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Characterizing dissimilarity 
of weighted networks
Yuanxiang Jiang, Meng Li, Ying Fan & Zengru Di*

Measuring the dissimilarities between networks is a basic problem and wildly used in many fields. 
Based on method of the D-measure which is suggested for unweighted networks, we propose 
a quantitative dissimilarity metric of weighted network (WD-metric). Crucially, we construct a 
distance probability matrix of weighted network, which can capture the comprehensive information 
of weighted network. Moreover, we define the complementary graph and alpha centrality of 
weighted network. Correspondingly, several synthetic and real-world networks are used to verify the 
effectiveness of the WD-metric. Experimental results show that WD-metric can effectively capture the 
influence of weight on the network structure and quantitatively measure the dissimilarity of weighted 
networks. It can also be used as a criterion for backbone extraction algorithms of complex network.

Since various systems with complex interactions can be abstractly represented as networks, network science has 
developed rapidly and widely used in various �elds such as  biology1–3,  economics4,5 and social  science6–8. One 
of the most important features of network science is that it can extract the common characteristics of di�erent 
systems under the network representation. �e most representative is the study about the nontrivial topological 
properties such as community structure and long-tail degree distribution. �erefore, how to accurately extract 
network topological characteristics and �nd out the general rules of di�erent systems is the focus and di�culty 
of network  science9–11.

About network topologies, many scholars have shown great interest in comparison of complex  networks1,2,12,13, 
which is mainly to measure the di�erences between two networks by comparing their topological properties. 
Network comparison is the basic of many network analysis applications such as model  selection14, network clas-
si�cation and  clustering15, anomaly and discontinuity  detection16, and evaluation of sampling  algorithms17. �e 
core of network comparison is to de�ne an e�ective dissimilarity  metric18–20, which can capture and adequately 
quantify topological di�erences between networks even when they have di�erent sizes. Moreover, a good dis-
similarity metric should have the ability to recognize the di�erent roles of links and nodes, considering overall 
structural properties.

�e network comparison comes from the graph comparison in graph theory. Early graph comparison meth-
ods, such as graph  isomorphism21,22 and edit  distance23–25, are mainly based on graph  matching26 technology to 
decide whether two graphs are identical. Generally, the algorithms have the time complexity of NP-Complete 
so that they are time-consuming for large networks and could only work on graphs with relatively few nodes. 
Vishwanathan and Kondor et al. put forward the Graph Kernels, which decomposes the graph into multiple 
substructures and then determines whether substructures are  isomorphic27. �is method has the obvious advan-
tage of reducing the time complexity from NP-Complete to polynomial level, but the kernel function is di�cult 
to construct. Mieghem et al. used the eigenvalue vector of the graph’s adjacency matrix or Laplacian matrix to 
represent the network structure and characterized the graph’s distance by comparing the di�erences between 
the two  vectors28. �is method is relatively simple to understand and operate, but it is only applicable to the 
comparison of two graphs with the same number of nodes, and it cannot accurately describe the distance between 
graphs with the same spectra but di�erent structure. Sadegh et al. proposed an intelligent method based on the 
genetic algorithms, with integrating, selecting, and weighting the network features to measure the similarity 
of complex  networks29. �e complexity of this method depends on the complexity of their feature extraction. 
However, most methods of network comparison have the problem that the extraction of network information 
is limited or incomplete thus important structural di�erences are missed.

Recently, Schieberl proposed a discriminative and computationally e�cient di�erences measure for net-
work  comparison30. �is method has relatively superior polynomial time complexity. More importantly, it can 
accurately distinguish all the isomorphism and non-isomorphism networks and can quantitatively describe the 
network di�erences. It can also compare networks with di�erent sizes. However, this method, regardless of the 
edge weight, is only applicable to the unweighted networks.
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It is generally accepted that weights are coupled in a non-trivial way to the binary network topology, play-
ing an important part in structural organization, functionality and dynamics. For instance, the spreading of 
emergency diseases in the international airport network is closely related to the number of passengers travelling 
from one airport to another. In many applications of similarity comparison, such as discriminating between 
neurological  disorders31, quantifying changes in temporal evolving  network32, if these networks are weighted, 
undoubtedly, more accurate similarity measurement can be obtained a�er considering the edge weight. Especially, 
when comparing two weighted complete graphs, like the similarity network between cities obtained by di�erent 
 methods33, whose di�erence mainly comes from the edge weight, and then a dissimilarity metric of weighted 
networks becomes indispensable.

In view of the above analysis, we propose a quantitative dissimilarity metric for comparing weighted networks 
based on method proposed by  Schieberl30. It is assumed that the initial weighted networks are with similarity 
weights. Firstly, the shortest path lengths are measured through reciprocal edge weights and are rescaled by 
the ratio of the average shortest path lengths of the weighted network to its binary counterpart. Hence, we can 
construct a probability matrix based on distance between each pair of nodes, which captures the comprehensive 
information of the network. Secondly, Jensen-Shannon divergence is used to compare the di�erences between 
the distance distribution vectors obtained from probability matrix. �irdly, the concept and calculation of com-
plementary graph and alpha centrality of weighted network are de�ned. �e quantitative di�erences between 
original weighted network and its complementary graph in alpha centrality are respectively computed through 
Jensen-Shannon divergence. Finally, several synthetic and real-world networks are used to verify the e�ective-
ness and necessity of the proposed WD-metric. Moreover, WD-metric is used to compare original real networks 
and their skeleton, extracting through Disparity �lter and Global �reshold �lter when retaining similar edge 
density, indicating new proposed metric can be used as a criterion for backbone extraction algorithms of com-
plex network.

Methods
D-measure. When measuring the di�erence between two unweighted networks, Schieberl proposed a dis-
similarity metric (D-measure), which was de�ned as a three-term  function30:

where ω1,ω2 and ω3 are arbitrary weights of the terms satisfying ω1 + ω2 + ω3 = 1 . J is the Jensen-Shannon (JS) 
divergence.

Instead of comparing vectors whose elements were numbers such as the number of node or edge, average 
degree and so on, Schieberl considered vectors in which the elements were sets of probability distributions. 
Particularly, for each node i = 1, 2, . . . ,N , the node-distance distribution Pi = {pi(j)} was de�ned as the frac-
tion of nodes at distance j from node i. �e set of N node-distance distributions {P1, . . . , PN } contains a lot of 
detailed topological information, such as the degree (number of nodes at distance 1 from i) and the closeness 
centrality (the sum of the inverse distance from i to all other nodes). �en, the network node dispersion (NND) 
was de�ned as:

where

µj =

∑N
i=1

pi(j)/N,d is the diameter of network G.
In the �rst term of Formula (1), averaged connectivity distribution of nodes, µG and µG′ , the set of 

µj(j = 1, 2, . . . , d) and µ′

j(j = 1, 2, . . . , d′) were compared, which captured the global topological di�erences of 
network G and G’. �e second term analyzed the heterogeneity of nodes by comparing the connectivity distribu-
tion of each node Pi(i = 1, 2, . . . ,N) and normalizing by log(d + 1) . In addition, considering many networks 
like most k-regular networks possess NND = 0 , the third term compared the di�erence values of the graphs and 
their complements in alpha centrality.

Because of the importance of weight in the research of network structure and function, designing an e�cient 
and quantitative dissimilarity metric applicable to weighted network is very meaningful and necessary. �erefore, 
we propose the WD-metric based on D-measure.

WD-metric. Given the weight, the distances between nodes of weighted network become di�erent real num-
bers, not just integer any more as in an unweighted network. How to convert them to integers for calculating the 
node-distance distributions while depicting their meaning of n-th order neighbors? In addition, little is known 
about complement of a weighted network. Moreover, redesigning the reasonable parameter values in calculating 
alpha centrality of a weighted network is also an important part.

As for the weighted network Gω = �Vω ,Eω� , where Vω and Eω represent the set of nodes and edges in Gω . 
Denote W as the adjacency matrix of Gω . Here, for consistency of understanding and processing distance, we 
state that the ωij is the similarity weight and the value ωij = 0 if two nodes i and j are disconnected. In addition, 
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we perform the normalization on weight by dividing the maximum weight. So, the similarity weights are dis-
tributed in [0,1].

�e distance distribution of weighted network. Given a network with similarity weight, the reciprocal of the 
weight is taken to measure the path length. Lω is the matrix of shortest path length, whose entry lij , being the 
weighted distance from node i to node j, becomes continuous real number rather than integer. In this case, 
instead of simply rounding it, we �rst rescale Lω through multiplying it by L/Lω  ( Lω  and L are the average 
shortest path lengths of the weighted network and its binary counterpart, respectively) to get L′

ω
 , and then ceil-

ing the values to get L′′

ω
 . By doing this, the original real distances are classi�ed thus we can count up the num-

bers of nodes with the same distance from node i and then divide them by N − 1 to obtain the node-distance 
distributions of weighted network Pω

i = {pω
i (j)}(i = 1, 2, . . . ,N) . Most importantly, the method of rescaling 

distance can retain the topological properties about n-th order neighbor. �e set of N node-distance distribution 
{Pω

1 , P
ω

2 , . . . ,P
ω

N
} forms a matrix Pω with the element pω

i (j) being the fraction of nodes that are connected to the 
node i at distance j, similar to the case for unweighted network. In particular, the matrix Pω includes one column 
for those disconnected nodes. �erefore, our method can also work well for the disconnected networks. See Sup-
plementary Note 1 for detailed description with a simple example.

Complement of weighted network. �ere is very little discussion on the complement of a weighted network. 
We give a similar and reasonable de�nition of the complementary graph of a weighted network referring to the 
complement of an unweighted network.

For an unweighted network G with adjacency matrix A(G) , its complementary graph Gc , in the matrix rep-
resentation, can be denoted as A(Gc) = Kn − A(G) . Kn is a matrix whose entries are all equal to one.

For a weighted network Gω , with similarity weights distributed in [0,1], denoting its adjacency matrix as 
W(Gω) , correspondingly, its complementary graph can be de�ned as W(Gc

ω) = Kn − W(Gω) , where Kn is a 
matrix whose entries are all equal to one.

Alpha centrality. Since alpha centrality considers not only the interaction between nodes, but also the informa-
tion of each node that are independent of  others34, it is widely studied as an important property of network. It 
is generally formed as:

where A is the adjacency matrix of network G, α is the attenuation factor and β is an exogenous factor vector. It 
can be proved that the solution of equation converges for α < 1/�max , where �max is the spectral radius of the 
network.

According to the Perron–Frobenius theory, in a real symmetric matrix M , �max ≤ maxi
∑

j Mij . �erefore, 
in a graph, �max must be less than the maximum degree. Schieberl set α = 1/N and considered link density of 
every node as an exogenous factor vector for an unweighted network. In a weighted network Gω , the adjacency 
matrix W is also symmetric, then �max is bounded from above by the maximum node strength. Because the 
weights of Gω are distributed in [0,1], the maximum node strength is bounded from above by N. Hence, we set 
α = 1/N , β = S/[(N − 1) · ω] , where ω is the average weight, S is the node strength vector.

As known, JS divergence is o�en used to measure the di�erence between two probability distributions. 
�erefore, when considering the in�uence of alpha centrality, we process the calculated alpha centrality vector 
Vα to obtain Pα who is a discrete probability distribution with one dimension more than Vα:

Expression of the WD-metric. Considering the e�ects of global and local features, we can obtain a few related 
vectors based on the above de�nitions of the distance probability matrix, complementary graph and alpha cen-
tricity of a weighted network.

First of all, through the distance probability matrix Pω , we can obtain the average proportion of each order 
neighbors:

Further, we can calculate the value of node dispersion of weighted network (WNND), which is de�ned as:
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where m is the number of columns of the distance probability matrix Pω , and J is the JS divergence.
Finally, the quantitative dissimilarity metric of weighted network is proposed as:

Here we set the weights ω1 = ω2 = 0.45 and ω3 = 0.1 as Schieberl did to quantify structural dissimilarities 
between weighted networks. On one hand, considering of the consistency, we hope that the weighted dissimilarity 
metric is still applicable to the unweighted network. On the other hand, the weights here respectively represent 
the in�uence of networks global (�rst term), networks local (second term) features and the network heterogeneity 
(third term) on the network di�erences. �e value of each term of the WD-metric supposed to be proportional 
to that of unweighted. We calculate several pairs of real networks and get basically consistent results.

Results
Leveraging the WD-metric we propose, several groups of experiments are performed on synthetic networks and 
real networks to verify the necessity and validity of new proposed metric. Note that, if no speci�c instructions 
in this paper, the dissimilarity values (D-values) between all synthetic networks are average results of running 
100 times, and the size of synthetic network is N=100.

Complete graphs with four edge weight distributions. In order to verify the e�ectiveness of the 
WD-metric in comparison between diverse weighted networks, the weights drawn from di�erent distributions 
are �rst added to the complete graphs, and then the dissimilarity values (D-values) between the complete graphs 
with and without weights are calculated and shown in Figs. 1 and 2.

As shown in Fig. 1, there is a signi�cant di�erence between before and a�er weighting on a complete graph. 
Meanwhile the D-values change gradually with the corresponding parameters under di�erent weighting modes. 
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Figure 1.  Comparisons between complete graphs with di�erent weights or not. �e weights are drawn from 
(a) Uniform distribution U[1 − c, 1 + c](0 ≤ c ≤ 1) ; (b) Normal distribution X ∼ N(1, σ 2) ; (c) Lognormal 
distribution lnX ∼ N(µ, σ 2) ; (d) Power-law distribution f (x, b) = b/xb+1 .
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�ey indicate that our method captures the in�uence of the weight on the network structure. Except the com-
parison between a weighted and an unweighted network, we also compare the di�erence between two weighted 
networks. As red lines shown in Fig. 2, the D-values between two networks with same topology but di�erent 
weights are relatively small, but they still change signi�cantly with the weight, which further indicates the WD-
metric e�ectively depicts the e�ect of weight on the network.

Incomplete graphs with different edge densities. Having observed the di�erences between weighted 
complete graphs, we would like to see the performance of the WD-metric on the weighted incomplete graphs. 
�erefore, we use the WD-metric to observe the di�erences before and a�er weighting on Erdos–Renyi (ER) 
network and Barabasi–Albert (BA) network with di�erent densities.

As shown of the black curves in Fig. 3, there is little di�erence between two unweighted networks (UD-values) 
at any of the same density. However, the colored curves show that the di�erence a�er weighting (WD-values) 
increase obviously in most cases, except on ER network with small p. �e possible reason may be that small 
connecting probability causes the ER network to be divided into many disconnected groups, so the UD-values 
are relatively larger. Moreover, in this case, a small quantity of edge weight has little e�ect on network, so there 
is no clear di�erence between UD-values and WD-values. In addition, from the colored curves, it is not di�cult 
to �nd that the WD-values wholly increase with the increasing of the edge density. �at is, when the network is 
sparse, the weight has little impact on the structure, while in the dense network, the weight has a greater impact. 

(a) (b)

Figure 2.  Comparisons between weighted complete graphs. (a) �e cyan and the green lines depict the 
di�erences between weighted complete graphs and its binary counterpart, weights drawn from the uniform 
distribution U[1 − c, 1 + c] and the normal distribution N(1, σ 2), (σ = 2c) , respectively. �e blue line depicts 
the di�erence of two weighted networks with the weights drawn from U[1 − c, 1 + c] and N(1, σ 2), (σ = 2c) . 
(b) �e di�erences of two weighted networks with the weights drawn from U[0, 2] and N(1, σ 2) change with σ.

(a) (b)

Figure 3.  Comparison between incomplete graphs with di�erent edge densities. �e black curves depict the 
di�erences between two unweighted networks with the same density change with the probability p of connecting 
pairs of nodes or average degree k. Other colored curves show the di�erences between weighted network 
and its binary counterpart at various densities. �e edge weights are drawn from lognormal distribution 
(E(x) = 1, σ = 0.1) , power-law distribution (b = 1) , uniform distribution U[0, 2] and normal distribution 
(µ = 1, σ = 0.1) . (a) �e di�erence between Erdos–Renyi (ER) networks; (b) �e di�erence between Barabasi–
Albert (BA) networks.
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�ese results are quite consistent with what we know, which further represents the e�ectiveness and feasibility 
of our proposed WD-metric.

Comparison between neural networks. As an interdisciplinary technology, neural network has been 
widely used in various �elds to tackle the problems like classi�cation and prediction in recent  years35. Figure 4 
shows a simpli�ed two-layer neural network, composed of many neurons from input layer, hidden layer and 
output layer, and weighted edges. Neural network is a typical weighted network with speci�c functions. By con-
tinually training data and adjusting edge weights, the new neural network usually has better ability in prediction 
or classi�cation. We try to use WD-metric to compare these neural networks with di�erent prediction or classi-
�cation accuracy. If the accuracy of two neural networks is closer, and the dissimilarity between them is smaller, 
it will further probe the validity of the WD-metric in capturing the function of weighted networks.

Here, we perform some experiments on the classical BP neural network for pattern recognition of handwrit-
ten numbers. By inputting 4 groups of training sets with size of 10, 100, 1000 and 10,000, we can obtain four 
neural networks with di�erent weights but the same topology connection mode. �en, WD-metric is used to 
compare these networks.

Table 1 shows that when the sizes of training sets are di�erent, WD-metric can capture the di�erences between 
corresponding neural networks with di�erent classi�cation ability. D-values increase gradually between network 
with 10 training sets and networks with training sets 100, 1000 and 10,000, while D-values decrease gradually 
between network with 10,000 training sets and networks with training sets 10,100 and 1000. �is shows when 
the di�erence of classi�cation accuracy of networks is larger, the D-value between them is larger. �e results 
further manifest that the WD-metric is quantitative and e�ective for measuring the distance between networks 
with di�erent functions caused by weights.

Distances between real weighted networks. A�er the comparison between synthetic networks, in 
order to observe the performance of the WD-metric on real-world networks, we make pair-by-pair comparison 
among various weighted real networks and the results are shown in Fig. 5a.

17 data sets of 4 networks types: Animal, Online Communication, Human Contact and Human Social, are 
considered. Table 2 shows the basic statistics of them. All networks here presented are freely available at �e 
Koblenz Network Collection (http://konec t.uni-koble nz.de/). We also calculate the di�erences between those 
networks when ignoring the weight, and the results shown in Fig. 5b. It can be found that there is a signi�cant 
di�erence between the two �gures. What’s more, as shown in Fig. 5a, the dissimilarities between Reality Mining 
and other networks are very large under consideration of weight. If not, shown as Fig. 5b, Reality Mining is sub-
merged in the networks, which further indicates the necessity of designing the dissimilarity metric of weighted 
network. Moreover, we can �nd that the similarity between some networks with the same type are higher, such 

Figure 4.  A simpli�ed two-layer neural network. �e circles represent the neurons at each layer of the neural 
network, corresponding to the nodes in the complex network. �e correlations between neurons correspond 
to edges, and the di�erent feedback intensities between neurons correspond to edge weights in the complex 
network.

Table 1.  �e D-values for each pair of neural networks obtained by di�erent sizes of training sets. �e number 
of hidden layers is 30 and training times is 100. Number in parentheses represents the classi�cation accuracy of 
the corresponding neural network. �e larger the training set, the higher the accuracy.

�e size of training sets (accuracy) 10 (19%) 100 (53%) 1000 (79%) 10,000 (97%)

10 0 0.0042 0.0119 0.0521

100 0.0042 0 0.0107 0.0509

1000 0.0119 0.0107 0 0.0402

10,000 0.0521 0.0509 0.0402 0

http://konect.uni-koblenz.de/
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as Animal. However, some networks with the same type, such as Human Contact, are also quite di�erent from 
each other, especially the dissimilarities between Reality Mining and other same type networks are very large. 
Probably because the classi�cation of networks only by their domain is not enough. See Supplementary Note 3 
for speci�c dissimilarity values between various real networks.

Application of the WD-metric to backbones extraction. In a large-scale network, the extraction of 
truly relevant nodes or connections forming the network’s backbone can help form reduced but meaningful 
representations of a large-scale complex network, and understand its fundamental structure and  function36. 
However, many existing extraction methods are mainly for retaining one or more topological attributes. For 
example, the classical method of Disparity �lter proposed by  Serrano37, still qualitatively shown its superiority to 
the global threshold �lter mainly through the heterogeneity of the weight distribution.

However, our proposed WD-metric can quantitatively measure the dissimilarity of weighted network from 
comprehensive information. Figure 6 presents us the D-values between the U.S. Airport and Residence Hall 

Table 2.  �e basic statistics of the real networks. �ese 17 weighted networks include 4 types: animal, online 
communication, human contact and human social. |V|, |E|, 〈k〉 , 〈s〉 represents the number of nodes, the 
number of edges, average degree, and average strength of network, respectively.

Network Directed |N| |E| 〈k〉 〈s〉

Animal

Bison Yes 26 314 24.15 69

Kangaroo No 17 91 10.71 65.29

Macaques Yes 62 1187 38.29 78.55

Rhesus Yes 16 111 13.88 80.88

Online communication

DNC Yes 2029 5598 5.44 36.89

Manufacturing Yes 167 5784 69.26 992

Human contact

Haggle No 274 2899 15.50 124.21

Hypertext No 113 2196 38.87 368.46

Infectious No 410 2765 13.49 84.38

Reality mining No 96 2539 52.90 22,633.42

Train bombing No 64 243 7.59 8.81

Windsurfers No 43 336 15.63 56.09

Les No 77 254 6.60 21.30

Human social

Adolescent Yes 2539 12,969 10.22 29.71

Highschool Yes 70 366 10.46 14.46

Residence hall Yes 217 2672 24.63 83.21

Seventh graders Yes 29 376 25.93 51.03

(a) (b)

Figure 5.  Di�erence between more weighted real networks. (a) Heatmap of the dissimilarity values for each 
pair of weighted real networks; (b) �e di�erence between the real networks when ignoring their weights.
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network and their backbones. On one hand, with the increase of edge density, D-values gradually decrease as a 
whole, which can’t agree more about the fact that the subgraph with lager density retains more information. On 
the other hand, the blue line is almost below the red line, quantitatively and intuitively indicating the disparity 
�lter is superior to the global threshold �lter. �e WD-metric can be used as a criterion for backbone extraction 
algorithms of complex network.

Discussion
In this paper, we propose a qualitative dissimilarity metric applicative to weighted networks (WD-metric) based 
on the method of D-measure30 only for unweighted networks. Especially, for disconnected networks, it also 
performs well. Various experiments have shown that WD-metric can capture the in�uence of the weight on the 
network structure, and quantitatively and e�ectively measure the dissimilarity of weighted networks. In addi-
tion, it can depict the in�uence of edge density on network structure. On one hand, when the network is sparse, 
the weight has little impact on the structure. On the other hand, while in the dense network, the weight has a 
greater impact. Furthermore, the WD-metric can be used as a criterion for backbone extraction algorithms of 
complex network.

We have compared among some real-world networks and obtained the dissimilarity values between them 
through the WD-metric but without further analyzing the practical signi�cance of the dissimilarity values. 
Scholars from di�erent �elds can use it combined with various practical problems yield interesting results and 
applications. Moreover, from the perspective of minimizing D-value between original network and its backbone, 
developing a new method of backbone extraction is a meaningful idea. In addition, we can pay more attention to 
the relationship between network di�erences and network functionalities such as the percolation and spreading 
dynamics. How to set the weight of each term of the WD-metric is also worth seriously considering.
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