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Given a quantum system on many qubits split into a few different parties, how many total cor-
relations are there between these parties? Such a quantity, aimed to measure the deviation of the
global quantum state from an uncorrelated state with the same local statistics, plays an important
role in understanding multipartite correlations within complex networks of quantum states. Yet, the
experimental access of this quantity remains challenging as it tends to be non-linear, and hence often
requires tomography which becomes quickly intractable as dimensions of relevant quantum systems
scale. Here, we introduce a much more experimentally accessible quantifier of total correlations,
which can be estimated using only single-qubit measurements. It requires far fewer measurements
than state tomography, and obviates the need to coherently interfere multiple copies of a given
state. Thus we provide a tool for proving multipartite correlations that can be applied to near-term
quantum devices.

I. INTRODUCTION

The preparation of highly correlated quantum states
across many qubits is essential for advanced quan-
tum information processing [1–3]. Yet, in the noisy
intermediate-scale quantum (NISQ) era, techniques for
doing so are not necessarily reliable. Consequently, there
is surging interest in quantum benchmarking [4, 5] —
identifying efficient means of verifying what a quantum
computer is doing compared to what it is meant to do. Of
these, an analysis of how many correlations exist across
many qubits faces significant challenges owing to the ex-
ponentially growing size of Hilbert space. This is espe-
cially true when there is no prior information regarding
how the state is prepared.

One key amount of common interest is the total cor-
relation within a multipartite quantum system [3, 6].
Consider a joint quantum system consisting of k sub-
systems {g1, g2, . . . , gk}, where each subsystem gi has lo-
cal statistics specified by respective density operator ρi.
The joint system would be said to have no correlation if

the joint state obeys ρ =
⊗k

i=1 ρi, such that the global
statistics is simply the product of its marginals. A state
then possesses correlations if there exists deviation from
this tensor product. A common measure of such devi-
ation is the relative entropy, resulting in the quantifier

S(ρ‖⊗k
i=1 ρi) =

∑
i S(ρi) − S(ρ), where S(·) represents

the von Neumann entropy. The quantity has found appli-
cations in quantum thermodynamics [7] and many-body
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FIG. 1. Illustration of the main idea. We present a protocol
to measure the total correlation of an unknown multipartite
quantum state in any partition. We perform qubitwise lo-
cal randomized measurements on sequentially prepared states
and thus obtain the classical measurement data. Using tai-
lored data postprocessing strategies, the correlation informa-
tion with respect to any chosen partition can be extracted.

physics [8, 9], and the characterization of genuine mul-
tipartite correlation [10–12]. Nevertheless, the quantity
remains difficult to access in practical experiments due to
its inherent nonlinearity. Most approaches would require
either interacting multiple copies of ρ or state tomogra-
phy, tasks that can be prohibitive if ρ already presents
the most challenging state one can synthesize on NISQ
devices.

Here, we propose a quantifier of the total correlation
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— correlation overlap — whose technological accessibil-
ity is much closer to the synthesis of ρ itself. In particu-
lar, our protocol only requires repeated synthesis of the
same ρ, together with local (qubitwise) random unitary
evolution and computational measurements (see Fig. 1).
Specifically, we show that the correlation overlap can be
obtained by postprocessing the measurement data and
the amount of data required is much less than the tra-
ditional quantum tomography. Meanwhile, the quantity
itself maintains its operational meaning as a quantifier of
total correlations, and can also be immediately adapted
to measure how close candidate systems are to the max-
imally entangled.

II. DEFINITION

Recall that if a k-partite quantum state ρ is uncor-

related, it can be written as
⊗k

i=1 ρi with ρi = trī(ρ)
being the reduced density matrix of the i-th subsystem.
Normally the relative entropy is adopted to quantify the
distance between them [3, 6]. The von Neumann en-
tropy involved can be in principle acquired by the quan-
tum state tomography, which is already challenging for
systems with more than ten qubits. Thus, in order to
make the measurement protocol scalable, one needs to
avoid state tomography [13]. Alternative entropy func-
tions such as Rényi entropy can be obtained by measur-
ing the purity of the state [14–16]. However, Rényi en-
tropy can violate the subadditivity [2, 17], which makes
it nonideal for quantifying total correlation. Alternative
approaches include uses of witnesses [18, 19] to detect
the presence of certain correlations [20–23]. These wit-
nesses are typically tailored for specific classes of states
(e.g. [23, 24]) and are generally ineffective when applied
to states without the preparation information [25–27].

Here we quantify the total correlation based on the
fidelity between a given state ρ and its marginals as fol-
lows:

C(ρ) = − logF
(
ρ,

k⊗

i=1

ρi

)
, (1)

with the fidelity [28] being

F
(
ρ,

k⊗

i=1

ρi

)
=

tr
(
ρ
⊗k

i=1 ρi

)

√
tr(ρ2)

[∏k
i=1 tr(ρ2

i )
] . (2)

Notice that k is not necessarily the number of qubits,
but the number of subsystems under some partition. In
Appendix B, we show that such total correlation mea-
sure satisfies certain key properties, such as faithfulness,
no change under local unitary transformation, and ad-
ditivity under tensor product. By taking the minimiza-
tion on all possible bipartitions, one can also generalize it
to quantify genuine multipartite correlation. We remark

that other fidelity measures [28] could also be adapted
to define the total correlation where the measurability is
the main concern.

The denominator of Eq. (2) is composed of a few pu-
rity terms, and there already exist effective methods to
measure them [16, 29]. The main contribution of this
work is that we develop a protocol to effectively measure
the numerator

Tk := tr

(
ρ

k⊗

i=1

ρi

)
(3)

based on randomized measurements [16, 30, 31]. We de-
note Tk as the correlation overlap (CRO), which is di-
rectly relative to the Hilbert-Schmidt distance

DHS

(
ρ,

k⊗

i=1

ρi

)
= tr

(
ρ2
)

+

k∏

i=1

tr
(
ρ2
i

)
− 2Tk. (4)

When ρ is a low-rank state [32], such quantity can offer
a tight bound of the trace distance between ρ and its
marginals, which can be further applied in the quantum
independence testing [33]. In addition, we also discuss
the application of bipartite CRO in bipartite entangle-
ment detection, and leave it in Appendix C.

III. EFFICIENT ESTIMATION PROTOCOLS

We now show that the total correlation defined in the
previous section can be effectively estimated, irrelevant
of the party number k. For simplicity of discussion, take
the tripartite state ρABC as an example. Following the
definition in Sec. II, the essential quantity one needs to
evaluate is the tripartite CRO

T3 = tr [ρABC(ρA ⊗ ρB ⊗ ρC)] . (5)

The difficulty to measure T3 lies in that it is a nonlin-
ear function of ρABC and thus cannot be obtained by
measuring the observable on a single-copy state. In fact,
given four identical states ρ⊗4

ABC , one can make a joint
measurement among these copies [29],

T3 = tr {SA ⊗ SB ⊗ SC [ρABC ⊗ (ρA ⊗ ρB ⊗ ρC)]}
= tr

[
S

(1,2)
A ⊗ S(1,3)

B ⊗ S(1,4)
C (ρ⊗4

ABC)
]
.

(6)

Here S
(1,2)
A is the SWAP operator acting on the Hilbert

space of the first two copies of subsystem A, H1
A ⊗ H2

A,

and acts trivially on the last two copies, S
(1,2)
A |ψ〉1A|φ〉2A =

|φ〉1A|ψ〉2A. And similarly for the other SWAP operators

S
(1,3)
B and S

(1,4)
C (see Fig. 2(c) for an illustration).

This kind of measurement in general demands the
preparation of identical copies of the state ρ, and the
joint measurements across the distinct copies, which is
possible for the one-dimensional system and the few par-
ties case, for example, k = 2 [14, 15]. However, it is
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very challenging for the higher-dimensional system and
for the number of parties k being not small. In the fol-
lowing, we develop a measurement protocol based on ran-
domized measurements [16, 30, 31, 34], which only needs
the preparation of singlecopies of the state ρ. Random-
ized measurements find applications not only in quantum
information, like entanglement negativity extraction [35–
37], entanglement detection [38–42], Fisher information
quantification [43, 44], and quantum certification [45–47],
but also in quantum many-body physics [48–51].

Global Measurement Protocol – We first propose
a means to measure CRO using random unitary gates
that act globally on each system. This protocol can
then be subsequently modified to use only local unitary
gates on each qubit with a modest sacrifice in error scal-
ing. Our global measurement protocol works as follows:

Sample and operate random unitary U =
⊗k

i=1 Ugi on
each subsystem gi for the total k-partite system, inde-
pendently, and then conduct computational basis mea-
surement |s〉 = |sg1 , sg2 , . . . , sgk〉 in a sequential manner.
After sufficient repeating of the preparation and mea-
surement, one can get the estimation of the conditional
probability

Pr

(
sg1 , sg2 , . . . , sgk

∣∣∣∣∣
k⊗

i=1

Ugi

)
= 〈s|UρU† |s〉 (7)

and also its marginals Pr(sgi |Ugi) for the i-th subsys-
tem. The target quantity CRO Tk, can be written as the
postprocessing of these conditional probabilities shown
in Proposition 1, and we summarize the protocol in Al-
gorithm 1.

Algorithm 1 Global Measurement Protocol for Tk
Input: NU ×NM sequentially prepared ρ
Output: Probability distribution of the measurement

outcomes conditioned on the evolution unitary

Pr
(
sg1 , sg2 , . . . , sgk

∣∣∣⊗k
i=1 Ugi

)
in Eq. (7).

1: for i = 1 to NU do
2: Randomly pick a unitary matrix U =

⊗k
i=1 Ugi , with

each Ugi ∈ Hgi sampled uniformly from the unitary 2-
design ensemble.

3: Operate U on ρ to get UρU†.
4: for j = 1 to NM do
5: Measure UρU† in the computational basis {|s〉 =
|sg1 , sg2 , . . . , sgk 〉}.

6: Record the measurement results.
7: end for
8: Estimate the probability and its marginals in Eq. (7).
9: end for

10: Do the data postprocessing given in Proposition 1 for Tk.

Proposition 1. For a k-partite state ρ, the CRO Tk
defined in Eq. (3), can be evaluated by postprocessing the
measurement data, i.e., averaging the multiplication of
the total and the marginal probabilities under the random

unitary evolution as follows:

Tk =
∑

s,s′

E
U

[
Pr(s|U)

k∏

i=1

Xgi(sgi , s
′
gi) Pr(s′gi |Ugi)

]
, (8)

with the function

Xgi(sgi , s
′
gi) = −(−dgi)

δsgi ,s
′
gi , (9)

where dgi is the dimension of the i-th subsystem gi, and
EU denotes averaging over unitary 2-design ensembles on
each subsystem gi independently.

The detailed proof is left in Appendix D 2. The intu-
ition is that by multiplying the probabilities in the post-
processing, one can virtually get a few copies of ρ. Then
by averaging on the random unitary, one can further gen-
erate permutation operators among virtual copies.

Here we sketch the proof outline using Fig. 2 for the
T3 of the tripartite state ρABC . In Fig. 2(a), the condi-
tional probabilities are multiplied, and the box labels the
classical function Xg(sg, sg′) with g ∈ {A,B,C} for the
subsystem. In Fig. 2(b), by using the cyclic property of
the trace, we can effectively put the random unitary on
the operator Xg =

∑
sg,s′g

Xg(sg, s
′
g)
∣∣sg, s′g

〉 〈
sg, s

′
g

∣∣. In

Fig. 2(c), we average on the unitary ensemble to generate
a SWAP operator by the identity [31, 52],

Φ2(Xg) := E
Ug∈E

[
U⊗2
g XgU

†⊗2
g

]
= Sg. (10)

We denote this average on the two-copy Hilbert space as
the “twrling” channel Φ2(·). Note that the unitary en-
semble E need not be the Haar measure, and any unitary
2-design ensemble (such as the Clifford group [53, 54])
is sufficient, which is more practical compared with the
previous work by some of us [36]. If one naively general-
izes the protocol there to measure the k-partite CRO, a
(k+ 1)-design ensemble is needed. Unitary t-design with
t ≥ 4 is still poorly understood [55], and the generation of
these ensembles would need deep quantum circuit, which
is quite impractical compared to the current protocol.

In real experiments, the sampling time NU and the
measurement time NM as shown in Algorithm 1 are both
finite; the postprocessing will be more delicate compared
to Eq. (8) which corresponds to the case where NU and
NM are infinite. We show how to construct an unbi-
ased estimator for the scenario with finite NU and NM
in Sec. IV. We remark that our protocol measures the fi-
delity of the state to its marginal, not with an unrelated
state as in Ref. [45]. By adequately utilizing the marginal
distributions, our postprocessing shown in Sec. IV needs
less state samples and thus is more efficient than directly
applying the former one, say Ref. [45]. Our protocol can
be further generalized to local gate version, as discussed
in the next section.

Local Measurement Protocol – We can further
simplify the procedure above so that it makes use of only
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FIG. 2. Diagrammatic illustration of the proof of Proposition 1. Here, for simplicity, we take the tripartite state as an
example. (a) is the diagram representation of Eq. (8). The small half circles with s, s′ inside represent the computational basis
measurement. The dashed lines indicate that ρABC is not connected to ρA ⊗ ρB ⊗ ρC . In (b), we use the cyclic property of
the trace formula to put the random unitary evolution on Xg, for g ∈ {A,B,C}, defined in Eq. (9). The vertical gray dashed
lines denote the periodic boundary condition, i.e., the trace. The colored dashed boxes are twofold twirling channels acting on
Xg, which equal to the SWAP operators as shown in Eq. (10). As a result, we recover T3 in (c) with these SWAP operators
represented by the “X”-shape cross in each dashed box, with the formula given in Eq. (6).

single-qubit random gates. Specifically, the global mea-
surement protocol involves the need to sample random
unitary on each subsystem, which may contain several
qubits. This is challenging even for the moderate sub-
system size. In contrast, the following local measure-
ment protocol only involves random single-qubit Pauli
measurement.

Recall that the essence of the global measurement pro-
tocol is to construct “virtual” SWAP operators across dif-
ferent copies in Eq. (6) by data postprocessing shown
in Proposition 1. In fact, SWAP operator is factoriz-
able. The big SWAP operator S acting on n-qubit pairs
H⊗n2 ⊗ H⊗n2 , can be decomposed as S =

⊗n
l=1 Sl, with

Sl the small SWAP operator for the i-th qubit pair (see
Fig. 3 for an illustration). This fact enlightens us to sub-
stitute the random unitary, say UA (also UB and UC) in
Fig. 2, to the tensor product form UA =

⊗nA
l=1 Ul, where

each single-qubit unitary Ul is from the 2-design ensem-
ble independently, similar for other subsystems B and C.
Correspondingly, the postprocessing function Xg(sg, s′g)
in Eq. (9) is modified to the multiplication of local func-
tions as shown in Eq. (13).

For the general k-partite state ρ, suppose it contains

n =
∑k
i=1 ngi qubits with i-th party having ngi qubits.

We denote the computational basis as the n-bit binary
vector |~s〉 = |s1, s2, . . . , sn〉, sl = 0/1, and the state re-
stricted on the i-th party as |~sgi〉. By modifying the
global protocol in Algorithm 1, the local measurement
protocol of CRO Tk is shown in Algorithm 2, and now
we aim to obtain the following conditional probability

Pr

(
s1, s2, . . . , sn

∣∣∣∣∣
n⊗

l=1

Ul

)
(11)

and its marginals Pr(~sgi |Ugi) with Ugi =
⊗

l∈gi Ul. The
data postprocessing is summarized in Proposition 2.

Proposition 2. Given a k-partite state ρ, the CRO Tk
defined in Eq. (3), can be evaluated by postprocessing the

measurement data, i.e., averaging the multiplication of
the total and the marginal probabilities under the single-
qubit random unitary evolution as follows.

Tk =
∑

~s,~s′

E
U

[
Pr(~s|U)

k∏

i

X̃gi(~sgi , ~s
′
gi)Pr(~s′gi |Ugi)

]
(12)

with the function

X̃gi(~sgi , ~s
′
gi) :=

∏

l∈gi
Xl(sl, s

′
l) (13)

where Xl is defined in Eq. (9) with dl = 2, and EU de-
notes averaging U =

⊗n
l=1 Ul over unitary 2-design en-

sembles on each qubit independently.

Proposition 2 can be proved following the proof of
Proposition 1, and the proof is left to Appendix D 3.

Algorithm 2 Local Measurement Protocol for Tk
Input: NU ×NM sequentially prepared ρ
Output: Probability distribution of the measurement

outcomes conditioned on the evolution unitary

Pr

(
s1, s2, . . . , sn

∣∣∣∣∣⊗n
l=1 Ul

)
in Eq. (11).

1: for i = 1 to NU do
2: Randomly pick a unitary matrix U =

⊗n
l=1 Ul, with

each Ul ∈ Hl on the l-th qubit sampled uniformly from
the unitary 2-design ensemble.

3: Operate U on ρ to get UρU†.
4: for j = 1 to NM do
5: Measure UρU† in the computational basis {|s〉 =
|s1, s2, . . . , sn〉.

6: Record the measurement results.
7: end for
8: Estimate the probability and its marginals in Eq. (11).
9: end for

10: Do the data postprocessing given in Proposition 2 for Tk.
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Besides the practicality of the local measurement pro-
tocol, another advantage is that the measurement pro-
cedure and the postprocessing procedure are decoupled.
In particular, one can choose to study the correlation for
any partition of the system or the correlation informa-
tion restricted on some subsystems in parallel, by only
changing the postprocessing function.

FIG. 3. Here we provide a graphical example explaining how
the global and local methods work. ρABC is an nine-qubit
three-partite quantum state with each party containing three
qubits. The curved lines with arrows in both ends denote
SWAP operators. In global method (a), three-qubit SWAP

operators are constructed using three-qubit random unitary
matrix UA, UB , and UC . While in local method (b), the three-
qubit SWAP operators are decomposed into a tensor product
of single-qubit SWAP operators, which can be constructed
using single-qubit random unitary gates. Each colored dashed
box represents a unitary 2-design.

IV. STATISTICAL ANALYSIS

In practical situations, the sampling times of the ran-
dom unitary matrices NU , and the number of the pro-
jective measurement NM under a given unitary are both
finite. The multiplication of them, NUNM , quantifies

how many copies of ρ in total one needs to prepare in se-
quence. In this section, for clarity, we focus on the tripar-
tite CRO in Eq. (5) and construct an unbiased estimator
for it. We then analyze the variance of the estimator in
this finite sampling scenario. The scaling of the variance
respective to NU , NM and D characterizes the sample
complexity of our protocol. Similar analysis works for the
cases of general k-partite CRO. We use |s〉 = |sA, sB , sC〉
to denote the computational basis ofH = HA⊗HB⊗HC ,
where the total dimension is D = dAdBdC . In the fol-
lowing, we first illustrate the estimation protocol with
global unitary evolution, and then proceed to show how
this can be converted to the one with the single-qubit
measurements.

To construct an unbiased estimator, we first note that
the postprocessing expression in Eq. (8) can be equiva-
lently written as 4-time multiplication of the probability
distribution,

T3 =
∑

sA,sB ,sC

X
(1,2)
A (s1

A, s
2
A)X

(1,3)
B (s1

B , s
3
B)X

(1,4)
C (s1

C , s
4
C)

× E
U

[
4∏

i=1

Pr(siA, s
i
B , s

i
C |UA, UB , UC)

]
,

(14)
where we denote sA = (s1

A, s
2
A, s

3
A, s

4
A) as a 4-dit string

with siA ∈ {0, 1, . . . , dA − 1}, similar for sB and sC .

X
(1,2)
A (s1

A, s
2
A) is the function in Eq. (9) restricted on

the first two indices, similar for X
(1,3)
B (s1

B , s
3
B) and

X
(1,4)
C (s1

C , s
4
C).

In Algorithm 1, one samples NU times of U = UA ⊗
UB ⊗ UC to perform experiments. For the t-th round of
unitary sampling, one repeats the preparation and mea-
surement for NM times. For the i-th time of measure-
ment, we define a matrix-valued random variable

r̂U (i) = |ŝU (i)〉 〈ŝU (i)| , (15)

where ŝU (i) is a classical random variable with the con-
ditional probability

Pr(s|U) = 〈s|UρABCU† |s〉 , (16)

to record the measurement result s. For each random
unitary choice, one finally gets NM independent samples
{r̂U (i)}NMi=1 . We then construct an estimator for T3 as
follows

M̂(t) =

(
NM

4

)−1 ∑

1≤i<j<k<l≤NM
tr {Q3 [r̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)]}

=

(
NM

4

)−1 ∑

1≤i<j<k<l≤NM
X

(1,2)
A (ŝU (i), ŝU (j))X

(1,3)
B (ŝU (i), ŝU (k))X

(1,4)
C (ŝU (i), ŝU (l)) ,

(17)

with

Q3 :=
(
X

(1,2)
A ⊗ I(3,4)

A

)
⊗
(
X

(1,3)
B ⊗ I(2,4)

B

)
⊗
(
X

(1,4)
C ⊗ I(2,3)

C

)

(18)

being an observable on H⊗4. M̂(t) is an unbiased esti-
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mator in the sense that EU,s
[
M̂(t)

]
= T3, with the ex-

pectation value taken for all random U and measurement
outputs. Since the estimators {M̂(t)}NUt=1 are independent
and identically distributed, the final estimator is defined

as M̂ = 1
NU

∑NU
t=1 M̂(t), which is naturally unbiased.

In the local measurement protocol, the unitaries on
subsystems A, B and C are substituted to products of
the random unitaries on qubits. To construct the un-
biased estimator for the local protocol, accordingly the
postprocessing matrix Q in Eq. (18) should be adjusted
to

Q3,loc :=
(
X̃

(1,2)
A ⊗ I(3,4)

A

)
⊗
(
X̃

(1,3)
B ⊗ I(2,4)

B

)
⊗
(
X̃

(1,4)
C ⊗ I(2,3)

C

)

(19)

with X̃
(1,2)
A =

⊗nA
i=1X

(1,2)
Ai

the product of the qubitwise
X operator. Similar as in Eq. (17), one can construct the

final unbiased estimator M̂L = 1
NU

∑NU
t=1 M̂L(t).

To construct the unbiased estimator for Tk, one just
needs to extend the definition of Q3 and Q3,loc to the
k-partite scenario

Qk :=

k+1⊗

i=2

(
X(1,i)
gi ⊗ I(1,i)

gi

)
,

Qk,loc :=

k+1⊗

i=2

(
X̃(1,i)
gi ⊗ I(1,i)

gi

)
,

(20)

where (1, i) is the complementary set of (1, i) of
{1, 2, . . . , k + 1}. We further give the following result
on the variance of these constructed estimators for Tk.

Proposition 3. In the regime D � NM � k, the vari-
ance of the unbiased estimators M̂ and M̂L for the k-
partite CRO show the following scaling:

Var
(
M̂
)

= Θ(
D

NUN
k+1
M

),

Var
(
M̂L

)
= O(

Dlog2 3

NUN
k+1
M

),

(21)

where M̂ and M̂L are constructed with the measurement
data from the protocols in Algorithm 1 and Algorithm 2,
respectively.

For the global random unitary case, we rigorously
prove that the variance scales linearly with D, N−1

U , and

N
−(k+1)
M ; while for the local random unitary case, we pro-

vide an upper bound on the scaling. No matter in the
global or the local case, such error scaling is much bet-
ter than full tomography [56]. Inaddition, the variance
decreases when increasing the party number k, which is
equivalent to the number of virtual copies of state. In
Appendices E and F, we provide a detailed analysis of
the statistical variance.

To support our theoretical analysis, we conduct nu-
merical experiments for the local protocol, i.e., the ran-
dom unitary matrix applied is the tensor product of the

random qubit ones. The numerical results are shown
in Fig. 4. In Fig. 4(a)-4(c), we choose the tripartite
Greenberger-Horne-Zeilinger (GHZ) state, with an equal
qubit number in each party, as the target state. The
exact value T3 = 0.125 is independent of the qubit num-
ber, so that the variance itself is suitable to quantify the
quality of the estimation result. We first show how the
variance changes with NU when measuring a three-qubit
GHZ state for different NM in Fig. 4(a). These three lines
with slopes about −1 are coincident with the conclusion

in Proposition3 that Var
(
M̂L

)
∝ N−1

U . The variance de-

creases with the increase of NM , the measurement times
per unitary evolution. Then, by adjusting the qubit num-
ber of the GHZ state and with a fixed NM = 10, we also
find that the variance increases for larger system dimen-
sion in Fig. 4(b).

To study how the variance scales with dimension D
when D � NM , we change the qubit number of the
target GHZ state from 6 to 21 and set NU = 100 and
NM = 10 in Fig. 4(c). The slope α = 1.2587 from the lin-

ear regression of log2

[
Var

(
M̂L

)]
and the qubit number

n. It indicates Var
(
M̂L

)
∝ Dα with α ≈ 1.26 < log2 3,

which is consistent with our theoretical result in Proposi-
tion3. In Fig. 4(d), we take a six-qubit noisy W state as
an example, show the measurement results for different
NM with NU = 100, and find that our protocol can pro-
vide such high-quality measurement results as NM ≥ 20.
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V
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L

)

n = 3
n = 6
n = 9

3 6 9 12 15 18 21
10−3
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104

n

V
ar

( M̂
L

)

Numerical Data
LR:α ∼ 1.26

0

0

0.1

p

T
3

Exact Value
NM = 10
NM = 20
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0.2   0.4    0.6    0.8 1

FIG. 4. Numerical results for the estimation of the tripar-
tite CRO T3 in Eq. (5) with the local measurement proto-
col. (a) The variance scaling with NU for different NM when
measuring the three-qubit GHZ state. (b) The variance scal-
ing with NU when measuring the GHZ state with different
number of qubits, and NM = 10. (c) The variance depen-
dence on the number of qubits of the measured GHZ state
with NU = 100 and NM = 10. We linearly regress the data
and obtain the slope α = 1.2587. (d) The estimation for
the noisy state. We measure T3 of a six-qubit noisy W state
ρABC = (1 − p)|W 〉〈W | + p

26
I with NU = 100 and different

NM .
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V. APPLICATION TO MEASURING FIDELITY
TO MAXIMALLY ENTANGLED STATES

Our protocol can also be modified to measure the fi-
delity between the candidate bipartite state, and that of
a maximally entangled state,

|Ψ+〉 =
1√
d

d∑

i=1

|ii〉, (22)

on HA ⊗HB . This fidelity is important in entanglement
detection [18] and many quantum communication tasks
[2]. Prior methods need an ideally prepared state [45]
or fixed basis measurements. Utilizing random measure-
ments, the maximally entangled state can be virtually
produced by postprocessing, and randomness may make
it more robust against the noise in the measurement ba-
sis.

Without loss of generality, we consider d = 2n with
n being the qubit number of each party. Recall that
the outer product form of the SWAP operator is S =∑d
i,j=1 |i〉〈j| ⊗ |j〉〈i|, and the maximally entangled state

is proportional to the partial transpose of S as follows.

|Ψ+〉〈Ψ+| =1

d

d∑

i,j=1

|i〉〈j| ⊗ |i〉〈j|

=
1

d




d∑

i,j=1

|i〉〈j| ⊗ |j〉〈i|



TB

=
1

d
STB ,

(23)

and the corresponding diagrams are shown in Figs. 5(a)
and 5(b).

Suppose the state we actually produce is ρ ∈ HA⊗HB .
According to Eq. (23), the fidelity between ρ and |Ψ+〉
can be represented using S as

tr
(
ρ|Ψ+〉〈Ψ+|

)
=

1

d
tr
(
ρSTB

)
. (24)

Recall that Eq. (10) shows that the SWAP operator can
be effectively generated by randomized measurements.
Hence the fidelity can be further rewritten as

tr
(
ρ|Ψ+〉〈Ψ+|

)
=

1

d
tr
(
ρ[Φ2(X)]TB

)

=
1

d
tr

{
ρE
U

[
(U ⊗ U)†X(U ⊗ U)

]TB
}

=
1

d
tr

{
E
U

[
(U ⊗ U∗)ρ(U† ⊗ UT )

]
X

}
.

(25)
In the final equality, we use the fact that X is a diagonal
matrix such that XTB = X, and also the cyclic property
of trace to put the unitary evolution on the state (see
Fig. 5 for an illustration).

Similar as for the local unitary protocol shown in
Sec. III, one can apply the local random unitary U =

⊗n
i=1 Ui here. As a result, the postprocessing ma-

trix is substituted by X̃(~sA, ~sB) =
∏
iXi(s

A
i , s

B
i ) =

2n(−2)−D[~sA,~sB ] as in Eq. (13). Note that here the post-
processing function is on the measurement result of the
two parties A and B, not on the different copies as be-
fore. We summarize the postprocessing under local ran-
dom unitary as follows.

FIG. 5. Diagrammatic illustration of the derivation in
Eq. (25). EU∈E denotes averaging over (qubit) unitary
2-design and the dotted lines represent the transposi-
tion on the second subsystem. (a) d|Ψ+〉〈Ψ+| → (b)

STB → (c) [Φ2(X)]TB = E
U

[
(U ⊗ U)X(U ⊗ U)†

]TB →

(d) E
U

[
(U ⊗ U∗)XTB (U† ⊗ UT )

]
→ (e)

E
U

[
(U ⊗ U∗)X(U† ⊗ UT )

]
.

Proposition 4. For a bipartite state ρAB with subsys-
tems A and B both containing n qubits, the fidelity of a
state ρAB with the maximally entangled state |Ψ+〉 can be
expressed by the following local randomized measurement
result:

tr
(
ρAB |Ψ+〉〈Ψ+|

)
=
∑

~sA,~sB

(−2)−D[~sA,~sB ] E
U

Pr(~sA, ~sB |U),

Pr(~sA, ~sB |U) = tr
[
(U ⊗ U∗)ρ(U† ⊗ UT )|~sA, ~sB〉〈~sA, ~sB |

]
,

(26)
where P (~sA, ~sB |U) is the probability when measuring
(U⊗U∗)ρ(U†⊗UT ) in the computational basis {|~sA, ~sB〉};
the random unitary U =

⊗n
i=1 Ui is a tensor product of

unitaries on each qubit, where each Ui is sampled from a
unitary 2-design.

Based on Proposition 4, we summarize the fidelity
measurement protocol in Algorithm 3.
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Algorithm 3 Fidelity with Local Measurement

Input: NU×NM sequentially prepared ρAB with subsystems
A and B both containing n qubits.

Output: Probabilities measured in computational measure-
ment basis under random unitary evolution Pr(~sA, ~sB |U).

1: for i = 1 to NU do
2: Randomly pick a unitary matrix U =

⊗n
i=1 Ui, where

Ui on each qubit forms a unitary 2-design. Operate U⊗U∗
on ρ to get (U ⊗ U∗)ρ(U† ⊗ UT ).

3: for j = 1 to NM do
4: Measure (U⊗U∗)ρ(U†⊗UT ) in the computational

basis {|~sA, ~sB〉}.
5: Record the measurement results.
6: end for
7: Estimate the probabilities Pr(~sA, ~sB |U).
8: end for
9: Do the data postprocessing according to Proposition 4.

In Appendix G, we also extend the randomized mea-
surement method to estimate the concurrence [57, 58] of
an n-qubit quantum state. This shows the broad appli-
cation scenarios of the randomized measurements.

VI. DISCUSSION

In this work, we introduce an operationally meaningful
quantifier of the total correlation within a multipartite
quantum system motivated by experimental accessibil-
ity. Based on this definition, we design a protocol to
estimate the total correlation of a candidate state using
only classical postprocessing of data collected from ran-
domized single-qubit measurements, and show that the
number of measurements required is significantly lower
than that of the state tomography. Taken together, the
results provide an accessible tool for characterizing mul-
tipartite correlations in NISQ devices.

There are a number of interesting future directions.
One direction involves observing that shadow estimation
offers an alternative way to postprocess the measurement
data under random unitary evolution [34]. Recently,
there are enhancements of the error scaling of the shadow
protocol by using prior knowledge of the observable [59–

61], or the intrinsic tensor-product structure of the un-
derlying state for the nonlinear function estimation [51].
It would be interesting to ascertain if these methodolo-
gies could provide further enhancement to estimating the
total correlation measurement here, in situations where
one has additional knowledge of the NISQ device [62].

The total correlation has many proposed applications.
A recent framework for characterizing fine-grained struc-
ture or genuine multipartite correlation, for example, in-
volves measuring how correlation changes depending on
how one partitions the whole system [10, 12]. Meanwhile,
such correlation measure could be used as the cost func-
tion in the near-term variational algorithms to decouple
the quantum system [63–66]. Both scenarios would re-
quire many costly repeated calls to estimate the correla-
tion. Thus, a natural direction then is to investigate if
our techniques provide the reduction to this cost. Mean-
while, many occasions invoke interest in specific types of
correlations, such as those that are classical, or purely
quantum mechanical, which is also interesting to further
investigate with randomized measurements.
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Appendix A: Preliminaries

1. Integral of random unitary matrix

A random unitary matrix is a random variable in the space of a unitary matrix [67]; Haar measure means that
the probability distribution is uniform. Based on the definition of Haar-measured random unitary matrix, here we
introduce a t-fold twirling channel,

Φt(O) =

∫

Haar

dUU⊗tOU†⊗t, (A1)

where U ∈ Hd and O is a linear operator acting on H⊗td . According to Schur-Weyl duality [5, 68], such twirling
channel is equivalent to the operation that projects O into the symmetric subspace. So we have

Φt(O) =

∫

Haar

dUU⊗tOU†⊗t =
∑

π,σ∈St
Cπ,σ tr(WπO)Wσ. (A2)

Where St is the t-th order permutation group, Cπ,σ is the element of the Weingarten matrix [69], and Wπ is the
permutation operator corresponding to π. By adjusting O, one can generate any permutation operators; this is the
core idea of the estimation protocol proposed in Sec. III.

Generally speaking, it is impractical to randomly pick an element in unitary space. Fortunately, it has been proved
that a t-fold twirling channel can be realized by averaging over a unitary ensemble E within which the elements are
all fixed unitary matrices, which we call E unitary t-design [70].

ΦtE(O) =
1

|E|
∑

U∈E
U⊗tOU†⊗t = E

U∈E

(
U⊗tOU†⊗t

)
= Φt(O), (A3)

where |E| denotes the size of E . This fact further reduces the difficulty of implementing twirling channel in real
experiments. It is worth mentioning that the Clifford group is a unitary 3-design and a unitary t-design is also an
unitary m-design with m < t.

2. Tensor network basics

Tensor network is one of the graphical methods helping us to deal with tensor calculation [71, 72]. In tensor
networks, a tensor is represented as a box with open legs, which are indices of this tensor. For example, ρABC =∑
i,j,k,i′,j′,k′ ρijk,i′j′k′ |ijk〉〈i′j′k′| is represented as a box with six legs, three of which are left, representing row indices

i, j, k, and the other three are right, representing column indices i′, j′, k′. Open legs represent the noncontracting
indices, so the connection of legs is the contraction of indices. For example, tensor AB is graphically represented by
connecting the right legs of box A and the left legs of box B. tr(A) =

∑
iAi,i is the contraction of the row and column

index of A, which can be represented by connecting the left and right legs of box A. In addition, tensor product is
the operation that does not contract indices. So, to represent A⊗B, we just put boxes A and B together.

FIG. 6. (a) ρABC =
∑
i,j,k,i′,j′,k′ ρijk,i′j′k′ |ijk〉〈i

′j′k′|. (b) AB. (c) tr(A). (d) A⊗B
.

The unnormalized maximally entangled state (UMES) and SWAP operator are two commonly used operators. UMES√
d|Ψ+〉 =

∑
i=1 |ii〉 is represented as a semicircle with both ends to the left, where d is the dimension of Hilbert
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space. Many operations can be represented using UMES. Take A =
∑
i,j Ai,j |i〉〈j| as an example:

d〈Ψ+|A|Ψ+〉 =
∑

k

〈kk|
∑

i,j

Ai,j |i〉〈j|
∑

l

|ll〉 =
∑

i,j

Ai,j
∑

k,l

〈k|i〉〈j|l〉|k〉〈l| =
∑

i,j

Ai,j |j〉〈i| = AT (A4)

and

d〈Ψ+|A⊗ I|Ψ+〉 =
∑

k

〈kk|
∑

i,j

Ai,j |i〉〈j| ⊗ I
∑

l

|ll〉 =
∑

i,j

Ai,j
∑

k,l

〈k|i〉〈j|l〉〈k|l〉 =
∑

i

Ai,i = tr(A). (A5)

tr(A) has been shown in Fig. 6(c). SWAP S, exchanging two indices, can be graphically represented with two crossed
curved lines. Using this representation, one can easily prove that tr[S(A⊗B)] = tr(AB), as shown in Fig. 7.

FIG. 7. (a)
√
d|Ψ+〉 =

∑
i=1 |ii〉. (b) AT . (c) S. (d) tr[S(A⊗B)] = tr(AB).

Appendix B: The property of total correlation measure defined in Eq. (1)

Recall that we take C(ρ) = − log2 F
(
ρ,
⊗k

i=1 ρi

)
, and the fidelity measure could be

Fmax (ρ, σ) =
tr (ρσ)

max{tr(ρ2), tr(σ2)} (B1)

and

FGM (ρ, σ) =
tr (ρσ)√

tr(ρ2) tr(σ2)
, (B2)

which is the one used in the main text. Note that the difference is that the denominator is either maximiza-
tion or geometric mean of the purity, and one can also choose other fidelity measures [28]. We take C(ρ) =

− log2 FGM

(
ρ,
⊗k

i=1 ρi

)
as an example to discuss its property. The discussion of C(ρ) = − log2 Fmax

(
ρ,
⊗k

i=1 ρi

)
is

quite similar.

(1) C(ρ) is a faithful total correlation measure, C(ρ) = 0 iff ρ =
⊗k

i=1 ρi, and non-negative for any ρ. This property
directly follows from the property of fidelity: FGM(ρ, σ) < 1, ∀ρ, σ and FGM(ρ, σ) = 1 iff ρ = σ.

(2) Adding a new party ρk+1 to a k-partite state ρ will not cause the increase of the total correlation in the resulting
(k + 1)-partite tensor state ρ⊗ ρk+1, i.e. C(ρ⊗ ρk+1) = C(ρ).

Proof.

FGM(ρ⊗ ρk+1,

k⊗

i=1

ρi ⊗ ρk+1) =
tr
[
(ρ⊗ ρk+1)(

⊗k
i=1 ρi ⊗ ρk+1)

]

√
tr [(ρ⊗ ρk+1)2] tr

[
(
⊗k

i=1 ρi ⊗ ρk+1)2
]

=
tr
(
ρ
⊗k

i=1 ρi

)

√
tr ρ2

∏k
i=1 tr ρ2

i

tr ρ2
k+1

tr ρ2
k+1

= FGM(ρ,

k⊗

i=1

ρi).

(B3)
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Hence

C(ρ⊗ ρk+1) = − log2 FGM(ρ⊗ ρk+1,

k⊗

i=1

ρi ⊗ ρk+1) = − log2 FGM(ρ,

k⊗

i=1

ρi) = C(ρ). (B4)

(3) C(ρ) is not changed under local unitary transformation, i.e. C(
⊗k

i=1 uiρ
⊗k

i=1 u
†
i ) = C(ρ).

(4) Local quantum channel, i.e.,
⊗k

i=1 Λi, cannot create total correlation in uncorrelated k-partite state ρ =
⊗k

i=1 ρi.

Proof. Acting the local channel on the uncorrelated state, the resulting state is still uncorrelated:

k⊗

i=1

Λi

(
k⊗

i=1

ρi

)
=

k⊗

i=1

Λi (ρi) . (B5)

Therefore, the faithfulness of FGM(·) directly leads to the invariance of total correlation:

C

[
k⊗

i=1

Λi

(
k⊗

i=1

ρi

)]
= C

(
k⊗

i=1

Λi (ρi)

)
= C

(
k⊗

i=1

ρi

)
= 0. (B6)

(5) C(ρ) is additive under the tensor product. The (k + l)-partite total correlation C(ρ ⊗ σ) equals the sum over of
the k-partite total correlation C(ρ) and l-partite total correlation C(σ).

Proof.

FGM(ρ⊗ σ,
k⊗

i=1

ρi ⊗
l⊗

i=1

σi) =
tr
[
(ρ⊗ σ)(

⊗k
i=1 ρi ⊗

⊗l
i=1 σi)

]

√
tr [(ρ⊗ σ)2] tr

[
(
⊗k

i=1 ρi ⊗
⊗l

i=1 σi)
2
]

=
tr
(
ρ
⊗k

i=1 ρi

)

√
tr ρ2

∏k
i=1 tr ρ2

i

tr
(
σ
⊗l

i=1 σi

)

√
trσ2

∏l
i=1 trσ2

i

= FGM(ρ,

k⊗

i=1

ρi)FGM(σ,

l⊗

i=1

σi).

(B7)

Hence,

C(ρ⊗ σ) = − log2 FGM(ρ⊗ σ,
k⊗

i=1

ρi ⊗
l⊗

i=1

σi)

= − log2 FGM

(
ρ,

k⊗

i=1

ρi

)
− logFGM

(
σ,

l⊗

i=1

σi

)

= C(ρ) + C(σ).

(B8)

It is easy to prove that the other definition of total correlation, C(ρ) = − log2 Fmax

(
ρ,
⊗k

i=1 ρi

)
satisfies properties

(1), (2), (3) and (4), while it fails to meet the additivity condition (5).
Now we discuss how to generalize such total correlation measure to genuine multipartite correlation measure. In

[10], the authors proposed three postulates that every multipartite genuine correlation measure and indicator should
satisfy. They also gave a definition of multipartite genuine correlation based on those postulates: k-partite state ρ has



14

genuine k-partite correlation if it is nonproduct for any bipartition. Following this definition, we define the k-partite
genuine correlation measure

Cg.c.(ρ) = min
A⊂[k]

{− logF(ρ, ρA ⊗ ρĀ)} , (B9)

where F(ρ, σ) can also be Fmax(ρ, σ) or FGM(ρ, σ). Because of the faithfulness of these two fidelities, Cg.c.(ρ) = 0 iff
ρ is the product in some bipartition {A, Ā} of the k-partite system. Hence, Cg.c(ρ) satisfies those three postulates
proposed in [10].

Appendix C: Bipartite entanglement criterion using T2

In [73], the authors proposed an entanglement criterion which is strictly stronger than the well-known computable
cross norm criterion [74] and dV criterion (the one based on correlation tensor of states) [75],

‖R(ρAB − ρA ⊗ ρB)‖ >
√

(1− tr ρ2
A)(1− tr ρ2

B), (C1)

where ‖·‖ denotes the trace norm, and R(·) represents the realignment operation, R(O)ij,kl = Oik,jl. However,
‖R(ρAB − ρA ⊗ ρB)‖ is hard to estimate by direct measurements. Hence, based on this criterion, we further construct
a new measurable entanglement criterion as follows.

Proposition 5. For any separable state ρAB, it should satisfy

tr ρ2
AB + tr ρ2

A + tr ρ2
B − 2 tr[ρAB(ρA ⊗ ρB)]− 1 ≤ 0, (C2)

and the violation indicates the presence of entanglement.

The proof is left to Appendix C 1. We name this criterion as T2 separability criterion. Although weaker than
Eq. (C1), the T2 criterion is equivalent to the well-known Rényi entropy criterion (i.e., tr ρ2

AB ≤ tr ρ2
A, tr ρ

2
B for the

separable ρAB) on pure states and Bell-diagonal states, and shows stronger detection power for some asymmetric
states.

ρAB = (1− p)|Ψ+〉〈Ψ+|+ p|0+〉〈0 + | (C3)

is the mixture of the Bell state |Ψ+〉 and the product state |0+〉. For such state, T2 criterion indicates entanglement
for p < 1, which is same as positive partial transposition (PPT) criterion, the necessary and sufficient condition for
(2 × 2)-dimensional quantum states. However, the entropy and p3-PPT criterion [35] only detect entanglement as
p < 0.5 and p < 0.59, respectively. A detailed comparison and discussion are left to Appendix C 2. It is worth
mentioning that this criterion can be generalized to non-full-separability criterion in the multipartite system [73], and
we leave it for future study.

1. Proof of Proposition 5

For simplicity, denote R(ρAB − ρA ⊗ ρB) by R, and assume the dimension of HA is less than the dimension of HB
dA ≤ dB . Then

‖R‖ =

d2A∑

i=1

λi, (C4)

where λi ≥ 0 are the singular values of R. Although ‖R‖ is hard to directly measure, we find that

tr
(
RR†

)
=

d2A∑

i=1

λ2
i

(C5)

can be directly measured, and the value of ‖R‖ may be bounded by tr
(
RR†

)
.
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Lemma 1.
∑d2A
i=1 λ

2
i can be represented using the purities of ρA, ρB, and ρAB and T2 = tr[ρAB(ρA ⊗ ρB)]:

tr
(
RR†

)
= tr(ρAB − ρA ⊗ ρB)

2
= tr ρ2

AB + tr ρ2
A tr ρ2

B − 2 tr[ρAB(ρA ⊗ ρB)]. (C6)

Proof. For simplicity, denote ρAB − ρA ⊗ ρB by OAB . OAB is Hermitian but generally not positive. Hence, we have

R† = [R(OAB)∗]T = RT (OTAB), (C7)

so that the elements of R† are the elements of OAB :

R†ij,kl = [R(OAB)T ]kl,ij = (OTAB)ki,lj = (OAB)lj,ki. (C8)

Now we can represent tr
(
RR†

)
by the index contraction of ρAB − ρA ⊗ ρB :

tr
(
RR†

)
=
∑

i,j,k,l

Rij,klR
†
kl,ij =

∑

i,j,k,l

(OAB)ik,jl(OAB)jl,ik

= tr(OAB)
2

= tr(ρAB − ρA ⊗ ρB)
2

= tr ρ2
AB + tr ρ2

A tr ρ2
B − 2 tr[ρAB(ρA ⊗ ρB)].

(C9)

Suppose we have measured the value of p2 =
∑d2A
i=1 λ

2
i = tr ρ2

AB + tr ρ2
A tr ρ2

B − 2 tr[ρAB(ρA ⊗ ρB)]. Then it can be
easily proved that

√
p2 ≤

d2A∑

i=1

λi ≤ dA
√
p2. (C10)

The minimum is achieved when λ1 =
√
p2 and λi = 0 for 2 ≤ i ≤ d2

A and the maximum is achieved when λi =
√
p2/dA

for 1 ≤ i ≤ d2
A. Eq. (C1) tells us that separable ρAB satisfy

∑d2A
i=1 λ

2
i ≤

√
(1− tr ρ2

A)(1− tr ρ2
B). According to the

above equation, separable ρAB satisfy

√
p2 ≤

√
(1− tr ρ2

A)(1− tr ρ2
B)→ tr ρ2

AB + tr ρ2
A + tr ρ2

B − 2 tr[ρAB(ρA ⊗ ρB)]− 1 ≤ 0. (C11)

2. Discussion of the detection power of T2 criterion

Here we first prove the equivalence of the T2 criterion and the entropy criterion for pure state |ϕAB〉. As is known
to all, for a pure state, the entropy criterion is a necessary and sufficient condition for separability. So we only need
to prove Proposition 5 is also necessary and sufficient. Taking the Schmidt decomposition of |ϕAB〉,

|ϕAB〉 =

dA∑

i=1

√
λi|ii〉, (C12)

where 0 ≤
√
λi ≤ 1 are the Schmidt co-efficients. The purities can be easily calculated as

tr ρ2
AB = 1 , tr ρ2

A = tr ρ2
B =

dA∑

i=1

λ2
i , (C13)

and

tr[ρAB(ρA ⊗ ρB)] = 〈ϕAB |ρA ⊗ ρB |ϕAB〉

=

dA∑

k,l=1

√
λkλl〈kk|




dA∑

i,j=1

λiλj |ij〉〈ij|


 |ll〉

=

dA∑

i,j,k,l=1

√
λkλlλiλjδikδjkδilδjl

=

dA∑

i=1

λ3
i .

(C14)
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Then the T2 criterion reduces to

dA∑

i=1

λ2
i ≤

dA∑

i=1

λ3
i , (C15)

where
√
λi are the Schmidt coefficients of |ϕAB〉. The normalization and singular value decomposition requires∑dA

i=1 λi = 1 and 0 ≤ λi ≤ 1. So the only solution of the above inequality is λ1 = 1 and λi = 1 for 2 ≤ i ≤ dA, which
means |ϕAB〉 = |ϕA〉|ϕB〉.

For a Bell-diagonal state with the form

ρAB =
1

4
(I4 + rxσx ⊗ σx + ryσy ⊗ σy + rzσz ⊗ σz) , (C16)

where I4 denotes a 4× 4 identity matrix, the reduced density matrix can be easily calculated as

ρA = ρB =
1

2
I2. (C17)

Thus we have

tr ρ2
AB =

1

4
(1 + r2

x + r2
y + r2

z), tr ρ2
A = tr ρ2

B =
1

2
, tr[ρAB(ρA ⊗ ρB)] =

1

4
. (C18)

Then both the entropy criterion and the T2 criterion indicate entanglement for

r2
x + r2

y + r2
z ≥ 1. (C19)

Then we take

ρAB = (1− p)|Ψ+〉〈Ψ+|+ p|0+〉〈0 + |, (C20)

a mixture of the two-qubit maximally entangled state and the tensor product of |0〉〈0| and |+〉〈+|, as an example
to demonstrate the detection power of the T2 separability criterion. For comparison, we pick three commonly used
separability criteria:

1. PPT criterion, W (p) = −min{λ(ρTBAB)}

2. entropy criterion, W (p) = tr ρ2
AB − tr ρ2

A

3. p3-PPT criterion, W (p) = (tr ρ2
AB)2 − tr

(
ρTBAB

)3

and T2 criterion, W (p) = tr ρ2
AB + tr ρ2

A + tr ρ2
B − 2 tr[ρAB(ρA ⊗ ρB)]− 1, show them in one diagram. For these four

criteria, W (p) > 0 indicates entanglement and the absolute value of W (p) makes no sense. As shown in Fig. 8, for
states in Eq. (C20), the T2 criterion shows the same detection power as the PPT criterion, the necessary and sufficient
separability condition for 2× 2 states, and better than the p3-PPT criterion and entropy criterion.
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FIG. 8. Comparison of the detection power of four separability criteria for states in Eq. (C20).

Appendix D: A few Proofs

1. Proof of Eq. (10)

The result in Eq. (10) was derived in Refs. [31, 52]. Here we prove it for completeness. According to the Weingarten
integral introduced in Appendix A 1,

Φ2(X) =
∑

π,σ∈S2
Cπ,σ tr(WπX)Wσ

=
∑

π,σ∈S2

∑

s,s′

Cπ,σ − (−d)δs,s′ tr(Wπ|s, s′〉〈s, s′|)Wσ

=
∑

s,s′

−(−d)δs,s′ {[C0,0 tr(I|s, s′〉〈s, s′|) + C1,0 tr(S|s, s′〉〈s, s′|)] I + [C0,1 tr(I|s, s′〉〈s, s′|) + C1,1 tr(S|s, s′〉〈s, s′|)]S}

=
∑

s,s′

d(−d)δs,s′−1

{[
1

d2 − 1
− 1

d(d2 − 1)
δs,s′

]
I +

[
− 1

d(d2 − 1)
+

1

d2 − 1
δs,s′

]
S

}

=
∑

s,s′

{[
− 1

d2 − 1
+

d

d2 − 1
δs,s′

]
I +

[
1

d(d2 − 1)
+
d2 − d− 1

d(d2 − 1)
δs,s′

]
S

}

=

{[
− d2

d2 − 1
+

d2

d2 − 1

]
I +

[
d2

d(d2 − 1)
+
d3 − d2 − d
d(d2 − 1)

]
S

}

= S
(D1)

Here in the third line, for simplicity, we use 0 and 1 to represent identity and exchange in the subscript of Weingarten
matrix element Cπ,σ. The fifth equal sign is because

−(−d)δs,s′ = −1 + (d+ 1)δs,s′ , (D2)

and the sixth equal sign is because

∑

s,s′

1 = d2 ,
∑

s,s′

δs,s′ = d (D3)
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2. Proof of Proposition 1

By Born’s rule,

Pr(s|U) = tr


|sg1 , . . . , sgk〉 〈sg1 , . . . , sgk |

(
k⊗

i=1

Ugi

)
ρ

(
k⊗

i=1

Ugi

)†


Pr(sgi |Ugi) = tr
(
|sgi〉 〈sgi |UgiρgiU†gi

)
(D4)

The right-hand side of Eq. (8) can be written as

RHS = tr





(
k⊗

i=1

Xgi

)
E
U



(

k⊗

i=1

Ugi

)⊗2 [
ρ⊗ (

k⊗

i=1

ρgi)

](
k⊗

i=1

Ugi

)†⊗2






= tr



E
U



(

k⊗

i=1

Ugi

)†⊗2( k⊗

i=1

Xgi

)(
k⊗

i=1

Ugi

)⊗2


[
ρ⊗ (

k⊗

i=1

ρgi)

]


= tr

{[
k⊗

i=1

Φ†2gi (Xgi)

][
ρ⊗ (

k⊗

i=1

ρgi)

]}
,

(D5)

where Xgi follows the same definition as the X in Eq. (10), and Φ̃2(·) = E
U

[U† · U ]. For arbitrary linear operator A

and B, we have:

tr
[
Φ†k(A)B

]
= tr

[
AΦk(B)

]
=

∑

π,σ∈Sk
Cπ,σ tr(WπB) tr(WσA) (D6)

So, when taking trace, it is always true that

Φ†k(A) =
∑

π,σ∈Sk
Cπ,σ tr(WσA)Wπ. (D7)

Since Cπ,σ = Cσ,π [69],

Φ†k(A) =
∑

π,σ∈Sk
Cπ,σ tr(WπA)Wσ = Φk(A), (D8)

so that

RHS = tr

{[
k⊗

i=1

Φ†2gi (Xgi)

][
ρ⊗ (

k⊗

i=1

ρgi)

]}

= tr

{(
k⊗

i=1

Sgi

)[
ρ⊗ (

k⊗

i=1

ρgi)

]}

= tr

[
ρ(

k⊗

i=1

ρgi)

]
= Tk.

(D9)

3. Proof of Proposition 2

The proof of local protocol is quite similar with global protocol. According to Eq. (13), define the data processing
operator:

X̃gi =
∑

~sgi ,~s
′
gi

X̃gi(~sgi , ~s
′
gi)
∣∣~sgi , ~s′gi

〉 〈
~sgi , ~s

′
gi

∣∣ =
⊗

l∈gi
Xl. (D10)
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Substituting this operator into Eq. (12) , the right hand side can be written as

RHS = tr





(
k⊗

i=1

X̃gi

)
EU



(

n⊗

l=1

Ul

)⊗2 [
ρ⊗

(
k⊗

i=1

ρgi

)](
n⊗

l=1

Ul

)†⊗2






= tr



EU



(

n⊗

l=1

Ul

)†⊗2( n⊗

l=1

Xl

)(
n⊗

l=1

Ul

)⊗2


[
ρ⊗

(
k⊗

i=1

ρgi

)]


= tr

{(
n⊗

l=1

Φ†2(Xl)

)[
ρ⊗

(
k⊗

i=1

ρgi

)]}

= tr

{(
n⊗

l=1

Sl

)[
ρ⊗

(
k⊗

i=1

ρgi

)]}

= tr

[
ρ(

k⊗

i=1

ρgi)

]
= Tk.

(D11)

Appendix E: The variance of M̂ and M̂L

1. The variance of M̂

In the following, we figure out the variance δ2 .
= Var

[
M̂(t)

]
of the estimator M̂(t) for the t-th unitary sampling.

The variance of the overall estimator M̂ is just δ2/NU . Hereafter, for the convenience of our analysis, we take tripartite
CRO, T3, as an example to analyze the error scaling and assume that the unitary ensembles are 4-design. The results
for T3 can be easily generalized to Tk and the 4-design assumption would not lead to an order of magnitude gap of
the leading term.

With the total variance formula, we have

Var
[
M̂(t)

]
= E

U

[
E
s

[
M̂2(t)|U

]]
−
[
E
U
E
s

[
M̂(t)|U

]]2

, (E1)

where the second term is just T 2
3 . The first term can be expanded explicitly as

E
U

[
E
s

[
M̂2(t)|U

]]
=

(
NM

4

)−2 ∑

i<j<k<l
i′<j′<k′<l′

E
s,U

tr[Qr̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)] tr[Qr̂U (i′)⊗ r̂U (j′)⊗ r̂U (k′)⊗ r̂U (l′)].

(E2)
To evaluate the above equation, we calculate the terms in the summation depending on the coincidence of the indices,
as they label random variables. In Appendix F, we will show that when D � NM � 1, which is the case of interest,
the dominant term of the variance is determined by the case when all the eight indices are coincidental to four indices.
This kind of phenomenon is also manifested by the previous theoretical and numerical analyses [35, 36, 51] for other
quantities based on randomized measurements.

Γ4 :=

(
NM

4

)−2 ∑

i=i′<j=j′

<k=k′<l=l′

E
s,U

tr[Qr̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)] tr[Qr̂U (i′)⊗ r̂U (j′)⊗ r̂U (k′)⊗ r̂U (l′)]

=

(
NM

4

)−1

E
s,U

tr
[
Q2r̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)

]

=

(
NM

4

)−1

tr
[
Q2Φ4

A ⊗ Φ4
B ⊗ Φ4

C(ρ⊗4
ABC)

]

=

(
NM

4

)−1

tr
[
Φ4
A ⊗ Φ4

B ⊗ Φ4
C(Q2)ρ⊗4

ABC

]

=

(
NM

4

)−1

tr
[
Φ

(1,2)
A ⊗ Φ

(1,3)
B ⊗ Φ

(1,4)
C (Q2)ρ⊗4

ABC

]
.

(E3)
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Here, Φ
(i,j)
A (·) := E

UA
(U

(i)
A ⊗ U

(j)
A ) · (U (i)

A ⊗ U
(j)
A )† denotes the twofold twirling on subsystems A of the i-th and j-th

copies, similar for Φ
(i,j)
B (·) and Φ

(i,j)
C (·). The last equation of Eq. (E3) holds because the observable Q only has

nontrivial definitions on the systems A1, A2, B1, B3, C1 and C4 as follows

Q =
(
X

(1,2)
A ⊗ I(3,4)

A

)
⊗
(
X

(1,3)
B ⊗ I(2,4)

B

)
⊗
(
X

(1,4)
C ⊗ I(2,3)

C

)
. (E4)

Using the Weingarten integral [69], we can get

Φ
(1,2)
A [(X

(1,2)
A )2] = dAI

(1,2)
A + (dA − 1)S

(1,2)
A , (E5)

thus Γ4 shows

Γ4 : =

(
NM

4

)−1

tr
[(
dAIA + (dA − 1)S

(1,2)
A

)(
dBIB + (dB − 1)S

(1,3)
B

)(
dCIC + (dC − 1)S

(1,3)
C

)
ρ⊗4
ABC

]
(E6)

It is clear that Γ4 depends on the input state ρABC . By expanding Eq. (E6), one gets a few functions of ρABC ,
with the coefficients almost D. For example,

tr
[
(dAIAdBIBdCIC)ρ⊗4

ABC

]
= dAdBdC = D,

tr
[(

(dA − 1)S
(1,2)
A ⊗ (dB − 1)S

(1,3)
B ⊗ (dC − 1)S

(1,3)
C

)
ρ⊗4
ABC

]
= (dA − 1)(dB − 1)(dC − 1)T3 ≤ D.

(E7)

The term Γ4 scales up linearly with D. As a result, the variance δ2 ∼ Θ(D).
Here, we take T3 as an example to demonstrate our results. In fact, this conclusion can easily be generalized to Tk

measurement for any value of k. Following the similar thought in Appendix. F, we believe that the leading term is
also the one which has (k+ 1) pairs of the same indices, like Γ4 in T3 measurement. So the dominant term of variance
when measuring Tk is

Γk+1 =

(
NM
k + 1

)−1

tr

[
k⊗

i=1

(
diIi + (di − 1)S

(1,i+1)
i

)
ρ⊗k+1

]
∼ Θ(D/Nk+1

M ) (E8)

2. The unbiased estimator M̂L and its variance

In the above derivation, we consider the variance calculation when the random unitaries U = UA ⊗ UB ⊗ UC are
chosen such that UA, UB , and UC are elements of unitary 2-design on the corresponding Hilbert spaces. Now we
consider the variance estimation in the local strategy mentioned in Sec. III, when the subsystems A, B, and C are
composed of qubits. In this case, the random unitary twirling is performed locally on each qubit. From Eq. (12), we
can express the tripartite correlation as follows:

T3 =
∑

~a,~b,~c

X̃
(1,2)
A (~a1,~a2)X̃

(1,3)
B (~b1,~b3)X̃

(1,4)
C (~c1,~c4)

4∏

i=1

E
U

Pr(~ai,~bi,~ci|UA, UB , UC), (E9)

where ~a = (~a1,~a2,~a3,~a4) denotes the measurement result, being a string whose elements are nA-bit vectors, similar

for ~b and ~c. X̃
(1,2)
A (~a1,~a2) is a function on ~a1 and ~a2,

X̃
(1,2)
A (~a1,~a2) :=

nA∏

i=1

X
(1,2)
Ai

(a1
i , a

2
i ) = 2nA(−2)−D[~a1,~a2]. (E10)

We also denote X̃
(1,2)
A as the observable on H1

A ⊗H2
A,

X̃1,2
A =

∑

~a1,~a2

X̃
(1,2)
A (~a1,~a2)

∣∣~a1,~a2
〉 〈
~a1,~a2

∣∣ . (E11)

similar for X̃
(1,3)
B and X̃

(1,4)
C . Similar to Eq. (17), we can define the unbiased estimator based on the local random

unitary scheme,

M̂L(t) =

(
NM

4

)−1 ∑

1≤i<j<k<l≤NM
tr
[
Q̃ [r̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)]

]
, (E12)
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where

Q̃ :=
(
X̃

(1,2)
A ⊗ I(3,4)

A

)
⊗
(
X̃

(1,3)
B ⊗ I(2,4)

B

)
⊗
(
X̃

(1,4)
C ⊗ I(2,3)

C

)
, (E13)

is an observable on H⊗4.
Following the same deduction, to calculate the variance of M̂L(t), we evaluate the leading term with four coincidences

Γ̃4 :=

(
NM

4

)−2 ∑

i=i′<j=j′

<k=k′<l=l′

E
s,U

tr
[
Q̃r̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)

]
tr
[
Q̃r̂U (i′)⊗ r̂U (j′)⊗ r̂U (k′)⊗ r̂U (l′)

]

=

(
NM

4

)−1

E
s,U

tr
[
Q̃2r̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)

]

=

(
NM

4

)−1

tr
[
Φ̃4
A ⊗ Φ̃4

B ⊗ Φ̃4
C(Q̃2)ρ⊗4

ABC

]

=

(
NM

4

)−1

tr
[
Φ̃

(1,2)
A ⊗ Φ̃

(1,3)
B ⊗ Φ̃

(1,4)
C (Q̃2)ρ⊗4

ABC

]
.

(E14)

The final line is because Q̃ acts nontrivially on the systems A1, A2, B1, B3, C1 and C4. The only difference compared

to Eq. (E3) is that both the twirling channels Φ̃
(1,2)
A and Q̃

(1,2)
A have the tensor-product structure on qubits,

Φ̃
(1,2)
A [(Q̃

(1,2)
A )2] =

⊗

i∈A
Φ

(1,2)
i [(X

(1,2)
i )2] =

⊗

i∈A
(2Ii + S

(1,2)
i ), (E15)

similar for operators on B and C, and thus Γ̃4 shows

Γ̃4 : =

(
NM

4

)−1

tr


⊗

i∈A
(2Ii + S

(1,2)
i )

⊗

j∈B
(2Ij + S

(1,3)
j )

⊗

k∈C
(2Ik + S

(1,4)
k )ρ⊗4

ABC




=

(
NM

4

)−1 ∑

A′⊆A,B′⊆B,C′⊆C
2|A|−|A

′|2|B|−|B
′|2|C|−|C

′| tr [ρA′B′C′(ρA′ ⊗ ρB′ ⊗ ρC′)]

≤
(
NM

4

)−1 ∑

A′⊆A,B′⊆B,C′⊆C
2n2−|A

′|2−|B
′|2−|C

′|

=

(
NM

4

)−1 ∑

|A′|,|B′|,|C′|

( |A|
|A′|

)( |B|
|B′|

)( |C|
|C ′|

)
2n2−|A

′|2−|B
′|2−|C

′| =

(
NM

4

)−1

2n(1 +
1

2
)nA+nB+nC =

(
NM

4

)−1

3n.

(E16)
Here in the second line, we expand the terms and the summation of A′ runs for all subsets of A including the null
set. For example, if A = ∅, tr [ρA′B′C′(ρA′ ⊗ ρB′ ⊗ ρC′)] = tr [ρB′C′(ρB′ ⊗ ρC′)]. The inequality is due to the overlap

is less than 1. As a result, the term Γ̃4 is upper bounded by
(
NM

4

)−1
3n =

(
NM

4

)−1
Dlog2 3 ≈

(
NM

4

)−1
D1.585, and the

the variance δ2 ∼ O(D1.585).
Similarly, the leading term of variance when measuring Tk scales like

Γ̃k+1 ≤
(
NM
k + 1

)−1

3n ∼ 3n

Nk+1
M

. (E17)

Appendix F: Detailed statistical analysis

Here, we provide a detailed statistical analysis of the estimation of the tripartite total correlation
tr[ρABC(ρA ⊗ ρB ⊗ ρC)]. For simplicity, we will consider the case when dA = dB = dC = d. Then D := dAdBdC = d3.

Recall that we construct an estimator of T3 using these variables in Eq. (17),

M̂(t) =

(
NM

4

)−1 ∑

1≤i<j<k<l≤NM
tr {Q [r̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)]} . (F1)
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Now, we need to calculate the variance δ2 of it. In the main text, we show that the core issue is to calculate the
term,

E
U

[
E
s
(M̂2

+(t)|U)

]
=

(
NM

4

)−2 ∑

i<j<k<l
i′<j′<k′<l′

E
s,U

tr[Qr̂U (i)⊗ r̂U (j)⊗ r̂U (k)⊗ r̂U (l)] tr[Qr̂U (i′)⊗ r̂U (j′)⊗ r̂U (k′)⊗ r̂U (l′)].

(F2)
Based on the coincident number of the sample indices i, i′; j, j′; k, k′; l, l′, we may classify the terms as follows,

1. No coincidence, i.e., the eight sample indices are all different. The number of their terms is

N8 =

(
NM

8

)(
8

0

)(
8

4

)
.

We denote the sum of these terms as Γ8.

2. One coincidence. In this case, we further classify the terms based on the coincident index:

(a) The coincident indices are i and i′. The number of their terms is N
(2)
7 =

(
NM

7

)(
6
3

)
. We denote the sum of

these terms as Γ
(2)
7 .

(b) One of the coincident indices is i or i′. The number of their terms is

N
(1)
7 =

(
NM

7

)[(
6

3

)
+ 2

(
2

2

)(
4

1

)
+ 2

(
3

3

)(
3

0

)]
=

(
NM

7

)[(
6

3

)
+ 10

]
.

We denote the sum of these terms as Γ
(1)
7 .

(c) None of the coincident indices is i or i′. The number of their terms is

N
(0)
7 =

(
NM

7

){[(
6

3

)
− 2

(
2

2

)(
4

1

)]
+

[(
6

3

)
− 2

(
3

3

)(
3

0

)]
+ 3

(
6

3

)}
=

(
NM

7

)(
5

(
6

3

)
− 10

)
.

We denote the sum of these terms as Γ
(0)
7 .

3. Two coincidences. In this case, we also further classify the terms based on the coincident index:

(a) The coincident indices contain both i and i′. The number of their terms is N
(2)
6 =

(
NM

6

)(
5
1

)(
4
2

)
. We denote

the sum of these terms as Γ
(2)
6 .

(b) The coincident indices contain either i or i′. The number of their terms is

N
(1)
6 =

(
NM

6

)[(
4

1

)(
4

2

)
+ 2

(
3

1

)(
2

2

)(
2

0

)]
=

(
NM

6

)[(
4

1

)(
4

2

)
+ 6

]
.

We denote the sum of these terms as Γ
(1)
6 .

(c) The coincident indices do not contain i or i′. The number of their terms is

N
(0)
6 =

(
NM

6

){(
3

1

)[(
4

2

)
− 2

(
2

2

)]
+

(
2

1

)(
4

2

)
+

(
1

1

)(
4

2

)}
=

(
NM

6

){[(
3

1

)
+

(
2

1

)
+

(
1

1

)](
4

2

)
− 6

}
.

We denote the sum of these terms as Γ
(0)
6 .

4. Three coincidences. In this case, we also further classify the terms based on the coincident index:

(a) The coincident indices contain both i and i′. The number of their terms is N
(2)
5 =

(
NM

5

)(
4
2

)(
2
1

)
. We denote

the sum of these terms as Γ
(2)
5 .

(b) The coincident indices contain either i or i′. The number of their terms is N
(1)
5 =

(
NM

5

)(
3
2

)(
2
1

)
. We denote

the sum of these terms as Γ
(1)
5 .
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(c) The coincident indices do not contain i or i′. The number of their terms is N
(0)
5 =

(
NM

5

)(
2
2

)(
2
1

)
. We denote

the sum of these terms as Γ
(0)
5 .

5. Four coincidences, i.e., the eight sample indices collapse to four degenerated indices. The number of their terms
is N4 =

(
NM

4

)(
4
4

)(
0
0

)
. We denote the sum of these terms as Γ4.

We can then expand the variance term as follows,

E
U

[
E
s

[
M̂2(t)|U

]]
= Γ8 +

(
Γ

(2)
7 + Γ

(1)
7 + Γ

(0)
7

)
+
(

Γ
(2)
6 + Γ

(1)
6 + Γ

(0)
6

)
+
(

Γ
(2)
5 + Γ

(1)
5 + Γ

(0)
5

)
+ Γ4. (F3)

In what follows, we focus on the case when D � NM � 1, which is the case of interest. We want to show that the
term Γ4 owns the highest dependence of the scaling of D.

Proposition 6. When D � NM � 1, in the tripartite total correlation estimation task, the different variance terms
have the following dependence on the dimension D:

Γ8 = O(1),

Γ
(2)
7 = O(1), Γ

(1)
7 = Γ

(0)
7 = O(1),

Γ
(2)
6 = O(d) = O(D1/3), Γ

(1)
6 = Γ

(0)
6 = O(1),

Γ
(2)
5 = O(d2) = O(D2/3), Γ

(1)
5 = Γ

(0)
5 = O(1),

Γ4 = Θ(d3) = Θ(D).

(F4)

Proof. We will study the variance terms one by one.

(
NM

4

)2(
NM

8

)−1(
8

4

)−1

Γ8 = E
U

tr
[
Q(ρU )⊗4

]2
= E

U
tr
[
Q⊗2(ρU )⊗8

]

= tr
[
ρ⊗8Φ

(1,2,5,6)
A

(
X

(1,2)
A ⊗X(5,6)

A

)
⊗ Φ

(1,3,5,7)
B

(
X

(1,3)
B ⊗X(5,7)

B

)
⊗ Φ

(1,4,5,8)
C

(
X

(1,4)
C ⊗X(5,8)

C

)]

=
∑

π1,π2,π3,
σ1,σ2,σ3∈S4

Cπ1,σ1
Cπ2,σ2

Cπ3,σ3
tr
[
ρ⊗8

(
WA
π1
⊗WB

π2
⊗WC

π3

)]
tr
[(
X

(1,2)
A ⊗X(5,6)

A

)
WA
σ1

]

× tr
[(
X

(1,3)
B ⊗X(5,7)

B

)
WB
σ2

]
tr
[(
X

(1,4)
C ⊗X(5,8)

C

)
WC
σ3

]

(F5)

Here, ρU := UρU†. In the third equality, we assume the random unitaries form a unitary 4-design. In the fourth
equality, we use the Weingarten integral formula [69].

The value of Γ8 is obviously state dependent. However, when we consider the asymptotic case when d� NM � 1,
to analyze the scaling of Γ8 with d, we always consider a pure tensor state ρ = |ψ〉A 〈ψ| ⊗ |ψ〉B 〈ψ| ⊗ |ψ〉C 〈ψ|. In this
case, the values

tr
[
ρ⊗8

(
WA
π1
⊗WB

π2
⊗WC

π3

)]
(F6)

are always 1. We remark that, if ρ is not a pure tensor state, the absolute value of this term is always smaller than 1.
From this perspective, the pure-tensor-state case will always provide an upper bound of the variance term dependence.
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If we set the state ρ to be a pure tensor state, then we have
(
NM

4

)2(
NM

8

)−1(
8

4

)−1

Γ8

=
∑

π1,π2,π3,
σ1,σ2,σ3∈S4

Cπ1,σ1Cπ2,σ2Cπ3,σ3 tr
[(
X

(1,2)
A ⊗X(5,6)

A

)
WA
σ1

]
tr
[(
X

(1,3)
B ⊗X(5,7)

B

)
WB
σ2

]
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[(
X

(1,4)
C ⊗X(5,8)

C

)
WC
σ3
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=
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[(
X
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A
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[(
X
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B ⊗X(5,7)

B

)
WB
σ2
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[(
X

(1,4)
C ⊗X(5,8)

C

)
WC
σ3

]

×
∑

π1,π2,π3∈S4

Cπ1,σ1
Cπ2,σ2

Cπ3,σ3

=

{ ∑

σ1∈S4

tr
[(
X

(1,2)
A ⊗X(5,6)

A

)
WA
σ1

] ∑
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Cπ1,σ1

}3

=

{
(d− 1)!

(d+ 3)!

∑

σ∈S4
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[(
X⊗2
A

)
WA
σ

]
}3

=

{
(d− 1)!

(d+ 3)!
d(d+ 1)(d2 + 9d+ 2)

}3

.

(F7)
In the last equation, we have used Proposition 7. Therefore, Γ8 ∼ O(1).

Following similar methods, if we assume the state to be a pure tensor state, we can prove that

1

N
(2)
7

(
NM

4

)2

Γ
(2)
7 =

{
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(d+ 2)!
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X

(12,13)
A

)
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(d+ 2)!
3d2(d+ 1)
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∼ O(1)

(F8)
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A
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WA
σ
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(d− 1)!
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d(d+ 1)(d2 + 9d+ 2)
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∼ O(1)

(F9)
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A

)
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A
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]
}

=
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(d− 1)!

(d+ 2)!
3d2(d+ 1)

}2{
(d− 1)!

(d+ 1)!
d(2d− 1)(d+ 1)

}
∼ O(d) = O(D1/3)

(F10)
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6
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=
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[(
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(12,13)
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)
WA
σ

]}3

=

{
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3d2(d+ 1)

}3

∼ O(1)

(F11)



25

1
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(12,13)
A

)
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σ

]}{ (d− 1)!
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(F12)
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[(
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(12,13)
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)
WA
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]}3

=
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3d2(d+ 1)

}3

∼ O(1)

(F13)

The term Γ4 has already been calculated in Eq. (E6), which is

Γ4 =

(
NM

4

)−1

tr
[(
dIA + (d− 1)S

(1,2)
A

)(
dIB + (d− 1)S

(1,3)
B

)(
dIC + (d− 1)S

(1,3)
C

)
ρ⊗4
ABC

]
∼ Θ(D). (F14)

In the above proofs, we have used the following results.

Proposition 7. For the observables defined on several copies of HA,

X2 =
∑

a∈Z2
d

X2(a1, a2)
∣∣a1, a2

〉 〈
a1, a2

∣∣ ,

X(12,13) =
∑

a∈Z3
d

X(a1, a2)X(a1, a3)
∣∣a1, a2, a3

〉 〈
a1, a2, a3

∣∣ ,

X⊗2 =
∑

a∈Z4
d

X(a1, a2)X(a3, a4)
∣∣a1, a2, a3, a4

〉 〈
a1, a2, a3, a4

∣∣ ,

(F15)

where X(a1, a2) = −(−d)δa1,a2 . When the dimension of HA is d, we have

∑

σ∈S2

tr
(
WσX

2
)

= d(2d− 1)(d+ 1),

∑

σ∈S3

tr
(
WσX

(12,13)
)

= 3d2(d+ 1),

∑

σ∈S4

tr
(
WσX

⊗2
)

= d(d+ 1)(d2 + 9d+ 2).

(F16)

Proof. First we note that,

∑

σ∈S2

tr
(
WσX

2
)

= tr
[
(I + S)X2

]

=
∑

a1,a2

d2(d2)δ[a
1,a2]−1

〈
a1, a2

∣∣ (I + S)
∣∣a1, a2

〉

= 2d3 + d2 − d ∼ O(d3).

(F17)



26

Then we consider the term for X(12,13). Following the analysis in Ref. [36], we denote the cycle structures (conjugate
classes) of the elements σ ∈ St using the partition numbers [ξ1, ξ2, . . . , ξk] where ξ1 ≥ ξ2 ≥ · · · ≥ ξk ≥ 0. Also, we can
classify t-dit strings a by the partition numbers λa. For example, the partition number λ(a) of a = (1, 2, 1) is [2, 1].

After classifying the cycle structure of the elements in St, for a diagonal observable Q in the Hilbert space H⊗tA , we
have

∑

π∈St
tr(WπQ) =

∑

a∈Ztd

Q(a)
∑

π∈St
〈a|Wπ |a〉 =

∑

a∈Ztd

Q(a)T (a),
(F18)

where

T (a) =
∑

π∈St
tr(Wπ |a〉 〈a|) =

k∏

i=1

(λi(a))!. (F19)

The value of T (a) only depends on the cycle structure of a, i.e., how many values in a are the same.
Furthermore, to calculate

∑
a∈Ztd Q(a)T (a), we first classify all the t-dit strings a ∈ Ztd by their partitions λa, and

then futher divide them by the weight of the subsystems. By counting the weight of the subsystems, we define the
“subtypes” {jλ} of a given partition class λ of a. The partition λ and subtype jλ determine the value of T (a) = Tλ(a)

and Q(a) = Q(jλ), respectively. We then count the number of elements a in all partition classes and subtypes, and
finally figure out the results.

To be more specific,
∑

a∈Ztd

Q(a)T (a) =
∑

λ

Tλ
∑

a∈λ
Q(a)

=
∑

λ

Tλ
∑

(jλ)∈λ
#{jλ}Q(jλ).

(F20)

For the X(12,13) case, we need to estimate
∑

a∈Z3
d
X(12,13)(a)T (a). When t = 3, the partition class of Z3

d determines

the subsystem weight in Z3
d. We classify the elements by λ and list the values of Tλ and X(12,13)(jλ) in Table I.

Partition classes λ #{λ} Tλ Subtype jλ : a1|a2|a3 #{jλ} (wt(a1, a2), wt(a1, a3)) X(12,13)(jλ)

[111] 1×A3
d 1 a|b|c 1×A3

d (1, 1) 1

[21] 3×A2
d 2 a|a|b 2×A2

d (2, 1) −d
b|a|a 1×A2

d (1, 1) 1

[3] 1×A1
d 6 a|a|a 1×A1

d (2, 2) d2

TABLE I. The classes and elements number of a for Tλ and X(12,13)(jλ).

Therefore,

∑

π∈S3

tr
(
WπX

(12,13)
)

=
∑

a∈Z3
d

X(12,13)T (a)

= 1× 1×A3
d + (−d)× 2× 2A2

d + 1× 2×A2
d + d2 × 6×A1

d

= 3d2(d+ 1).

(F21)

For the X⊗2 case, we need to estimate
∑

a∈Z4
d
X⊗2(a)T (a). When t = 4, the partition class of Z4

d determines the

subsystem weight in Z4
d. We classify the elements by λ and list the values of Tλ and X⊗2(jλ) in Table II.

Therefore,
∑

π∈S4

tr
(
WπX

⊗2
)

=
∑

a∈Z4
d

X⊗2(a)T (a)

= 1× 1×A4
d + (−d)× 2× 2A3

d + 1× 2× 4A3
d + d2 × 4×A2

d + 1× 4× 2A2
d + (−d)× 6× 4A2

d + d2 × 24×A1
d

= d(d+ 1)(d2 + 9d+ 2).
(F22)
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Partition classes λ #{λ} Tλ Subtype jλ : a1a2|a3a4 #{jλ} (wt(a1, a2), wt(a3, a4)) X⊗2(jλ)

[1111] 1×A4
d 1 ab|cd 1×A4

d (1, 1) 1

[211] 6×A3
d 2 aa|bc 2×A3

d (2, 1) −d
ab|ac 4×A3

d (1, 1) 1

[22] 3×A2
d 4 aa|bb 1×A2

d (2, 2) d2

ab|ab 2×A2
d (1, 1) 1

[31] 4×A2
d 6 aa|ab 4×A2

d (2, 1) −d
[4] 1×A1

d 24 aa|aa 1×A1
d (2, 2) d2

TABLE II. The classes and elements number of a for Tλ and X⊗2(jλ). The sub-type jλ is determined by the weight of
subsystems a1a2 and a3a4. #{jλ} denote the number of elements contained in the sub-type jλ.

Appendix G: Concurrence estimation

Concurrence was first proposed as a byproduct of entanglement of formation (EF) [57], and it was proved that for
a bi-qubit system, quantum concurrence gives a lower bound for EF. After the proposal of concurrence of bi-qubit
systems, many works about how to generalize it to multipartite systems were proposed. In [58], the author defined
the quantum concurrence of n-qubit pure state Ψ ∈ H⊗n2 as:

Cn(Ψ) = 21−n/2
√

(2n − 2)−
∑

i

tr ρ2
i , (G1)

which is a natural generalization of two-qubit concurrence, where i labels (2n − 2) nontrivial subsystems and ρi is
the corresponding density matrix of it. Then the quantum concurrence of multipartite mixed state can be defined as
Cn(ρ) = inf

∑
i piCn(Ψi), where the infimum is taken over all pure-state decomposition of ρ, just like the definition

of EF. In [76], the author proved that Cn(Ψ) can be measured using just one factorizable observable acting on two
identical copies of Ψ:

CN (Ψ) =
√
〈Ψ| ⊗ 〈Ψ|A|Ψ〉 ⊗ |Ψ〉, A = 4(1− P+

1 ⊗ · · · ⊗ P+
N ). (G2)

where P+
i = (Ii + Si)/2 is the projector that can project states in Hi ⊗ Hi, to symmetric subsystem Hi � Hi.

Following this equation, if one wants to estimate CN (Ψ), he just needs to prepare two identical copies of Ψ and
measure observable P+

1 ⊗ · · · ⊗ P+
N on Ψ⊗2. However, with the help of randomized measurements, CN (Ψ) can be

measured with single copies of Ψ.
Referring to the k-fold twirling channel acting on X ∈ H⊗k2 :

Φk(X) =
∑

π,σ∈Sk
Cπ,σ tr(XWπ)Wσ. (G3)

Suppose X = |ψ〉〈ψ|⊗k, |ψ〉 ∈ H2, one can easily prove that tr
(
|ψ〉〈ψ|⊗kWπ

)
= 1,∀π ∈ Sk, so that

Φk(|ψ〉〈ψ|⊗k) =
∑

π,σ∈Sk
Cπ,σWσ =

(d− 1)!

(d+ k − 1)!

∑

π∈Sk
Wπ. (G4)

The second equal sign is because the sum of one row or one column of Weingarten matrix is constant:

∑

α∈Sk
WgUdk (α, β) = (d− 1)!/(d+ k − 1)! (G5)

where d is the dimension of random unitary and |ψ〉 in Eq. (G4). According to Eq. (G4), one can generate the
projector P+ = (I + S)/2 by two-fold twirling channel

Φ2
[
(|ψ〉〈ψ|)⊗2

]
=

∑

π,σ∈S2
Cπ,σWσ =

1

6
(S + I) =

1

3
P+. (G6)

Recall that virtual operations can be constructed via random evolution and data post processing. According to
Eqs. (G2) and (G6), we can design an experimental protocol to measure the quantum concurrence:
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Algorithm 4 Concurrence Measurement Protocol

Input: Prepare |Ψ〉 sequentially for NU ×NM times.
Output: Probability distribution of measurement outcomes conditioned on evolution unitary P (~s|U).
1: for i = 1 to NU do
2: Randomly pick a unitary matrix in every unitary ensembles to construct the evolution matrix U =

⊗n
i=1 Ui.

3: Operate U on Ψ to get U |Ψ〉〈Ψ|U†.
4: for j = 1 to NM do
5: Measure U |Ψ〉〈Ψ|U† in the computational basis {|~s〉}.
6: Record the measurement results.
7: end for
8: Estimate the probabilities Pr(~s, U).
9: end for

10: Do the data postprocessing given in Eq. (G7) for Cn(Ψ).

Then we have

Cn(Ψ) = 2
√

1− 3n E
U
P (~s, U)2 (G7)

Proof. Substituting Born’s rule and Eq. (G6), one can prove

3n E
U
P (~s, U)2 = 3n tr

[
(|~s〉〈~s|)⊗2Φ2⊗n(Ψ⊗2)

]

= 3n tr
{[

Φ2(|s1〉〈s1|⊗2)⊗ · · · ⊗ Φ2(|sn〉〈sn|⊗2)
]

Ψ⊗2
}

= tr
[
(P 1

+ ⊗ · · · ⊗ Pn+)Ψ⊗2
]

= 〈Ψ|〈Ψ|P 1
+ ⊗ · · · ⊗ Pn+|Ψ〉|Ψ〉,

(G8)

so that

2
√

1− 3n E
U
P (~s, U)2 = 2

√
1− 〈Ψ|〈Ψ|P 1

+ ⊗ · · · ⊗ Pn+|Ψ〉|Ψ〉

=
√
〈Ψ|〈Ψ|A|Ψ〉|Ψ〉

= Cn(Ψ).

(G9)
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