


  1

Characterizing driver-response relationships in marine pelagic ecosystems for improved 

ocean management  

Mary E. Hunsicker
1*

, Carrie V. Kappel
1
, Kimberly A. Selkoe

1,2
, Benjamin S. Halpern

1,3,4
, 

Courtney Scarborough
1
, Lindley Mease

5
, Alisan Amrhein

3
  

1
University of California, Santa Barbara 

National Center for Ecological Analysis and Synthesis 

Santa Barbara, California 93101 USA 

 
2
Hawai'i Institute of Marine Biology 

University of Hawai'i  

Kāne'ohe, Hawai'i 97644 USA  

 
3
University of California, Santa Barbara 

Bren School of Environmental Science and Management 

Santa Barbara, California 93106 USA 

 
4
Imperial College London 

Silwood Park Campus 

Buckhurst Road, Ascot SL57PY, UK 

 
5
Stanford University  

Center for Ocean Solutions 

Monterey Bay, California 93940 USA 

 

*Corresponding author current contact information: 

Northwest Fisheries Science Center 

National Oceanic and Atmospheric Administration 

Newport, Oregon 97366 USA 

Email: mary.hunsicker@noaa.gov 

Voice: (541) 867-0306 

 

 

 

 

 

 

 



  2

 

Abstract 

Scientists and resources managers often use methods and tools that assume ecosystem 

components respond linearly to environmental drivers and human stressor. However, a growing 

body of literature demonstrates that many relationships are non-linear, where small changes in a 

driver prompt a disproportionately large ecological response. Here we aim to provide a 

comprehensive assessment of the relationships between drivers and ecosystem components to 

identify where and when non-linearities are likely to occur. We focus our analyses on one of the 

best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical 

techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a 

wide literature review on single driver-response relationships in pelagic systems, (2) use 

statistical models to identify the degree of non-linearity in these relationships, and (3) assess 

whether general patterns exist in the strengths and shapes of non-linear relationships across 

drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at 

least 52% of all driver-response relationships. This is likely an underestimate, as papers with 

higher quality data and analytical approaches reported non-linear relationships at a higher 

frequency – on average 11% more. Consequently, in the absence of evidence for a linear 

relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to 

greater ecological and socio-economic consequences if they are unknown (and/or unanticipated), 

but if known they may provide clear thresholds to inform management targets. In pelagic 

systems, strongly non-linear relationships are often driven by climate and trophodynamic 

variables, but are also associated with local stressors such as overfishing and pollution that can 

be more easily controlled by managers. Even when marine resource managers cannot influence 
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ecosystem change, they can use information about threshold responses to guide how other 

stressors are managed and to adapt to new ocean conditions. As methods to detect and reduce 

uncertainty around threshold values improve, managers will be able to better understand and 

account for ubiquitous non-linear relationships.  

 

Keywords: thresholds, tipping points, pressure, stressor, food web, management, generalized 

additive models, non-linearities
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Introduction 

Ecosystem regime shifts, or ‘tipping points’, represent abrupt shifts in ecosystem 

structure and functioning that can dramatically alter human-derived benefits from the system 

(Scheffer et al. 2001, 2009). A burgeoning literature over the past decade shows these tipping 

points to be common in terrestrial (Folke et al. 2004, Higgins and Scheiter 2012, Brando et al. 

2014), freshwater (Carpenter 2003) and marine (Hughes 1994, Hughes et al. 2010, Daskalov et 

al. 2007) systems. To better anticipate and manage for these shifts, recent research has focused 

on understanding the mechanisms of regime shifts (Beaugrand 2004; Daskalov 2007, Perry et al. 

2013), identifying early warning signs (Scheffer et al. 2009, Carpenter et al. 2011, Dakos et al. 

2010, 2012, Litzow et al. 2013), and considering ecological thresholds in management, policy 

and law (Samhouri et al. 2010, 2011, Kelly et al. 2014a, b). Efforts to understand mechanisms of 

regime shifts often seek to identify the components of the ecosystem that exhibit 

disproportionately large changes (i.e., non-linear responses) when an ecosystem regime shift 

occurs, and pinpoint external drivers correlated with these changes (e.g., Collie et al. 2004, 

Beaugrand 2004, Alheit et al. 2012). Yet despite the awareness of non-linearities within 

ecosystems, many methods used to investigate ecological responses to environmental drivers and 

anthropogenic stressors (herein collectively referred to as drivers) are inadequate for detecting 

non-linear relationships and therefore linear responses are often a default assumption (e.g., Gil 

2013, Ban et al. 2013).  

Strong nonlinear or threshold responses in these systems indicates ecological boundaries 

that may serve as critical reference points for managers to avoid or target when making decisions 

(Briske et al. 2006, Suding and Hobbs 2009, Selkoe et al. in press). The costs associated with 

incorrectly assuming linearity when an ecological response is actually non-linear can be large. 
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For instance, instead of an incremental increase in fishing pressure causing an incremental 

decrease in fish abundance, the fish stock might collapse and impact other ecosystem 

components and processes. Similarly, a gradual increase in anthropogenic nutrient loading in 

marine and aquatic ecosystems may elicit sudden increases in eutrophication and hypoxia events. 

Such ecological surprises can have broad ecological, social and economic consequences that may 

be difficult to reverse. For instance, the collapse and limited recovery of Atlantic cod in the 

northwest Atlantic Ocean had profound effects on ecosystem structure (Frank et al. 2005, 2011, 

Steneck et al. 2013) and the livelihoods and economies of coastal communities (Steneck et al. 

2011), and eutrophication and formation of harmful algal blooms in coastal systems worldwide 

have threatened water quality, human health and animal life (Gunderson 2001, Johannessen et al. 

2011, Glibert et al. 2014). The serious consequences that strong non-linear responses potentially 

create for ecosystem health, economies, cultures and public health motivated us to assess their 

prevalence in marine ecosystems.  

A practical and feasible starting point for elucidating non-linearities in complex 

ecosystems is to catalogue the strengths and shapes of uni-variate driver-response relationships. 

Regressing ecological responses against hypothesized explanatory variables can reveal whether 

the changes occur in a linear, curvilinear or highly non-linear fashion, even if it is unclear 

whether the explanatory variables are true drivers or proxies for true drivers, or whether 

curvilinear relationships truly represent non-linear threshold dynamics. Curvilinear relationships 

may be considered non-linear from a statistical sense even if they do not exhibit threshold 

dynamics. From a complex systems perspective, non-linear threshold dynamics can cause 

systems to abruptly transform into new states that can be difficult to reverse and may, in some 

cases, exhibit hysteresis, where recovery does not immediately ensue when conditions preceding 
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the transformation are re-created (Scheffer et al. 2001). Curvilinear relationships may exist 

without such transformation, but still represent challenges to management in which a key driver-

response relationship switches, e.g., from positive to negative. It is unclear how many of the 

curvilinear relationships identified in the literature could potentially exhibit threshold dynamics. 

Because both non-linear and curvilinear relationships can lead to unexpected management 

outcomes, from here on we collectively refer to them as non-linear.  

Understanding when and where strong non-linearities occur enables use of critical points 

or thresholds for precautionary target-setting in an ecosystem-based management context 

(Samhouri et al. 2010, Large et al. 2013, 2015a). Non-linear population dynamics and functional 

relationships underlie the calculation of reference points used to regulate fisheries (e.g., 

maximum sustainable yield, Maunder 2008), recover endangered species (e.g., minimum viable 

populations, Morris and Doak 2002) and control environmental contaminants (e.g., exposure-

response relationships, Suter (2007)). For instance, Cury and others (2011) identified a threshold 

value of forage fish biomass needed to sustain the long-term productivity of seabird populations 

using data from seven different ecosystems. Their empirically-derived estimate of “one third for 

the birds” (1/3 of maximum long term forage fish biomass) can serve as a general principle for 

guiding management decision making around forage fish catch limits to ensure the sustainability 

of predator populations. However, such ecological thresholds, particularly generalizable ones, 

have not yet been commonly identified. Empirical evidence of functional relationships and non-

linearities may guide the functional form and inclusion of stressor-response linkages in models 

used to assess marine resources and set management targets. Furthermore, understanding uni-

variate driver-response relationships is an important precursor to understanding and managing 

the interacting effects of multiple drivers on ecosystem components, for which far fewer data 
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exist. For example, assessments of cumulative human impacts on ecosystems (e.g., Halpern et al. 

2008) would be greatly improved with a greater understanding and incorporation of potential 

single-stressor non-linear relationships (Halpern and Fujita 2013).  

Here, we systematically collected uni-variate driver-response relationships from peer-

reviewed literature; identified the prevalence, strength, and shapes of the relationships; and 

assessed whether general patterns exist in the shapes and strengths of driver-response 

relationships. While many studies of uni-variate driver-response relationships exist in the 

literature, synthetic insights are challenged by the variety of methods and statistical techniques 

used to quantify them. Some of the most powerful methods used to decipher the shapes of 

relationships between drivers and ecological components are regression-based techniques, and 

therefore we were particularly interested in reviewing these studies. As a case study, here we 

focus on a single, well-studied system, the pelagic zone, to quantify where, when and why linear 

and non-linear relationships are found.  

 

Methods  

Literature search, selection criterion, and data extraction 

We conducted a wide literature search of driver-response relationships in marine pelagic 

ecosystems published in peer-reviewed literature through year 2013 using the Web of 

Knowledge bibliographic database. We first searched the database using keywords related to 

pelagic ecosystems and non-linear system dynamics (e.g., regime shifts, thresholds, tipping 

points) and then conducted a new search to include keywords related to specific drivers in these 

systems (e.g., climate, pollution, fishing). The second iteration of the literature search ensured 

that we captured both linear and non-linear driver-response relationships published in peer-
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reviewed literature. A comprehensive list of the keywords used in both searches is provided in 

Appendix A (Table A1).  

Several criteria were used to determine which studies to include in our analyses. First, the 

paper must have been based on an empirical field study in marine pelagic ecosystems. 

Mesocosm and laboratory experiments and modeling studies were not included. We note that if 

studies on demersal species came up in our literature search they were included in our database 

because demersal species are vulnerable to the same biophysical and human drivers as pelagic 

species. Second, the authors must have identified the functional form of the relationship, i.e. 

linear, non-linear (curvilinear and threshold responses), between a driver and ecosystem 

component. Third, the authors must have used statistical analyses, such as uni- and multivariate 

regression or correlation techniques, to determine whether the relationship was linear or non-

linear.  If a paper did not meet this last criterion, but the raw data were published in the paper, we 

extracted the data and ran our own multivariate analysis, fitting Generalized Additive Models 

(GAMs; Wood 2006) with and without a smooth term (non-linear and linear model formulation, 

respectively) to the driver-response data. The best-fit model, and thereby the form of the 

relationship, was determined based on the Akaike Information Criterion (AIC; Hastie and 

Tibshirani 1990), i.e., the model with the lowest AIC value was deemed the best-fit model. Raw 

observations that were presented in figures rather than tables were digitized from electronic 

(PDF) versions of manuscripts using the ImageJ on-screen measuring tool (Schneider et al. 

2012). All analyses using GAMs were done using the mgcv package in R (version 3.0.2, 

9/25/2013). 

 

Database 
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We created a database of the published single driver-response relationships that were 

deemed significant based on p values ≤ 0.05 or were included in best-fit models identified 

through model selection. Multiple summary statistics were recorded (when available) in the 

database in an effort to explore variation in driver-response relationships in the present study and 

to be made available for researchers for future studies. The summary statistics included 

published or derived shapes of the relationships (linear, non-linear or specific functional forms), 

sample size, quantitative estimates of ecological thresholds, p values, R
2
, deviance explained, 

correlation and regression coefficients, and model covariates (if multivariate model).  

While we were mainly interested in single driver-stressor response relationships, many 

published studies often included multivariate models. In those cases, we collected statistical 

information on the partial effects of individual drivers on ecological responses. In addition, 

authors often log-transformed their data to meet statistical assumptions of normality or equal 

variances, and in such cases we included these relationships in our database. In the papers that 

met our selection criteria, there were no studies in which the authors’ intent was to linearize the 

relationships of interest through transformations. When possible, we digitized, back-transformed 

and refit models to accessible data using GAMs as described above, although there were no 

instances in which back-transformation of the data changed the findings from the original 

studies. Further, we were mainly interested in the influence of time-variant drivers on ecological 

responses, and therefore time-invariant physical drivers, such as depth, latitude and longitude 

were not included in our database. We also minimized the potential for spatial and temporal 

pseudo-replication (non-independence of data) within studies in the following manner: 1) when 

authors reported findings across different spatial scales, e.g., regional and global, we recorded 

their results for regional scales only to avoid repeated measurements in the same vicinity, and 2) 
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if authors reported results for an individual time unit (e.g., one year) and across an entire time 

period (e.g., all years combined), we included the results for the individual time unit only. In 

studies that included multiple species, we considered each species as an independent 

measurement. 

In addition to summary statistics, we collected ancillary data on study characteristics to 

explore the variation in driver-response relationships and to identify the most robust papers with 

respect to statistical methods. The ancillary data in our database include: ecosystem type 

(enclosed bay or sea, coastal pelagic, continental shelf and continental slope/oceanic), local 

region, ocean basin, temporal scale of study, functional level (i.e., individual, population, 

community) and species trophic level (TL 1-4) of ecological response, primary productivity 

(mgC/mg
2
/day) and the statistical methods used by the authors. Estimates of species trophic level 

and primary productivity were obtained from the Sea Around Us Project 

(http://www.seaaroundus.org/).  

We created a subset of data from papers that we deemed to be the most statistically robust 

for our analysis. We defined statistically robust papers as those in which the authors tested 

hypotheses of linear versus non-linear relationships, or at the very least provided evidence of 

fitting both linear and non-linear models to their data. Papers were also included in this subset if 

we were able to extract raw observations and fit GAMs to the data. We compared the prevalence 

of non-linear relationships in the subset of driver-response pairs to the prevalence in pairs from 

all of the studies to determine if inconsistencies in the analytical approach among papers might 

influence our results. We also used the subset of data in our analyses below to explore variation 

in the degree of non-linearity in the driver-response relationships and to characterize the shapes 

of those relationships. 
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Degree of non-linearity 

We quantified the strength of non-linearity in driver-response relationships using the 

effective degrees of freedom (EDF) of Generalized Additive Models (GAM). The EDF is a 

summary statistic of GAM and it reflects the degree of non-linearity of a curve (Wood et al. 

2006). An EDF equal to 1 is equivalent to a linear relationship, 1 < EDF ≤ 2 is considered a 

weakly non-linear relationship, and EDF > 2 implies a highly non-linear relationship (Figure 1; 

Stenseth et al. 2006, Litzow and Ciannelli 2008, Zuur et al. 2009). As the EDF increasingly 

exceeds 2, the degree of non-linearity progressively increases. The driver-response relationships 

with EDF > 2 are those that are most likely to have at least one inflection point and exhibit 

threshold responses.  

Estimates of EDF were often reported in papers in which the authors used GAMs to 

model driver-response relationships. If the EDF was not reported or authors used a regression 

technique other than GAMs, we generated approximate estimates by fitting GAMs to digitized 

data, including raw observations and model predictions.  We sequentially fit GAMs with a 

decreasing number of knots (i.e., locations in spline curves where piecewise polynomial curves 

are joined (Wood 2006)) to the data until we identified a model that had the lowest number of 

knots and still maintained the shape of the published relationship, as determined by visual 

inspection. By reducing the number of knots we constrained the flexibility or ‘wiggliness’ of the 

curve, which resulted in a lower and more conservative estimate of EDF (for example see 

Appendix B, Fig. B1). If the authors used linear regression or correlation techniques, we 

assigned an EDF of 1 to significant linear relationships. We note that in many studies the authors 

reported significant linear and non-linear relationships. 
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Variation in degree of non-linearity among relationships 

We used regression trees (Brieman et al. 1994, De’ath and Fabricus 2000, Hastie et al. 

2013) to explore variation in the degree of non-linearity across driver-response relationships in 

relation to a suite of explanatory variables. We applied regression trees to the subset of data 

extracted from statistically robust papers; however, many combinations of driver metrics and 

ecological components lacked sufficient replication to draw conclusions about trends. Therefore, 

we only included the major driver-response pairs from the subset of data with sample sizes (i.e. 

number of individual relationships) > 5 (Appendix C, Table C1). In addition, we focus these 

analyses on the four major ecological responses (shown in Table 2), which have more than one 

driver-response pair and/or come from more than one study. Tree models were fitted using 

binary recursive partitioning (rpart package (Therneau et al. 2014) in R version 3.1.1. 

10/7/2014), which repeatedly splits the response variable along coordinate axes of explanatory 

variables into groups that are as homogenous as possible in terms of their deviance (e.g., sum of 

squares) until no further reduction in deviance is obtained. In our analysis, the response variable 

is estimates of EDF and the potential explanatory variables biological attributes of the 

relationships and study systems (i.e., driver, ecological response, primary production rate in 

study system, and functional and trophic level of ecological response), and study characteristics 

(i.e., publication year, sample size, i.e. number of observations, and temporal scale of the study). 

To find the best tree, we first constructed the largest tree possible using all potential explanatory 

variables. We then pruned the trees to a size that had the smallest estimated error and was the 

best estimated predictive single tree using the cost-complexity pruning parameter determined 

with ten-fold cross validation (De’ath and Fabricus 2000, Therneau et al. 2014). The total 
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variance explained by the best single tree was calculated as R
2
 = 1- relative error. The quality of 

each split was assessed by ‘improvement’; the proportion of the total sum of squares explained 

by the tree at each node (Therneau et al. 2014). 

 

Shapes of relationships  

We categorized the shapes of highly non-linear driver-response relationships (shown in 

Table 2) using expert consensus-based visual inspection. Many of the papers selected for our 

study provide model fitted curves and residuals of the relationships between the metrics of 

drivers and ecological responses, but do not present raw observations. This prevented us from 

quantitatively estimating functional forms of most metric-response relationships in our database, 

and therefore we adopted a qualitative approach. We created five categories of potential shapes 

of metric-response relationships based primarily on Bolker’s (2007) qualitative descriptions of 

functions used for ecological modeling. We then independently assigned metric-response 

relationships to one of the five shape categories. The potential shapes of relationships included: 

single maximum or minimum and hump-shaped (i.e., dome-, U- shaped and Ricker); splines (i.e., 

≥ 2 maximum or minimum); decreasing, increasing or saturating (i.e., negative and positive 

exponential, Michaelis-Menten); sigmoid (i.e., logistic); and threshold (i.e., threshold and 

piecewise models best fit the data – not based on visual inspection) (see Figure 2 for illustrations 

of shapes). Shapes were included in our final assessment of metric-response relationships if at 

least four of the five co-authors who participated in this analysis agreed on the shape. Otherwise, 

the shapes were categorized as ‘no-consensus’. 

 

Results 
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Using our search and selection criteria, we identified 75 studies of driver-response 

relationships in pelagic ecosystems, producing 728 estimated relationships that focused on a 

wide range of trophic levels (plankton to large pelagic predators), drivers and response variables 

(see Table S1 in Supplement 1). To aid interpretation of patterns, we combined driver-response 

data into broad groupings of major drivers: climate, pollution, exploitation, and trophodynamic 

(Table 1). Sample sizes within categories were uneven; climate drivers were the best represented, 

followed by trophodynamic drivers, pollution, and exploitation (Table 1). Response variables 

were grouped into 17 different categories of ecological components that ranged from individual- 

to population- to ecosystem-level responses (Table 1).  

  Across all four major drivers, the ecological response was non-linear in 52% of all 

relationships identified in the existing literature (ranged from 48% to 53% among drivers, Figure 

3). However, excluding the studies with the least robust statistics led to a higher estimate of non-

linear responses in all four driver groups (Figure 3). The subset of robust papers comprise ~70% 

of the original papers (55 studies, 592 relationships) and are shown in the Table S1 in 

Supplement 1. Adding this filter had greatest effect on results for the trophodynamic driver 

category (increased from 51% to 61% non-linear), followed by climate (53% to 59%), pollution 

(48% to 53%), and exploitation (51% to 53%; Figure 3).  

 The published and derived estimates of degree of non-linearity indicate that when driver-

response relationships are non-linear they are most often strongly non-linear. For example, more 

than 90% of all non-linear relationships associated with pollution and exploitation had EDF >2. 

Similarly, 70% of all non-linear relationships with climate as the driver had EDF >2. For the 

trophodynamic driver, approximately 50% of the non-linear relationships were highly non-linear 

and the remainder were weakly non-linear, i.e. 1 < EDF ≤ 2, or no estimate of EDF was available 
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(Figure 3). Further, the higher prevalence of non-linear relationships in the subset of robust 

papers compared to all papers is mainly driven by an increase in the percentage of highly non-

linear relationships. This was found for all four drivers (Figure 3). Thus, papers in which authors 

investigated the potential for both linear and non-linear responses not only detected a higher 

amount of non-linear driver-response relationships, but also a greater percentage of strongly non-

linear responses.  

Closer inspection of the driver-response relationships published in the set of robust 

papers indicates that the response of ecological components to individual metrics of major 

drivers (with sample sizes >5) is quite variable (Table 2, based on 43 papers and 443 

relationships). Non-linearity was most common for response relationships involving species 

biomass / abundance and species growth / body condition while the other two response metrics, 

area occupied / distribution and recruitment overwhelming showed linear relationships to the 

drivers. All four ecological components exhibited non-linear responses to large-scale climate 

patterns (Table 2). We also found greater evidence for non-linearity than linearity in some other 

metric-response relationships for which bycatch, reproduction, landings and community 

composition were the response variables (Appendix C, Table C2). Many combinations of the 

driver metrics and ecological components lacked sufficient replication in the literature to draw 

conclusions about their trends.  

 

Variation in degree of non-linearity  

Sorting studies by EDF using regression tree analysis suggested that the type of 

ecological response and driver group were the two most important biological variables 

explaining variation in degree of non-linearity. The analysis also revealed that older studies and 
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brief studies were associated with unusually high EDF. Specifically, a small number of studies 

that were published prior to year 1999 (mean EDF = 6.31; 3 papers and 22 relationships) or with 

duration less than one year (mean EDF = 6.03, 2 papers and 11 relationship) clustered together 

(Appendix C, Fig. C1; R
2 
=0.58, cross validation error = 0.46, n=416, cost-complexity pruning 

parameter = 0.03). To remove the influence of these extreme values on model outcome, we re-fit 

the tree model to a reduced data set that did not include these relationships. The best fit model of 

the reduced data showed that the strength of the splits, and thus variable importance, were 

strongest for ecological response and driver followed by study sample size and trophic level of 

the response (R
2 
= 0.45, cross validation error = 0.32, n=381, cost-complexity pruning parameter 

= 0.05; Figure 4). Those relationships in which species biomass / abundance or growth / body 

condition were the ecological responses had a higher mean estimate of EDF than area occupied / 

distribution and recruitment relationships. The mean EDF was also higher for species biomass / 

abundance and growth / body condition relationships in which pollution was the driver than for 

relationships in which climate, fishing and trophodynamic were drivers. These findings 

correspond with the patterns gleaned from Table 2. Study sample size was also an important 

variable explaining variation in degree of non-linearity when pollution was the driver. For the 

remaining drivers, trophic level of the response variable mattered most (Figure 4). 

 

Shapes of relationships  

The four major ecological responses for which there were adequate sample sizes showed 

evidence of threshold relationships between single drivers and responses (Figure 2). The 

strongest evidence was found in relationships in which species biomass / abundance was the 

ecological component. The papers included in our study indicate that all four drivers elicited 



  17

threshold responses in species biomass / abundance, although this was most often found in those 

relationships in which pollution was the driver, and specifically, oxygen was the metric (Figure 

2). The following shapes were also identified through visual inspection and were equally evident 

in relationships between the four drivers and species biomass / abundance: single maximum and 

minimum; spline; and saturating / decreasing / increasing. It is possible that these relationships 

also exhibit inflection points and threshold responses, however there are few studies (8 out of 75) 

in our database in which authors attempted to quantify threshold values for driver-response 

relationships through formal analysis (e.g., changepoint analysis, derivatives, threshold GAMs). 

For the remaining ecological responses (growth / body condition, area occupied / distribution, 

recruitment), single maximum and minimum and spline shapes were most evident in 

relationships with climate drivers while saturating / decreasing / increasing shapes were more 

often observed in relationships that included trophodynamic drivers, particularly density 

dependence (Appendix C, Table C3). Sigmoid curves were only noted once and were the least 

common shape assigned to driver-response relationships, however sigmoid and spline shapes 

were the most challenging to distinguish based on visual inspection alone. 

 

Discussion  

We provide a quantitative assessment of the prevalence, strength and shapes of non-linear 

relationships in pelagic marine ecosystems. Our synthesis of driver-response relationships from 

existing literature indicates that: 1) non-linear driver-response relationships are common and are 

likely underestimated in the peer-reviewed literature, 2) strong non-linearities are most common 

in relationships in which species biomass, abundance, growth and body condition are the 

ecological responses, and/or when pollution is the driver and 3) increased use of robust methods 
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to detect nonlinearities and threshold responses will likely uncover further evidence for threshold 

driver-response relationships. Together, our findings suggest that it is safer to assume that driver-

response relationships are non-linear, rather than linear, and that certain driver-response 

relationships in pelagic marine ecosystems have the potential to exhibit threshold response. 

Understanding when linear and non-linear responses occur can advance our ability to 

anticipate future conditions and better inform management strategies. Linear relationships 

indicate that incremental increases in a driver provoke incremental changes in ecosystem 

components, and thus, related management decisions are determined simply by which particular 

ecological outcome a decision-maker prefers. On the contrary, when relationships are non-linear, 

incremental increases in driver levels can cause unexpected and large changes (positive and 

negative) in ecological components, allowing for more data-driven target setting by managers, 

and limiting options for fine-tuning to a desired state. Understanding such non-linear changes 

critically informs what management actions can maximize ecological, social or economic 

benefits (Kelly et al. 2014a, b). Despite the large amount of research dedicated to understanding 

driver-response relationships, we found it difficult to identify general patterns in the shapes of 

these relationships and predict non-linear changes, even within the same or similar ecosystems. 

For instance, a multi-year study on the influence of environmental conditions on North Sea 

herring abundance and distribution demonstrates that driver-response relationships in a single 

study system can vary substantially among years (Maravelais 1997). Another study from the 

eastern Bering Sea indicates that the response of jellyfish to environmental variables is quite 

variable between neighboring sub-regions (Brodeur et al. 2008). Nevertheless, a consistent 

finding of our study is that non-linearities are more common than linear responses among all four 

drivers in the most robust studies and in the most well-studied driver-response relationships (i.e., 
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where species biomass, abundance, growth and condition are the ecological responses). We 

suggest that it is more prudent to use default assumptions of non-linear responses rather than 

linear responses in fisheries and ecosystem models and management to more accurately guide 

target-setting through identifying and avoiding, if possible, undesirable non-linear ecosystem 

shifts. While many of the non-linear relationships were driven by climate and may be outside the 

control of managers (though are still critically important), there are also non-linear relationships 

with drivers that managers can influence (e.g., pollution). 

Many of the non-linear relationships in the literature were identified as strongly non-

linear, indicating that they are potentially prone to inflection points and threshold dynamics. 

Using regression trees, we found that species biomass, abundance, growth and condition showed 

the most evidence of strongly non-linear responses to all four drivers in our study. On average, 

the strongest non-linearities were between these ecological responses and pollution drivers, 

primarily oxygen. This result is largely attributed to a three-year study that examined the 

influence of dissolved oxygen on the catch-per-unit-effort (proxy for abundance) of 10 demersal 

species in the northern Gulf of Mexico (Craig 2012). Threshold models offered the best fit when 

each species was evaluated independently in each year of the study. Avoidance thresholds are to 

be expected given the lethal and sub-lethal behavioral and physiological thresholds of dissolved 

oxygen concentrations on marine species. The effect of oxygen on the biomass of small pelagic 

fishes in coastal systems, i.e., sardines and anchovies, has been shown to be highly non-linear as 

well (Bertrand et al. 2011).  

For the remaining driver groups (climate, fishing and trophodynamics), the following 

metrics had the strongest non-linear effects on species biomass and abundance: temperature, 

large-scale climate patterns, salinity, predator or prey biomass, and fishing effort. Relationships 
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with climate metrics are likely defined by strong non-linearities, as species respond to oscillatory 

or cyclical patterns of the environment. Increasing fishing effort and changes in trophic control 

are also known to have strong non-linear impacts on marine population dynamics, e.g. fishery 

collapses and trophic cascades (Hutching and Reynolds 2004, Dulvy et al. 2004, Daskalov et al. 

2007, Anderson et al. 2008). For example, in a study from the Baltic Sea, where the top predator 

cod collapsed due to overfishing, the authors’ showed that the planktivore sprat regulates 

zooplankton dynamics once sprat abundance reaches a threshold level. When sprat abundance is 

below the threshold, zooplankton is regulated by hydrological conditions rather than predation 

pressure (Casini et al. 2009). In addition, we found that the influence of temperature, winds, 

salinity, predator or prey biomass and density dependence on species growth and condition were 

strongly non-linear. This was expected given the extensive knowledge about how environmental 

conditions influence physiology of marine organisms and how competition for food and space 

regulate population growth and body condition. For example, another study from the Baltic Sea 

found that sprat also regulates herring growth once sprat abundance surpasses a certain threshold 

(Casini et al. 2010) due to an increase in inter-specific competition. Sprat is the main food 

competitor of herring. Below the threshold level of sprat abundance, the main driver of herring 

growth variation is salinity, which acts on the abundance of herring’s main copepod prey (Casini 

et al. 2010). Further, a study from the Bering Sea identified a threshold value of predator 

population abundance that once crossed caused a large change in the predator’s spatial 

distribution (Ciannelli et al 2012). At high abundance levels, geographical expansion can 

equalize habitat suitability and individuals’ fitness over a species spatial domain (Fretwell and 

Lucas 1970). The authors’ findings corroborate previous work that points out that species 

distributions can undergo abrupt shifts in response to small changes in a driver (Turner 2005). 
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Functional level (i.e. individual, species / stock, community / ecosystem) did not explain any of 

the variation in degree of non-linearity in the regression trees. One may expect the ecological 

responses within these functional levels to behave differently because they integrate across 

different spatial and temporal scales. We found that the percentages of non-linear and linear 

relationships among three functional levels were similar; however, sample sizes of the 

relationships grouped by functional levels varied greatly (Appendix C, Table C4), which might 

mask potential differences. Surprisingly, however, we found that trophic level influenced the 

strength of non-linear responses. As lower trophic levels are thought to be more sensitive to 

system perturbations than higher trophic levels (e.g., Benson and Trites 2002), we expected to 

see stronger non-linearities associated with species lower in the food chain. However, our 

regression tree model showed that on average the strongest non-linearities were associated with 

the highest trophic levels (TL = 4), in those relationships in which species biomass, abundance, 

growth, and condition were the ecological responses and climate, fishing and trophodynamics 

were the drivers. This finding should be interpreted with caution because it may be largely 

explained by study methodology. For example, two studies accounted for most of the driver-

response relationships associated with the highest trophic levels and the GAMs used in these 

studies appear to over-fit the data, i.e., the response curves do not look biologically plausible. 

When we removed each of the two studies from the analysis trophic level was no longer an 

explanatory variable. More studies on driver-response relationships of top predators may help 

determine if our finding is an artifact of study methodology, although in general interpreting 

trophic level patterns is complex (see Shannon et al. 2014); for example, there is uncertainty in 

allocating species to a single trophic level, and exploitation history may influence species’ 

responses to stressors. A main criticism of GAMs is the tendency of model over-fitting, and as a 



  22

result it is becoming standard practice for authors to restrict the flexibility of the response curves 

to ensure that model results are indeed plausible. Until the standard becomes more widespread 

inconsistencies in study methodology will influence comparisons across studies. We note, 

however, that in published studies where over-fitting may have resulted in high EDFs (e.g., > 5) 

it is likely that response curves would still have EDFs > 2 and be considered strongly non-linear 

even if the authors had constrained the flexibility of the model.  

Identifying shapes of highly non-linear relationships can reveal driver (stressor) levels where 

abrupt changes in ecological components are prone to occur. Our characterization of the shapes 

of non-linearities suggests the potential for single or multiple inflection points and thresholds in 

several single driver-response relationships, which has important implications for managing 

marine systems (see Selkoe et al. 2015). For instance, the many non-linear response shapes 

supports the need for greater precaution in setting management targets, as in many cases changes 

along some regions of the driver levels could have greater effects on ecological components than 

changes in other regions. Knowledge of where those regions exist can help define a 

precautionary buffer for setting management targets �that can reduce risk of adverse ecological 

outcomes (Selkoe et al. 2015).  Our study documents those relationships where scientists and 

managers might look for non-linearity and where further investigation of response shapes and 

refinement of thresholds estimates are warranted. Without access to original datasets and without 

knowing if a study captures a wide range of driver levels (including e.g., anomalies), it is 

difficult to get a complete picture of the functional form of the relationships and where along the 

scale of driver levels threshold regions may occur. Laboratory and mesocosm experiments may 

be helpful in this regard to identify thresholds across wider range of driver levels, but often 

cannot capture the complexity of ecosystems and multi-driver contexts. 



  23

More empirical studies aimed at quantifying threshold values in driver-response 

relationships will strengthen their utility for precautionary target-setting (i.e., identifying where a 

threshold change in the ecological response is undesirable and setting management targets to 

limit the associated driver). Until recently threshold detection methods (e.g., changepoint 

analysis and STARS) have mostly been applied to identifying shifts in ecological time-series 

data rather than driver-response relationships. However, as more powerful, flexible and 

accessible methods to detect non-linearities and thresholds are developed, we are seeing a 

growing number of detectable thresholds in driver-response relationships that could help inform 

target-setting (e.g., McClanahan et al. 2011, Cury et al. 2011, Large et al. 2013, 2015a,b, Karr et 

al. 2015, Gove et al. 2015). With increasing use of these robust statistical methods, we expect 

there to be accumulating evidence of strong non-linear relationships and threshold dynamics in 

pelagic ecosystems and other marine systems as well. An important avenue for future work will 

be to apply nonlinear methods to a suite of original datasets to further investigate whether 

common shapes and threshold levels in certain driver-response relationships can be detected. 

Thresholds common across analogous systems could be used to develop robust sets of reference 

points across decision-making contexts. In addition, given the temporary nature of many 

empirical relationships, more studies should test the robustness of the driver-response 

relationships and evaluate how interacting variables influence the shape of the relationships and 

where thresholds occur. 

We encountered multiple challenges to gleaning patterns in the strengths and shapes of 

non-linear driver-response relationships through a synthesis of existing literature. First, while 

there is a large literature on a wide diversity of driver-response relationships, there are still 

considerable gaps in the literature and many relationships are understudied. For example, only 4 
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of the 18 ecological responses in our database had adequate data to be included in formal 

analyses, which precluded us from making generalizations across a broader set of drivers and 

ecological responses. Second, it is difficult to distinguish between linear and weakly non-linear 

relationships without large sample sizes and thus non-linear relationships may go unreported if 

this is not considered by authors when developing study designs. Third, similar to other literature 

synthesis studies on driver (stressor)-response relationships (e.g., Ban et al. 2013), the methods 

and statistical techniques used to examine these relationships varied substantially among studies, 

making it difficult to identify common metrics for making comparisons among them. To mitigate 

this challenge, we limited our pool of published papers to those in which authors used 

regression-based techniques to decipher the strength and shapes of relationships. However, 

authors often did not formally test whether the relationships were linear versus non-linear, and 

therefore the number of robust papers that we could use in our analyses was even more limited. 

If more authors had made their data accessible, we could have overcome some of these 

challenges by applying consistent, analytical methods to original data sets to quantify strengths, 

shapes and thresholds of driver-response relationships. At the very least, greater use of model 

selection to determine whether linear or non-linear functions fit data best and consistent 

reporting of standard summary statistics (e.g., EDF, confidence intervals, standard errors) for all 

models in a confidence set could improve our ability to characterize driver-response relationships 

in marine ecosystems.  

Despite these challenges of elucidating the driver effects in complex pelagic systems, this 

study demonstrates the need for more robust, non-linear analyses to characterize the nature of 

driver-response relationships and threshold dynamics. Improved understanding of non-linearities 

in single driver-response relationships can inform how managers set management targets to 
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achieve desired ecological outcomes and maintain ecosystem services. Moreover, non-linear 

analyses can help characterize how multiple drivers interact and inform decision criteria to better 

manage for these interactions. Ecological surprises - including non-linear changes - often result 

from synergistic or interactive effects of multiple drivers. Where and when one or more drivers 

cause a non-linear ecosystem response in isolation, their combined effects with other drivers will 

almost certainly also be non-linear, with varied consequences for ecosystems and the societies 

that depend on them. To provide a broad overview of the prevalence and strength of 

nonlinearities we needed to use published studies and a uni-variate approach was most practical 

for synthesizing the results of the studies. Multi-variate relationships and synergistic/antagonistic 

effects would be better assessed through analysis of original data sets from data-rich systems. 

One could then systematically analyze the influence of different variables on stressor-response 

relationships. Elucidating critical points or thresholds in ecological responses to multiple 

stressors is a promising area of research for managing marine resources (e.g., Large et al. 2015b), 

as is the application of non-linear dynamic models to characterize non-linearities, identify causal 

drivers, and forecast ecosystem conditions (e.g., Hsieh et al. 2005, Sugihara et al. 2012, Glaser et 

al. 2014, Ye et al. 2015). Considering non-linearities in management decisions, given their 

prevalence in the environment, is critical for successfully mitigating and responding and 

adapting to ecosystem change. 
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relationships, including extreme values. 
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Table 1. Broad categories of drivers, metrics of drivers, and ecological responses of the single driver-response relationships in peer-

reviewed publications that met our selection criteria (see methods). The bold and italicized numbers indicate the number of 

relationships and publications for each driver, respectively. References for the publications are provided in the Supplement 1. 

 

 

 

Drivers 

 

Climate 

341, 69 

Pollution 

109, 10 

Exploitation 

68, 10 

Trophodynamic 

210, 49 

Metrics Currents, Ice, Inflow, Large-

scale climate patterns, 

Phenology, Precipitation, 

River flow rate, Salinity, Sea 

surface height, Temperature, 

Thermocline depth and 

strength, Turbulence, 

Upwelling, Winds 

Nutrient loading, 

Oxygen, Total 

organic carbon, 

Water clarity 

Fishing effort, Fishing 

mortality, Landings 

and catch 

Density dependence, Feeding, Growth and body 

condition, Nutrients, Predator and prey biomass 

and abundance, Predator and prey occurrence, 

Prey quality, Primary production and productivity, 

Recruitment and year class strength, Reproduction 

Ecological 

responses 

Area occupied and distribution, Bycatch rates, Community composition and diversity, Consumption:Landings, Growth and body 

condition, Habitat composition, Landings and Landings composition (proxy for abundance), Nutricline depth, Oxygen levels, 

Phenology, Prey composition, Primary production and productivity, Recruitment, Reproduction, Species biomass and abundance, 

Species richness, Survival 
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Table 2. The percentages of non-linear (NL) and linear (L) relationships between metrics of major drivers and ecological responses 

identified from the subset of robust papers. Only metric-response relationships with sample sizes (N) > 5 are shown. See Appendix A, 

Table A2 and Supplement 1 for full list of metric-responses. Bold numbers indicates metric-response relationships for which there was 

equal or greater evidence of non-linear than linear responses. Species biomass, N= 235; growth and condition, N = 67; area occupied, 

N = 99; recruitment N = 43; total N = 444. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Ecological responses 

  Species biomass Growth and condition  Area occupied  Recruitment 

Drivers Metrics % NL % L N  % NL % L N  % NL % L N  % NL % L N 

Climate 

Large-scale climate patterns 67 33 18 
 

- - - 
 

55 45 11 
 

86 14 7 

Salinity 100 0 10 
 

83 17 6 
 

21 79 19 
 

- - - 

Temperature 73 27 53 
 

63 38 16 
 

42 58 31 
 

43 57 28 

Winds and upwelling 63 38 8 
 

64 36 11 
 

- - - 
 

- - - 

Tropho- 

dynamic 

Density dependence 71 29 7  60 40 15  50 50 8  - - - 

Predator and prey biomass 63 38 40 
 

64 36 11 
 

- - - 
 

38 63 8 

Recruitment 29 71 7 
 

- - - 
 

- - - 
 

- - - 

Nutrients - - - 
 

50 50 8 
 

- - - 
 

- - - 

Pollution 
Water clarity 22 78 9 

 
- - - 

 
- - - 

 
- - - 

Oxygen 100 0 41  - - -  0 100 30  - - - 

Fishing Fishing effort, landings and catch 50 50 42 
 

- - - 
 

- - - 
 

- - - 
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Figure legends 

 

Figure 1. The effective degrees of freedom (EDF) estimated from Generalized Additive Models 

were used as a proxy for the degree of non-linearity in stressor-response relationships. An 

EDF of 1 is equivalent to a linear relationship (A), an EDF > 1 and ≤ 2 is a weakly non-

linear relationship (B) and an EDF > 2 indicates a highly non-linear relationship (C) 

(Zuur et al. 2009). Highly non-linear relationships are those that are most likely to have 

inflection points and exhibit threshold responses. 

Figure 2. Enumeration of the shapes of highly non-linear driver-response relationships 

determined through expert consensus-based visual inspection of model fitted curves. The 

categories of shapes include: single maximum or minimum and hump-shaped; splines; 

sigmoid, saturating (sat), decreasing (dec), or increasing; and threshold (i.e. threshold and 

piecewise models best fit the data). NC = no consensus. Total sample size = 121. 

Figure 3. The percentages of relationships that are linear (black), weakly non-linear (light grey), 

highly non-linear (dark grey), and non-linear to an unknown degree (lightest grey) for the 

major driver types (top panel; climate, n=341; exploitation, n=68; trophodynamic, n=210; 

and pollution, n=109, total n=728) and for a subset of studies with robust statistical 

design (bottom panel: climate, n=294; exploitation, n=66; trophodynamic, n=138; 

pollution, n=94, total n=592). Unknown non-linearity represents cases where either the 

authors did not publish the EDF or there were no data available to derive an estimate of 

EDF. 

Figure 4. Regression tree of the mean response of the degree of non-linearity (i.e. EDF) of major 

metric response relationships (with sample sizes > 5, see Table 2) in relation to suite of 

explanatory variables. Bold and italicized font indicate mean estimate of EDF and sample 
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sizes, respectively. The cases to the left of the splits have lower mean EDF than those to 

the right of the splits. The strengths of the splits, and thus variable importance, are 

represented by their vertical lengths. R
2 
= 0.45, cross validation error = 0.32, n=381, cost-

complexity pruning parameter = 0.051 
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Drivers Metrics Single Spline Sigmoid Sat/dec Threshold NC

Climate patterns - 3 - 1 2 -

Salinity 2 - - 3 - 5

Temperature 7 7 1 7 3 11

Winds - 1 - 1 - 1

Density dependence - - - 1 - 1

Predator and prey biomass 2 2 - 1 11 1

Recruitment - - - - 1 -

Nutrients - - - - - -

Pollution Oxygen 4 5 - 2 30 -

Fishing Fishing effort and landings 1 - - 3 1 -

Total 16 18 1 19 48 19

Tropho-
dynamic

Climate

Species biomass and abundance

Ecological response
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Response:

Area occupied, recruitment

Response:

Species biomass, growth

Driver: Climate, 

Fishing, Trophodynamic
Driver: Pollution

TL < 3.5 TL ≥ 3.5 N ≥ 23.5N < 23.5

1.32

115

2.04

189

3.66

27 1.19

9

4.34

41

2.17

381
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