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ABSTRACT

Modern day datacenters host hundreds of thousands of sehatr
coordinate tasks in order to deliver highly available claoodhput-
ing services. These servers consist of multiple hard disksnory
modules, network cards, processors etc., each of whiclewhile-
fully engineered are capable of failing. While the probiapibf
seeing any such failure in the lifetime (typically 3-5 yeartndus-
try) of a server can be somewhat small, these numbers getimagn
fied across all devices hosted in a datacenter. At such adasde,
hardware component failure is the norm rather than an eixcept

Hardware failure can lead to a degradation in performance to
end-users and can result in losses to the business. A souled-un
standing of the numbers as well as the causes behind thased$ai
helps improve operational experience by not only allowisgta
be better equipped to tolerate failures but also to bringrdive
hardware cost through engineering, directly leading tovingeor
the company. To the best of our knowledge, this paper is the fir
attempt to study server failures and hardware repairs fgeldata-
centers. We present a detailed analysis of failure chaisiits as
well as a preliminary analysis on failure predictors. We éntipat
the results presented in this paper will serve as motivatidoster
further research in this area.

ACM Categories & Subject Descriptors: C.4 [Performance of
systems]: Reliability, availability, and serviceability

General Terms: Measurement, Reliability

Keywords: datacenter, failures

1. INTRODUCTION

hard disks, memory modules, network cards, processorseeith
of which while carefully engineered are capable of failiMghile
the probability of seeing any such event in the lifetime igafly
3-5 years in industry) of a server can be somewhat smallsacro
all machineg hosted in the datacenter, the number of components
that could fail at any given instant is daunting. At such a@dar
scale, hardware component failure is the norm rather thagxan
ception [4].

Hardware failure can lead to a degradation in performance to
end-users due to service unavailability [6] and can resulb$ses
to the business, both in immediate revenue [20] as well ag-lon
term reputation [16]. The first impact of this is that it putsia-
creased onus on the software stack via added complexityefalr d
ing with frequent hardware failures [14]. Even without nej¢o
the increases in complexity of software [9], diagnosing sewic-
ing these faults, deemed important to DC operation inceetis®
operational expenditure (OPEX) [4]. A sound understandiittye
number of failures as well as the causes behind them helps im-
prove operational experience by not only allowing us to bitebe
equipped to tolerate failures but also bring down the hardwast
through engineering. Further, if we develop a model thaivadl
us to proactively predict failures, this can lead to movirgykload
and data off of such a server in time to avoid any possibleicerv
disruption.

Consider an alternate model of building datacenters by -pack
ing servers in a serviceless module, e.g., a container [14.
these carefully engineered modules would contain redunzkats
to cope with hardware failure it is imperative to know relaty ac-
curate failure characteristics to avoid overprovisionifidhus, we
would not only want to know the reliability of individual cqro-
nents in order to lower the cost of running cloud computing

n

Modern day datacenters (DC) host hundreds of thousands offrastructures, but we would, in fact, like to evolve a congise

servers [3] networked via hundreds of switches/routers ¢ben-
municate with each other to coordinate tasks in order toveieli
highly available cloud computing services.

Unfortunately, due to economic pressures the infrastradtuat
these services run on are built from commodity componerits [8
As a result, the hardware is exposed to a scale and condttiahs
it was not orignially designed for. The servers consist oftiple
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reliability model so that we can use it to better design fertin-
frastructures. Such a hierarchical reliability model vebbklp us
analyse the impact of whole DC failures, individual rack onc
tainer/pod failures, server failures, networking equiptmilure
as well as individual component failure. This paper focusesne
part of the puzzle, understanding server failures.

The failures that we observe are a complex function of a large
number of variables, viz., manufacturing process, deptaynen-
vironment conditions, workload etc., analogous to a randgper-
iment. In this paper we aim to establish sound observatioriset
outcome of such an experiment. In doing so we build upon tecen
large scale studies on hard disk [15, 17] and memory modilte fa
ure characteristics [18]. While these recent efforts haori$sed
on detailed analysis of component failures, in this papemigh
to tie together component failure patterns to arrive atesefiailure

1we use the terms machine and server interchangeably inghisp



rates for datacenters. As a first step this can be used byraczde  cpu, memory load etc. One of the main challenges we face is to
to model a large number of design solutions [19, 7, 12, 1].ddfi-a combine together disparate data sources that were ofligmabnt

tion this is the first step to begin reasoning about the caosikeisd for a different purpose and naturally had varying levelsnopor-
these observations. While we also present a preliminarlysisa tance to detailed and accurate logging of the fields that mast
on predicting failures, the main aim of this paper is to chemaze interest to us. Furthermore, with organizational changiesdomes
the faults seen in large cloud computing infrastructures. ifdke difficult to track the original owner of the data source inea
the following four important contributions towards thatdjo discrepancies. In particular there are three sources afttat is of
interest to us and we describe them next.
e This paper is the first attempt to characterize server 8lur  The first piece of data is the inventory of machines. This con-

for large data centers. We present a detailed analysislef fai - ains a variety of information regarding the servers thatesed for
ure characteristics and explore the relationship between t  ¢|qyq computing. This includes a unique serial number tatiéle
failures a_nd a large number of fac_tors,_ for instance, age of 5 server, date when an operating system was installed opters
the machine, the number of hard disks it has, etc. the datacenter where this server is located and what rolenthe
chine is commissioned for. There are over 50 fields and thvasgi
us rich statistical variables to mine for and we describg Idtier in
the paper. We use the serial number as a unique identifiehéor t
machine id.

e We perform the first predictive exploration in a datacersert 1 he next piece of information that is critical is the hardevae-
mine for factors that explain the reason behind failures. We Placements that take place. This data is maintained separahis

find, for instance, that the datacenter where a serverisddca IS part of the trouble tickets that are filed for hardware decits.
is a great indicator of failures and so is the manufacturer. ~ Each ticket has a variety of other information including tee

when a fault was recorded and ticket was filed, when was it ser-
e We show empirically that the reliability of machines that viced and what server does that correspond to. It also has-inf
have already seen a hardware failure in the past is completel mation on how the fault was fixed i.e. replacing a disk etc. [&/hi
different than those of servers that have not seen any suchthere are a variety of fields present, a few key fields are nggsio.
event. For instance, if a hard disk was replaced in a RAID-6 arragreh
is no information maintained on which of the 6 hard-disks veas
Section 2 describes how we gather and analyse the dataselts us placed. Often details about the hard-disk itself are nontaaied,
in this study. We begin (Section 3) by describing how we de- for instance, SATA vs. SAS. Furthermore, we do not know if re-

e This is the first work to quantify the relationship between
successive failures on the same machine. We find that the
empirical data fits an inverse function with high significanc

tect hardware faults along with the high-level charactiessof the placing the hardware actually fixes the problem. It is pdeditat
hardware failures and the associated cost of servicing .thé/@ a failure elsewhere in the system was raising false alaratdehad
then present a preliminary analysis (Section 4) of variaesip- us to replacing the wrong piece of hardware. In this papernee a
tion techniques to explain observed failure charactessitn our however, interested in first establishing quantitativaly hardware
datacenters. We then follow it up with a deSCfiption of redatvork rep|acements for our cloud Computing infrastructure. |gmng
(Section 5) before concluding (Section 6). work we are developing models to understand how multiple-har
ware replacements may in fact correspond to a common "fault”
2. DATACENTER CHARACTERIZATION The reader may note that owing to possible human error indeco

ing failure events, we may underrepresent the total setroftere

replacements in our infrastructure. Thus any correspondost

estimate provided in this paper will be a lower bound on thaalc

cost. Similarly, replacing a hardware component does natayu

tee that it is indeed a hardware failure. We rely on detailied-d

nostics to declare whether a hardware component is no Iditger

be under deployment in our servers. Thus, we use the woldsfai

and repair event interchangeably, similar to other rebeasd17].
Using the above piece of data we can calculate the total numbe

of hardware replacements seen in a given time on a givenrserve

2.1 Data Sources and Problem Scope We can also understand patterns of failure/repair eventsharel-

Ideally we would have access to detailed logs corresporiing gg\t/: ;roequrléggcgrgcsrgllssngtlfgenrggt ﬁi?ﬂﬁgzzl;féngi\ﬁv:\?ﬁg?
every hardware repair incident during the lifetime of thevees. S 9 .

L individual components. In order to calculate that, idealéywould

We would also know when the servers were comissioned and de-Iike to track the life span of individual components i.e.rdheisks

comissioned. However, without the proven need for suchilddta P P o !

| . - ) memory modules etc. However, that is not available and we nee
0gging no such database exists. Thus, in the absence we t@so an alternate method. We can get information about the caafigu
combining multiple data sources to glean as much informadi® ; 9 9

we can. tion of machines, for instance, the number of hard-disksnorg

The data sources used in this study were originally put ioela modules etc. from a third data source. In this data sourde@an-

with a separate goal and were not necessarily aimed at precis \F/)v%r:gtit(ies.g.lyazg(rjd \(/j\'/:kashea;; tsc()elré)a:)l_slgl aE?]c?er:’satZi?thﬁ?drﬂdi
tracking of each of the quantities we are interested in. Assalt P : y goral

there is no single piece of database that tracks multipletéies gg?aﬁ{ageilﬁpo?qn?;t?gr]lebr-{?#:lsztr\t/glrs ﬁg'gg;ﬁ? E?gﬂvz)zo%hﬁﬁ_bm
of interest, i.e., the inventory of machines and their uaigls, the ware events that are recorded ove,r time 9 '
composition of machines (number of hard disks, memory mexdul There are numerous challenges with.the coverage of machines
etc.), trouble tickets, hardware repairs, temperatureotimer envi- 9es 9 i

: o and the accuracy of the data. For instance, there are rejsatial
ronmental metrics, performance numbers for the serveudig

We begin by describing the nature of hardware found in datace

ters. While we have made no attempt to handpick a particateof]

of machines either by composition or by use, we have no mefans o
either verifying or guaranteeing that the characteristiescribed
next are either typical or representative of datacentessndiere.
Such studies while important, can only be done by eitheaboH
rating with hardware vendors (something we are explorinthe
future) or by subjecting identical workloads to varying dénof
hardware (something we do not practice currently).
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Figure 1: Age profile of servers.

numbers, etc. that are mostly due to human error that careot b
avoided. However, we try our best to present data that isilyeav
sanitized by careful human intervention and interpretatib the
raw data. In doing so we restrict out dataset to a smaller lmuem
consistent size and report our findings below. Finally, tdta is
only available for a 14 month period. In the future we are lngk

to extend this dataset. However, to the best of our knowletije

is the first study that looks at such a large number of servers i
production use and tries to understand the reliability ofeses.

Our data does not contain sufficient information to help us un
derstand single points of failures for entire racks or daiéers. In
this study, we focus on server reliability and the factoe tiffect
it. In an ongoing effort we are building a whole datacentdiare
bility model. Every repair of a hardware incident contribtd the
OPEX, thus, understanding server reliability is importahiow-
ever, that in itself is only meaningful for current dataegrapera-
tions. What if we are interested in cloud computing infrastures
of the future and as part of that are trying to decide how tadbui
servers? We would like to know what components to pick todbuil
that. Thus, we would like to understand the failure pattésnsach
component. Of course, deriving this from an existing openai
infrastructure implies that we are ignoring any dependendNev-
ertheless, in this work our aim, as mentioned earlier, isriivex
at a first cut at the repair numbers and in ongoing and subseque
efforts to mine the root causes within.

2.2 Server Inventory

Here we describe the configuration and nature of machinas use
in the dataset. The description includes various factocsiathe
machines, including their age profile, configuration etc.otder
to maintain privacy, data is normalized wherever approridhe
goal of this section is to present enough details to allownafsci-
entific comparison of analogous results against other efstalsat
the reader may have access to. We also hope that it will serae a
model to base academic studies on.

e Subset of machines.
We have details on part replacement for over 100,000 servers
(exact number withheld). This includes details, for insign
when a hard disk was issued a ticket for replacement, and
when was it replaced and the details of the server correspond
ing to it. The collection of servers span multiple datacente
in different countries (and continents).
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Figure 2: Disk profile of servers.

Age profile of machines.

The age of the machine when a fault/repair happened is of
interest to us. The age can be calculated on any given day
and we report the age of the server (in years) at the begin-
ning of our database period as shown in Figure 1. The X-
axis shows the age in years and for each such age group, the
Y-axis shows the percentage of servers that fall into thiat ca
egory. Around 90% of the machines are less than 4 years
old. This is in accordance with the company policy of re-
tiring machines at the end of 3 years. However, we do find
machines that are, for instance, 9 years%ld

Machine configuration.

We next describe the composition of these servers. On an
average there are 4 disks per server. However, there is a huge
variation as shown in Figure 2. 60% of the servers have only
1 disk. However, 20% of the servers have more than 4 disks
each. We also calculated the profile of number of memory
modules in a server and the results are shown in Figure 3.
Average number of memory modules per server is around 5.
As we can see, a majority of servers have 4 modules. But
there are servers with over 16 modules too.

3. CHARACTERIZING FAULTS

As mentioned earlier, there is no easy way to know when a fault
occured. However, we do track when a repair event takes place
and a ticket is filed. Since tracking of tickets and sendingqe-
nel/administrators to fix the fault contributes to the OPE&ain be
used as a good substitute. Please note, as mentioned,dhdten
the current work we are interesting in quantifying the nundoed
types of hardware repair events. Arriving at detailed exalt@n
behind the cause of these failures is part of an ongoingtefftius,

a faulty RAID controller, that manifests itself as multipiard disk
faults will be counted as multiple hard disk failures in ourrent
work, where the focus is on understanding how much money we
spent in repairing hardware faults.

3.1 Identifying Failures

We begin by describing the total set of repair events thatave s
in the 14 month period across our set of machines. To preseatae

2Due to regular purchase as well as retirement of serversyéph
does not look much different when computed at the middle dls we
as end of the database period.
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Figure 3: Memory module profile of servers.

privacy, all numbers reported from henceforth, will be nalized
to 100 servers. We next describe the number of hardwaresfault
the servers they were incident on etc., all after applyirggsame
scale-down factor, i.e., by scaling down the reported \sla® a
percentage (i.e., over 100).

We saw a total of 20 replacements in the 14 month period. How-
ever, these replacements were all contained in around ingsch
9 machine failures in 14 months translates to an annuaréaikte
(AFR) of around 8%. Let us now consider only the subset of ma-
chines that saw at least 1 repair. The average number of seggan
by a repaired machine is 2 (not shown here). Thus, 92% of the ma
chines do not see any repair event but for the remaining meshi
(8%) the average number of repairs per machine is 2. Figure 4
shows the distribution of the percentage of servers agaigsten
number of repairs. Thus, over 50% of the repaired serversxsee
actly 1 repair. The "knee” of the curve is around 3, thus, 85% o
the repaired servers see less than 4 repairs.

3.1.1 Cost of these faults

Here we examine the cost of machine failures and hardware re-

pairs. The first cost is the associated downtime of the mashiim
addition it costs the IT ticketing system to send a technitiathe
fault site to perform a repair operation. Finally, hardwesgpairs
cost in terms of the hardware component being repaireaicepl
Assuming the same numbers that Google reported [4] whele eac
repair costs $100 for the technician’s time and 10% of theeser
cost ($2000) we arrive at a repair cost of $300. Given an AFR of
8% this amounts to close to 2.5 million dollars for 100,00(veEs.
It is important to know the relative reliability of differéavailable
choices to order from a catalogue. For instance, at $300=p&ir
in 6 repairs the cost of repairs is already close to that afpasing
new hardware. Such considerations require a sound unddiisga
of the failure characteristics, the focus of this paper.

3.2 Classifying Failures

Of these replacements/faults, a majority (78%) were fodhar
disks, followed by a few (5%) due to raid controller and evendr
(3%) due to memory. However, 13% of all replacements came
from a collection of all other components with no single camgnt
dominating. Thus, we can cut down substantially on the nurabe
failures by improving the reliability of hard disks However, once

3Assuming independent failures in different components.
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Figure 4: Distribution of repairs per server.

we do that there is no single component that dominates iaréil
rate.

The above analysis calculates the frequently failed corapisn
and the cause for hardware repair. This analysis is helpfcaicu-
lating the money spent in repairing hardware as well as aqpiat-
ing availability by calculating the associated downtime. dtet us
revisit the serviceless datacenter model once again. smtbidel,
as soon as any hardware component in a server fails, we declar
the server as "dead”. In order to understand the resultitpitty
of the server with this assumption, we need to look at exgstiata
in a new fashion. Instead of counting all hardware fault bgiog
to a machine we now only look for the first hardware fault tisat i
incident on a server. We use this to understand what componen
triggers the first hardware fault on a server. An analysiklgiéhe
following results. 70% of all server failures is due to haiskd, 6%
due to RAID controller and 5% due to memory and the rest (18%)
due to other factors.

Thus, hard disks are the not only the most replaced com-
ponent, they are also the most dominant reason behind server
failure.

If we look at the total number of components of each type, i.e.
disk, memory, RAID etc. and look at the total number of faglof
the corresponding type, we can get an estimate of the compone
failure rate. Using this technique we arrive at the follogvfigures.
2.7% of all disks are replaced each year. This number is j@80
for raid controllers and only 0.1% for memory, If we consi@dr
other components in an aggregate "other” category, thefatluee
rate for those components is 2.4%. Note however, that thists
an approximation. We do not know, for instance, that whicthef
many different hard disks in a RAID array fail. We arrive atsk
numbers by dividing the total number of replacements withtth
tal number of components. This can result in double courdisks
in a RAID array. Thus, the values reported here are an upperdo
on individual component failure rate. If multiple repairess hap-
pen to be for the same disk ("logical") then the actual corepon
failure rate will be lower than what we observe above. Howeve
please note that this would still lead us to a correct catmnzof
the administrative overhead in repairing these macHines

Given that hard disks are the number one failing component we
decided to investigate its failure characteristics furtivge looked
at clusters® of servers. For each of those, we calculated the total
number of servers that saw at least one disk related repait @v

4Assuming the current service model. Results will be differié
we consider a serviceless DC model [19]

5A cluster here refers to a logical set of servers put to simila
tasks/workloads but not necessarily similar in configoratr even
geographical location.
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the 14 month period. This percentage was significantly haglife
top 5 properties (i.e. largest sized clusters), between dd8®5%
of all servers see at least 1 disk event in the given periodsfmavn
here). Note that this is higher than the aggregate failusswa saw
earlier, i.e. 8%.

We calculate the age at which a disk failure occured and the ag
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Figure 6: Number of repairs against age in weeks.

that, with age, failures grow almost exponentially and théer a
certain saturation phase grow at a constant rate, eventapkring
off. Young disks

We note that the overall disk failure ratio (averaged ovisealvers)
is 25%, very close to the aggregate disk failure ratio G2 seen

gregate results are shown as a histogram in Figure 5. Here theearlier. This is unlike the observation that Schoreder 3]

X-axis shows the age of the server (in years) when a hard diksk f
and the Y-axis shows the percentage of servers that seewadrard
failure at a given age. Thus, there are very few (5%) youngessr
(<1 years) that see any disk failure. The number jumps slightly
higher (12%) as the machines are slightly old, i.e., 1 yedr Bi-
nally, 25% of the machines that see a hard-disk fail are at [2a
years old. Please note, however, that due to lack of sufflgide-
tailed data, we cannot use this figure to calculate the faitate
at different ages of a hard disk. In the next section we widl as
alternate technique to closely monitor all hardware eveotsiring
on a server.

3.3 Young Servers

One limitation of our dataset is that it is a 14 month slicernmet
of hardware repair events as opposed to the entire lifetifribeo
servers. Thus, there is no direct way of knowing all the nesgidiat
happened to the machines prior to day 1 of our dataset. Slypila
we do not know the fate of the servers beyond the 14 month win-
dow we are observing. One approach is to do a detailed anfilicare
modeling exercise to understand the failure trends beybad 4
month period. Owing to the inherent inaccuracies that miigino-
duce in addition to the complexity in the first place we sugges
alternate mechanism. We focus on those machines that have be
brought online or put into production during the 14 monthiqur
This ensures that we will be able to track all hardware repair
these machines.

We show the cumulative number of failures that the servess se
as a function of age (in weeks) in Figure 6. The Y-axis has been
omitted to maintain data privacy. As can be seen, the S-asrve
a great fit (theR? value for the fit was ®73). R? is a measure
of variance in the dependent variable that is accountedyfdhé
model built using the predictors [13]. In other word,is a mea-
sure of the fit for the given data set. (It cannot be interprete
the quality of the dataset to make future predictions). TieenSe
has the following characteristic: in initial stage of grbwit is ap-
proximately exponential; and then, as saturation bediesgtowth
slows, eventually remaining constant. This in our contedtdates

made, where they found steadily increasing failure ratesif ds a
function of age. However, we do not have fine-grained datéboana
gous to them in order to do a complete comparison.

Memory modules
We also looked at the reliability of memory modules (DIMM).
DIMMs showed a very small failure ratec0.03% AFR) in the first
year. When we looked at all servers the CFR for DIMMs was still
low (0.1%). Schroeder et. al [18] observe a much higher peage
of uncorrectable errors (1-4%) in their infrastructure wdwer, we
have no easy way of mapping uncorrectable errors to theidecis
of when a memory module is replaced.

RAID controllers
RAID controllers showed a higher failure rate than memorydmo
ules. For overall RAID controllers the failure rate was 0.A%R
and for newer RAID controllers{ 3 months) the number was close
to 0.3%. Thus, similar to aggregate results shown earli&iDR
controller is a frequently failing component in servers.islis the
first paper to identify RAID controller as a significant cabtitor
to DC hardware failure.

We draw the following conclusions from these result&rst,
hard disks are the number one failing component with an AER fo
2.7%. This percentage remains constant even for relativ@iynger
disks when viewed at an yearly granularity. The next major un
reliabile component is RAID controller. However, the aggte
category of failures, i.e., one that cannot be attributecty sin-
gle kind of component is dominant after hard diskite that all
these observations are empirical. In the next section veengit to
understand some of the reasons behind it.

3.4 Classification Trees

We attempt other techniques to explore more structuresen th
failure pattern. Figure 7 shows the results of a classificatiee
experiment on the entire population of several thousandddaft
IT servers. The goal of our statistical experiment was to explore if

6We did not observe any dominant predictor/factors wheroperf
ing the analysis with the aggregate set of machines
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Figure 7: Classification tree for failures in MSIT servers.

failures (any type of failure indicated by a trouble ticketuld be
predicted using metrics collected from the environmengrafion
and design of the servers in the datacenters. For this peikpesise
several metrics some of which are: environment (dataceatee,
manufacturer, location time zone etc.), design (humberisisd
memory capacity, slots, Free virtual memory, Free physitain-
ory etc.) and operation metrics (last OS install date, OSiver
last updated time etc.). Amongst all these metrie50) we build
a decision tree using CHAID (CHi-squared Automatic Intéiac
Detector) methodology [10] for adding factors to the tressgad on
adjusted significance testing) in order to terminate the orey as
far as the elements added to the tree are statisticallyfisigni.

4. FAILURE PATTERNS

We have so far seen various trends in hardware failures &t tr
to establish some patterns. In this section we examine a @umb
of different predictors for failures. While the experimerso far
were helpful in understanding high-level trends in faituredid
not yield any model or insights that we can use to understaed t
root cause behind failures. Furthermore, the results ptedehus
far, while educative and informative, are not in a formatt tben
be easily abstracted to carry out further studies by asgufailure
distributions etc. In this section we perform, what we bedids the
first such predictive analysis on hardware faults in suchgelacale
infrastructure. While we leave a more detailed predictel@bility

We obtain two factors namely: Datacenter name and manufac- modeling effort for future work our aim in this section is todikey

turer name. The datacenter name is an interesting resutt r&s i
cent times as there has been research on studying the enginbn
of various datacenters, the actual datacenter in whichatheé is
located could have an important role to play in the religpiif the
system. The manufacturer is also an interesting resultfiesatit
hardware vendors have different inherent reliability esl@associ-
ated with them (the names are intentionally anonymized)es€h
results to the best of our knowledge are the first in the fielaht-
lyze, observe and predict failures using a wide variety chAsnees
primarily with the goal of understanding the most domingfiac-
tors in terms of understanding failures from a statistiease. We
do not imply its use to build prediction models to replacediare
servers of a particular kind or move all datacenters to ongcpéar
location. Itis purely to understand the dominating factoflsienc-
ing (or not influencing) failures.

The age of the server, the configuration of the server, tregimc
of the server within a rack,workload run on the machine, none of
these were found to be a significant indicator of failures.

“owing to temperature/humidity gradient within rack we ntigh
have expected different failure characteristics

indicators of failures as well as fit the failure charactasto well-
known distributions to observe patterns.

4.1 Repaired Servers

We examine the behavior of machines once a hardware failure
happens. The hypothesis is that machines that have seeasat le
1 hardware incident in the past may have a different behandr
fate than the machines that do not see any hardware faiheeshy
allowing us to observe an underlying structure. ldentidysuch
properties will greatly affect our choice of actions uporeisg
hardware faults, for instance, whether or not to repair teém

In order to understand the repair probability of machineuse
the following metric, repairs per machine (RPM). We arrivéhis
by dividing the total number of repairs by the total numbenat-
chines. We group machines based on the number of hard disks
they contain. We then look for strong indicators of failuagerin
the number of server, the average age as well as number of hard
disks. We plot the RPM as a function of the number of disks in
a server in Figure 8. The X-axis shows the number of disks per
server in each group of servers. The left X-axis shows the RPM
values for each group of machines. For instance, when wedbok
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Figure 8: Repairs per machine as a function of number of disksThis includes all machines, not just those that were repagd.

all machines with 9 disks each, the average number of repairs
machine is 1.5 (diamonds off left Y-axis). Also, the average
of 9-disk machines (squares off left Y-axis) is just undereang.
Finally, the total number of machines in the cluster (noireal to
1 by dividing by the total number of machines across all €t
is shown with circles corresponding to the Y-axis on the trigh
quick glance at the graph indicates that neither numbersékdier
machine, nor the age of the server is a good indicator of thaeu
of repair events per machine. This is consistent with theésaet
tree experiment described in the previous section (Sestidn

We next divide the set of machine into two groups. Those that
see at least 1 hardware incident and those who do not. We then
discard the machines that do not see any hardware incidétheO
machines that see at least 1 hardware incident we again derttau
RPM. Note, that by definition, each group of machines willdam
RPM of at least 1 (we are only including machines that seesat le
1 hardware incident). The results are shown in Figure 9. Goenp
this to the RPM values when all machines were put into onegrou
in Figure 8. There is a clear emergence of some structure @nd p
tern. First observation is that there is no trend betweeragfgeof
the servers and how many repairs it sees. However, if we lbok a
RPM values then they are clustered into two groups. Consililer
clusters of machines, except for 13 and 25 disk machinesofAll
these can be fit into a straight line as shown in the figure, with
good fit (R2 > 0.9). Thus, we can predict, for this group, the num-
ber of repairs per machine with high confidence, by just kngwi
the number of disks in the machine, and more importantlg- irr
spective of the age of the machine.

We next investigate why the other two points (corresponding
13 and 25 disk machines) do not follow the same curve.

e SAS vs. SATA One possibility is that the disks on the right

disk. Basically we can tell SAS vs. SATA by the disk ca-
pacities. A SAS disk is more expensive than a SATA disk.
As a result, it is used where performance and not storage is
important. Thus, we would expect the average disk capacity
of SAS disks to be lower than that of SATA disks. Having
resolved this, we return to our original hypothesis of the 13
and 25 disks being SAS and the others being SATA. If this
is true then we should be able to observe the corresponding
difference in the disk capacities. However, as can been seen
in Figure 10 there is no clear demarcation in the average disk
capacities for the 13 and 25 disk machines (shown via tri-
angles off the right Y-axis, normalized to 1). This rules out
SAS vs. SATA as a possible explanation for the cause.

Improved technology. From Figure 9 we can see that the 13
and 25 disk machines have an average age (shown by squares
off the right Y-axis) lower than those of other clustets 2
years). Itis possible that being newer disks, they have gone
through a technology change resulting in higher reliapilit

It is also possible that in the initial period of deploymemé t
failure rate is different than when the machine gets old.[17]
If we had data beyond the 14 month period we could have
observed the fate of these machines to verify this hypathesi
There might be other factors beyond our understanding i.e.,
datacenter, disk controller, vibrations and close packiag
might result in different reliability characteristics. dngoing
work we are investigating possible causes for this.

In summary, we make the following two observatioRBstly, there
is some structure present in the failure characteristicsefvers
that have already seen some failure event in the past. Thate i
such obvious pattern in the aggregate set of machines. 8etion

are SAS and the other are SATA. Ideally, such information number of repairs on a machine shows a very strong corraiatio
would be recorded along with the inventory data in the datase the number of disks the machine h@bis might be intuitive given
making our task easier. Unfortunately, this information is that hard-disk is the number one failing component, howewver

not tracked in our database. Thus, we resort to the follow- facts make this observation interesting and worthy of frthves-
ing alternate mechanism to guess the technology of the hard tigation. First, no such obvious relationship exists indlggregate
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Figure 9: Repairs per machine as a function of number of disksThis is only for machines that saw at least 1 repair event.
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set of machines. It was only observed in machines that had@jr
seen a failure in the past. Second, the fit is remarkably gatdd w
anR? of greater that 0.9.

4.2 Successive Failures

The previous section established that machines that havease
failure in the past have some inherent structure about dufit-
ures. In this section we explore that relationship furthée begin
by analysing how often do repairs happen on the same machine.
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Figure 11: Distribution of days between successive failugefits
the inverse curve very well.

Recall from Section 2.2 that after normalizing the servamtdto
100) we found that out of 100 servers, around 9 servers sek a fa
ure in 14 months. In terms of total number of failures theresngd
failiures. We also know that around 5 machines failed onlgeon

Thus, around 4 machines had more than 1 failure in the 14 month

period. Let us examine these 4 machines and the 11 failuegs th
see in repeat failures, more closely next. We calculateithe to
next failure (not shown here) and observe that 2 of thoseatepe
failures happen within the same day. At the other extremsgime
cases the repeat event can happen after over an year. Phgranot
way, 20% of all repeat failures happen within a day of the fait
ure, and 50% of all repeat failures happen within 2 weeks ef th
first failure.

Table 1: R? values for various statistical curves fit against days
between successive failures on the same machine.

| ModelFit | R® |
Linear 0.178
Logarithmic | 0.474
Inverse 0.974
Quadratic | 0.292
Cubic 0.389
Compund | 0.822
Power 0.771
S 0.309
Growth 0.822
Exponential | 0.822

might be due to the interaction of various factors beyondomun-
trol. This result serves as further motivation for resedrckhis
field.

5. RELATED WORK

In this paper we analyzed the hardware reliability for a darg
cloud computing infrastructure. To the best of our knowkedyis
is the first, research paper describing and analyzing séawéts
at such a large scale. There have been a number of recertseffor
to understand the reliability of subsets of computing istfiractures

In Figure 11 we plot the days between successive failures andand we acknowledge them below. Most of them however, have
the number of times the second repair happened in the specifie been around understanding the failure characteristicsddfidual

days between failures. The Y-axis has been omitted to mainta
data privacy. However, as can ben seen qualitatively, highe
values towards the left of the graph suggests that a lot afessive
failure events happen within a short span of the previoudvnare
failure on the same server. Using this large sample of fitlata
we analyze if there exists a statistical relationship betwi&e days
between successive failures and the number of times thendeco
repair happened. From an exploratory standpoint we fit af¢eho
standard statistical models. The goodness off) ©f these ten
statistical models is shown in Table 1.

The Inverse model has the ba®? value (represented in Fig-
ure 11 by a solid line). The general form of the inverse eguat
represented by

Cc2
Cl+ —
+N

D =
whereD is the days between successive failu@s,andC2 are
constants, andll is the number times of second repair. The Inverse
equation has a general property of diminishing returnsjnverse
equations observe the flat tail of the curve. TRfeof the model
indicates the efficacy of the fit of the model to describe thesdiee-
tween failuresTo the best of our knowledge our paper is the first to
systematically and statistically study the relationshigtvibeen suc-
cessive failures and the number of times the second repairsc
within the time period An important point we would like to make
is that the above results due to the inverse equation fit diestive
of the existing dataset and not about future predictionsil&\this
would be a great starting point to model failures we feel itlgde
unwise to use these models to predict the days betweendsiag
we do not yet understand in detail the reasons for such agstesn
lationship. We have quantified the final result (i.e. faif)reshich

components and not whole server reliability.

Google recently published [18] the largest study on memargi-m
ules. They found that 8% of all modules have correctablegand
the number of correctable errors per DIMM could be close @040
per year. They found no correlation of errors to manufactireey
also found that temperature has a very small effect on eatesy
which tend to be dominated by hard errors. The number of uncor
rectable errors was 1.3% per year for few machines and upto 4%
for others. Unfortunately, our current dataset containsyfarma-
tion on correctable or uncorrectable errors, although weéralck
when the module was replaced. This is typically after a faimn
ber of errors have already been seen by the server diaggnostic
practice, we observe a DIMM replacement value of 0.1% wksch i
significantly smaller than the number of uncorrectablersrnoted
by Google in their infrastructure. This leads to an inténestlis-
cussion of what denotes a fault and when should repairdydeéie
place, but that is outside the scope of the current paper.

In a keynote talk [5] at the 3rd ACM SIGOPS International Work
shop on Large Scale Distributed Systems and Middleware (ISAD
Jefferey Dean presented numbers and experiences fromnguitna
Google infrastructure. He observed that disk AFR is in theyea
1-5% and server crash is in the range 2 to 4%. Disk AFR is in
the same range as what we observe, i.e. 2.7%. We do not have
access to server crashes for the machines used in this bioly,
ever, the reader may note that we observe a server faillzeofat
8%. He also mentioned other single points of failure in theada
center infrastructure including PDUs, switches etc. Iis théper
we only try to understand failure characteristics of sesv@&uild-
ing a whole datacenter reliability model consisting of dltleese
components is part of an ongoing effort. Google has alsasel®
a book [4] explaining how to build a datacenter. They clasgiéll
faults and found that software related errors are around R$%



lowed by configuration faults around 30%. Human and netwxarki
related errors are 11% each and hardware errors are les$@b@n
Schroeder et. al analyze [17] disk replacement logs frogelar
production systems and report on the failure rate and caertpat
to vendor advertised values. They find huge differences fibien

derstand the hardware reliability for large cloud compgiinfras-
tructures. We find that (similar to others) hard disks arentimaber
one replaced components, not just because it is the mosnhdaini
component but also because it is one of the least reliablefindfe
that 8% of all servers can expect to see at least 1 hardwdadeiric

advertised 0.88% AFR. They see upwards of 1%, 2-4% at times in a given year and that this number is higher for machinels lots
and upto 13% in instances. Our reported values are in the sameof hard disks. We can approximate the IT cost due to hardveare r

range as quoted in their paper. We observe higher failugeinat
servers that host a large number of disks (not shown heregdy Th
observe early onset of wear out in failure rates. They aldandt
see any huge difference in failure of SCSI, SATA, and FC drive
This result again, is similar in vein to the results we saw iig- F

pair for a mega datacenter (100,000 servers) to be over a million
dollars.

Furthermore, upon seeing a failure, the chances of seeathemn
failure on the same server is high. We find that the distrdsutf
successive failure on a machine fits an inverse curve. Otialini

ure 10. They also observed that the time between replacementhypothesis is that upon seeing a failure the machine makeassit

shows significant correlation, including autocorrelataomd LRD
(long-range-dependence). In our study we find that therfailate
of disks in the first year is very close to the failure rate for &ig-
gregate set of machines where significant machines coulghtoe u
3 years old. For successive repairs we observe that emplaca
fits the inverse curve very well.

Another study on disk reliability was performed by Pinhesto
al [15]. They find that disk reliability ranges from 1.7% t®%o.
They find that temperature and utilization have low corfetato
failures. However, SMART counters correlate well, for arste,
scrub errors. In our current study we do not correlate SMART
counters, however, we too found that environmental cooitivere
not a great indicator of faults. Instead, we found that datgar lo-
cation and manufacturer were the dominant indicators.

Weihand et. al look at support logs from around 40,000 cormmer
cially deployed storage systems that have around 1.8 mitlisks
to determine the root cause behind storage system faildrds [
Their conclusion is that disk failure rate is not indicatofestorage
subsystem failure rate. Our current work focuses on congone
failure rate as well as server failure rate. In the future veel@ok-
ing at incorporating this analysis into our framework. Tlago
found that as disk capacity increases, there is no real es#def
higher failure rates. This is consistent with the resulesspnt in
Figure 10. They found many bursty errors suggesting thattRAI
like solutions might have seen the end-of-the day and beibelels
that do not assume independence are warranted. In ongoirig wo
we are working on correlating RAID failures and hard diskufias
co-incident on the same server to build sound models to peiir
this direction.

Bairavasundram et. al [2] analyze latent errors (undedeete
rors) lurking inside disks that manifest upon accessingctiree-
sponding sector. In this work we do not examine fine graindgd da
to compare such results. Instead we rely on the detailechd&igs
to determine when it is appropriate for a hardware compaoteeog
repaired. When such a decision makes its way to a filed IT ticke
we use that to carry out our analysis.

We would like to reiterate that the aim of our current studyswa
to discover underlying patterns in failure characteritiegplaining
the root cause behind that is part of ongoing effort. Discdoge
the structure, if any, in failure patterns will be an invdileatool
to help understand the nature of these events and also & assi
modeling tool to test various datacenter designs [19, 71]L2,

6. CONCLUSIONS

Demand for always available cloud computing infrastruefuts
onus on the underlying software which in turn runs on comiyodi
hardware owing to economic concerns. This make the cloud com
puting infrstructure vulnerable to hardware failures amel ¢orre-
sponding service outages. This paper is the first, to thedfestr
knowledge, to characterize server repair/failure ratesder to un-

tion from a benign state to a new state where there is a riohtsie

in failure patterns. We also find that, location of the datéeeand

the manufacturer are the strongest indicators of failaespposed
to age, configuration etc.

Being a data study there a number of limitations in this analy
sis. For instance, we can only report based on the time pearéd
observe. This implies that the results are potentiallydieagainst
the environmental conditions, technology, workload cbtnastics
etc. prevelant during that period. Also, we do not inveségae
cause of the fault or even the timing. We are only interesta@-
pair events at a coarse scale and understanding what mo@itds i
In a fast moving technology industry we also face the pegletu
danger of analysing historical logs only to find our resulisaete
before we can put them to use.

In ongoing work we are looking at doing root cause analysis to
explain as well as proactively predict failures. We are afscking
on composable models for server reliability which will hekpun-
derstand the effects, for instance, if HDDs are replaced S
Finally, we are planning to incorporate whole datacentesigies,
including single points of failures, for instance, PDUg] awitches
into a reliability model. We hope that the results preseiiretthis
paper provides fuel to understanding and mining the behaid
causes of hardware faults in cloud computing infrastrasur
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