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Abstract

In-situ soil moisture measurements play a key role for a variety of large-scale applications. A deep

understanding of their quality, especially in terms of spatial representativeness, is crucial for reliably

using them as reference data. �is study assesses random errors in the coarse-scale representation

of in-situ soil moisture measurements from more than 1400 globally distributed stations in the

International Soil Moisture Network (ISMN) using the triple collocation method. �e method was

applied on the original measurements as well as on soil moisture anomalies. Error estimates were

summarized for different networks, depths, andmeasurement principles and furthermore related to

the respective climate class, soil type, average soil moisture condition, and soil moisture variability

to find possible relationships between measurement errors and local properties. �e average

network error varies from about 0.02 to 0.06 m3m−3 with generally increasing error variability

with increasing average error. Trends of (i) decreasing errors with increasing measurement depth

and of (ii) increasing errors with increasing average soil moisture conditions and soil moisture

variability were found for most networks and sensor types. �e errors when looking into anomalies

are in general lower than for absolute values. No statistically reliable trends for climate- and soil

texture classes were found. �e results highlight the necessity of developing a comprehensive

quality control process for in-situ measurements to reliably exploit existing data sets and to select

representative sites and sensors most appropriate for the requirements of a particular larger-scale

application.
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Kurzfassung

In-situ Bodenfeuchtemessungen spielen eine Schlüsselrolle für viele groß-maßstäbige

Anwendungen. Ein tiefgehendes Verständniss ihrer Qualität, vor allem bezogen auf ihre

räumliche Repräsentativität ist essentiell um sie als Referenzdaten verwenden zu können. Diese

Studie befasst sichmit der Schätzung zufälliger Fehler in der grob-maßstäbigen Representation von

in-situ Bodenfeuchtemessungen von über 1400 global verteilten Stationen des International Soil

Moisture Network (ISMN) unter der Verwendung der Triple Collocation Methode. Die Methode

wurde sowohl auf die absoluten Messwerte als auch auf Bodenfeuchteanomalien angewendet.

Die Fehler wurden für verschiedene Netzwerke, Messtiefen und Sensortypen zusammengefasst

und mit Klimaklassen, Bodentypen und Feuchtebedingungen in Verbindung gebracht. Der

durchschnittliche Messfehler pro Netzwerk variiert zwischen 0.02 to 0.06 m3m−3, mit einer

Tendenz zu steigender Fehlervariabilität mit steigendem mittleren Fehler. Trends für (i) geringere

Fehler für größere Messtiefen und (ii) steigende Fehler für steigende mittlere Bodenfeuchte

und -variabilität wurden für die meisten Netzwerke und Sensortypen gefunden. Fehler in den

Anomalien waren im Durchschnitt geringer als Fehler der Absolutwerte. Es gab keinen statistisch

vertrauenswürdigen Zusammenhang zwischen Fehlern und Klimaklassen bzw. Bodentypen. Diese

Ergebnisse zeigen die Wichtigkeit der Entwicklung einer umfassenden Qualitätskontrollmethodik

für in-situ Messungen, damit bestehende Datensätze zuverlässig verwendet und representative

Stationen bzw. Sensoren zur Verwendung in einer groß-maßstäbigen Anwendung ausgewählt

werden können
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Chapter 1

Introduction

�is thesis is based on the journal paper "Characterizing Coarse-Scale Representativeness of in

situ Soil Moisture Measurements from the International Soil Moisture Network" (Gruber et al.,

2013) and extends it with the theoretical background about the physical phenomena occurring in

an up-scaling process and its impact on the triple collocation.

A large number of local- to regional-scale meteorological and experimental networks measuring

soil moisture in-situ is available worldwide. Nevertheless, soil moisture is highly variable in space

and time and a globally representative in-situ network would require an extremely large number

of stations. �e high costs for operation and maintenance, together with the limited accessibility

of certain regions, make the setup of such an in-situ network financially infeasible. To fill this

gap, remotely sensed data from optical and microwave instruments has been used to retrieve soil

moisture on a global scale (Chauhan et al., 2003; Njoku et al., 2003; Wagner et al., 1999). Several

missions such as the Soil Moisture and Ocean Salinity mission (SMOS; Kerr et al., 2010) or the

Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010), especially dedicated to estimate soil

moisture with footprint sizes of several kilometers, have been launched recently or will be launched

in the near future. Satellite sensors provide data with a maximum temporal resolution of 1 to 3

days, which is not sufficient for a large variety of applications. Land surface models have been

implemented to fill this temporal gap providing data in about the same spatial resolution of meters

to kilometers but several times a day.

Nevertheless, ground-based measurements are still crucial not only for studying the spatial and

temporal dynamics of soil moisture on a local scale (Brocca et al., 2010a, 2007, 2012; Mittelbach

et al., 2011; Robinson et al., 2008; Vereecken et al., 2010), but also for the calibration and validation

of coarse-scale data sets (Albergel et al., 2012; Parrens et al., 2011). In this context, in-situ data sets

are o�en seen as ground “truth,” which in fact is an inappropriate term since (i) in-situ sensors and

their deployment underlie inherent errors (Mittelbach et al., 2012; Plauborg et al., 2005;Walker et al.,

2004) and (ii) differences in the spatial scale, the represented depth, and the underlying physical

measurement principles of the sensors introduce systematic differences between the represented
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Chapter 1. Introduction

extent of the observation as well as the actual represented physical quantity (Brocca et al., 2007;

Famiglietti et al., 1999, 2008; Miralles et al., 2010). In-situ sensors typically represent only a few

centimeters of the soil and are usually placed in depths between the surface and 1 to 2m to represent

the plant root zone, whereas the penetration depth of satellite signals is about the size of the

wavelength, i.e., about 0 to 5 cm (Schmugge, 1983), covering an area from several square-meters

to several thousand square-kilometers. Vegetation coverage, topography, soil type, spatial weather

variability, and many other factors introduce subfootprint-scale soil moisture variations that may

cause differences between shallow spatial average surface soil moisture estimates from satellites or

models and in-situ measurements, depending on where the in-situ sensor is located within the

footprint. In fact, satellite and in-situ sensors will never look into the same soil sample and hence

do not measure the same water volume.

Nevertheless, Vachaud et al. (1985) introduced the temporal stability concept for soil moisture,

stating that even though soil moisture is highly variable in space and time, spatial fields of soil

moisture exist, which persist in time. Single stations within those fields can be used to represent

the areal mean soil moisture behavior over larger areas. Based on this temporal stability concept,

many other studies investigated the spatio-temporal variability of soil moisture over a large range of

scales to assess the feasibility of using point-scale in-situ measurements as a representation also for

larger-scale average soil moisture (Brocca et al., 2010a, 2007, 2012;Cosh et al., 2006; Famiglietti et al.,

1999, 2008;Martinez-Fernandez and Ceballos, 2003, 2005). �e main findings of these studies were

that (i) a limited number of sites distributed over an area of interest can be used to reliably represent

its average soil moisture behavior, (ii) the number of sites required to obtain a certain quality within

a given confidence depends on the scale difference and the soil moisture conditions since spatio-

temporal variability increases with increasing scale and reaches a maximum under intermediate

wetness conditions, and (iii) almost all stations follow the temporal behavior of the areal mean

in terms of the correlation whereas only few stations are able to represent the areal mean absolute

soil moisture level. Differences in the latter mainly result from variations in vegetation, topography,

soil texture, and climate, and are o�en of a systematic nature. Hence, appropriate scaling techniques

can be used to remove such differences (Crow et al., 2012; Famiglietti et al., 2008; Kumar et al., 2012;

Reichle and Koster, 2004). Single point-scale in-situ measurements might then be properly used as

a reference for coarse-scale mean soil moisture (Albergel et al., 2012; Jackson et al., 2010). Further

studies investigated also the temporal stability of soil moisture in depth, indicating a correlation

of soil moisture along the soil profile (Martinez-Fernandez and Ceballos, 2003; Pachepsky et al.,

2005; Starks et al., 2006). In fact,Wagner et al. (1999) developed a method to estimate coarse-scale

profile soilmoisture using surface soilmoisture estimates from satellites. Various studies verified the

usefulness of thismethod by comparing the estimated profile soil moisture to in-situmeasurements

in depth (Albergel et al., 2009, 2008;Brocca et al., 2010b).�eir results proved an existing correlation

for soil moisture along the profile.

Nevertheless, no single station can be entirely representative for larger areas or the entire

2
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profile range because of the heterogeneity in soil properties, topography, and weather behavior.

Nonsystematic differences caused by the limited spatial representativeness of single points (referred

to as scaling errors) are preserved and must be considered when comparing soil moisture data sets

across scales (Crow et al., 2012;Miralles et al., 2010). Beside those systematic differences and random

errors, every in-situ sensor underlies inherent errors such as sensor noise, miscalibration, or a bad

deployment.

From the previous it becomes clear that the use of in-situ measurements for evaluating satellite or

modelled data requires a detailed knowledge of their quality. One should be aware that the term

quality for in-situ data describes several properties, whose importance varies with the application.

Four different properties should be distinguished: (i) the capability of an in-situ sensor to measure

absolute soil moisture levels, (ii) the capability of capturing the temporal dynamics (drying and

wetting events), (iii) the spatial representativeness of a single station for a certain area, and (iv)

the inherent sensor reliability (e.g., the probability for sensor-dropouts or outliers, sensor dri�s, or

random noise). Different approaches are available for assessing one or more of these properties.

Common metrics are the correlation coefficient, which assesses the temporal relationship between

two data sets, and the bias and Root-Mean-Square-Difference (RMSD) for quantifying relative

measurement differences. �ose metrics can be applied on the soil moisture measurements

directly or on soil moisture anomalies, which are usually defined as the difference between actual

measurements and a long-term climatology (Albergel et al., 2012; Dorigo et al., 2010). Looking into

the directmeasurements addresses the sensor’s capability ofmeasuring absolute soilmoisture levels,

whereas anomalies can be used to assess the capability for capturing drying and wetting events.

Using a high spatial sensor density allows the assessment of the spatial representativeness of in-situ

sensors when comparing the respective measurements with the areal average. All the mentioned

metrics require reliable reference data sets, which are usually manually collected gravimetric

samples or high quality sensor measurements taken under laboratory conditions with prepared

soil samples or under field conditions (Mittelbach et al., 2012; Cataldo et al., 2009; Plauborg et al.,

2005).

A new approach of assessing the occurrence of measurement outliers without the need of any

reference data was introduced by Dorigo et al. (2013), who used spectrum-based analysis to find

and flag spikes, jumps, saturated responses, missing precipitation responses, and sensor drop-outs.

One possible method for quantifying measurement errors without relying on the quality of

reference data sets might be the so-called triple collocationmethod. �is is a method for estimating

the random errors of three collocated data sets which can be assumed to represent the same

physical parameter while simultaneously solving for systematic differences. �e method assumes

independent (uncorrelated) error structures, which means that the errors must not have the same

origin. �is is given when using e.g., any combination of in-situ measurements, active or passive

satellite observations, and land surface model estimates, provided that the model is not driven

by one of the others. Several studies highlighted the high potential of the triple collocation in
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becoming a standard procedure in a comprehensive satellite validation process (Dorigo et al., 2010;

Miralles et al., 2010; Scipal et al., 2008; Stoffelen, 1998). Nevertheless, studies also showed that

the result is highly sensitive to its input configuration, including different scales and represented

physical quantities of the sources, the use of absolute values or anomalies, the time span under

observation, and the available number of measurement triplets (Loew and Schlenz, 2011; Zwieback

et al., 2012, 2013). As mentioned, large-scale differences between the input data sets introduce

errors caused by the spatio-temporal variability of soil moisture, leading to a mismatch in the

spatial representativeness. �ese errors are reflected in the triple collocation result and can take

a high fraction of the overall error, leading to an overestimation of the actual inherent sensor

error (Miralles et al., 2010). �e only way to remove these scaling errors is the assessment of the

spatial representativeness, which requires a high spatial sensor density. Unfortunately, only few

available in-situ networks provide such a density.�emain objective of this study is to use the triple

collocation to characterize the random errors of globally available in-situ measurements in their

purpose of representing footprint-scale (∼0.25○) soil moisture. It should be emphasized that, in the

context of this study, the term random error describes not only the inherent random sensor noise

but also the non-systematic part in the scaling process, caused by the spatio-temporal variability of

soil moisture (i.e., the scaling error), which is most likely dominating the overall error estimate. A

second objective of this study is to investigate possible relationships between random error levels

and site-specific properties which are expected to have a large impact on in-situ measurements or

soil moisture variability. �ese properties are (i) sensor types, (ii) observation depths, (iii) climate

regions, and (iv) soil types. �e data sets used for this study are drawn from the International Soil

Moisture Network (ISMN).
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Chapter 2

Theoretical background

2.1 Scaling considerations

As described in Chapter 1, systematic and random differences are introduced by the different

geophysical phenomena affecting spatio-temporal soil moisture variability at different scales, i.e.,

soil properties, topography, vegetation and weather variability (Figure 2.1). �e question arises how

these systematic and random differences, referred to as scaling errors, add to actual measurement

errors and how and if they can be separated from the latter in a validation process. In the following,

these questions will be discussed on the example of in-situ measurements that should be upscaled

to match the spatial scale of satellite measurements (in the following referred to as field scale).

Estimates of the true state of soilmoisture at the respective scale are derived by applying an empirical

or analytical model on the actual sensor readings. �e model describes the relationship between

the observed sensor quantity and soil moisture:

Θ̂point = F̂insitu(Û) = Finsitu(Θpoint) + εinsitu
Θ̂ f ield = F̂satel l ite(σ̂0/T̂b) = Fsatel l ite(Θ f ield) + εsatel l ite

(2.1)

Θpoint and Θ f ield are the true states of point-scale and field-scale soil moisture, Θ̂point and Θ̂ f ield

their respective in-situ and satellite basedmeasurements. F̂insitu and F̂satel l ite are themodels applied

on the actual measured sensor raw data (e.g., the voltage Û from the in-situ sensor or backscatter

σ̂0 or brightness temperature T̂b from the satellite antenna) to derive the respective soil moisture

states.�e imperfectness of everymodel and the fact that the sensor observes not soilmoisture itself

but a quantity related to it introduces systematic and random errors in the estimates of the "truth".

Finsitu/satel l ite(Θpoint/ f ield) and εinsitu/satel l ite express the true relationship (including systematic

and random errors) between the soil moisture estimates at the respective scales and the true values.

�e hats always refer to estimated or measured quantities.

Since soil moisture at the point scale and at the field scale are physically two different water volumes

with only a small intersection one must take their systematic difference (e.g., a rainfall event that
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Figure 2.1: Sources of spatio-temporal soil moisture variability at different scales (Crow et al., 2012).

affects the entire point, but only a small area of the field) and the random differences caused by the

limited spatial representativeness (e.g., a rainfall event in the field that does not cover the point)

into account when comparing estimates of both against each other.

�e true scaling parameters will always remain, like every true state of any geophysical parameter,

unknown. Nevertheless, as mentioned in Chapter 1, an upscaling function can be statistically

derived and applied on the point measurements to minimize systematic differences between the

point-scale and the field-scale soil moisture estimates. However, this scaling function will be just

an approximation of the true scaling parameters and will thus introduce additional error terms:

Θ f ield = F↑(Θpoint) + εs
Θpoint = F↓(Θ f ield) + εs

F̂↑(Θpoint) = F∗↑ (Θ f ield) + εs + εs,F̂↑

(2.2)

F↑ and F↓ refer to the true up- and downscaling functions, respectively, εs to the true upscaling

error (i.e., representativeness error), F̂↑ to the derived upscaling function, and F∗↑ and εs,F̂↑
to the

systematic and random errors introduced when applying the estimated scaling function on the

true point-scale soil moisture to estimate true field-scale soil moisture. Since the true soil moisture

state at the point is unknown the estimated function has to be applied on the point-scale estimates

measured in-situ:

Θ̂ f ield ,up = F̂↑(Θ̂point) = F̂↑(Finsitu(Θpoint) + εinsitu)
= F̂↑(Finsitu(F↓(Θ f ield) + εinsitu)) + εs + εs,F̂↑

(2.3)

�at is, the upscaled point measurements contain 5 errors with respect to the true field-scale soil

moisture:
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• the true systematic scaling error minimized through the estimated scaling function, i.e. the

systematic deviation of the derived- from the true scaling function (F̂↑(F↓(Θ f ield))

• the upscaled systematic deviation of the point measurement from the true point-scale soil

moisture state (F̂↑(Finsitu(Θpoint)))

• the true random scaling error (εs)

• an additionally introduced random error caused by the imperfectness of the derived scaling

function (εs,F̂↑)

• the upscaled true random in-situ measurement error of the point measurement (F̂↑(εinsitu))

It is common practice that upscaled in-situ measurements are used for validating field-scale

satellite observations. Under the assumption that errors of in-situ sensors are significantly lower

than errors of the satellite, point measurements are o�en used as a reference to describe systematic

and random errors of the field-scale soil moisture estimates, i.e., the satellite measurements (e.g.,

through the RMSD and/or the bias). From the previous it is clear that such an approach is unlikely

valid since (i) scaling errors are introduced in the upscaling process and (ii) this upscaling process

also inflates the actual in-situ sensor errors. It should be emphasized that this study addresses

large-scale applications and not applications in which satellites should derive point-scale soil

moisture.

�e remaining questions are: (i) How big are the scaling errors compared to actual sensor errors,

(ii) is it possible to separate these two types of errors, and (iii) can point-scale measurements be

used for validating field-scale satellite observations given considerable scaling errors.

�e separation of scaling and sensor errors is only possible when having both a good approximation

of the actual sensor error and a good approximation of large-scale field soil moisture. First can

be achieved with a good accuracy using field- and/or laboratory calibrations (Mittelbach et al.,

2012). Second is a very challenging task given the huge size of satellite footprints and the high

spatio-temporal dynamics of soil moisture (e.g., Brocca et al., 2007, 2010a, 2012). Unfortunately,

only few high-density networks capable of approximating true field-scale soil moisture exist

worldwide (see Chapter 3.1).

�is study aims to estimate the coarse-scale representativeness of in-situ sensors on a global

scale. �e term representativeness refers to both upscaling errors themselves and the upscaled

in-situ measurement errors, since these are, as described above, inseparable for in-situ networks

with a low spatial station density. In the following section, the triple collocation method will be

introduced as a method capable of estimating the random errors of in-situ networks with respect to

a coarser scale, i.e. their spatial representativeness, without relying on a error-free reference data set.
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2.2 The triple collocation

2.2.1 Mathematical model

�is chapter addresses the issue of using upscaled in-situ soil moisturemeasurements for validating

satellite observations. �erefore the Mean-Square-Difference (MSD) will be introduced first and

then extended to the triple collocation.

As described in Section 2.1, the upscaling process corrects for systematic scaling errors with a

remaining part due to the unknown true relationship between soil moisture at the respective scales.

However, for this study we assume the statistical relationship to be sufficiently described by the

methods described in Chapter 4.1. However, deviations from this assumption will lead to an

overestimation of the random up-scaling errors, i.e., the representativeness errors. An estimation

of the impact on this effect requires further research but is not part of this study.

Given the previously described assumption the upscaled in-situ measurements can be expressed in

the following way:

Θ̂∗ins = Θ f ield + ε
∗

ins (2.4)

Θ̂∗ins refers to upscaled in-situ measurements, Θ f ield to the true soil moisture at field scale, and

ε
∗

ins to the upscaling error plus the upscaled sensor error. Assuming further that systematic model

errors of the satellite retrieval are negligible, one can describe its relation to the true field-scale soil

moisture as the following:

Θ̂sat = Θ f ield + εsat (2.5)

Θ̂sat refers to satellite measurements and εsat to the random satellite measurement error.

Calculating the average of squared differences of collocated upscaled in-situ measurements and

satellite observations leads to the MSD or, more common when taking the square root, to the

Root-Mean-Square-Difference (RMSD).�is is an o�en used validation metric and represents the

following (given the previously described assumptions):

⟨(Θ̂∗ins − Θ̂sat)2⟩ = ε∗2ins − 2ε∗insεsat + ε2sat (2.6)

�eGaussian brackets indicate an averaging over all collocatedmeasurements. FromEquation (2.6)

it becomes clear that even if the in-situ sensor would measure true point-scale soil moisture, the

random part of the upscaling error, i.e. the representativeness error, might significantly inflate the

MSD compared to the actual satellite error.

Let us now consider a third data set (e.g., a land surface model), also scaled to the satellite

observations:

Θ̂∗mod = Θ f ield + ε
∗

mod (2.7)
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Θ̂∗mod refers to rescaled modelled soil moisture estimates and ε
∗

mod to the rescaling error plus the

rescaled randommodel error. Cross-multiplying now the differences between three collocated data

sets instead of using squared differences of two data sets leads to the core equations of the triple

collocation:

⟨(Θ̂∗ins − Θ̂sat)(Θ̂∗ins − Θ̂∗mod)⟩ = ⟨ε∗2ins − ε∗insεsat − ε∗insε∗mod + εsatε
∗

mod⟩
⟨(Θ̂sat − Θ̂

∗

ins)(Θ̂sat − Θ̂
∗

mod)⟩ = ⟨ε2sat − εsatε∗ins − εsatε∗mod + ε
∗

insε
∗

mod⟩
⟨(Θ̂∗mod − Θ̂

∗

ins)(Θ̂∗mod − Θ̂sat)⟩ = ⟨ε∗2mod − ε
∗

modε
∗

ins − ε
∗

modεsat + ε
∗

insεsat⟩
(2.8)

Given the errors are Gaussian and that a sufficient number of measurements are averaged we get

following relationships:

⟨εi2⟩ = Var(εi)
⟨εiε j⟩ = Cov(εiε j) , i ≠ j

(2.9)

Var(εi) and Cov(εiε j) are the error variances and -covariances, respectively. If the errors are

uncorrelated, Equation (2.8) reduces to the following:

⟨(Θ̂∗ins − Θ̂sat)(Θ̂∗ins − Θ̂∗mod)⟩ = ê∗ins
⟨(Θ̂sat − Θ̂

∗

ins)(Θ̂sat − Θ̂
∗

mod)⟩ = êsat
⟨(Θ̂∗mod − Θ̂

∗

ins)(Θ̂∗mod − Θ̂sat)⟩ = ê∗mod

êi = ⟨ε2i ⟩

(2.10)

êi are the finally obtained error estimates, representing the average random errors of the individual

data sets independent of each other.

2.2.2 Underlying assumptions

In the derivation of the triple collocation several very important assumptions were made:

1 All three data sets are somehow representative for a same water volume

2 �e rescaling of two data sets to one randomly chosen reference, in this case the satellite data

set, removes the systematic scale differences between them

3 �e errors of the three data sets are not correlated with each other

4 A sufficient number of temporally collocated triplets are available so that error covariances

vanish end the mean data set errors remain a�er the averaging.
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If Assumption 1 is not fulfilled, true soil moisture Θ f ield would not vanish in Equation (2.8)

and the errors were significantly inflated. Usually the relationship between the three data sets

is evaluated using their temporal correlation. �e most common approach is to calculate the

correlation significance based on the Student’s t test. In this study a probability threshold of 0.05

is used. However, this might not always be appropriate because for a very large number of triplets

almost every correlation level is considered as being significant. Conversely, in very dry areas such

as deserts, a very high noise level might overlay the actual soil moisture signal leading to very

low correlations. Such areas would be filtered according to the t-test. Nevertheless it would be

of high interest to use the triple collocation there to estimate the actual noise level. �e feasibility

of applying the triple collocation over such areas is still a research topic but not part of this study.

Assumption 2 is only fulfilled if the statistic relationship across the scales is well described in the

rescaling model. In some regions, the high complexity of spatio-temporal soil moisture variability

across scales might require also the correction for higher-order statistical moments when using

data sets with a large scale difference. If this is not done sufficiently the random error estimate

are artificially inflated. �e rescaling methods used in this study are discussed in Section 4.1.

Furthermore, the rescaling also scales the random error estimates into the data space of the chosen

reference. �is is indicated with the asterisks in the error terms e∗ins and e∗mod in Equation (2.10).

Since the scaling coefficients are known the estimated errors could be transformed back, but for a

meaningful inter-comparison they are usually kept in the samedata space. Note that thus the quality

of the chosen reference does not have an impact on the error estimates of the individual data sets

but only on the dynamic range in which they are expressed. Hence, the choice of the reference also

does not influence the relative contribution of scaling errors to the triple collocation error estimates,

which will be discussed in Section 2.2.3. In the derivation of the method, the satellite data set was

chosen as a reference to emphasize the upscaling process. Since soil moisture dynamics are highly

varying globally and across scales, the in-situ measurements were used as a reference in this study

in order to characterize the errors with respect to their local dynamics.

If Assumption 3 is not fulfilled, the co-variance terms in Equation (2.8) would not vanish and

significantly inflate or deflate the actual error estimates. �is could be the case when using for

instance land surface models driven with the same input data sets or two frequency channels of one

satellite. However, the data sets of this study use different physical measurement principles and are

not driven by each other. Hence, zero error cross-correlation can be assumed.

Assumption 4 is also required for the error co-variance terms to vanish due to their Gaussian

distribution and for the errors to represent the actual average of the entire data set. Figure 2.2 shows

the relationship between the number of available measurement triplets, the average error level, and

the error estimation stability, based on a simulation of Zwieback et al. (2012). �e limited number

of triplets introduces a noise in the estimate.
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Figure 2.2:Relationship between the number of availablemeasurement triplets, the average error level,

and the error estimation stability of the triple collocation (Zwieback et al., 2012).

2.2.3 Impact of random scaling errors

As discussed above, the RMSD is a composite of the random errors of both data sets and the

representativeness error. �e triple collocation estimates the random errors of the data sets

independent of the choice of a reference. �e remaining question is to which data set the

representativeness errors are attributed. In this study two coarse-scale and one in-situ data set

are used. Soil moisture variations visible in two data sets are attributed to the third data set as

representativeness errors (Stoffelen, 1998). Hence, soil moisture variations in the satellite and the

model footprint not effecting the in-situ site will be considered as random errors in the in-situ

data set. �at is, the triple collocation can be used to estimate the representativeness errors of

in-situ stations. Figure 2.3 shows a very good agreement between estimated errors using the triple

collocation and the actual representativeness errors (in the figure referred as upscaling errors) based

on a study of Miralles et al. (2010). �e actual upscaling error was estimated using a high-density

network. �is behaviour of the triple collocation forms the basis of this study, in which the it will

be used to estimate errors in the coarse-scale representation of more than 1400 globally distributed

in-situ stations. �e used data sets and the implementation of the triple collocation method will be

discussed in the following chapters.
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Figure 2.3: Relationship between estimated and actual representativeness errors (Crow et al., 2012).
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Data Sets

Random errors of the ISMN are assessed using the triple collocation method, which requires two

additional data sources with independent error structures. A blended active and passive remotely

sensed data set and the ERA-Interim reanalysis data set were used for this purpose as they have

the biggest temporal overlap with the available in-situ measurements. �e global Koeppen–Geiger

map was used to relate the stations to climate classes. Soil texture information was drawn from the

Harmonized World Soil Database (HWSD).

3.1 In-situ soil moisture measurements

�e ISMN (❤tt♣✿✴✴✇✇✇✳✐♣❢✳t✉✇✐❡♥✳❛❝✳❛t✴✐♥s✐t✉) is a centralized data hosting facility. It

collects soil moisture ground measurements and, if available, ancillary measurements such as

precipitation, soil temperature, air temperature, snow depth, and snow water equivalent from

operational and experimental networks worldwide (Dorigo et al., 2011a,b). As there are no standard

methods yet for collecting soil moisture data in-situ, the data sets are usually highly different in

terms of sensor installation depths and placement, temporal sampling, used units, and data formats.

�e ISMN harmonizes incoming data sets in terms of units, sampling interval, data format, and

metadata and makes them available to users costfree from a single web portal. Initiated by the

European Space Agency (ESA) in 2010 and operated by the Vienna University of Technology

(TU Wien), it has evolved as one of the most important in-situ soil moisture data platforms for

satellite and land surface model validation (e.g., Albergel et al., 2012; Liu et al., 2012). Providing

networks operate one or more geographically distributed stations which typically place a variety

of sensors to cover different depths but also to increase the measurement reliability by making

redundant measurements with equal sensors in the same depths close to each other. Currently

(October 2012), the ISMN holds the measurements of over 6100 soil moisture sensors, provided

by 35 different networks, which operate together more than 1400 stations. Data providers are

listed in the Acknowledgments. Figure 3.1 illustrates the global station distribution. Most of them

are located in Northern America and Eurasia and spread over a variety of climate regions, land
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cover types, and soil textures. �e temporal coverage of each network is shown in Figure 3.2.

Data sets cover a time period from 1952 (historical data sets) to now, while six networks with

together more than 200 stations are operating in near real time (NRT). A large variety of sensor

types are used, placed at different depths, and representing different depth intervals. Table 3.1

gives an overview of the used sensors and depth placements for each network. Available sensors

make use of differentmeasurement principles such as time domain reflectometry (TDR), frequency

domain reflectometry (FDR), capacitance probes, impedance probes, neutron probes, cosmic ray

probes, and gravimetric measurements, all of which results in different sampling intervals and data

accuracy (Mittelbach et al., 2011, 2012; Plauborg et al., 2005;Walker et al., 2004). For this study, the

sensor types were summarized into five groups a�er similar properties: gravimetric, capacitance,

TDR/FDR, impedance, cosmic ray, and neutron probes.

Only data sets that achieve the statistical requirements of the triple collocation were used (See

Methodology). All available sensor depths were used to investigate the error dependency on the

measurement depth. Soil texture and climate region analysis were based on surface measurements

only, i.e., on measurements of which the start of the measurement interval lies between 0 and 10

cm.

Figure 3.1: Station distribution of the International SoilMoisture Network (ISNM;October 2012). Pins

represent single stations, colors represent different networks.
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Figure 3.2: Temporal coverage of the International Soil Moisture Network (ISMN) networks, Water

Cycle Multi-Mission Observation Strategy (WACMOS) and ERA-Interim.
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Table 3.1: Overview of the number of stations, the used sensors, the total observed depth range, and

the number of sensor placements in different depths for each network, respectively. [*]�e Cosmic Ray

Probe sensing depth depends on the apparent water content.

Network Stations Sensors Depth covered # depth placements

AACES 49 �etaProbe ML2X 0.00–0.25 3
AMMA 7 CS616 0.05–1.20 13
ARM 25 SMP1 0.03–1.75 10

Water Matric Potential Sensor 229L
CALABRIA 5 �etaProbe ML2X 0.30–0.90 3
CAMPANIA 2 �etaProbe ML2X 0.30–0.30 1
CHINA 40 Coring device/auger 0.00–1.00 11
COSMOS 67 Cosmic-ray Probe [*] -
FLUXNET-AMERIFLUX 2 Moisture Point PRB-K 0.00– 0.50 8

�etaProbe ML2X
FMI 1 �etaProbe ML2X 0.02–0.10 2
HOBE 30 Decagon 5TE 0.00–0.55 3
HSC_SEMACHEON 1 Hydraprobe Analog (CR800) 0.00–0.10 1
HYDROL-NET_PERUGIOA 1 TDR TRASE-BE 0.05–0.35 4
HYU_CHEONGMICHEON 1 Hydraprobe T1000A 0.00–0.10 1
ICN 19 Stevens Hydra Probe 0.00–2.00 11

Troxler Neutron Surface Probe
Troxler Neutron Depth Probe

IIT_KANPUR 1 Water Scout SM100 0.10–0.80 4
IOWA 6 N.S. 0.00–2.59 12
MAQU 20 ECH20 EC-TM 0.05–0.05 1
METEROBS 1 EnviroSCAN 0.10–0.50 5
MOL-RAO 2 TRIME-EZ 0.08–1.50 9
MONGOLIA 44 Coring device/auger 0.00–1.00 10
OZNET 38 CS615 0.00–0.90 7

CS616
EnviroSCAN
Stevens Hydra Probe

REMEDHUS 23 Stevens Hydra Probe 0.00–0.05 1
RUSWET-AGRO 156 Gravimetric 0.00–1.00 2
RUSWET-GRASS 122 Gravimetric 0.00–1.00 2
RUSWET-VALDAI 3 Gravimetric 0.00–1.00 3
SASMAS 14 CS616 0.00–0.30 2

Stevens Hydra Probe
SCAN 182 Hydraprobe Analog (2.5 Volt) 0.03–2.03 24

Hydraprobe Analog (5.0 Volt)
Hydraprobe Digital Sdi-12 (2.5 Volt)
N.S.

SMOSMANIA 21 �etaProbe ML2X 0.05–0.30 4
SNOTEL 374 Hydraprobe Analog (2.5 Volt) 0.00–1.02 16

Hydraprobe Analog (5.0 Volt)
Hydraprobe Digital Sdi-12 (2.5 Volt)
N.S.

SWEX_POLAND 6 D-LOG-mpts 0.00–1.00 10
PR2- Profile Probe

UDC_SMOS 11 EC-ET 0.00–0.40 5
EC5
IMKO TDR

UMBRIA 7 EnviroSCAN 0.05–0.45 3
�etaProbe ML2X

UMSUOL 1 TDR 100 0.10–1.80 7
USCRN 114 Stevens Hydraprobe II Sdi-12 0.05–1.00 5
USDA-ARS 4 Hydraprobe Analog (2.5 Volt) 0.00–0.05 1
VAS 2 Stevens Hydra Probe 0.00–0.05 1

�etaProbe ML2X
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3.2 Remotely Sensed Soil Moisture

�e satellite data set used in this study was the data set created within the Water Cycle Multi-

Mission Observation Strategy project (WACMOS; ❤tt♣✿✴✴✇✇✇✳❡s❛✲s♦✐❧♠♦✐st✉r❡✲❝❝✐✳♦r❣),

released in June 2012 within the framework of the Climate Change Initiative (CCI). It is the first

available long-term remotely sensed soil moisture product covering a 32 year period from 1978 to

2010, providing data in 0.25○ spatial resolution and was generated by merging active and passive

soil moisture estimates from various satellite missions (Liu et al., 2011, 2012). Merging different

instruments from various satellites based on their temporal availability causes an increase of data

quality with time. �e temporal resolution is approximately 1–3 days.

3.3 Modelled soil moisture

ERA-Interim is a global atmospheric reanalysis data set combined with an ocean and land surface

model produced by the EuropeanCentre forMedium-rangeWeather Forecasts (ECMWF;Dee et al.,

2011). It covers a time period from 1979 to June 2012 and provides data in a spatial resolution of

(∼0.7○) at the equator. Soil moisture estimates are provided for four different layers (0–7, 7–28,

28–100, and 100–255 cm) four times each day (0:00, 6:00, 12:00, and 18:00) for two different land

surface schemes (TESSEL and HTESSEL; Balsamo et al., 2009). �e HTESSEL scheme was used in

this study because it provides a more realistic representation of the soil than the TESSEL scheme by

distinguishing between six different soil types around the globe instead of just one. ERA-Interim

also provides soil temperature estimates for the respective layers and an estimate of snow height.

�ese were used to mask soil moisture measurements for which the temperature is below 0○C and

for which the snow cover estimate is greater than zero, as both satellites and most of the in-situ

sensors are making use of electromagnetic properties of the soil, which significantly change when

the soil is frozen (Ulaby et al., 1982).

3.4 Koeppen-Geiger Climate Classification

�e Koeppen–Geiger classification divides the globe into climate regions based on their

temperature and precipitation regime. �e updated world map from Peel et al. (2007)

was used for this study (❤tt♣✿✴✴✇✇✇✳❤②❞r♦❧✲❡❛rt❤✲s②st✲s❝✐✳♥❡t✴✶✶✴✶✻✸✸✴✷✵✵✼✴

❤❡ss✲✶✶✲✶✻✸✸✲✷✵✵✼✲s✉♣♣❧❡♠❡♥t✳③✐♣, accessed 25 July 2011). It contains a static map on a 0.1

degree grid based on long-term in-situ observations between 1951 and 2000.
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Chapter 3. Data Sets

3.5 Harmonized World Soil Database

�e HarmonizedWorld Soil Database (HWSD; ❤tt♣✿✴✴✇❡❜❛r❝❤✐✈❡✳✐✐❛s❛✳❛❝✳❛t✴❘❡s❡❛r❝❤✴

▲❯❈✴❊①t❡r♥❛❧✲❲♦r❧❞✲s♦✐❧✲❞❛t❛❜❛s❡✴❍❚▼▲✴) is a merged and harmonized product from

various soil information sources providing information about soil properties such as material

fractions, bulk density, or texture classes on a 1-km grid (Nachtergaele and Batjes, 2012). For this

study, only the USDA soil texture classification is used, which for two layers (topsoil: 0–30 cm,

subsoil: 30–100 cm) classifies the soil in the dominant fraction of clay, silt, and sand.
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Chapter 4

Methodology

4.1 Implementation of the Triple Collocation

Varying input settings have a high impact on the reliability of the result as well as on its actual

meaning (Dorigo et al., 2010; Zwieback et al., 2012). Applied to the original soil moisture values, the

result provides information about the ability of measuring absolute soil moisture whereas the use

of soil moisture anomalies gives information about the capability of catching drying and wetting

events, e.g., through precipitation (Dorigo et al., 2010). In this study, the triple collocation was

applied on both original values and anomalies. As discussed in Section 2.2, the choice of the

rescaling method may significantly change the result if the data sets are different in their statistical

properties. �e choice of an inappropriate rescaling technique will artificially inflate the error

estimates in addition to the inherent errors caused by a mismatch in the spatial representativeness.

Furthermore, the choice of the reference data set in the triple collocation determines the data space

in which the errors are expressed. According to Section 2.2.2, the in-situmeasurements were always

used as a reference in order to characterize the errors with respect to their local dynamics. As

discussed in Section 2.2.2, a sufficient number of triplets is required to obtain stable error estimates.

For this study we decided that at least 100 triplets must be available.

4.1.1 Rescaling of original estimates

Kumar et al. (2012) found that slight non-linearities exist between soilmoisture data sources, leading

to improved scaling results for cumulative distribution function (CDF)-matching techniques

compared to linear approaches. �e CDF-method matches the cumulated distribution function of

the data sets and hence corrects for non-linearities by correcting theoretically all higher statistical

moments (Reichle and Koster, 2004). Depending on the implementation, mainly mean, standard

deviation, skewness, and kurtosis are affected. We choose to apply it when using absolute soil

moisture measurements as a stepwise linear scaling between a set of percentiles of the data (Liu

et al., 2011).
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4.1.2 Anomalies

Anomalies usually are the difference between actual measurements and the long-term climatology.

However, if data sets do not have a sufficient temporal coverage, climatologies cannot be computed

reliably. Another way of calculating anomalies is to use a moving average window to create a

baseline for the subtraction (e.g., Albergel et al., 2012), as shown in Equation (4.1):

ΘA(t) = Θ(t) −Θ(W) (4.1)

ΘA is the soil moisture anomaly, Θ the observed absolute soil moisture, t the time of acquisition,

and W the length of the moving window. An appropriate window length allows for removing

systematic differences between different data sources which would be interpreted as random errors,

while preserving the response of the individual data sets to short-term drying and wetting events

(e.g., the seasonal vegetation growing cycles strongly effect satellite observations, but not in-situ

measurements). We chose a window length of 5 weeks (t ± 17d) according to Albergel et al. (2012).

�e anomaly is only computed when at least five measurements are available within the respective

window, even though most in-situ stations provide an hourly measurement rate.

�e anomalies of remotely sensed and ERA-Interim soil moisture were scaled to those of the in-

situ sensors using a normalization approach that matches the mean and the standard deviation as

shown in Equation (4.2) (Dorigo et al., 2010):

Θ∗A,S(t) = ΘA,R +

¿
ÁÁÀVar(ΘA,R)

Var(ΘA,S)
[ΘA,S(t) −ΘA,S] (4.2)

ΘA,S(t) is the anomaly at the time t, ΘA,R the reference anomaly data set, Var() refers to the

variance, and the overline to the mean value. Θ∗A,S(t) is the rescaled measurement at the time

t.

4.1.3 Spatial and temporal collocation

�e spatial collocation was performed by using the in-situ stations as a reference and searching the

respective satellite and ERA-Interim ground point closest to the station.

In-situ sensors cover a varying depth-range, whereas the ERA-Interim data set represents four fixed

layers (see ERA-Interim). Since the in-situ measurements sometimes overlap with more than one

ERA-Interim layer, a depth-collocation was performed by assigning the sensor depth to the ERA-

Interim layer that covers the start of itsmeasurement interval (e.g., the 0–7 cm layer of ERA-Interim

is used when the sensor is placed in 5–10 cm). �e same depth collocation was done for the two

layers of the Harmonized World Soil Database.
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Figure 4.1: Distribution of available measurements within the original Koeppen–Geiger classes (le�)

and the summarized classes (right).

For the temporal collocation, the data source with the lowest measuring frequency, which was the

remote sensing data set, was taken as a reference to search for the closest valid measurement of the

other sources with a maximum difference of ±3h.

4.2 Analysis

4.2.1 Sensor quality on a network, depth and sensor type level

�e aim is to evaluate (i) whether the error estimates (including both, measurement errors and

representativeness errors) change with sensor positioning or for different sensor types, (ii) whether

some measurements show different error levels when looking into anomalies instead of absolute

values, and (iii) whether there are networks that provide more reliable measurements than others.

�e error estimates were therefore grouped with respect to the networks, the observation depths

(the four ERA-Interim depth intervals were used to summarize the in-situ measurement depths as

described in Section 4.1.3 and the usedmeasurement techniques. Standard statistics (median, inter-

quartile-range, and outliers) were computed for the comparison and the estimated errors of the

absolute soil moisture measurements were plotted against the estimated errors of the anomalies.

4.2.2 Climate class analysis

�e error estimates of the entire ISMN were grouped a�er the Koeppen–Geiger climate classes to

evaluate a possible impact of the climate conditions on the measurement quality. We assumed

that even though daily temperature fluctuations are known to cause variations in the sensor

readings (Dorigo et al., 2013), an influence would be mainly driven by precipitation rather than

by temperature regimes. Hence, we summarized climate classes with similar or equal precipitation
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Table 4.1: Koeppen–Geiger climate classes summarized by similar or equal precipitation regimes.

Summarized classes Original classes

Aw Aw (Tropical–Savannah) BWx BWh (Arid–Desert–Hot)

BWk (Arid–Desert–Cold)

BSx BSh (Arid–Steppe–Hot)

BSk (Arid–Steppe–Cold)

Csx/Dsx Csa (Temperate–Dry Summer–Hot Summer)

Csb (Temperate–Dry Summer–Warm Summer)

Dsa (Cold–Dry Summer–Hot Summer)

Dsb (Cold–Dry Summer–Warm Summer)

Dwx Dwa (Cold–Dry Winter–Hot Summer)

Dwc (Cold–Dry Winter–Cold Summer)

Cfx/Dfx Cfa (Temperate–Without dry season–Hot Summer)

Cfb (Temperate–Without dry season–Warm Summer)

Dfa (Cold–Without dry season–Hot Summer)

Dfb (Cold–Without dry season–Warm Summer)

Dfc (Cold–Without dry season–Cold Summer)

ETH ETH (Polar–Tundra–High Elevation)

patterns to increase the statistical significance. �e grouping is shown in Table 4.1. �e distribution

of available measurements within the climate classes is shown in Figure 4.1. �e estimated errors

within the classes were furthermore compared to the median soil moisture state of the entire

measurement period. We decided to consider only surface measurements for this analysis, i.e.,

measurements of which the start of the depth interval lies between 0 and 10 cm, since we assumed

that the biggest impact, if apparent, will be at the surface. Besides, the majority of sensors in the

ISMN are placed close to the surface, so the surface measurements allow for the most meaningful

inter-comparison because possible impacts of the depth mismatch between in-situ sensors and the

satellite signal are reduced.

4.2.3 Soil texture analysis

In-situ sensors are placed over a large variety of soil types, which on the one hand influence soil

moisture storage and redistribution properties (e.g., infiltration and evaporation rates or total water

storage volume), and on the other hand show different responses to the physical measurement

principle of the sensors. To evaluate a possible influence of the soil type on the measurement

quality, we grouped the error estimates with respect to the USDA soil texture classes according to

three dominant soil constituent types: Clay, silt, and sand (Table 4.2). �e distribution of available

measurements within the texture classes is shown in Figure 4.2. �e estimated errors were again

compared to the median soil moisture of the entire period. Only surface measurements were
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Figure 4.2:Distribution of available measurements within the original USDA soil texture classes (le�)

and the summarized classes (right).

considered for this analysis for the same reasons as for the climate class analysis.
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Table 4.2: USDA soil texture classes summarized by dominant soil types.

Summarized classes Original classes

Clay clay (heavy)

silty clay

clay

sandy clay

Sand sand

loamy sand

Loam sandy loam

sandy clay loam

clay loam

silty clay loam

loam

silt loam
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Chapter 5

Results and Discussion

5.1 Errors on a network, depth, and sensor type level

Figure 5.1 shows statistics of error estimates of absolute soil moisture measurements for each

network and measurement depth. �e average error of the networks varies from about 0.02 to

0.06 m3m−3. In addition, the error variability (in terms of the interquartile range; IQR) changes

significantly between the networks from about 0.01 to 0.05 m3m−3 with a pattern of increasing

variabilitywith increasing average error. A clear decrease in themeasurement errorswith increasing

measurement depth can be seen for all networks except for the deepest layers of SCAN and

SNOTEL. AMMA, ARM, and HOBE show a rather stable behavior. One reason for the observed

error decreasewith increasingmeasurement depth could be that themagnitude of daily temperature

fluctuations, which are known to have an impact on the sensor readings (Dorigo et al., 2013) also

decreases in deeper layers. Another possible explanation is the smoothing effect on the signal due to

the decrease of temporal variability of soil moisture in deeper layers. Localized weather phenomena

that effect the spatio-temporal variability and hence the spatial representativeness might also have

a lower impact on deeper layers. Figure 5.2 shows the same statistics for different sensor types

and measurement depths, again for absolute soil moisture measurements. All sensor types show a

decrease of the errors with increasing depth, except for TDR/FDR and impedance probes placed in

the deepest layer. �at is, sensors placed in deeper layers might better represent coarse-scale soil

moisture variations than shallow sensors. Note that the varying amount of measurements available

to calculate the statistics for a certain network, depth or sensor type makes the statistics less robost

(e.g., for AMMA, COSMOS, HYDROL-NET_PERUGIA, ICN, MOL-RAO, UMBRIA, UMSUOL,

or cosmic ray and deep layer capacitance sensors) and might give a wrong impression of error

variability under certain conditions. Several networks listed in Table 3.1 are not shown in the results

because they either didn’t fulfil the statistical requirements of the triple collocation method (i.e.,

were not significantly correlated with the satellite or the model) or had a too limited or no temporal

overlap with the satellite and model data (i.e., less than 100 collocated measurement triplets).

No error estimates for neutron probes and gravimetric measurements are shown for the same
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Figure 5.1:Box–Whiskers plot for the triple collocation result summarizing different observation depths

of each network. �e box represents the upper and lower quartile together with the median; the

whisker length is 1.5 times the interquartile range drawn from the respective quartile. Red crosses

indicate outliers exceeding the whiskers. Values in brackets show the average number of triplets used

for the error estimate/the total number of error estimates used to calculate the statistic in the respective

column.

reason. Above described patterns are similarwhenusing anomalies instead of absolute soilmoisture

measurements. Figure 5.3 shows the error estimates for original values against error estimates for

anomalies for all available measurements. One can see that, in general, errors of anomalies are

lower than for absolute values with an increasing discrepancy for increasing errors. A trend for

decreasing errors with increasing depth is again visible except for very deep measurements, which

might be caused by the significantly lower number of error estimates in those depths. Soil moisture

anomalies typically show a lower dynamic range than absolute soil moisture values, especially when

calculating them as the difference from the moving-average baseline like it was done in this study.

Hence, the data space in which the triple collocation expresses the errors show a lower dynamic

range, which could support the impression of lower error estimates for anomalies. It is thus hard to

distinguish whether soil moisture anomalies between the point scale and the coarse scale are closer

related than absolute soil moisture values, or whether the different error levels are caused by the

properties of the triple collocation. Also the dynamic range of absolute soil moisturemeasurements

varies between the different networks and stations because of the different climate, soil, and terrain

properties. Figure 5.4 shows the relationship between error estimates and the dynamic range of

the measurements (expressed as the difference between the highest and the lowest measurement)
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Figure 5.2: Box–whiskers plot for the triple collocation result summarizing different sensor types and

depths. �e box represents the upper and lower quartile together with the median; the whisker length

is 1.5 times the interquartile range drawn from the respective quartile. Red crosses indicate outliers

exceeding the whiskers. Values in brackets show the average number of triplets used for the error

estimate/the total number of error estimates used to calculate the statistic in the respective column.
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Figure 5.3: Estimated errors in the original measurements against estimated errors in anomalies

summarized for different measurement depths. �e dashed lines are the regression lines.

of all sensors of all used stations. One can see a clear trend of increasing error with increasing

measurement variability. Again the two possible reasons for this are (i) that soilmoisture at different

scales is closer relatedwhen there is a lower overall soilmoisture variability, i.e., pointmeasurements

aremore representative under these conditions, and (ii) that the triple collocation artificially deflates

errors with a low dynamic range.

5.2 Climate class analysis

Figure 5.5 shows the errors of measurements within different climate classes related to the median

soil moisture at the respective site. One can see a clear trend of increasing errors for wetter average

conditions in cold arid steppe regions. A similar trend can be seen for temperate and cold regions
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Figure 5.4: Error levels of absolute values against the soil moisture variability expressed as the

difference between the highest and the lowest measurement. �e dashed line is the regression line.

with dry summer as well as for arid desert regions, but very few data points are available to make

this statement statistically reliable. �is behavior is consistent with studies investigating inherent

sensor errors (e.g.,Mittelbach et al., 2011). Temperate and cold regions without a dry season appear

to show two interfering phenomena pronounced as an apparent cross in the scatterplot: One trend

for increasing errors with increasing average soil moisture and also a second trend for decreasing

errors with increasing average soil moisture. Connecting the climate region to the soil type could

not explain this behavior (not shown). A possible reason for the convex upward relationship

between average soil moisture conditions and error levels is the spatio-temporal variability of soil

moisture that reaches a maximum under intermediate wetness conditions (e.g., Brocca et al., 2012).

Accordingly, sensors placed in such areas should be less representative for coarse-scale soilmoisture

than sensors placed in dry or wet areas. �e interfering error peaks for very low and very high

average soil moisture levels could not be explained and should be investigated in further studies.

Too few or too randomly spread data points are available to see any pattern for tropical savannah,

polar tundra and cold regions with dry winter. No significant differences in error budgets and hence

the coarse-scale representativeness of the sensors are visible between particular climate regions.�e

impression of slightly lower errors in tropical savannah and arid desert regions might be caused by

the lack of measurements in these regions.
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Figure 5.5: Errors in absolute values against the average soil moisture condition for summarized

climate classes. Colors indicate the detailed classes according to the Koeppen-Geiger classification.
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5.3 Soil texture analysis

Figure 5.6 shows the errors of measurements within different soil types related to the median soil

moisture at the respective site. Again, a slight trend of increasing errors with increasing average

soil moisture conditions is visible but not as pronounced as for different climate regions. �e same

interfering trend of increasing errors with decreasing average soil moisture might be apparent in

clay and loambut also less pronounced than for the climate classes. Sensors placed in sand appear to

have slightly lower errors, but again statistically not significant. �is could mean that soil moisture

in sandy soils distributes more homogeneously over larger areas what makes single sensors placed

in such soils more representative. �e general reliability of the soil texture analysis is hampered

by three facts: (i) the HWSD only represents dominant soil types in two coarse layers, (ii) the soil

texture at the sites might significantly differ from the coarse-scale average soil texture provided

from the HWSD, and (iii) several soil texture borders are following country borders instead of

natural landscape features, questioning the reliability of the data sources. Site-specific soil texture

information from the data providers would help to overcome this issue, but it is only available for

very few networks.
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Figure 5.6: Errors in absolute values against the average soil moisture condition for summarized

soil types. Colors indicate the detailed classes according to the USDA soil texture classification. �e

summarized class "loam" is splitted into two plots (right) for the visual separation of the contributing

original classes.
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Conclusion and Outlook

�is study investigated the quality of in-situ measurements of the ISMN for representing soil

moisture at footprint scales on a global basis using random error estimates of the triple collocation

method. �ese errors reflect the actual inherent sensor measurement error, i.e., sensor noise

and malfunctions, overlaid with external errors, which are (i) systematic differences between

the statistical properties of the different data sources that cannot be removed with the CDF-

matching and are hence interpreted as random errors, and (ii) scaling errors caused by the spatio-

temporal variability of soil moisture, i.e., the limited spatial representativeness of the in-situ sensors

(horizontally but also in depth) when comparing it with larger-scale satellite and model data.

Systematic differences between the in-situ measurements and the "true" soil moisture state (e.g.,

through miscalibration) cannot be resolved and might lead to an additional scaling of the error

estimates. Besides, harmed assumptions in the triple collocation (e.g., too few data triplets or non-

gaussianity of the data sets) might additionally inflate the error estimate. Since many studies show

that one single sensor might not be sufficient to represent larger-scale soil moisture, it is very likely

that both external error sources dominate the overall error estimate and that the triple collocation

result thus mainly reflects the spatial representativeness of the sensors as a function of the spatio-

temporal variability of soil moisture. �is cannot be proven globally because of the limited station

density within the ISMN, leaving space for future studies to investigate the capabilities of the triple

collocation method for the characterization of in-situ measurement quality.

A high variation in average error levels of particular networks and sensor types as well as in

error variability within those was found. A global trend for decreasing errors with increasing

measurement depth and for increasing errors with increasing average soil moisture conditions

was observed, independent of the soil type and climate region. An interfering trend of decreasing

errors with increasing average soil moisture conditions, which could only be partly explained with

the spatio-temporal variability of soil moisture, is visible in data sets within temperate and cold

regions without clear dry seasons, but less pronounced in clay and loam. Almost all sensors show

lower errors when looking into anomalies instead of absolute soil moisture, which is mainly caused

by the lower dynamic range of anomalies. A clear relationship between the dynamic range and
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error levels was also found for absolute soil moisture measurements. Moreover, 35.8% of the in-

situ data sets exceed the current satellite mission accuracy requirement of 0.04 m3m−3 in terms

of the triple collocation error estimate for absolute soil moisture values. In-situ measurements

are o�en considered as the "true" reference for this requirement, but also for a large variety of

other applications and must therefore achieve significantly lower error levels. �e limited spatial

representativeness of single in-situ stations for larger-scale soil moisture levels and the limited

knowledge about inherent sensor errors question the meaning of a single number for a direct

comparison between in-situ sensors and satellite instruments. Almost all stations out of more than

1400 show considerable errors that should be taken into account in most applications, making the

development of a standard procedure for a comprehensive quality assessment an essential task,

including the development of procedures to reliably select representative existing or future sites for

the in-situ – satellite inter-comparison.

�is study investigated the results of the triple collocation, which is just one approach for estimating

random errors and should be seen only complementary to other tools such as correlation,

RMSD, and bias analysis or the assessment of spatial representativeness, since all these methods

characterize different quality properties. �e requirements on these properties highly vary with

application and not a single sensor or site is capable to fulfil all of them. Detailed knowledge

about the requirements of the particular application is crucial to support the comprehensive quality

assessment by allowing the best possible selection of existing sites, but also by supporting the

selection of representative locations and the best fitting sensor type for the setup of new sites. Finally,

it helps to avoid misinterpretations of results based on in-situ data under the assumption that they

are error-free.
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