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Abstract

We introduce Forman-Ricci curvature and its corresponding flow as characteristics for com-

plex networks attempting to extend the common approach of node-based network analysis

by edge-based characteristics. Following a theoretical introduction and mathematical mo-

tivation, we apply the proposed network-analytic methods to static and dynamic complex

networks and compare the results with established node-based characteristics. Our work

suggests a number of applications for data mining, including denoising and clustering of ex-

perimental data, as well as extrapolation of network evolution. Complex networks, Forman-

Ricci-curvature, Ricci-flow, Laplacian flow, data mining
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1 Introduction

Network graphs have been perceived as practical models for complex systems for decades. With

the rapid rise of data science since the late 1990s, they have become a widely used form of data

representation that is easily storable and can be effectively analyzed with data mining methods.

Complex networks represent a wide variety of data sets and systems, ranging from social

interactions in large online social networks like Facebook and Twitter to neuronal activities in

cortical graphs and genetic interactions in the human genome. Outside the social and natural

sciences, networks are used as models for the spread of information in the world wide web and

the shared use of energy ressources – to name just a few examples.

Since the early days of network sciences, there have been numerous attempts to charac-

terize complex real-world networks with standard models that capture essential topological

properties. Most notably are the models of P. Erdős and A. Rényi [Erdős and Rényi, 1959,

Erdős and Rényi, 1960], D. Watts and S. Strogatz [Watts and Strogatz, 1998] and R. Albert

and A. Barabási [Barabási and Albert, 1999]. Their efforts were addressed with both praise
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(e.g. [Amaral et al., 2000, Jeong et al., 2000]) and concerns (e.g. [Arita, 2004, Lee et al., 2015])

in the literature in terms of their capabilities as well as deficiencies in describing real world

systems.

Common among most network models is the focus on node degree distributions, clustering

coefficiants and the average path length as the defining topological and geometrical proper-

ties [Strogatz, 2006, Newman, 2003]. More recently [Gu et al., 2016, Banerjee and Jost, 2008],

the spectrum of the normalized graph Laplacian has been introduced as a useful classification

scheme. In this work, we suggest additional edge-based characteristics based on combinatorial

approaches, namely the Forman-Ricci curvature and the Bochner Laplacian, as well as their

corresponding flows.

Until quite recently, Ricci curvature has been just one of the various curvature notions in

Riemannian Geometry, best known for its role in Einstein’s field equations. However, this has

changed drastically due to the spectacular mathematical applications in G. Perelman’s far reach-

ing work on the Ricci flow and the Geometrization Conjecture [Perelman, 2002, Perelman, 2003].

While started far earlier [Stone, 1976], the search for the discretization of this notion has

gained fast momentum, spurred by Perelman’s groundbreaking results. One notable approach is

that of Chow and Luo [Chow and Luo, 2003], based on circle packings. It has been successfully

applied in Graphics, Medical Imaging and Communication Networks (see e.g. [Yin et al., 2008])

giving rise to many practical applications. A radically different approach was adopted by Ollivier

[Ollivier, 2009, Ollivier, 2010], that proved to be excellently suited for modeling Complex Net-

works, both from the theoretical [Bauer et al., 2012, Jost and Liu, 2014, Loisel and Romon, 2014],

as well as applied [Sandhu et al., 2015a, Sandhu et al., 2015b, Ni et al., 2015, Li et al., 2014]

viewpoints.

Recently, another discretization of Ricci curvature for complex networks based on Forman’s

theoretical work [Forman, 2003] has been introduced [Sreejith et al., 2016a, Sreejith et al., 2016b,

Weber et al., 2016]. While based on different ideas than those residing at the base of Ollivier’s

discretization, Forman’s version is far simpler to implement - an advantage that was emphasized

and exploited in the papers mentioned above. Furthermore, there are strong theoretical indica-

tions that the two approaches are closely correlated, suggesting to substitute Ollivier’s curvature

with Forman’s for efficient computation in practical applications.

The formalism discussed in the present article naturally applies to both static and dynamic

networks. We discuss the duality of curvature and flow in a more general, theoretic setting

and its exploitation in Network Analysis. Both concepts are used to investigate model and

real-world networks, including web graphs (Google), social networks (Facebook) and biological

networks (gene networks, BioGrid), in terms of the Ricci-formalism. The results are discussed

in comparison to node-degree based network analysis and standard models as classifiers of com-

plex networks representing real-world systems. In the second part of the article, we focus on

characterizing dynamic networks with the help of the Ricci flow in an attempt to detect and

describe the topological properties of the underlying dynamic effects. We evaluate our results in

comparison to the Laplacian flow, a node-based method related to both the Forman curvature

and the Bochner Laplacian.

We conclude with possible applications of the discussed methods in data mining with an

emphasis on the analysis of dynamic effects in complex systems.
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2 Forman-Ricci curvature and the Bochner Laplacian

In this section we will give a mathematical motivation and rigorous introduction of the Ricci-

formalism for networks. We will discuss essential properties of Forman’s Ricci curvature and the

resulting important consequences for complex networks before moving on to possible practical

applications in Network Analysis in the next sections.

2.1 Ricci curvature

In the classical, geometric sense, Ricci curvature measures the deviation of a manifold from being

locally Euclidean in various tangential directions. More precisely, it quantifies both divergence

(of geodesics) and (volume) growth in the second term of the (n− 1)-dimensional volume Ω(ε)

through controlling the growth of the measured angles, as quantified by the following classical

formula:

Ω(ε) = Vol
(

̟(α)
)

= dα εn−1

(

1− Ric(v)

3
ε2 + o(ε2)

)

. (1)

where dα denotes the n-dimensional solid angle in the direction of the vector v ∈ Tp(M
n)

and ̟(α) represents the (n − 1)-volume generated by geodesics of length ε in dα. Forman’s

discretization of the Ricci curvature specifically captures the volume growth and transfers the

formalism to networks.

Figure 1: Ricci curvature as deviation of a manifold from being locally Euclidean in various tan-
gential directions (after Berger [Berger, 2012]). Here dα denotes the solid angle in the direction
of the vector v, and Ω the volume generated by the geodesics of length ǫ in dα.

Technically, Ricci curvature represents an average of sectional curvatures. As an analogy to

the classical mean curvature of surfaces, this averaging property is further emphasized by the

fact that Ricci curvature acts as the Laplacian of the metric g [Berger, 2012]. Notably, in

dimension n = 2, i.e. in the case most relevant for classical Image Processing and related fields,

Ricci curvature reduces to sectional (and scalar) curvature in the form of the classical case

[Berger, 2012].

2.2 The Bochner Laplacian

Before proceeding to the more technical aspects, we note that Forman’s definition has a quite

general discrete setting. It is based on an abstraction of a classical formula known from Dif-
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ferential Geometry and Geometric Analysis as the so called Bochner-Weitzenböck formula (see,

e.g. [Jost, 2011]), for weighted CW cell complexes, an abstraction of both polygonal meshes and

weighted graphs. This formula relates curvature to the classical (Riemannian) Laplace operator.

In consequence, and as a byproduct of its very definition, Forman’s Ricci curvature comes cou-

pled with a fitting Laplacian (or, in fact, two Laplacians, as we shall see below). The parallelism

of the Forman-curvature and the Bochner Laplacian, also reflected in the corresponding flows,

has important implications on the transfer of theoretical results and possible applications onto

various fields of Network Analysis.

In its best known form, for functions, the Bochner-Weitzenböck formula is written as:

− 1

2
∆
(

||df ||2
)

= ||Hessf ||2− < df,∆df > +Ric(df, df) . (2)

Here Hessf denotes the Hessian of f : Hessf = ∇df = ∇2f and < ·, · > as usual, the inner

product. A proof can be found, e.g., in [Jost, 2011]1. However, there is no natural or general

applicable interpretation of this form of the Bochner formula. Therefore, to generalize the

notion of Ricci curvature to allow for a description of weighted cell complexes, one starts from

the following form of the Bochner-Weitzenböck formula (see, e.g. [Berger, 2012, Jost, 2011]) for

the Riemann-Laplace operator �p on p-forms on (compact) Riemannian manifolds:

�p = dd∗ + d∗d = ∇∗
p∇p +Curv(R) , (3)

where ∇∗
p∇p is the Bochner (or rough) Laplacian and Curv(R) an expression of the curvature

tensor with linear coefficients where ∇p denotes the covariant derivative operator. For cell-

complexes, one of course cannot expect the existence of such differentiable operators. However,

a formal differential exists: In our combinatorial context (the operator) “d” being replaced by

“∂” – the boundary operator of the cellular chain complex (see [Kaczynski et al., 2004]), we

have

0 → Cn(M,R)
∂→ Cn−1(M,R)

∂→ · · · ∂→ C0(M,R) → 0 ,

where cells are analogues of forms in the classical (i.e. Riemannian) setting. The following

definition of the Bochner Laplacian becomes now natural:

�p = ∂∂∗ + ∂∗∂ : Cp(M,R) → Cp(M,R) , (4)

where ∂∗ : Cp(M,R) → Cp+1(M,R) is the adjoint (or coboundary) operator of ∂, defined by:

< ∂p+1cp+1, cp > =< cp+1, ∂
∗
pcp >p+1 , where < ·, · >=< ·, · >p is a (positive definite) inner

product on Cp(M,R), i.e. satisfying: (i) < α, β >= 0, ∀α 6= β and (ii) < α,α >= wα > 0 – the

weight of cell α.

Forman [Forman, 2003] (see also the much earlier [Eckmann, 1944]) shows that an analogue

of the Bochner-Weitzenböck formula holds in this setting, i.e. that there exists a canonical

decomposition of the form:

�p = Bp + Fp , (5)

1Besides proofing the above statement, [Jost, 2011] emphasizes the role of Ricci curvature in the formula of
the Jacobian determinant of the exponential map, thus underlining the role of Ricci curvature as a measure of
growth – see also the observation above regarding this very aspect of Forman’s discretization.

4



where Bp is a non-negative operator and Fp is a diagonal matrix. �p, Bp and Fp are called,

in analogy with the classical Bochner-Weitzenböck formula, the combinatorial Riemann-Laplace

operator, the combinatorial Bochner (or rough) Laplacian, and the combinatorial curvature

function, respectively.

If α = αp is a p-dimensional cell (or p-cell, for short), then we can define the curvature

function Fp : Cp → Cp

Fp =< Fp(α), α >, (6)

as a linear function on p-chains. For dimension p = 1 we obtain, by analogy with the classical

case, the following definition of discrete (weighted) Forman-Ricci curvature on α = α1, i.e.

1-cells (edges):

RicF(α) = F1(α). (7)

The formalism does not restrict the choice of the weight function, i.e. it allows for general

weights making the Forman-Ricci curvature extremely versatile. A handy choice are the so called

standard weights [Forman, 2003], that generalize the intuitive geometric notions of length, area

and volume:

w(αp) = w1 · wp
2 . (8)

Note that the combinatorial weights wα ≡ 1 represent a set of standard weights, with w1 = w2 =

1.

Using the properties of standard weights and their relationship with generic weights, we

obtain the following formula for polyhedral (and in fact much more general) complexes, endowed

with any set of (positive) weights:

F(αp) = w(αp)
[(

∑

βp+1>αp

w(αp)

w(βp+1)
+

∑

γp−1<αp

w(γp−1)

w(αp)

)

(9)

−
∑

αp
1
‖αp,αp

1
6=αp

∣

∣

∣

∑

βp+1>αp
1

βp+1>αp

√

w(αp)w(αp
1)

w(βp+1)
−

∑

γp−1<αp
1

γp−1<αp

w(γp−1)
√

w(αp)w(αp
1)

∣

∣

∣

]

;

with α < β meaning that α is a face of β, and α1 ‖ α2 signifying the simplices α1 and α2 to be

parallel.
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Figure 2: Social network [Zachary, 1977] with highlighted cells. Parallel cells (edges: red), with distinct

children (nodes: black) and a common parent (face: gray).

Parallel cells are precisely those that either have a common “parent” (adjacent higher dimen-

sional face) or a common “child” (adjacent lower dimensional face), but not those that have

both a common parent and common child (see Fig. (2)). Together with the formula above, the

combinatorial Riemann-Laplace operator (see [Forman, 2003]) is also obtained, when we con-

sider the Laplacian written in not necessarily symmetric form (although, with a suitable choice

of an inner product, the Laplacian is a symmetric operator, see [Horak and Jost, 2013]), as:

�p(α
p
1, α

p
2) =

∑

βp+1>αp
1

βp+1>αp
2

ǫα1,α2,β

√

w(αp
1)w(α

p
2)

w(βp+1)
+

∑

γp−1<αp
1

γp−1<αp
2

ǫα1,α2,γ
w(γp−1)

√

w(αp
1)w(α

p
2)

; (10)

where ǫα1,α2,β , ǫα1,α2,γ ∈ {−1,+1} are the relative orientations of the cells.

Remark. One might object that the formulas above hold only for the case of standard weights,

whereas weights associated to intrinsic information in the real data need not necessarily satisfy

such dimensionality scaling – like the one displayed by area and volume with respect to the

length, as encapsulated by condition (8). In particular, while this scaling holds for polygonal

and polyhedral meshes, it does not necessarily hold for networks. However, an important result

of Forman ([Forman, 2003], Theorem 2.5) consist precisely in showing that, for an open, dense

set of weights, the essential property required for the formulas in question to hold is satisfied.

Therefore, while the given weights might not satisfy the required property themselves, there

exist weights arbitrarily close to them that do. Hence they can replace, formally, the given ones,

without any perceivable computational error.

2.3 The case of networks

In 1-dimensional regular CW -complexes, such as networks or locally finite graphs, there are no

faces of dimension higher than one. It follows for these cases including the complex networks

considered here, that edges have no “parents”, but only “children” (nodes). This observation

6



greatly simplifies (9), since it causes half of the terms to vanish. The case in which we do have

these higher (and lower) order structures will be covered in a forthcoming article by the authors.

By further taking p = 1, we obtain the Forman-Ricci curvature for networks:

RicF(e) = ω(e)







ω(v1)

ω(e)
+

ω(v2)

ω(e)
−

∑

ev1 ∼ e
ev2 ∼ e

[

ω(v1)
√

ω(e)ω(ev1)
+

ω(v2)
√

ω(e)ω(ev2)

]






. (11)

Analogously to (2.8), the Bochner Laplacian simplifies, for p = 1, to

�1(e1, e2) =
∑

e1∼v
e2∼v

ω(v)
√

ω(e1)ω(e2)
, (12)

due to vanishing terms related to the non-occurrence of higher order faces. In section 4, we will

use (11) and (12) to characterize the flow on networks.

As underlined above, the main advantage of Forman-Ricci curvature as a network charac-

teristic resides in the fact that it is an edge based notion. However, it can be preferable to use

a node based version. In that case, the Forman-Ricci curvature of a node can be defined as the

sum of the curvatures of all edges incident to that node:

F(v) =
∑

ev ∼ v

F(ev) . (13)

Directed (oriented) networks are essential for modeling a variety of phenomena, such as those

included in the experimental part of the present paper (see Section 3). However, in Forman’s

original work, the weights (as generalizations of length, area, etc.) were taken to be positive.

Hence, the Forman-Ricci curvature is not directly applicable for non-orientable surfaces (or,

more generally, manifolds/ cell complexes). However, one can adapt its notion from undirected

to directed graphs by rearranging the terms in the definition of the Forman curvature for an

edge e (Eq. 11), and write the contributions of the two adjacent nodes v1 and v2 separately (see

also [Sreejith et al., 2016b]) as

F(e) = we





wv1

we
−

∑

ev1 ∼ e

wv1√
wewev1



+ we





wv2

we
−

∑

ev2 ∼ e

wv2√
wewev2



 . (14)

Note, that this naturally defines the curvature of a directed edge by only using the term involving

its initial node, or alternatively its terminal node.

This definition can be, in turn, easily adapted to nodes: Given a node v, let us denote the

set of incoming and outgoing edges of v by EI,v and EO,v, respectively. Then, one can define

the In Forman curvature RicF,I(v) and the Out Forman curvature RicF,O(v) as follows:

RicF,I(v) =
∑

e∈EI,v

RicF,I(e) ; (15)

RicF,O(v) =
∑

e∈EO,v

RicF,O(e) ; (16)
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where the summations are taken over only the incoming and outgoing edges, respectively. More-

over, one can obtain the total amount of flow through a node v as follows:

RicF,I/O(v) = RicF,I(v)− RicF,O(v) . (17)

Note that we extend formula (2.8) and define the Ricci curvature of a directed edge, by using

just one of its two nodes, i.e. either its “head” or its “tail”. Here we measure the incoming edges

at the head and the outgoing ones at the tail where directions are defined from head to tail.

While there are other possible choices, we preferred this convention, as it is the most natural

for modeling a variety the networks, in particular those analyzed in the present article.

3 Application on Complex Networks

In the previous section, the Forman-Ricci curvature was rigorously introduced as a network

property. Now we want to investigate its applicability as a characteristic for real-world complex

networks.

As already noted above, common network characteristics are usually node-based features,

i.e. greatly dependent on node-degrees. While there are a great number of proposed approaches,

typically, the node degree distribution, the average path length between any two nodes and the

clustering coefficient [Newman, 2003] are used as “gold standards” for evaluating and classifying

networks (a notable exception to this common approach can be found in [Bai et al., 2016]).

All of these properties are highly dependent on node degrees, over-emphasizing the structural

importance of nodes over edges.

This exaggerated centrality of node degree-based features holds also for the three most estab-

lished model networks (respectively, Erdős-Rényi [Erdős and Rényi, 1959, Erdős and Rényi, 1960],

Watts-Strogatz [Watts and Strogatz, 1998] and Albert-Barabási [Barabási and Albert, 1999]),

that are widely used as exemplary models for real-world networks. Their common focus on

node-based network properties has been both apprised [Amaral et al., 2000, Jeong et al., 2000]

– for their simplicity – and criticized [Arita, 2004, Lee et al., 2015] – for significant qualitative

deviations from real world networks.

In contrast, in this article, we examine the applicability of the edge-based Forman-Ricci

curvature as a characteristic for complex networks. Many real-world networks are naturally

weighted and other than in the case of standard weights imposed onto unweighted networks,

we assume edge weights to be independent of node degrees. However, it has been shown that

many weighted real-world networks, especially biological ones, have a node degree bias (see, e.g.

[Ballouz et al., 2016] and the references therein). Even if curvature cannot be assumed indepen-

dent of node degrees, it balances their dominance in network analysis by taking other important

information - namely the edge weights - into account. We believe, that an extended network anal-

ysis that goes beyond the classic “gold standard” of network properties to include the curvature

and possibly the spectrum of the graph Laplacian [Gu et al., 2016, Banerjee and Jost, 2008],

gives a more complete picture and provides better insight into the topology of complex net-

works.

For the exploratory investigation of complex networks in this section, we follow current
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developments and areas of major interest in the network sciences and related fields and choose

the following exemplary data sets:

1. Webgraphs

Following the increasing impact of the World Wide Web on today’s world, the topology

of the internet has attracted major interest in recent years. We investigate a Google web

graph from [Palla et al., 2007, Kunegis, 2013], where nodes represent web pages and edges

the respective hyperlinks between them.

2. Social graphs

The rapid rise of social networks like Facebook, LinkedIn and Twitter have provided

the social sciences with fundamentally new ways to study human interactions and social

structures. Research now focuses on questions closely related to the topology of social

graphs that represent the underlying complex systems. In this section, we study a Facebook

friendship graph from [McAuley and Leskovec, 2012, Leskovec and Krevl, 2014], in which

nodes denote users and edges represent the connections (friendships) between them.

3. Biological networks

In recent years, data mining and network analysis have revolutionized a great number of

disciplines in the biological sciences. For instance, networks built from co-expression data

or protein-protein interactions in Genomics as well as brain networks in Neurosciences

are widely used data representations that have given rise to fundamentally new methods

and scientific approaches. Besides novel insights, these methods also demonstrate a need

to understand the topology of networks for constructing null models and reliable means

to account for noise biases that are an unavoidable feature of systems modeled from ex-

perimental data (see, e.g. [Ballouz et al., 2016] and the references therein). Here, we

investigate a gene-interaction network built from BioGrid [Stark et al., 2006], where genes

are represented by nodes and their associations and commonalities by the respective edges.

3.1 Forman-Ricci curvature as a network characteristic

Complex Networks

In this article, we consider network graphs

G = {V,E} ,

where V (G) represents the set of nodes (or vertices) and E(G) the edges connecting them

according to known associations, interactions or commonalities. Those can be inferred from a

given data set, empirical information or previous knowledge.

We impose a weighting scheme on the nodes

ω : V (G) 7→ [0, 1] , (18)

that can reflect additional knowledge about the nodes (such as hierarchical positions in social

networks, or the number of monthly visitors of a webpage) or - if no previous information on

9



the data points, other than their associations is given - we construct them combinatorial, based

on node degrees:

ω(v) =
1

deg(v)

∑

u∼v

deg(u) . (19)

To account for the strength of these associations, we define a normalized weighting scheme

γ : E(G) 7→ [0, 1] . (20)

The weights can be imposed directly from the given data (e.g. in correlation networks, as the

correlation between two data points across a set of empirical data) or derived from the weights

of the nodes they connect:

γ(eij) = sign(eij)
√

ω(vi)2 + ω(vj)2 , (21)

with

sign(eij) =







1, i ≤ j

−1, else
. (22)

The weighting scheme Eq.(21) is motivated by the geometric analogy of the distance between

two points and can be extended to a more generalized weighting scheme for cellular complexes.

Using edge and node weights, we can now determine the Forman curvature distribution from

(11) (or, in the directed case, from (15) and (16)). For evaluation of the distribution, we use

both histograms and curvature maps, the later ones containing through their spatial components

additional information on directionality and community structure.

A curvature-based distance measure for graphs

Using the distribution of the Forman-Ricci curvature we want to introduce a tool for determining

the distance between network graphs. We introduce a curvature-based pseudo-distance as a

measure of the dissimilarity of pairs of graphs that gives rise to a curvature-based classification

scheme.

Firstly, we estimate the density of the distribution through a (normalized) kernel density

estimator

fG : RicF(G) → R ; (23)

fG(e) =
1

|ê|
∑

ê∼e

K (RicF(e)− RicF (ê)) , (24)

with a kernel function K. Here, ê are edges parallel to e. To characterize the distance between

a pair of network graphs G1 and G2, we want to calculate the distance between the respective

density estimates fG1
and fG1

. A distance measure for distributions is given by the Wasserstein-
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distance [Gibbs and Su, 2002]

d
p
W = inf E

(

d (fG1
, fG2

)1/p
)

(25)

=

(
ˆ

R

|fG1
(x)− fG2

(x)|pdx
)1/p

. (26)

Here, we will use a special form of the Wasserstein-1 metric. For this, we formulate the graph

distance as an optimal transport problem and use the earth mover’s distance, i.e. d1W , that can

be computed by the Hungarian algorithm [Rubner et al., 2000]. We define clusters by splitting

suppfG1,2
into k1,2 bins, i.e. curvature-intervals {xi1,2}i=1,...,k such that

k
⋃

i=1

xi1,2 = suppfG1,2
. (27)

Each bin defines a cluster PG1,2
= {P 1

1,2, ..., P
k1,k2
1,2 } where P i

1,2 is characterized by a representative

pi1,2 with weight ω(pi1,2), i.e.

pi1,2 = 〈xi1,2〉 ; (28)

ω(pi1,2) = fG1,G2

(

〈xi1,2〉
)

; (29)

P i
1,2 =

(

pi1,2, ω(p
i
1,2)

)

. (30)

The pairwise distances between the binned clusters of both graphs are the entries of the so-called

ground distance matrix

D = {dij}i=1,...,k1
j=1,...,k2

= dist
(

pi1, p
j
2

)

, (31)

The distance between the graphs can also be viewed as the (finite) minimal number of modifi-

cations (i.e. adding or removing edges or nodes) to transform G1 into G2. In our setting, this

corresponds to an optimal transport problem between the sets of clusters PG1
and PG2

. We

introduce the transportation flow

F = {fij}i=1,...,k1
j=1,...,k2

, (32)

for characterizing the transformation of PG1
to PG2

. To find the optimal transport F, we

minimize the transport cost

W (PG1
, PG2

, F ) =

k1
∑

i=1

k2
∑

j=1

fij · dij . (33)

The optimization is implemented by, e.g. the Hungarian algorithm [Rubner et al., 2000]. With

the resulting optimal F , we can calculate the distance between G1 and G2 by the discrete earth

mover’s distance

EMD (PG1
, PG2

) = d1W =

∑k1
i=1

∑k2
j=1

fijdij
∑k1

i=1

∑k2
j=1

fij
. (34)
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3.2 Computational Data Analysis

Distribution and Similarity

We computed2 the distribution of the Forman-Ricci curvature for the three real-world exam-

ples described above, as well as computationally generated examples for three model networks

(∼ 20, 000 nodes each, see Supplemental Material for details). The results are displayed as his-

tograms and estimated density functions (Fig. 3) and as curvature maps (Fig.4), respectively.

To quantify the dissimilarity, between the networks, we use the curvature-based distance mea-

sure introduced in the previous section. For computational purposes, the density estimates and

separation into bins can be chosen in direct analogy to the histograms.

Figure 3: Results for Forman-Ricci curvature: Distributions and density curves. The three
real-world examples show a close resemblance with the Albert-Barabási model with the typical
power-law distribution. Notably, the width of the distribution is larger than in the case of the
AB-model, hinting that real-world-networks are ’mixed types’ of model networks, as previousely
discussed in the literature [Lee et al., 2015].

A comparison of the distributions (Fig.3) indicates strong qualitative similarity between the

Albert-Barabási (AB) model and the real-world networks. This hints on a correlation of the

curvature distribution and scale-freeness, the central property in the AB-model. A more ex-

tensive statistical analysis in [Sreejith et al., 2016a, Sreejith et al., 2016b] obtained comparable

results, empirically showing a strong correlation between scale-freeness and the distribution of

Forman-curvature over a wide range of network examples.

To quantify this observation, we compute the distance between the estimated curvature

distributions of our samples and a simulated model network of comparable size. The computation

is based on the curvature-based distance introduced in the previous section and utilizes the earth

mover’s distance determined by the Hungarian algorithm (see Supplemental Material). Table

1 summarizes the results. As expected from the qualitative evaluation of the histograms, the

2see Supplemental Material for details on implementation and the publicly available code
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Figure 4: Curvature maps for Forman-Ricci curvature. A: Curvature maps for subsamples3

of the three real-world examples with 1,000 nodes. Both the community structure and the
directionality of the networks is clearly represented in the maps. B: Curvature maps for the
three model networks. The Albert-Barabási model (c) shows resemblance with the real-world
networks due to its community structure, a result of its intrinsic scale-freeness.

Albert-Barabási model shows by far the most resemblance with the three real-world networks.

Surprisingly, our results suggest, that the random graph model (Erdős-Rényi) gives a closer

approximation than the Watts-Strogatz model - in contrast to what one would expect from

previous studies on other network-characteristics [Newman, 2003]. A closer examination of

curvature-distances between a larger number of real-world networks is beyond the scope of this

article and remains for future work.

An explanation for the observation of the close resemblance with the Albert-Barabási model

follows from the geometric meaning of the curvature: Highly curved edges accumulate in fast

evolving network regions that are distinguished by their information content (in the classic

Riemannian analogy, large deviations from local flatness of the Euclidean sphere). Previous work

in Network Analysis has shown, that major properties of networks are governed by a few densely

connected, distinguished nodes (so-called hubs) and the communities of nodes that center around

them [Newman, 2006]. This structure is intrinsic to the scale-freeness of the Albert-Barabási-

model. Our results suggest, that these hubs and densely connected communities surrounding

them, are characterized by high curvature - offering an explanation for the high correlation of

curvature distribution and scale-freeness.

Additional insight into the community structure of the networks is gained from evaluating

the curvature maps (Fig.4A). The curvature map representation highlights the similiarity of

curvature in a specific network region. The rich structure visible in the maps suggests curvature-

based clustering as a possible application of the Forman curvature (and the curvature map
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Network Curvature-based distance

Facebook (social) dAB = 0.0495
dWS = 0.3315
dER = 0.2706

Google (web) dAB = 0.0546
dWS = 0.3581
dER = 0.2910

BioGrid (biological) dAB = 0.0604
dWS = 0.2238
dER = 0.1688

Distances between
real-world networks

d(F,G) = 0.0565
d(F,B) = 0.0086
d(G,B) = 0.1131

Table 1: Curvature-based distances between analyzed data sets. The results show, in accordance
with our qualitative observations, a close resemblance between the real-world networks and the
Albert-Barabási model. The distances among the real-world networks are approximately of the
same order.

representation), as we will discuss later in the article.

Curvature maps and Directionality

Furthermore, the curvature maps offer insights into the directionality of networks: Undirected

networks have symmetric curvature maps; whereas directed ones (as the examples in Fig.4A)

are asymmetric. Directionality is an intrinsically edge-based network property that cannot be

captured with the standard characteristics. Looking at different classes of real-world networks,

including the exemplary ones studied in this article, the great importance of the directionality

becomes clear:

Social interactions as well as information flow are rarely symmetric - people in leading posi-

tions tend to receive far more emails and status updates from their group members than they

send themselves. Hyperlinks between web pages are highly asymmetric as, for instance encyclo-

pedias like Wikipedia link a lot of pages through citations and suggestions for further reading

- usually without being linked back by the respective page. Even if links in both directions

exist, they need not be used with the same frequency, possibly resulting in different weights.

Another example for which directionality is especially well studied, is that of neuronal networks.

In characterizing the behavior of neurons as excitatory or inhibitory, opposite signs are assigned

to the edge weights - introducing directionality to the network. Furthermore, it is well known

that the information flow between different brain regions is highly asymmetric, mostly occurring

in only one direction.

Providing a tool to capture and study this intrinsic property of real-world networks is one of

the major innovations of the Forman-Ricci curvature. The additional spatial dimension of the

curvature maps allows for an elegant representation of directionality and its analysis in terms of

community structures.
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Figure 5: Curvature-colored network plot of a Google webgraph
[Kunegis, 2013][Palla et al., 2007].

4 Ricci Flow on networks

The Forman-curvature resides at the base of the very definition of the Forman-Ricci flow and is

furthermore closely related to the Laplacian flow. Both flows can be utilized to characterize the

dynamics in evolving networks, as we shall see in this section. In this setting, network regions

(or communities) with high curvature (in Fig.4: red) are fast evolving, with information flow

towards (growing with fast accumulation of nodes, positive curvature) or away from (shrinking

or fast expansion, negative curvature) them. On the contrary, in regions with low curvature (in

Fig.4: yellow) the flow is overall low leaving the region static or only slowly evolving.

4.1 Forman-Ricci flow

Pioneered by Hamilton [Hamilton, 1988], and fully developed by Perelman [Perelman, 2002,

Perelman, 2003], the Ricci flow has become by now an established and active subject of study
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in Differential Geometry – see e.g. [Chow and Knopf, 2004, Topping, 2006] and the references

therein.

In the special case of surfaces, the Ricci flow has a very simple and intuitive form, due to an

essential identity relating Ricci curvature and the classical Gaussian curvature K, namely:

∂gij

∂t
= −K(gij) · gij ; (35)

This form of the flow was adapted by Chow and Luo [Chow and Luo, 2003] in their work on the

combinatorial Ricci flow on PL surfaces. In turn, it is this equation given in term of the lengths

of the edges (1-skeleton) of the given surface that inspired our own definition for dynamically

evolving weighted networks in [Weber et al., 2016]:

γ̃(e)− γ(e) = −RicF (γ(e)) · γ(e) ; (36)

where γ̃(e) denotes the new (updated) value of γ(e) after one time step. Note that in our

discrete setting, lengths are replaced by the (positive) edge weights. Time is assumed to evolve

in discrete steps and each “clock” has a length of 1.

In contrast, the Forman-Ricci flow based on a discretization of the “proper” 3- (and higher)

dimensional flow, i.e.
∂gij

∂t
= −Ric(gij) ; (37)

would give us the following alternative for (36):

γ̃(e)− γ(e) = −RicF (γ(e)) . (38)

Remark (Choice of the form of the Ricci flow). As discussed in [Weber et al., 2016], we con-

sider the Ricci flow in the specific form (36) the Ricci flow has in dimension 2. However,

our choice is, by no means, unique. Besides easy computability, a main reason for choosing

Eq. 36 is the fact that the most successfull discrete Ricci flow, namely that of Chow and Luo

[Chow and Luo, 2003], is of this type.

While defined for triangulated surfaces (i.e. of images), it effectively resides solely on the

1-skeleton, thus providing a formalism that can be easily mapped to the network graphs we

are concerned with in the present article. Moreover, this approach is also adopted in defining

the only other established Ricci-type flow for networks, namely the Ollivier-Ricci flow. It is

therefore a natural choice to define a Forman-Ricci flow in a 2-dimensional form, allowing for

consistency between and comparison of the two flows. However, note that considering the

curvature at the nodes, the Ollivier-Ricci flow represents a scalar flow, rather than a Ricci flow

[Sandhu et al., 2015a]. In contrast, our proposed form for the Forman-Ricci flow represents a

true Ricci flow, since it describes an evolution prescribed by the Ricci curvature of the edges.

Thus, it is in concordance with the classical (smooth) Ricci flow.

Another, more theoretical reason for our choice resides in the fact that graphs (and hence

networks), while formally 1-dimensional objects, are “almost 2-dimensional”. In a sense, they

encode in many important cases some essential properties of surfaces [Hua et al., 2015] and,

as such, hold in common with 2-dimensional structures many important features. In fact, the
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classic 1-dimensional graphs can be extended to higher dimensional structures intuitively, as we

will discuss in a follow-up article.

However, beyond this theoretical motivation, practical reason also implies a preference for

the form (36): As experiments with images show [Sonn et al., 2014], (38) it is in computational

analysis more unstable and tends to produce certain singularities. Given the more discrete

nature of networks compared to images, we must expect the flow to be even more prone to such

a lack of stability. Therefore, to avoid sharp changes in curvature and weights, it is useful to

benefit from the smoothing effect of the edge weight factor in the right side of (36).

Figure 6: The surface Ricci flow evolves the surface proportionally to the Ricci curvature,
towards a gauge surface of constant Gaussian curvature. The spherical form evolves by “pushing”
the points of high curvature faster then those of low curvature, such that regions of positive
curvature (tend to) shrink, while those of negative curvature (tend to) expand.

The classical Ricci flow for surfaces gives an intuition on the expected properties of the Ricci

flow for graphs. More specifically, we expect the surface to evolve through the Ricci flow pro-

portionally to the Ricci curvature towards a model (or “gauge”) surface of constant curvature.

This intuition is based on the classical case for 3-manifolds, where the Gaussian curvature is

in the limit equal to the mean Gaussian curvature of a given surface, i.e. a surface of constant

curvature having the same Euler characteristic as the original one. This has two aspects:

1. The short term flow tends to smoothen the surface by “pushing” the points of high cur-

vature faster then those of low curvature. This suggests some immediate applications of

this flow, namely denoising (or – for surfaces – smoothing). Note that Eq. (36) is, in fact

an ODE and therefore reversible. The resulting reverse flow

∂γ(e)

∂t
= +RicF (γ(e)) · γ(e) ; (39)

can also be exploited for the very opposite goals, e.g. adding of noise (or, in the case of

images, sharpening). Such goals are attainable without further theoretical work.

2. One would also like to study the long term flow. The motivation for this resides in the hope,

that in concordance with the classical Ricci flow for surfaces and with its discrete coun-

terpart introduced by Chow and Luo, the flow will evolve a given network to a gauge (or

model) network of a defined topological type (see [Hamilton, 1988], [Chow and Luo, 2003],

respectively). However, to avoid the possibility of the network “collapsing” under the flow,

one should consider not the standard flow, but rather its normalized version. For a surface
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this has the following form:

∂gij

∂t
= −

(

K(gij)−K(gij)
)

· gij ; (40)

where K denotes the mean Gaussian curvature of the given surface S2, namely

K =

´

S2 KdA
´

S2 dA
;

(dA denoting the area element of S2).

By analogy with (40) we can define the following Normalized Forman-Ricci flow as

∂γ(e)

∂t
=

(

RicF (γ(e))− RicF
)

· γ(e) . (41)

Such a “gauge” theory would be extremely important for the study of the evolution of

networks and moreover their prediction. Here, we restrict ourselves to empirical tools and

thus only perform relevant experiments for the short term flow. In a follow-up article we

will attempt to study such gauge networks with theoretical tools for higher order network

structures. For some additional remarks, see the discussion section of the present paper.

Remark (Metric structure). We note that, while in its present form formally correct and appli-

cable to the cases considered here, an extension to the long term flow is a relevant open point

to address in future work. An essential aspect in this context is the introduction of a metric

structure: For more rigorously founded geometrical conclusions, such as the evolution of the

network under the long term flow, one needs to ensure that the edge weights endow the network

with a metric structure. Indeed, without further assumptions, the given weights represent a

distance function only on the star of a node, i.e. on the edges adjacent to it (and their end

nodes). One approach for remediating this issue is the consideration of the path metric induced

by the given weights.

4.2 Laplacian Flow

Through the Bochner-Weitzenböck formula, Forman’s Ricci flow is closely related to the Laplace-

Beltrami (or short Laplacian) flow. In this section, we want to give a network-theoretic formu-

lation of the Laplacian flow and its relation to the Forman-Ricci flow.

We start with the general notion for Riemannian manifolds and develop a formulation for

graphs through an analogy for grids and manifolds that has been successfully applied in Imaging

(see, e.g., [Xu, 2004, Kaczynski et al., 2004]).

When considering more general types of surfaces, the general Laplace-Beltrami operator on

a Riemannian manifold (Mn, g) is given by ([Berger, 2012]):

△g =
1

√

det(gij)

n
∑

i,j=1

∂

∂xk

(

√

det(gij)g
i,j ∂I

∂xl

)

, (42)

where g = (gij) and gij = g(dxi, dxj).

18



Remark. Note, that in contrast to the prevalent convention in Riemannian Geometry, but ac-

cording to the intuition (and common practice in the Applied Sciences), we have opted for the

sign “+” in the definition of the Laplacian, as well as in that of the Ricci flow.

In analogy to a manifold [Xu, 2004, Kaczynski et al., 2004], we consider an image I, viewed

as a real, positive function defined on a rectangle (the image base). Then the Laplace-Beltrami

flow is defined by
∂I

∂t
= △gI . (43)

where △gI is the standard Laplacian of the metric g of I. The metric g itself is determined by

the 1-skeleton of the image, i.e. by the edges between the I-images of adjacent pixels. (For more

details see, for instance, [Appleboim et al., 2012] and the references therein.)

Since the edge grid of an image is nothing but a very simple, regular graph, except at the

boundary, it is quite natural to extend this type of flow to weighted graphs and networks. We

substitute △g with the Bochner Laplacian obtaining a simplified version of the Laplacian flow

for graphs:
∂G

∂t
= ∆1

FG . (44)

From (44) and from the Forman version of the Bochner-Weitzenböck formula (5), we easily

obtain a fitting version for the Laplacian flow on networks:

∂G

∂t
= ∆1

FG = (�1 − F)G . (45)

For the notation in the defining expression (44), we follow the classic convention in Imaging

(43). However, note that in practice the flow “resides” on the edges of G, and the evolution

of the edge weights therefore intrinsically determines the eventual evolution of the nodes. Note

that in both cases the absolute value of the edge weights γ generalize the lengths of the edges

(and the metric (gij)). Given (10) and the Bochner Laplacian

�1(e) =
∑

e∼v

ω(v)

γ(e)
; (46)

from (12), we can calculate the Laplacian flow, according to (45).

4.3 Characterizing dynamic effects in networks

Detection of changes and “interesting” regions with Forman-Ricci flow

In [Weber et al., 2016], we introduced a formalism for characterizing dynamics in complex net-

works. We will review the mathematical details here and then perform a more sophisticated

dynamic analysis of the Gnutella network [Leskovec and Krevl, 2014], [Leskovec et al., 2007],

[Ripeanu et al., 2002], going well beyond the investigations in [Weber et al., 2016].

The Ricci flow based on Forman curvature provides a tool for studying dynamic effects,

resulting from information flow, in complex networks. For this, we consider a set of ’snapshots’

that specify the network’s structure (connections between nodes and their strength) at given

(discrete) time points {ti} represented as weighted graphs (Gi)i∈I . By analyzing the flow of the

curvature between the time points, we gain insights into structural changes that can be utilized
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in a number of applications, as discussed below.

For computing the flow, we consider the following formalism: Let ti and ti+1 be adjacent

time points with corresponding graphs Gi and Gi+1. The Forman-curvature characterizes the

geometric structure of Gi and Gi+1 based on the weighting schemes

ω0
n,n+1 : V (G) 7→ [0, 1] , (47)

and edges

γ0n,n+1 : E(G) 7→ [0, 1] , (48)

at times ti and ti+1. From this, we compute the Ricci flow Eq. (36) at ∆t = ti+1−ti by iterating

k = 1, ...,K times:

γk+1

i,i+1
(e) = γk

i,i+1(e)−∆t · RicF (γk
i,i+1(e)) · γk

i,i+1(e) . (49)

resulting in updated weighting schemes γKi and γKi+1. The correlation between the updated

weights is a measure of the flow Eq. (49), identifying network regions that have undergone

significant structural changes at ∆t by evaluating the corresponding (thresholded) correlation

matrix. Alternatively, one can align the edges of Gi and Gi+1 beforehand and compare the

distance between the edge weights (using the L1-norm). We will use the later one here, for the

correlation-approach see [Weber et al., 2016].

For computing4 the Ricci flow, we use the following work flow:

1. Calculate the Forman-Ricci curvature for the network’s states at times t and t+∆t (e.g.

version of a data base, downloaded at ti and its preceeding version from ti+1 = ti +∆t ).

2. Normalize the networks, i.e. the updated weighting schemes γki and γki+1.

3. Calculate the discrete Ricci flow for each network through iteration over

γk+1
ij = γkij −∆t ·Ric(γkij) .

Fig. 7 shows the detection of fast evolving edges and, more broadly, the identification of “in-

teresting” dynamically changing regions. The capability of the Ricci flow to detect such regions

relates to our observations on the Forman-Ricci curvature in static networks in the previous sec-

tion: Hubs in dense network regions (communities) govern the global properties of the network

through strong connections with their neighbors. Those strong connections are characterized by

high (absolute) Forman curvature, which is by its very definition, related to network growth.

Regions of high curvature are therefore fast evolving, the respective changes in edge weights –

characterized by the Ricci flow – describe the growth or shrinkage behavior.

Denoising with Laplacian flow

Networks built from empirical data, such as the ones considered in the previous section, are

greatly affected by noise in the underlying data. Especially sensitive are the edge weights

4see Supplemental Material for details on implementation and the publicly available code
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Figure 7: Characterization of information exchange in Gnutella. A: Change detection with
Forman-Ricci flow and L1-distance (K=10, threshold=0.1). B: Graph plot of Gnutella infor-
mation (August 4 and August 5 2012). Edges are colored according to their Forman-Ricci
curvature.

that describe the strength of the inferred associations. Utilizing the averaging effect of the

Laplacian flow, we propose a method for correction of arbitrary small fluctuations as a first step

towards denoising networks. When inferring a network from given data, and assuming, that

small fluctuations mainly affect the strength of the edges and not their existence itself, one gets

G̃ = {V,E, ω, γ̃} , (50)

Under this assumption, we can limit our analysis to the denoising of the edge weights, i.e.

construct γ from γ̃:

γ̃ = γ + dt · dW . (51)

We assume arbitrary small fluctuations of the form of Gaussian white noise dW and attempt

to smooth the resulting noise effects with the Laplacian flow:

γ ≈ γ̃ − dt ·∆1
F (G) . (52)

This formalism is restricted to cases where the correction term is small with respect to the edge
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weights. Additionally, we only consider the short term flow, assuming that the fluctuations are

mainly a result of spontaneous irregularities that occur over a short term.

With the corrected weights γ, we can reconstruct the denoised graph as

G = {V,E, ω, γ} . (53)

Fig.8 shows the correction of fluctuations in the edge weights with the Laplacian flow for a small

use case. The intuitive scheme of the method can be easily extrapolated to large networks.

The distance between the original and the corrected weights (i.e. the denoising level) can be

calculated using the L1-norm, since the edges are aligned. First (preliminary) computational

tests on a selected set of real-world networks showed promising results.

Figure 8: Denoising with Laplacian flow. The averaging effect of the Laplacian flow smoothes
the distribution of edge weights and corrects for small fluctuation and random noise in the
underlying data (here: Zachary’s karate club [Zachary, 1977]). For illustration, we highlight the
averaging effect schematically.

4.4 Duality of Ricci curvature and the Laplacian

The derivation of the definition of the Forman-Ricci curvature (9) from the Bochner-Weitzenböck

formula (5) introduces a deep theoretical insight: It connects the curvature of the manifold to

the Riemann-Laplace operator, hence to the heat diffusion. Loosely formulated, the Laplacian

flow incorporates both an “approximate”, or rough Laplacian, as well as a correcting geometric

component, namely the curvature term. In consequence, the Laplacian flow captures the behav-

ior of both the Laplacian on and the curvature of the underlying manifold. Note that only for
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the case p = 1, i.e. for the Ricci curvature, the curvature term has a clear and specific geometric

content.

Moreover, the importance of the observation above is not restricted to the theoretical realm,

but has concrete and meaningful practical consequences. Indeed, the fact that one can obtain,

through Forman’s method [Forman, 2003], both a Ricci curvature and a Laplacian, endows us

with the discretization of two powerful geometric, respective analytic, tools, that have found a

wide range of applications in various fields of Computer Science. In particular, one can consider

not just the Forman-Ricci flow introduced above, but also a fitting discretization of the Laplacian

flow, which we discuss in more detail below.

However, let us first emphasize the main significance of this duality between curvature and

Laplacian. Clearly, it allows us to define discrete, network-theoretic versions of both the Ricci

and the Laplacian flow. This, in turn, allows for capturing a number of network properties

through the specific characteristics of the two flows.

Curvature and, in particular, Ricci curvature, is an edge-based network characteristic and

therefore naturally associated with the edge structure and contours of the system characterized

by sharp changes in curvature. The corresponding Forman-Ricci flow is expected to identify

the equivalent of such features, i.e. regions where curvature changes abruptly over a short time.

Those defining features act as the “backbone” of the network, providing a dense synopsis of its

topology and structural information. We refer to this intrinsic property of the Forman-Ricci

flow as backbone effect. It was this very behavior of the short term Ricci flow that we exploited

in [Weber et al., 2016] when first introducing the change detection method.

On the other hand, the Laplacian flow has a strong averaging or smoothing effect that is intu-

itively implied by its origins in the heat equation. It has been successfully applied for smoothing

and filtering of noise in Imaging (see e.g. [Appleboim et al., 2012], [Sonn et al., 2014]). In an

attempt to correct for small fluctuations in networks built from noise-effected empirical data,

we transferred this property to networks, with the same noise-reducing effect.

Computational experiments using the respective other flow yielded less promising results.

Especially the Laplacian flow seems, due to its strong smoothing effect, ill-suited for the detection

of sharp increases in curvature as utilized in the change detection method. Furthermore, we

note that in their discrete versions, the defining equations of both the Ricci and the Laplacian

flows are reversible. This is of practical importance for the first introduced method of change

detection, considering that a specific reverse flow (i.e. endowed with “-” sign) provides a tool

for different applications than the original one (with the “+” sign). In particular, the reverse �1

flow functions as sharpening operator, whereas the direct flow �1 provides an efficient anomaly

detection tool.

5 Discussion

In this article, we applied Forman’s Ricci curvature and Bochner Laplacian [Forman, 2003] to

networks and examined their capabilities as network characteristics. We found, that additional

structural information is encoded in the edge weights, which is difficult to evaluate using the

established node-based characteristics. This shortcoming affects especially the directionality of

edges that is of high importance in the analysis of many real-world networks. The curvature
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maps introduced in this paper allow for representation of directionality, possibly providing in-

sights into the information flow and evolutionary behavior of densely interconnected subgraphs

(communities).

A comparison of our results for three real-world networks with established model networks

confirmed the observation in earlier work [Sreejith et al., 2016a, Sreejith et al., 2016b] of a close

resemblance in the curvature distribution of real-world networks and the Albert-Barabási-model.

We extended the statistical approach therein by introducing a curvature-based distance measure

between graphs utilizing the earth mover’s distance between the respective curvature density

estimates. This formalism gives rise to a classification scheme for networks based on Forman-

Ricci curvature as we demonstrated for a small set of samples.

One could argue that there are other approaches to define a curvature on networks than For-

man’s that have been studied more intensely, including Ollivier’s [Li et al., 2014, Ni et al., 2015,

Sandhu et al., 2015b]. One caveat of Forman’s curvature in relation to Ollivier’s resides in its

intrinsic local definition being defined only for edges, i.e. adjacent pairs of nodes. However, one

can construct order-2, -3, etc. neighbourhood graphs by connecting all nodes that are at com-

binatorial distance 2 from the given node. The weight associated to this “order 2” edge would

be the sum of the weights of the composing (original) edges (for the combinatorial distance this

would equal 2). Now one can compute the Forman curvature of the resulting weighted graph.

In addition, there are strong indications that Forman’s and Ollivier’s curvature are closely in-

terrelated (as we shall shortly show in a forthcoming study). While measuring similar aspects

of network topology, Forman’s is, however, much easier and efficient to compute. This is espe-

cially important for the typically large networks relevant for applications to real-world complex

systems.

In the second part of the article, we extended our approach to dynamic networks by applying

the Forman-Ricci flow - based on Forman’s Ricci curvature - to networks. We introduced a

method to detect changes in an evolving network. Furthermore, we suggested the Laplacian

flow as a tool for denoising networks built from empirical data.

While only theoretically proposed and illustrated solely on a small example in this work, a

number of practical applications follow immediately from the theoretical results:

1. Classification

In the second section we introduced a curvature-based distance measure that quantifies

the dissimilarity between a pair of graphs. Naturally, this distance gives rise to a clas-

sification scheme. We were able to reproduce and quantify previous statistical results

in [Sreejith et al., 2016a, Sreejith et al., 2016b, Weber et al., 2016], that demonstrated a

strong similarity between different classes of real-world networks and the Albert-Barabási

model network. A more extensive study of a larger number of data sets and comparison

with various model networks remains subject to future work.

2. Detection of “interesting” regions

The Ricci flow characterizes regions of significant dynamic changes in the curvature, hinting

on structural changes in the underlying system. Looking at the flow over the course of

time, regions of ongoing changes are likely to contain significant information about the

24



system and its dynamics. Therefore, the flow provides a tool for identifying “interesting”

regions that are worth a closer analysis. We outlined the respective computational tools

and demonstrated their abilities on a use case. Further study and a statistical analysis of

a larger set of test samples is left for future work.

3. Network extrapolation

From knowledge of the flow over a given time range, one could extrapolate the dynamics

of past and future time points. In analogy to the flow in the physical sense, one could

model the flow with common equations of motion, yielding approximations of the long-

term development of the network and prediction of future network states. For this, one

would need to extend the assumption of short-term flows, used in the present article for the

sake of simplicity, to the long term case. We only aimed to lay a theoretical fundament for

curvature-based network extrapolation leaving extended studies for future work. To utilize

the full potential of such a long-term flow, one needs to consistently define the “gauge”

networks mentioned when discussing the normalized flow. One serious impediment to this

endeavor resides in the fact that the Forman-Ricci curvature does not satisfy a Gauß-

Bonnet type theorem, thus – in contrast with the surface case – no clear topological class

can be assigned to a gauge network. In a forthcoming article by the authors we will show

how one can remedy this drawback and indeed define a long time Forman-Ricci flow.

4. Clustering

The curvature maps introduced in section two strongly suggested a relation between com-

munity structure and curvature clusters. This is an argument for the application of com-

munity detection algorithms to the curvature distribution across the network in an attempt

to improve existing clustering tools. A future computational method using this approach

could build on earlier, related work for genetic networks [Saucan and Appleboim, 2005].

For now, it remains a subject for future work.

5. Denoising

A natural application of the geometric flows associated with Forman-Ricci curvature is

denoising. Empirical results in related fields, particularly Graphics and Imaging, suggest

that the Laplacian flow gives good results for denoising. We transfer this idea to the

network-theoretic Laplacian flow introduced in the present paper and perform a similar

analysis for denoising of networks built from (noise-affected) empirical data. The promising

results obtained for test cases motivate the further exploration of this idea in the future.

We showed, that Forman’s theoretical work [Forman, 2003] allows for defining both the Ricci and

the Laplacian flow for network in an intuitive and efficiently computable way. The applications

proposed above utilize the intrinsic strengths of both flows: The backbone effect of the Ricci flow

allowing for identification of defining properties and dynamics, and the averaging effect of the

Laplacian flow capable of smoothing and correcting small irregularities in the underlying em-

pirical data. The existence of these two complementary characteristics and their strong relation

through the Bochner-Weitzenböck-formula offers a rich basis for dynamic network analysis.

This article presents a curvature-based approach to characterize networks adding an edge-based
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characteristic to the established network-analytic “toolbox”. Building on and extending previous

work of the author and the group, we presented the mathematical motivation of the curvature-

based approach and provided examples for different types of real-world complex networks. Fur-

thermore, we propose a number of practical applications, specifically utilizing Forman’s Ricci

flow that will be extended in future work.

With our work we hope to add to the common effort of developing new network-analytic

tools for handling the challenges in data science come with the increasing amount of available

data and the recent rapid development of the field.
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