error isolation cost and the error source. The contingency 
table contains the frequency of CRFs in each cell and the 
percentage of the total. We combined the Requirements and 
Functional Specification sources together into one 
‘Analysis” category to avoid having expected frequencies 
less than one in the table. Likewise, Table 3 shows the 

distribution between the categories of error correction cost 
and the source of error. 

Observation of the table indicates that for analysis sources, 
the isolation and correction costs tend to be low. We used the 

Pearson chi-square statistic to determine if there is a general 
association between source and rework cost. The probability 
values for both the isolation cost and the correction cost table 
were not significant at the 0.05 alpha level.‘. Therefore, 

1. The approximation of the X2 statistic to the chi-square dis- 

tribution assumes that expected frequencies are not too small. 

This is usually interpreted to mean having at least 20% of ex- 

pected frequencies greater than 5 and no cell having an ex- 

pected frequency less than 1 for tables with degrees of 

freedom greater than 1 [12]. However, it has been suggested 

that the conventional chi-square statistic may be used for 2xc 

tables where all expected frequencies are as low as I [ 181. 



there is no association between source of error and isolation 
nor correction cost. 

Code Desian Analvsis 

Previous 

Change I Total 

HIGH Isolation 

cost 

LOW Isolation 

cost 

Total 

Table 2: Relationship between error source and isolation cost. 

Code Design Analysis 

Previous 

Change I Total 

HIGH Correction 

cost 

LOW Correction 

cost 

9 3 5 4 21 

15.52% 5.17% 8.62% 6.9% 

17 2 12 6 37 

29.31% 3.45% 20.69% 10.34% 

HIGH 

Isolation 

cost 

LOW 

Isolation 

cost 

Total 

Table 3: Relationship between error source and correction cost. 

Comautational Data Initialization Interface Loaic I Total - - ...r - ~~.~. 

1 11 3 2, 6 23 

1.72% 19% 5.17% 3.45% 10.34% 

2 15 7 7 4 35 

3.45% 25.86% 12% 12% 6.9% 

3 26 10 9 10 58 

-__ _-_. __- _. _ . 
‘I’able 4: Kelationship between error class and rsolahon cost. 

Computational Data Initialization Interface Logic Total 

HIGH 1 11 2 4 3 21 

Correction 1.72% 18.97% 3.45% 6.9% 5.17% 
cost 

LOW 2 15 8 5 7 37 

Correction 3.45% 25.86% 13.79% 8.62% 12% 
cost 

Table 5: Relationship between error class and correction cost. 
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Predicted Rework 

cost 

Low High 

cost cost 

Real Rework Cost Low 23 10 

cost 

cost 
l!El 

High 12 31 

35 41 

Table 6: Predicted versus real rework categories. 

Impact of Error Class on the Cost of Rework 

33 

43 

76 

Table 4 shows the distribution between the class of error and 
the isolation cost. We combined the Internal and External 
Interface categories to avoid having cells with expected 
frequencies less than one. The relationship between source 
and correction cost is depicted in Table 5. It can be observed 
from the tables that interface errors tend to cost less to 
isolate, and initialization errors tend to cost less to correct. 
Chi-square tests however do not identify any statistically 
significant association for either of the two tables. 

Modeling the Cost of Rework 

Table 6 shows the relationship between real and predicted 
rework. The predictive validity criterion for the contingency 
table presented in Table 6 is met at a one-tailed alpha level of 
0.05. The values of correctness and completeness are shown 
in Figure 6. We found that correctness was 76% and 
completeness 72%. These values were perceived to be 
sufficient for decision making, especially when combined 
with expert judgment. 

In this paper we are concerned with rules that characterize 
component versions that are costly to rework. The 
proportion of components that match the rule and are 
classified correctly by the rule give us a measure of how 
accurate a particular rule is. The model we developed had 
three interpretable rules for classifying high rework cost 
component versions. These are shown in Figure 7. For 
engineers involved with the GSS asset library, the rules were 
perceived to be intuitive in the sense that they express the 
fact that “more complicated things are more likely to cost 
more to correct.” Moreover, the rules formalize the 
characteristics of the more complicated component versions. 

The three rules can be used as maximal thresholds when 
developing new components. In some cases, there may be 
good design reasons for a component to exceed the 
threshold(s). Therefore the rules ought not be interpreted as 
strictly proscriptive. If a new component matches one or 
more of the rules, then the developer can decide whether it 
needs to be changed to reduce its potential for being 
associated with an error that is costly to isolate and correct. 

Figure 8 shows the 3 internal product metrics that were 
found useful in developing this model. These 3 metrics were 
automatically selected by C4.5 from the set of metrics 
provided by Amadeus. 

Correctness 76% (31/41) 

Completeness 72% (3 l/43) 

Figure 6: Correctness and completeness results for the 

prediction model. 

Rule(s) Accuracy 

FunctionCalls > 38 100% 

Declarationstatements > 59 90% 

ProgrammerExceptionsUsed > 2 83% 

Figure 7: Proscriptive coding rules and their accuracy. 

Metric Name 

FunctionCalls 

DeclarationStatement 

Brief Description 

The number of function calls. 

The number of declaration 

statements, including those 

with and without initialization. 

ProgrammerExceptionsUsed The number of exceptions used 
in the file. 

Figure 8: Description of the metrics that were found useful 

for building the model. 

The proscriptive guidelines provided in Figure 7 were found 
from error data for a specific reusable components library. 
Caution should be exercised in attempting to generalize 
these rules beyond this context and applying them in a 
different environment. The overall approach we have used, 
however, can easily be generalized to other contexts. For 
example, after collecting the appropriate data, another 
organization could develop models for prediction and for 
producing coding guidelines to manage and reduce rework 
effort. 

CONCLUSIONS 

In this paper we reported on a study to model and understand 
the cost of rework in a library of reusable software 
components. We described how rework costs are distributed 
during the error correction process, and developed a model 
to predict the component versions that are associated with 
errors that are costly to rework. The model was also used to 
develop proscriptive coding rules that can be used by 
programmers as guidelines to reduce the cost of rework in 
the future. 

Extensions of this work would include developing models 
for predicting components that have a high risk of faults (to 
help managers focus testing and inspections) and that can 
also be used to provide guidelines to programmers. We have 
used a specific set of internal product metrics for developing 
the model. These metrics tended to be counts of elements of 
a component. A different set of metrics that better 
characterize the structure and design of components may 
improve the predictive quality of the model, and also would 
provide guidelines for improving design practices. 
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Furthermore, it would be informative to compare models 
where cost of rework is the dependent variable with models 
where risk of fault is the dependent variable to determine if 
the derived guidelines from the two models are 
complementary or contradictory. 
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